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Abstract John’s ellipsoid criterion characterizes the unique ellipsoid of globally
maximum volume contained in a given convex body C. In this article local and global
maximum properties of the volume on the space of all ellipsoids in C are studied,
where ultra maximality is a stronger version of maximality: the volume is nowhere
stationary. The ellipsoids for which the volume is locally maximum, resp. locally ul-
tra maximum are characterized. The global maximum is the only local maximum and
for generic C it is an ultra maximum. The characterizations make use of notions orig-
inating from the geometric theory of positive quadratic forms. Part of these results
generalize to the case where the ellipsoids are replaced by affine copies of a convex
body D. In contrast to the ellipsoid case, there are convex bodies C and D, such that
on the space of all affine images of D in C the volume has countably many local
maxima. All results have dual counterparts. Extensions to the surface area and, more
generally, to intrinsic volumes are mentioned.

Keywords John ellipsoid · Loewner ellipsoid · Eutaxy · Perfection · Maximum
volume · Convex body

1 Introduction

Given a convex body C, that is, a compact convex set in Euclidean d-space E
d with

non-empty interior, there is a unique ellipsoid of maximum volume in C, the maxi-
mum or John ellipsoid of C. Similarly, there is a unique ellipsoid of minimum volume
containing C, the minimum or Loewner ellipsoid of C. These ellipsoids are important
tools in convex geometry, optimization, affine differential geometry, the asymptotic
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theory of normed spaces, control theory, and statistics. For some historical remarks
and references to the literature, including applications, see [2, 6, 8, 18].

The uniqueness of these ellipsoids seems to have been proved first by Danzer
et al. [5] and the classical characterization of maximum ellipsoids is due to John [17]
(sufficiency), and Pełczyński [19] and Ball [1] (necessity).

The aim of this article is to provide information on local and global maxima of the
volume V on the space of all ellipsoids, resp. on the space of all affine images of a
convex body D which are contained in C. Tools are the notions of eutaxy and perfect
eutaxy, stemming from the geometric theory of positive definite quadratic forms. Ul-
tra maximality is a stronger form of maximality. It will be shown that on the space of
all ellipsoids contained in C the volume V is nowhere stationary. Local maximality,
resp. local ultra maximality of V are characterized by eutaxy, resp. perfect eutaxy.
The only local maximum is the global maximum (Theorem 1). On the space of all
affine images of D which are contained in C the volume is nowhere stationary. Local
maximality implies eutaxy and local ultra maximality is equivalent to perfect eutaxy.
There are convex bodies C,D with infinitely many local maxima of the volume (The-
orem 3). For generic convex bodies C the unique global maximum of V on the space
of ellipsoids contained in C is an ultra maximum (Theorem 5). All these results have
dual counterparts (Theorems 2, 4, 6). If the volume is replaced by the surface area or,
more generally, by intrinsic volumes, similar results hold. One example is Theorem 7.

The idea of the proofs is to translate the problems from E
d into problems of sep-

aration of convex sets in E
1
2 d(d+3) in the case of ellipsoids and in E

d(d+1) in the
general case. This idea was used by Voronoı̆ [27] to prove his famous criterion, stat-
ing that a positive definite quadratic form on E

d is extreme if and only if it is perfect
and eutactic. More recent applications of this idea are to lattice packing and covering
[12, 14], lattice zeta functions [4, 13, 20], geodesics on Riemannian manifolds of a
Teichmüller space [16, 21–24], and to John type and minimum position problems
[9, 11, 15].

For information on convex geometry see, e.g., [10, 25].
Let bd, cl, int, relint, pos, tr, I, O, Bd, Sd−1, P d, NC(u), T , V , ·, ‖ · ‖, hC, ∠

stand for boundary, closure, interior, relative interior, positive (better: non negative)
hull, trace, d × d unit and zero matrix, unit ball, unit sphere, the open convex cone of
positive definite d ×d matrices, normal cone of C at u ∈ bdC, transposition, volume,
inner product and Euclidean norm, support function of the convex body C, and angle.

2 Extrema of the Volume of Inscribed and Circumscribed Ellipsoids

Let C be a convex body. We study the local extrema of the volume on the space of
ellipsoids which are contained in C, resp. contain C.

Ellipsoids Contained in C

We begin with

Basic notions Following Voronoı̆, we identify a (real) d × d matrix A = (aik) with

the point (a11, . . . , a1d , a22, . . . , a2d , . . . , add)T ∈ E
1
2 d(d+1) if A is symmetric and
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with the point (a11, . . . , a1d, a21, . . . , a2d , . . . , ad1, . . . , add)T ∈ E
d2

otherwise. For
d × d matrices A = (aik),B = (bik), let the inner product and the norm be defined

by A · B = ∑
aikbik,‖A‖ = (

∑
a2
ik)

1
2 . For x, y ∈ E

d , let x ⊗ y = xyT be the tensor
product of x and y. Then the following identities hold:

xT Ay = Ay · x = A · x ⊗ y, x ⊗ y · z ⊗ z = (x · z)(y · z),
trA = A · I, trAB = A · BT .

Let E = a +ABd be an ellipsoid contained in C, where a ∈ E
d . We may assume that

A ∈ P d . The space of all ellipsoids contained in C can be identified with the set

E = {
(a + h,A + H) : a + h + (A + H)Bd ⊆ C

} ∩ E
d ⊕ P d

= {
(a,A) + (h,H) : a + h + (A + H)u ∈ C for u ∈ Bd

} ∩ E
d ⊕ P d

= {
(a,A) + (h,H) : a · v + h · v + Au · v + Hu · v ≤ hC(v)

for u ∈ Bd, v ∈ Sd−1} ∩ E
d ⊕ P d

=
(

(a,A) +
⋂

u∈Bd

v∈Sd−1

{
(h,H) : a · v + h · v + A · v ⊗ u + H · v ⊗ u ≤ hC(v)

}
)

∩ E
d ⊕ P d

=
(

(a,A) +
⋂

u∈Bd

v∈Sd−1

{
(h,H) : a · v + h · v + A · (v ⊗ u)′ + H · (v ⊗ u)′ ≤ hC(v)

}
)

∩ E
d ⊕ P d,

where “ ′ ” is the orthogonal projection of E
d2

onto E
1
2 d(d+1). Clearly,

(1) E is (in E
d ⊕ P d ⊆ E

1
2 d(d+3)) a closed convex set with int E 
= ∅.

The volume V is stationary, (locally) maximum, (locally) ultra maximum, or glob-
ally maximum at E = (a,A) ∈ E if

V (a + h,A + H)

⎧
⎨

⎩

= V (a,A)
(
1 + o(‖(h,H)‖))

≤ V (a,A)

≤ V (a,A)
(
1 − const‖(h,H)‖)

⎫
⎬

⎭

as (h,H) → (o,O), (a + h,A + H) ∈ E ,

or,

V (a + h,A + H) ≤ V (a,A) for (a + h,A + H) ∈ E ,

respectively. Here V (a,A) stands for V (a+ABd) and an inequality or equality holds
as (h,H) → (o,O), if it holds for all (h,H) with sufficiently small norm. The ex-
pression ‘const’ denotes a positive constant independent of (h,H). If, in the follow-
ing, ‘const’ appears several times in the same context, it may be different each time.
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The set E is the intersection of closed half spaces which depend continuously on
the parameters u ∈ Bd, v ∈ Sd−1, and of E

d ⊕ P d . The support cone S = cl pos(E −
(a,A)) of E at E = (a,A) ∈ E then is the intersection of those half spaces (translated
by −(a,A)) which contain (a,A) on their boundary hyperplanes, i.e. for which the
following holds:

a · v + o · v + A · (v ⊗ u)′ + O · (v ⊗ u)′ = (a + Au) · v = hC(v).

Since w = a + Au ∈ E ⊆ C, this equality is equivalent to the condition that

w = a + Au ∈ E ∩ bdC, v ∈ NE(w).

Thus,

S =
⋂

w∈E∩bdC
v∈NE(w)

{
(h,H) : h · v + H · (v ⊗ u)′ = (h,H) · (v, (v ⊗ u)′

) ≤ 0
}
.

Since the normal cone of E at (a,A) is the polar cone of S , we get

N = pos
{(

v, (v ⊗ u)′
) : w = a + Au ∈ E ∩ bdC, v ∈ NE(w)

}
.

Using these notions, we call the ellipsoid E eutactic, resp. perfect eutactic in C if

(
o,A−1) ∈ N , resp.

(
o,A−1) ∈ int N .

Clearly, this can be formulated in terms of finite positive linear combinations of ex-
pressions of the form (v, v ⊗u). Actually, these notions are separation conditions for
convex sets, as will become clear later on. We have chosen this terminology since
these notions are closely related to the concepts of eutactic, resp. perfect and eu-
tactic forms in the geometric theory of positive definite quadratic forms initiated by
Voronoı̆.

Results John’s ellipsoid criterion may be stated as follows.

(2) Let E ⊆ C. Then E is the unique ellipsoid of maximum volume in C if and only
if E is eutactic in C.

The following result contains additional information.

Theorem 1 Let C be a convex body, E the space of all ellipsoids contained in C, and
E ∈ E . Then the following statements hold:

(i) V is not stationary at any ellipsoid of E .
(ii) V is locally maximum at E if and only if E is eutactic in C.

(iii) V is locally ultra maximum at E if and only if E is perfect eutactic in C.
(iv) The only local maximum of V on E is the global maximum.

In view of statement (iv), other formulations of statements (ii) and (iii) would be more
appropriate. The above formulation was chosen to see more clearly the differences
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between the situation for ellipsoids and the situation for affine images of a given
convex body as described in Theorem 3.

Preliminaries Before beginning with the proof, some tools are collected together.
Well-known properties of the discriminant surface {A ∈ P d : detA = 1}, of algebraic
number theory, yield the following proposition, see [10], p. 437:

(3) Let E = (a,A) be an ellipsoid in C . Then

D = (
(a,A) + {

(h,H) : det(A + H) ≥ detA
}) ∩ (

E
d ⊕ P d

)

is an unbounded, closed smooth convex body with int D 
= ∅ and interior normal
vector

(
o,A−1) at (a,A) ∈ bd D.

From [9] and proposition (3) we take the following result:

(4) det(I + H) = 1 + trH + O
(‖H‖2) = 1 + H · I + O

(‖H‖2)

as H → O, H ∈ E
d2

= 1 + trH + O
(‖H‖2) ≤ 1 + trH as H → O, H ∈ E

1
2 d(d+1).

Proof of Theorem 1 (i) Since int E 
= ∅ by (1), there is a point (a + h,A + H) ∈ int E
which is not contained in the hyperplane {(a +h,A+H) : A−1 ·H = 0}. Noting that
E is convex by (1) and that (a,A) ∈ E it follows that

(a + τh,A + τH) ∈ E for 0 ≤ τ ≤ 1.

Then

V (a + τh,A + τH) = V
(
(A + τH)Bd

) = V
(
ABd

)
det

(
I + τA−1H

)

= V (a,A)
(
1 + τA−1 · H + O

(
τ 2)) as τ → 0+

by (4). By our choice of (h,H) holds A−1 · H 
= 0. Thus V is not stationary at
E = (a,A).

(ii) The following statements are equivalent:

V has a local maximum at (a,A) ∈ E .
⇔ V (a + h,A + H) ≤ V (A,H) for (a + h,A + H) ∈ E ∩ U where U is a suitable

(convex) neighborhood of (a,A) in E
d ⊕ P d .

⇔ det(A + H) ≤ detA for (a + h,A + H) ∈ E ∩ U .
⇔ The convex sets D, E ∩ U have the point (a,A) in common and their interiors are

disjoint.
⇔ The convex sets D, E touch at (a,A).
⇔ The interior normal vector (o,A−1) of D at (a,A) is contained in the normal

cone N of E at (a,A).
⇔ (o,A−1) ∈ N i.e., E is eutactic in C.
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(iii) The following statements are equivalent:

V has a local ultra maximum at (a,A).
⇔ V (a+h,A+H) ≤ V (a,A)(1−const‖(h,H)‖) as (h,H) → (o,O), (a+h,A+

H) ∈ E .
⇔ det(A + H) ≤ detA(1 − const‖(h,H)‖) as (h,H) → (σ,O), (a + h,A + H) ∈

E .
⇔ det(I + A−1H) = 1 + trA−1H + O(‖A−1H‖2) ≤ 1 − const‖(h,H)‖ for (a +

h,A + H) ∈ E ∩ U where U ⊆ E
d ⊕ P d is a suitable convex neighborhood of

(a,A).
⇔ A−1 · H ≤ − const‖(h,H)‖ for (a + h,A + H) ∈ E ∩ U ⊆ (a,A) + S .
⇔ A−1 · H ≤ − const‖(h,H)‖ for (h,H) ∈ S .
⇔ cos∠((o,−A−1), (h,H)) = −A−1H

‖A−1‖‖(h,H)‖ ≥ const
‖A−1‖ = const > 0 for (h,H) ∈ S .

⇔ ∠((o,−A−1), (h,H)) ≤ α(= arccos(const)) < π
2 for (h,H) ∈ S .

⇔ {(h,H) : ∠((o,−A−1), (h,H)) ≤ α} ⊇ S .
⇔ {(h,H) : ∠((o,A−1, (h,H)) ≤ π

2 − α} ⊆ S ∗ = N .
⇔ (o,A−1) ∈ int N , i.e., E is perfect eutactic in C.

(iv) Statement (iv) is a consequence of the proof of statement (ii): Going back-
wards from the last statement, omitting every mention of the neighborhood U one
arrives at the first statement with ‘local’ replaced by ‘global’. �

Ellipsoids Containing C

The inclusion C ⊆ E = a + ABd is equivalent to the inclusion −A−1a + A−1C ⊆
Bd . The mapping

(a,A) → (b,B) = (−A−1a,A−1) for (a,A) ∈ E
d ⊕ P d

is a diffeomorphism of E
d ⊕ P d onto itself and maps detA onto 1/detA. Thus the

properties that on the space F of all ellipsoids which contain C the volume V is
stationary, locally minimum, locally ultra minimum or globally minimum at E =
(a,A) are equivalent to the properties that on the space A of all affine images of C

which are contained in Bd the volume is stationary, locally maximum, locally ultra
maximum, or globally maximum at b + BC, b = −A−1a, B = A−1. This makes it
plausible that there is a dual version of Theorem 1 and that the proof should be similar
to that of Theorem 1.

Basic notions Let E = a+ABd ⊇ C be an ellipsoid, (a,A) ∈ E
d ⊕ P d . We identify

the space of all ellipsoids containing C with the set

F = {
(a + h,A + H) : a + h + (A + H)Bd ⊇ C

} ∩ E
d ⊕ P d .

Using this set, define stationarity, local minimality, local ultra minimality, global
minimality of V at E, in analogy to the earlier definitions. This is equivalent to the fol-
lowing: Let b + BC ⊆ Bd be the affine image of C where (b,B) = (−A−1a,A−1) ∈
E

d ⊕ P d . Identify the space of all affine images of C contained in Bd with the convex
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set

A = {
(b + h,B + H) : b + h + (B + H)C ⊆ Bd

} ∩ E
d ⊕ P d

=
(

(b,B) +
⋂

u∈C

v∈Sd−1

{
(h,H) : b · v + h · v + B · (v ⊗ u)′ + H · (v ⊗ u)′ ≤ 1

}
)

∩ E
d ⊕ P d .

Using A, define stationarity, local maximality, etc., of V at b + BC as earlier for E .
To define eutaxy and perfect eutaxy, we consider the support cone and the normal
cone of A at (b,B):

S =
⋂

v∈(b+BC)∩bdBd

v=b+Bu

{
(h,H) : h · v + H · (v ⊗ u)′ = (h,H) · (v, (v ⊗ u)′

) ≤ 0
}

N = pos
{(

v, (v ⊗ u)′
) : v = (b + BC) ∩ bdBd, v = b + Bu

}
.

Then C is said to be eutactic, resp. perfect eutactic in E if

(o,A) = (
o,B−1) ∈ N , resp. (o,A) = (

o,B−1) ∈ int N .

Results The dual counterpart of Theorem 1 is as follows.

Theorem 2 Let C be a convex body, F the space of all ellipsoids containing C and
E ∈ F . Then the following statements hold:

(i) V is not stationary at any ellipsoid of F .
(ii) V is locally minimum at E if and only if C is eutactic in E.

(iii) V is locally ultra minimum at E if and only if C is perfect eutactic in E.
(iv) The only local minimum of V on F is the global minimum.

Using the above remarks, the proof, in essence, is the same as that of Theorem 1.

3 Extrema of the Volume of Inscribed and Circumscribed Affine Images

A natural extension of John’s criterion is to consider instead of ellipsoids affine im-
ages of a convex body. This extension has been studied by Giannopoulos, Perissinaki
and Tsolomitis [7], Bastero and Romance [3], Gordon, Litvak, Meyer and Pajor [8]
and the author and Schuster [15].

Let C and D be convex bodies where D ⊆ C. In the following we investigate local
extremum properties of the volume on the space of all affine images of D in C.
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Affine images of D in C

Again, we begin with

Basic Notions Identify the space of all affine images of D which are contained in
C with the convex set

A = (o, I ) + {
(h,H) : h + (I + H)D ⊆ C

} ⊆ E
d+d2 = E

d(d+1)

= (o, I ) +
⋂

u∈D

v∈Sd−1

{
(h,H) : h · v + (I + H) · v ⊗ u ≤ hC(v)

} ⊆ E
d(d+1).

The support and the normal cone of A at (o, I ) are then

S =
⋂

u∈D∩bdC
v∈NC(u)

{
(h,H) : h · v + H · v ⊗ u ≤ 0

}
,

N = pos
{
(v, v ⊗ u) : u ∈ D ∩ bdC, v ∈ NC(u)

}
.

The maximum properties of V are defined in the obvious way. Eutaxy and perfect
eutaxy here mean that

(o, I ) ∈ N , resp. (o, I ) ∈ int N .

Results Part of the results for ellipsoids hold in this more general case. However,
there are substantial differences.

Theorem 3 Let C,D be convex bodies, D ⊆ C, and A the space of all affine images
of D contained in C. Then the following statements hold:

(i) V is not stationary at any affine image of A.
(ii) If V is locally maximum at D, then D is eutactic in C.

(iii) V is locally ultra maximum at D if and only if D is perfect eutactic in C.
(iv) For certain convex bodies C,D the volume has countably many local maxima

on A.

Outline of the Proof and Remarks The proof of statements (i)–(iii) follows closely
the proof of the corresponding statements of Theorem 1 and, therefore, is omitted.

The reason why we could not prove that in statement (ii) eutaxy implies local
maximality is the following: Eutaxy means that the internal normal vector of the
smooth body {(o + h, I + H) : det(I + H) ≥ 1} at the point (o, I ) is contained in the
normal cone of the convex body A at (o, I ). Since {(o,H) : det(I + H) ≥ 1} is not
convex, this does not warrant that the two bodies have disjoint interiors in a suitable
neighborhood of (o, I ) and thus does not imply local maximality of V .

(iv) We describe a construction of a pair of convex bodies C,D, such that V has
countably many local maxima on the space of the affine images of D which are
contained in C:
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Let C1 = Bd and D1 a convex polytope such that D1 ⊆ C1 provides a local maxi-
mum of V . Let F1 = D1 ∩ bdC1. Choose for each f ∈ F1 a closed cap Nf ⊆ bdC1
such that the system N1 of these caps is pairwise disjoint and

D1 ⊆ conv
(
F1 ∪ (bdC1\N1)

)
.

Next choose a rotation R1 such that F1 ∩R1F1 = ∅ and for each f ∈ F1 holds R1f ∈
relintNf . For each f ∈ F1 choose a closed spherical neighborhood Mf ⊆ relintNf

of R1f such that f 
∈ Mf and let M1 be the system of these neighborhoods. Now
choose 1 − 1/2n < �n < 1, n = 1, so close to 1 that the following hold: let

C2 = conv
(
F1 ∪ (bdC1\N1) ∪ �1 M1

)
,

then

F1 ∪ (bdC1\N1) ∪ M1 ⊆ bdC2,

D1,D2 = �1R1D1 ⊆ C2 provide local maxima of V

among all affine images in C2.

Repeat this step with C2,D2,F2 = �1R1F1, N2 = �1 M1 instead of C1,D1,F1, N1,
etc.

In this way we get a sequence of convex bodies C1 ⊇ C2 ⊇ . . . and a sequence of
affine images of D, say D1,D2, . . . , such that the images D1,D2, . . . , are contained
in the convex body

⋂
Cn and provide local maxima of V on the space of all affine

images of D in
⋂

Cn. �

Affine images of D containing C

If a + AD is an affine image of D which contains C, then b + BC, b = −A−1, B =
A−1, is an affine image of C contained in D. Thus the following result, in essence,
is a reformulation of Theorem 3. We state it for completeness and without giving
definitions.

Theorem 4 Let C,D be convex bodies, C ⊆ D and B the space of all affine images
of D which contain C. Then the following statements hold:

(i) V is not stationary at any affine image of B.
(ii) If V is locally minimum at D, then C is eutactic in D.

(iii) V is locally ultra minimum at D if and only if C is perfect eutactic in D.
(iv) For certain convex bodies C,D the volume has countably many local minima on

B.

4 John and Loewner Ellipsoids of Generic Convex Bodies

There are convex bodies where the volume is locally ultra maximum for the John el-
lipsoid and convex bodies for which this does not hold and similarly for the Loewner
ellipsoid. This leads to the question, what is the situation for generic convex bodies?
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Generic Convex Bodies A topological space is Baire if any of its meager subsets has
dense complement, where a set is meager or of first category if it is a countable union
of nowhere dense sets. A version of Baire’s category theorem says that each locally
compact space is Baire. When speaking of most, typical, or generic elements of a
Baire space, all elements are meant, with a meager set of exceptions. By Blaschke’s
selection theorem the space C of all convex bodies, endowed with its natural topology,
is locally compact and, thus, Baire. See [10], Sects. 5.1, 13.1.

John ellipsoids of generic C

The result The answer to the above question is, surprisingly, in favor of ultra maxi-
mality.

Theorem 5 For a generic convex body C the volume on the space of all ellipsoids
contained in C is ultra maximum at the John ellipsoid.

Proof A result of the author [9] is as follows:

(5) The maximum ellipsoid E of a generic convex body C meets bdC in precisely
1
2d(d + 3) points. The family of support half spaces of E (and thus of C) at these
points is irreducible.

The latter means that the intersection of a proper subfamily of these half spaces con-
tains ellipsoids of larger volume than E. In view of this result it its sufficient for the
proof of the Theorem to show the following:

(6) Let C ∈ C and E = a+ABd be the maximum ellipsoid of C such that E∩bdC =
{w1, . . . ,wn} = W , say, where n = 1

2d(d + 3) and the family of support half
spaces of E at the points of W is irreducible. Then V is ultra maximum at E.

For the proof of (7), by Theorem 1(iii) it is sufficient to show that

(7) E is perfect eutactic in C, i.e. (o,A−1) ∈ int N , where N = pos{(v, (v ⊗ u)′) :
w = a + Au ∈ W, v ∈ NE(w)}.

Since E is the maximum ellipsoid of C, Theorem 1(ii) yields that

(8) E is eutactic in C, i.e. (o,A−1) ∈ N .

For the proof of (7) we assume the contrary. Taking into account (8), then either
int N = ∅ or int N 
= ∅ and (o,A−1) ∈ bd N holds. In both cases there is a proper
subset Z � W such that

(9) (o,A−1) ∈ relint pos{(v, (v ⊗ u)′) : w = a + Au ∈ Z,v ∈ NE(w)}.
(In the first case this is a consequence of Carathéodory’s theorem, in the second case
this follows from the fact that all proper faces of the simplicial cone N = pos{(v, (v⊗
u)′) : w = a +Au ∈ W, v ∈ NE(w)} are of the form pos{(v, (v ⊗u)′) : w = a +Au ∈
Z, v = NE(w)} where Z � W .) The set of ellipsoids (a + h,A + H) which are
contained in the intersection of the half spaces

{
x : x · v ≤ hC(v)

}
, w = a + Au ∈ Z, v ∈ NE(w)
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is represented by the following set:

(a,A) +
⋂

w=a+Au∈Z
v∈NE(w)

{
(h,H) : h · v + H · (v ⊗ u)′ ≤ 0

}
.

Since Z � W and W is irreducible, the intersection of these half spaces contains an
ellipsoid (a + h,A + H) of volume greater than the volume of the ellipsoid E =
(a,A). Hence

det(A + H) > detA.

Since A is symmetric and positive definite, it can be represented in the form A =
A− 1

2 A− 1
2 , where A− 1

2 is symmetric and positive definite. Since A− 1
2 HA− 1

2 is sym-
metric and

det
(
I + A− 1

2 HA− 1
2
)
> 1,

it follows from (4) that

(10)

0 < trA− 1
2 HA− 1

2 = A− 1
2 · A− 1

2 H = (
A− 1

2
)T · (A− 1

2 H
)T

= A− 1
2 · HA− 1

2 = I · A− 1
2 A− 1

2 H = A−1 · H = trA−1H.

On the other hand we have

h · v + H · (v ⊗ u)′ ≤ 0 for w = a + Au ∈ Z, v ∈ NE(w).

Thus by (9), there are λw > 0 for w ∈ Z, such that

(
o,A−1) =

∑

w∈Z

λw

(
v, (v ⊗ u)′

)
.

Then,

trA−1H = A−1 · H = (
o,A−1) · (h,H)

=
∑

w∈Z

λu

(
h · v + H · (v ⊗ u)′

) ≤ 0,

a contradiction to (10). The proof of (7) and thus of (6) and thus of Theorem 5 is
complete. �

Loewner Ellipsoids of Generic C

We give the following result without proof.

Theorem 6 For a generic convex body C the volume on the space of all ellipsoids
which contain C is ultra minimum at the Loewner ellipsoid.



Discrete Comput Geom (2011) 46:776–788 787

5 Extensions

Let C be an o-symmetric convex body and E = ABd,A ∈ P d , an o-symmetric ellip-
soid contained in C. The space of all o-symmetric ellipsoids which are contained in
C can be identified with the set

E =
(

A +
⋂

u∈Bd

v∈Sd−1

{
(h,H) : A · (v ⊗ u)′ + H · (v ⊗ u)′ ≤ hC(v)

}
)

∩ P d .

In analogy to Sect. 2 define stationarity, (local) maximality, (local) ultra maximality
and global maximality of the surface area S at the ellipsoid E ∈ E .

Let N be the polar cone of the support cone of E at E as in Sect. 2. The set

S = {
A + H : S(A + H) ≥ S(A)

} ∩ P d

of all o-symmetric ellipsoids with surface area at least S(A) is an unbounded, smooth
convex body in P d , see the remark on p. 335 in [11] or the article [26]. The ellipsoid
E then is said to be S-eutactic, resp. S-perfect eutactic in C, if a normal vector of S
at E is contained in N , resp. in int N . Unfortunately, we are not aware of an explicit
formula for a normal vector of the unbounded convex body S at the point E. Thus
S-eutaxy and S-perfect eutaxy are difficult to check.

As an example of an extension of Theorem 1, we present the following result;
similar results hold with S replaced by general intrinsic volumes, E by the space F
of circumscribed ellipsoids, and where the assumption of o-symmetry is deleted.

Theorem 7 Let C be an o-symmetric convex body, E the space of all o-symmetric
ellipsoids which are contained in C and E ∈ E . Then the following statements hold:

(i) S is not stationary at any ellipsoid of E .
(ii) S is locally maximum at E if and only if E is S-eutactic in C.

(iii) S is locally ultra maximum at E if and only if E is S-perfect eutactic in C.
(iv) The only local maximum of S on E is the (unique) global minimum.

Acknowledgement For numerous helpful hints the author is obliged to Norbert Sauer and the referee.

References

1. Ball, K.M.: Ellipsoids of maximal volume in convex bodies. Geom. Dedic. 41, 241–250 (1992)
2. Ball, K.: Convex geometry and functional analysis. In: Johnson, W.B., Lindenstrauss, J. (eds.) Hand-

book of the Geometry of Banach Spaces I, pp. 161–194. North-Holland, Amsterdam (2001)
3. Bastero, J., Romance, M.: John’s decomposition of the identity in the non-convex case. Positivity 6,

1–16 (2002)
4. Coulangeon, R.: Spherical designs and zeta functions of lattices. Int. Math. Res. Not. Art. ID 49620,

16 (2006)
5. Danzer, L., Laugwitz, D., Lenz, H.: Über das Löwnersche Ellipsoid und sein Analogon unter

den einem Eikörper einbeschriebenen Ellipsoiden. Arch. Math. 8, 214–219 (1957)
6. Giannopoulos, A.A., Milman, V.D.: Euclidean structure in finite dimensional normed spaces. In: John-

son, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces I, pp. 707–779.
North-Holland, Amsterdam (2001)



788 Discrete Comput Geom (2011) 46:776–788

7. Giannopoulos, A.A., Perissinaki, I., Tsolomitis, A.: John’s theorem for an arbitrary pair of convex
bodies. Geom. Dedic. 84, 63–79 (2001)

8. Gordon, Y., Litvak, A.E., Meyer, M., Pajor, A.: John’s decomposition of the identity in the general
case and applications. J. Differ. Geom. 68, 99–119 (2004)

9. Gruber, P.M.: Minimal ellipsoids and their duals. Rend. Circ. Mat. Palermo Suppl. 37(2), 35–64
(1988)

10. Gruber, P.M.: Convex and discrete geometry. In: Grundlehren Math. Wiss., vol. 336. Springer, Berlin
(2007)

11. Gruber, P.M.: Application of an idea of Voronoı̆ to John type problems. Adv. Math. 218, 309–351
(2008)

12. Gruber, P.M.: Application of an idea of Voronoi to lattice packing, in preparation
13. Gruber, P.M.: Application of an idea of Voronoi to lattice zeta functions, in preparation
14. Gruber, P.M.: Voronoi type criteria for lattice coverings with balls, in preparation
15. Gruber, P.M., Schuster, F.E.: An arithmetic proof of John’s ellipsoid theorem. Arch. Math. 85, 82–88

(2005)
16. Ji, L.: Exact fundamental domains for mapping class groups and equivariant cell decomposition for

Teichmüller spaces via Minkowski reduction, manuscript 2009
17. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Pre-

sented to R. Courant on his 60th Birthday, January 8 (1948), pp. 187–204. Interscience, New York
(1948)

18. Johnson, W.B., Lindenstrauss, J.: Basic concepts in the geometry of Banach spaces. In: Johnson, W.B.,
Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces I, pp. 1–84. North-Holland,
Amsterdam (2001)
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