
Discrete Comput Geom (2011) 46:313–333
DOI 10.1007/s00454-011-9353-9

Optimally Decomposing Coverings with Translates
of a Convex Polygon

Matt Gibson · Kasturi Varadarajan

Received: 23 March 2010 / Revised: 9 March 2011 / Accepted: 6 April 2011 /
Published online: 29 June 2011
© Springer Science+Business Media, LLC 2011

Abstract We show that any k-fold covering using translates of an arbitrary convex
polygon can be decomposed into Ω(k) covers. Such a decomposition can be com-
puted using an efficient (polynomial-time) algorithm.

Keywords Cover decomposability · Geometric set cover

1 Introduction

Let us call an object (set) P in the plane plane-cover-decomposable if there exists a
constant c > 0 (which may depend on P) such that any collection of translates of P ,
with the property that every point in the plane has c or more translates covering it, can
be partitioned into two covers of the plane. Pach conjectured in the 1980s that every
convex object is cover-decomposable [4, 5], and this remains open. In this article, we
focus on a finite version of this definition. We say that a collection of objects is a
c-fold covering of a point set X if every point in X is contained within at least c of
the objects. We say that the object P is cover-decomposable if there exists a constant
c > 0 such that any finite collection of translates of P that is a c-fold covering of some
point set X can be partitioned into two sub-collections, so that each sub-collection
covers (every point in) X. That is, if whenever a collection of translates of P form
a c-fold covering of a point set X the translates can be partitioned into two 1-fold

A preliminary version of the results in this article appears in Gibson and Varadarajan, Decomposing
Coverings and the Planar Sensor Cover Problem, Proceedings of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS), 2009.

M. Gibson (�) · K. Varadarajan
Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419, USA
e-mail: mrgibson@cs.uiowa.edu

K. Varadarajan
e-mail: kvaradar@cs.uiowa.edu

mailto:mrgibson@cs.uiowa.edu
mailto:kvaradar@cs.uiowa.edu

314 Discrete Comput Geom (2011) 46:313–333

covers of X, then we say that P is cover-decomposable. We note that if P is open
and is cover-decomposable, then it is also plane-cover-decomposable.

In the 1980s, Mani and Pach [3] showed in an unpublished manuscript that
the unit disk is cover-decomposable (with the constant c being 33). Also in the
1980s, Pach [4] showed that any centrally-symmetric convex polygon is cover-
decomposable. Tardos and Tóth [11] showed somewhat more recently that any trian-
gle is cover-decomposable. Finally, a very recent result due to Pálvölgyi and Tóth [8]
shows that any convex polygon is cover-decomposable. The constant c in the results
of [4] and [8] depends on the convex polygon, in particular the number of its sides,
and that is why these results say nothing about the original conjecture of Pach on the
cover-decomposability of an arbitrary convex set. On the other hand, convexity is a
necessary restriction—Pach, Tardos, and Tóth [6] and Pálvölgyi [7] have shown that
there exist non-convex polygons that are not cover-decomposable [7].

Motivated partly by questions in scheduling sensors [2], an extension of the cover-
decomposability question has recently attracted a lot of attention: Given a collec-
tion of translates of P and any integer k, partition the collection into as many sub-
collections as possible so that each sub-collection covers every point covered by k

or more of the original translates. That is, we would like to be able to decompose a
k-fold cover into as many disjoint covers as possible. While the original results on
cover-decomposability do yield non-trivial bounds for this question, these are usually
far from optimal. For instance, the proof of the cover-decomposability of a triangle
given by Tardos and Tóth [11] implies that any k-fold cover with translates of a tri-
angle can be partitioned into Ω(log k) covers.

Initiating this line of work, Pach and Tóth [5] showed that any k-fold cover with
a centrally-symmetric convex polygon P can be decomposed into Ω(

√
k) covers,

where the constant as before depends on P . Aloupis et al. [1] improved this result
and obtained an optimal bound for centrally-symmetric polygons, showing that one
can obtain Ω(k) covers. Both of these results have corresponding efficient algorithms
that compute the desired decompositions.

The problem of decomposing multiple coverings seems to be harder if instead
of a convex polygon we have a unit disk. Pandit, Pemmaraju and Varadarajan [9]
consider a special case where the point set that needs to be covered is the same as
the centers of the given disks. For this version of the problem, better known as the
domatic partition problem for unit disk graphs [10], they show that it is possible to
compute Ω(k) disjoint covers.

1.1 Our Contribution

Our main contribution here is an optimal result for translates of an arbitrary convex
polygon:

Theorem 1 For any convex polygon P in the plane, there exists a constant α ≥ 1 so
that for any k ≥ 1 and any finite collection of translates of P , we can partition the
collection into k/α sub-collections, each of which covers any point in the plane that
is covered by k or more translates in the original collection.

Discrete Comput Geom (2011) 46:313–333 315

Our techniques build upon the recent work of Aloupis et al. [1] for centrally-
symmetric convex polygons. Suppose a convex polygon has its centroid at the origin
and contains the point p = (px,py) ∈ R

2. The polygon is centrally-symmetric if it
also contains the point −p = (−px,−py). A key idea of theirs is to focus on the level
curves corresponding to the wedges at the vertices of P . The interaction of these level
curves can be complex, but they show that it is sufficient to work within a region
where the interaction is much more controlled. It is only for centrally-symmetric
convex polygons that they establish such nice properties of the interaction. The notion
of level curves is also central to our work, but the main point of departure is the
simplicity of the new way in which we handle the level curve interactions. As we
show, this new approach turns out to be flexible enough to handle arbitrary convex
polygons.

We begin our proof of Theorem 1 by establishing it in Sect. 3 for centrally-
symmetric polygons. Aloupis et al. [1] have already shown such a result, but we
do this in a way that illustrates our new approach and serves as a nice foundation
for describing our algorithm for general convex polygons. In Sect. 4, we establish
our main result, by extending our approach to arbitrary convex polygons, highlight-
ing the one crucial ingredient needed for this generalization. But first, we must recall
in Sect. 2 the toolkit developed in previous work on the problem of decomposing
multiple coverings.

2 Preliminaries

It is convenient to prove Theorem 1 in its dual form as done in [1, 11]. Suppose we
are given a closed, centrally-symmetric convex polygon P . Fix O , the centroid of P ,
as the origin in the plane. For a planar set T and a point x in the plane, let T (x)

denote the translate of T with centroid x. Let P̄ be the reflection through O of the
polygon P . For points p and x in the plane, p ∈ P(x) if and only if x ∈ P̄ (p).

Because of this transformation, it is sufficient for us to show that there exists a
constant α ≥ 1 so that for any k ≥ 1 and any collection Q of points in the plane, it is
possible to assign each point in Q a color from {1,2, . . . , k

α
}, so that any translate of

P̄ with |P̄ ∩Q| ≥ k contains a point colored i, for each 1 ≤ i ≤ k
α

. Abusing notation,
we will refer to this reflected polygon as P for the remainder of the paper.

Polygons to Wedges Let the vertices of P be p0,p1,p2, . . . , pμ−1 in counterclock-
wise order. Addition and subtraction of indices of these vertices will be taken modulo
μ throughout the paper. The set of indices between index i and index j in counter-
clockwise order are denoted [i, j]. We now transform the problem further, so that
instead of dealing with translates of P , we can deal with translates of the μ wedges
corresponding to the vertices of P [1, 5, 11].

Let c be equal to half the minimum distance between two points on non-
consecutive edges of P . We lay a square grid of side c on the plane; any translate
of P intersects β ∈ O(1) grid cells, and each grid cell intersects at most two sides of
a translate; moreover, if a grid cell does intersect two sides of a translate, then these
sides must be adjacent in P .

316 Discrete Comput Geom (2011) 46:313–333

Fig. 1 An illustration for the
wedges of a polygon.
(a) Suppose this triangle is our
polygon with vertices indexed
accordingly. (b) A 0-wedge,
1-wedge, and 2-wedge with
respect to the polygon

For a subset (region) R of the plane and for a finite subset X of points, denote
loadX(R) to be the number of points in X that lie in R. We call this value the load of
region R with respect to X. Since each translate P(u) intersects at most β grid cells,
P(u) must contain load at least k/β within some grid cell if its load with respect
to Q is at least k. We can therefore make the points of Q within such a grid cell
“responsible” for P(u).

Since each grid cell intersects at most two edges of P(u), it must be that the
intersection of a grid cell with P(u) is the same as the intersection of the grid cell
with a wedge whose bounding halflines are parallel to two adjacent edges of P(u). If
one halfline of the wedge is parallel to the edge pi−1pi of P and the other is parallel
with pipi+1 of P , then we call the wedge an i-wedge. For a point q in the plane, we
denote Wi(q) to be the i-wedge with apex q . See Fig. 1 for an illustration.

Because of these observations, Theorem 1 is established by applying the following
theorem to the points Y within each grid cell G.

Theorem 2 There exists a constant α′ ≥ 1 so that for any k ≥ 1 and any collec-
tion Y of points in the plane, it is possible to assign each point in Y a color from
{1,2, . . . , k

α′ }, so that any i-wedge (corresponding to an i-wedge of P) that contains

k or more points from Y contains a point colored j , for each 1 ≤ j ≤ k
α

.

We prove Theorem 2 for wedges of a centrally-symmetric convex polygon in
Sect. 3, and we prove the same theorem for wedges of a general convex polygon
in Sect. 4. We assume that the point set Y is in general position—a line parallel to a
side of P contains at most one point in Y . It is straightforward to perturb the input to
the original problem so that this assumption holds for Y .

Level Curves We will now define a boundary for an i ∈ {0,1, . . . ,μ − 1} and posi-
tive integer r . This boundary has the property that any i-wedge placed on or “inside”
the boundary has load at least r with respect to Y , and any i-wedge placed “outside”
the boundary has load less than r . That is, the number of points in Wi(x) ∩ Y for any
x inside the boundary or on the boundary is at least r and is less than r for any x

outside the boundary. See Fig. 2 for an illustration. This boundary is called a level
curve [1] and extends the definition of boundary points [4, 5]. Let W j

i be the set
of apices of all i-wedges W such that loadY (W) = j . For each i = 0,1, . . . ,μ − 1,
let the level curve Ci (r) be the boundary of the region W ≥r

i = ⋃
j≥r W j

i for each
i = 0,1, . . . ,μ − 1.

Note that Ci (r) is a monotone staircase polygonal path with edges that are parallel
to the edges of an i-wedge; see Fig. 2. We have the following observations:

Discrete Comput Geom (2011) 46:313–333 317

Fig. 2 An example of a level
curve Ci (r) for r = 2. Note that
any i-wedge with apex on Ci (2)

(e.g., the dotted wedge) contains
load at least 2

Fig. 3 Level curve Ci (r) with
hi and τi denoted

Observation 3 For any x ∈ Ci (r), r ≤ loadY (Wi(x)) ≤ r + 1.

Observation 4 Any i-wedge W such that loadY (W) ≥ r contains an i-wedge whose
apex belongs to Ci (r).

Observe that one of the two extreme edges of the level curve Ci (r) is a semi-infinite
ray parallel to edge pi−1pi . Let hi denote the origin of this ray. We call hi the head of
Ci (r). Note that for all points y on the ray, Wi(y)∩Y = Wi(hi)∩Y . The other extreme
edge of Ci (r) is parallel to edge pipi+1. Let τi denote the origin of this ray. We call
τi the tail of Ci (r). Note that for all points y on the ray, Wi(y) ∩ Y = Wi(τi) ∩ Y ; see
Fig. 3.

Simple Algorithm for One Level Curve Observation 4 implies that it is sufficient to
prove Theorem 2 for the i-wedges with apex on Ci (k), for each 0 ≤ i ≤ μ − 1. In
order to do this, we will need a procedure that takes as input one level curve Ci (k),
a positive integer t and a subset Q ⊆ Y . The input to the procedure has the guarantee
that for any i-wedge W with apex on Ci (k), we have |W ∩ Q| ≥ 2t . The goal is
to output a partial coloring of the points of Q with colors {1,2, . . . , t} so that any
i-wedge W with apex on Ci (k) (a) contains a point colored j , for 1 ≤ j ≤ t , and (b)
contains at most 2t colored points.

It is known [1] that such a procedure exists. The reason is that for any q ∈ Q, the
set I (q) = {u ∈ Ci (k)|q ∈ Wi(u)} of apexes of i-wedges containing q is an “interval”
of Ci (k). See Fig. 4 for an illustration. We consider these intervals in an order such
that if interval I properly contains interval I ′, then we consider I before I ′. Consid-
ering intervals in such an order, we add an interval into our working set if it covers a
point of Ci (k) that is not covered by previous intervals in the working set. Notice that
after all intervals have been considered, the working set forms a cover of Ci (k). Now,
we repeatedly throw out intervals from the working set that are redundant—an inter-
val is redundant if throwing it out of the current working set does not affect coverage
of Ci (k).

The final non-redundant working set covers Ci (k), but also has no more than two
intervals covering any point of Ci (k). We give the color 1 to the points in Q that give
rise to the intervals in our working set. We repeat this process t − 1 more times after
removing the colored points from Q. It is easy to verify that the overall procedure,
which we call computeCover(i,Q, t), successfully achieves properties (a) and (b).

318 Discrete Comput Geom (2011) 46:313–333

Fig. 4 An example of an
interval I (p) (in bold). Note
that the i-wedges with apex on
Ci (k) that contain p are the
dotted wedges and all wedges
with apex “in between” the
apices of the dotted wedges

Algorithm 1
1: Y ′ ← Y

2: for i ← 0 to μ − 1 do
3: L ← min{loadY ′(Wz(x)) : x ∈ Cz(k) and z = i, i + 1, . . . ,μ − 1}
4: Xi ← Y ′ ∩ W ≤k

i

5: Run computeCover(i,Xi,
L

64μ
). Let Yi ⊆ Xi be the points assigned a color

during this call.
6: Let Y ′ denote the uncolored points (i.e., Y ′ ← Y ′ \ Yi).

We have the following observation whose second claim easily follows from the man-
ner in which we pick our non-redundant working set.

Observation 5 The partial cover computed by computeCover(i,Q, t) has the prop-
erty that any i-wedge with apex on Ci (k) has at most 2t colored points. Furthermore,
if q and q ′ are points in Q such that q ∈ Wi(q

′) (that is, I (q) properly contains
I (q ′)), then q ′ is colored only if q is colored.

3 Our Algorithm for Centrally-Symmetric Polygons

This section is devoted to a proof of Theorem 2 for the case where P , and hence P ,
is a centrally-symmetric convex polygon. Such a proof is, of course, the main result
of Aloupis et al. [1]. However, this is a good context to introduce our proof method
which is slightly different. Moreover, portions of the proof will be invoked for the
case of general convex polygons. Referring to Theorem 2, we may assume that |Y | ≥
k ≥ 1000μ · (5μ)μ.

The algorithm that achieves the coloring claimed in Theorem 2 is Algorithm 1.
Algorithm 1 calls computeCover(i,Xi, t) for each 0 ≤ i ≤ μ−1. The set Xi in the ith
iteration consists of all the points in Y ∩ W ≤k

i not colored in iterations 0,1, . . . , i −1.
At the beginning of the ith iteration, let L denote, as in the algorithm, the smallest
number of uncolored points in a j -wedge with apex on Cj (k), for i ≤ j ≤ μ − 1.
The parameter t is chosen to be L

64μ
. After the call to computeCover(i,Xi,

L
64μ

), any
i-wedge with apex on Ci (k) contains points colored 1,2, . . . ,L/64μ. This is Ω(k)

colors provided L ∈ Ω(k). This is established in the remainder of the section.

Discrete Comput Geom (2011) 46:313–333 319

Fig. 5 An illustration for the definition of tangent. (a) This line is tangent to the wedge. (b) This line is
not tangent to the wedge

We will show that L, which is at least k before the 0th iteration, drops by at most a
constant factor (i.e., O(μ)) with each iteration. More specifically, we will show that
L drops by at most a constant factor during iteration i for all j > i.

We use the following terminology for iteration i: for two distinct points q and q ′,
if Wi(q) ⊆ Wi(q

′), we say that q dominates q ′. Notice that if q and q ′ are both
uncolored before iteration i, then q ′ is colored in iteration i only if q is already
colored. (This is Observation 5.) For the rest of this section, let Xi denote set of
candidate points that are eligible to be colored in iteration i (as constructed in the
algorithm), and let Yi denote the points that are actually colored in iteration i.

The analysis will rely heavily upon the following observation, which follows di-
rectly from Observation 5 and the fact that in Step 5 of the algorithm, we invoke
computeCover(i,Xi, t) with t = L

64μ
.

Observation 6 For any z ∈ Ci (k), we have that loadYi
(Wi(z)) ≤ L

32μ
.

A line through a vertex of P is tangent to P if it intersects P only at the vertex.
Similarly, a line through the apex of a wedge is tangent to the wedge if it intersects
the wedge only at the apex; see Fig. 5. We will consider the following two cases:

• pi and pj are antipodal vertices of P , that is, there are parallel lines through pi and
pj such that both of the lines are tangent to P , and P is between the two parallel
lines.

• pi and pj are not antipodal vertices of P .

Suppose we have a j -wedge W . If pi and pj are not antipodal vertices of P ,
then we say that W is nonantipodal with respect to an i-wedge. Now suppose that W

is a wedge of any type, i.e., not necessarily a type corresponding to a vertex of P .
Suppose the apex of W is the point x, and consider the i-wedge Wi(x); see Fig. 6. We
say that W is subantipodal with respect to an i-wedge if (1) every line that is tangent
to Wi(x) is also tangent to W , and (2) W and Wi(x) are on “opposite sides” of each
of these tangent lines; see Fig. 7.

We will argue that each wedge W (of type other than i) will have at most a constant
factor of its uncolored points assigned a color during iteration i of the algorithm.
Lemma 8 handles the case when W is nonantipodal with respect to an i-wedge, and
Lemma 9 handles the case when W is subantipodal with respect to an i-wedge. The
reader will note that the lemmas are written in a form that is more general than needed

320 Discrete Comput Geom (2011) 46:313–333

Fig. 6 An illustration of W and Wi(x). (a) The wedge W with apex at x. (b) Wi(x) and W both have
their apex at x

Fig. 7 All of the lines tangent to Wi(x) must lie in the shaded region (e.g., the dotted line). Every such
line is also tangent to W , and the wedges are on opposite sides of every such line. By definition, W is
subantipodal with respect to an i-wedge

for the centrally-symmetric case—first, the statement of the lemmas only assumes
that an i-wedge with apex on Ci (k) has load at least L/2 from points in Xi ; second,
the notion of subantipodal for which Lemma 9 is stated is more general than is needed
for the centrally-symmetric case. We use this more general form for these lemmas
because we are going to need it later in the proof for polygons that are not centrally-
symmetric.

Note that every wedge of a centrally-symmetric convex polygon of type other than
i is either nonantipodal or subantipodal with respect to i. Thus, assuming Lemmas 8
and 9 are true, the following theorem easily follows. Note that this theorem is simply
a restatement of Theorem 2 for the centrally-symmetric case.

Theorem 7 Let P be any centrally-symmetric convex polygon with μ vertices. Let
Y ⊂ R

2 be any set of points so that |Y | ≥ k ≥ 1000μ · (5μ)μ, where k is a parameter.
Algorithm 1 colors the points in Y with Ω(k) colors in a way such that for any
j -wedge W corresponding to P such that |W ∩ Y | ≥ k, W contains a point of each
color.

Proof In iteration i, we color points in Xi so that each i-wedge contains points of
t = L

64μ
different colors, where L is as defined in the algorithm. This gives Ω(k)

different colors as long as L (which is at least k prior to iteration 0 of the algorithm)
is Ω(k) prior to iteration i of the algorithm. Lemmas 8 and 9 ensure this by showing

Discrete Comput Geom (2011) 46:313–333 321

Fig. 8 Illustration for
Lemma 8. Note that there cannot
be a point in the shaded region
by definition of the tail τi

that L falls by at most a constant factor in each iteration of the algorithm for all
j -wedges such that j > i.

Let W be any wedge of type j such that j > i. Note that if loadXi
(W) < L

6 then,
clearly, W will contain at least L − L

6 uncolored points after iteration i (only points
from Xi will be assigned a color). Therefore, we only need to handle the case when
loadXi

(W) ≥ L
6 . Also note that in the case of centrally-symmetric convex polygons,

every j -wedge with j �= i is either nonantipodal with respect to an i-wedge or is sub-
antipodal with respect to an i-wedge. If W is nonantipodal with respect to an i-wedge
then we can invoke Lemma 8. If W is subantipodal with respect to an i-wedge then
we can invoke Lemma 9. In both cases, the number of uncolored points in W falls
by a factor of at most 5μ in iteration i. Therefore, when we reach iteration j of the
algorithm, W will still contain Ω(k) points which have not yet received a color. �

The following lemma handles the case for wedges which are nonantipodal with
respect to an i-wedge.

Lemma 8 Suppose that W is a wedge that is nonantipodal with respect to an i-wedge
and loadXi

(W) ≥ L
6 . Further suppose that before the call to computeCover(i,Xi,

L
64μ

)

in iteration i, all i-wedges with apex on Ci (k) have load at least L
2 from points in Xi .

After the call to computeCover(i,Xi,
L

64μ
) in the ith iteration of the algorithm, W

has load at least L
5μ

from points in Y ′. (Note that Y ′ always denotes the uncolored
points in the algorithm.)

Proof Let x denote the apex of W . Suppose that W ∩ Ci (k) = ∅. For this to be the
case, one of the halflines of W must be parallel with a halfline of an i-wedge. We
will focus on the case when W has a halfline parallel to the side pipi+1 as the other
case is symmetric; see Fig. 8. In this case, we have that W ∩ Xi ⊆ Wi(τi) by the
definition of the tail τi . We thus have loadYi

(W) ≤ loadYi
(Wi(τi)) ≤ L

32μ
where the

last inequality comes from Observation 6. Therefore, the load of uncolored points in
W after iteration i is at least L

6 − L
32μ

> L
5μ

.
So let us assume that W ∩ Ci (k) �= ∅. Recall that since W is nonantipodal with

respect to an i-wedge, it is of type j where j corresponds to a vertex pj of P . There
are two cases to consider:

1. We encounter pj after pi and before the vertices antipodal to pi when walking
counter-clockwise around P , and

322 Discrete Comput Geom (2011) 46:313–333

Fig. 9 Illustration for the
nonantipodal case

2. We encounter pj after the vertices antipodal to pi and before pi .

We will focus on the first case, since the other is symmetric. Let z be the inter-
section point of the boundary of W and Ci (k) (to be precise, let z be the last point
on W ∩ Ci (k) as one walks “clockwise” around the boundary of W). If W does not
contain in its interior the tail τi of the level curve Ci (k), then W ∩ Yi ⊆ Wi(z) ∩ Yi ,
and so loadYi

(W) ≤ loadYi
(Wi(z)) ≤ L

32μ
. It follows that the load of uncolored points

in W after iteration i is at least

L

6
− L

32μ
>

L

5μ
.

Let us therefore assume that W does contain in its interior the tail τi of Ci (k); see
Fig. 9. Let a denote the point where the boundaries of the wedges Wi(z) and Wi(τi)

intersect. If loadXi
(Wi(a)) ≥ L

8μ
, then since loadYi

(Wi(a)) ≤ loadYi
(Wi(τi)) ≤ L

32μ
,

there are uncolored points in Wi(a) after iteration i. Since any point in Wi(a) dom-
inates points in W ∩ Yi that are not contained in Wi(z) ∪ Wi(τi), we conclude that
W ∩ Yi ⊆ (Wi(z) ∪ Wi(τi)) ∩ Yi . Thus,

loadYi
(W) ≤ loadYi

(
Wi(z)

) + loadYi

(
Wi(τi)

) ≤ L

16μ
.

Therefore, there must be at least L
6 − L

16μ
> L

5μ
uncolored points left in W .

Let us therefore consider the case where loadXi
(Wi(a)) < L

8μ
. This means

that loadXi
(Wi(τi) \ Wi(a)) > L

2 − L
8μ

> L
3 . Again, loadYi

(Wi(τi) \ Wi(a)) ≤
loadYi

(Wi(τi)) ≤ L
32μ

, and this means the load of the points in Wi(τi) \ Wi(a) that

are uncolored after iteration i is at least L
3 − L

32μ
> L

5μ
. But Wi(τi) \Wi(a) ⊆ W , and

this means that the load of the uncolored points in W after iteration i is at least L
5μ

. �

The following lemma handles wedges which are subantipodal with respect to an
i-wedge.

Lemma 9 Suppose that W is a wedge that is subantipodal with respect to an i-wedge
and loadXi

(W) ≥ L
6 . Further suppose that before the call to computeCover(i,Xi,

L
64μ

)

in iteration i, all i-wedges with apex on Ci (k) have load at least L
2 from points in Xi .

After the call to computeCover(i,Xi,
L

64μ
) in the ith iteration of the algorithm, W

Discrete Comput Geom (2011) 46:313–333 323

Fig. 10 Illustration for
Case 2(a): the region Rz

has load at least L
5μ

from points in Y ′. (Note that Y ′ always denotes the uncolored
points in the algorithm.)

Proof Let x denote the apex of W . We first consider the case when both halflines of
W intersect Ci (k). Consider any point z ∈ W ∩ Ci (k). Let az denote the “leftmost”
point where the boundaries of W and Wi(z) intersect, and let bz denote the “right-
most” point where the boundaries of W and Wi(z) intersect (we say leftmost and
rightmost because the intersection could be an interval and not just a single point).
Let Rz be the quadrilateral with vertices az, x, bz, and z. That is, Rz = W ∩ Wi(z).1

Suppose that loadXi
(Rz) ≥ L

5μ
+ L

32μ
. By Observation 6, loadYi

(Wi(z)) ≤ L
32μ

, and

since all points in Rz are in Wi(z), Rz contains (uncolored) load at least L
5μ

after

iteration i. Since Rz ⊆ W , W contains (uncolored) load at least L
5μ

after iteration i,
and we are done. See Fig. 10 for an illustration.

So we now assume that loadXi
(Rz) ≤ L

5μ
+ L

32μ
for each z ∈ W ∩ Ci (k). Since

loadXi
(Wi(z)) ≥ L

2 , we must have loadXi
(Wi(az) ∪ Wi(bz)) ≥ L

2 − (L
5μ

+ L
32μ

) > L
8 .

Let z1 be the “leftmost” point on Ci (k) ∩ W , and let z2 be the “rightmost” point on
Ci (k) ∩ W . Let us define the points az1 and bz2 with similarly to how we defined az

and bz before. Notice that az1 is just z1 itself, and so loadXi
(Wi(az1)) ≥ L

2 . Similarly,
loadXi

(Wi(bz2)) ≥ L
2 . Let z′ be the last point on Ci (k), while walking from z1 to

z2, such that loadXi
(Wi(az′)) ≥ L

16 . (Note that az1, bz2, az′ , and bz′ are defined using
z1, z2, and z′ in the same way as az and bz were defined with z before.) Thus

loadXi

(
Wi(bz′)

) ≥ loadXi

(
Wi(az′) ∪ Wi(bz′)

) − L

16
≥ L

8
− L

16
= L

16
.

See Fig. 11 for an illustration. Intuitively, we are choosing our point z′ to be a point
that will contain two wedges Wi(az′) and Wi(bz′) that each have “a lot” of uncolored
points.

Now consider any point z′′ ∈ W \ Wi(z
′). It must be that Wi(z

′′) either contains
Wi(az′) or contains Wi(bz′) which both have load in Xi of at least L

16 . Suppose that
Wi(z

′′) contains Wi(az′); the other case is similar. The points in Wi(az′) dominate z′′
and we will not color z′′ in iteration i until we have colored all points in Wi(az′)∩Xi .
But since loadYi

(Wi(az′)) ≤ L
32μ

< L
16 ≤ loadXi

(Wi(az′)), this means we will not
color z′′.

1To be more precise, az is encountered after x and before z while traversing the boundary of Rz clockwise.
Then bz is encountered after z and before x.

324 Discrete Comput Geom (2011) 46:313–333

Fig. 11 Illustration for
Case 2(a): the constructed
point z′

Fig. 12 Illustration of the case
when the halflines of W do not
intersect Ci (k)

Fig. 13 The first step in
constructing W ′

It follows that W ∩Yi ⊆ Wi(z
′)∩Yi , and thus loadYi

(W) ≤ loadYi
(Wi(z

′)) ≤ L
32μ

.

And so the load of uncolored points in W after iteration i is at least L
6 − L

32μ
≥ L

5μ
.

We now consider the case when one or both halflines of W do not intersect with
Ci (k); see Fig. 12. We will show that we can find a wedge W ′ such that both halflines
of W ′ intersect Ci (k), W ′ ∩ Y = W ∩ Y , and W ′ is subantipodal with respect to an
i-wedge. Given that W ′ exists, we can use the previous arguments to show that W ′
contains Ω(k) uncolored points after iteration i. It then follows that W contains Ω(k)

uncolored points after iteration i because W ′ ∩ Y = W ∩ Y .
We will now describe how to find the wedge W ′. We begin by placing a wedge

identical to W “just behind” W so that the new wedge contains exactly the same
points of Y that W contains; see Fig. 13. We then “bend in” the halflines of the wedge
just enough so that the wedge still contains the same points as W and the halflines
are no longer parallel with the edges of Ci (k). This is our wedge W ′; see Fig. 14.
Both halflines now intersect Ci (k) and W ′ is subantipodal with respect to an i-wedge.
By our previous analysis, W ′ contains at least L

5μ
uncolored points after iteration i.

Since W and W ′ contain the same points in Y , it follows that W contains at least L
5μ

uncolored points after iteration i. �

The previous two lemmas complete the proof of Theorem 7, which then in turn
completes the proof of Theorem 2 for the wedges of a centrally-symmetric convex
polygon.

Discrete Comput Geom (2011) 46:313–333 325

Fig. 14 The second step in
constructing W ′

Fig. 15 The triangle used in
Fig. 16

4 Arbitrary Convex Polygons

In this section, we prove Theorem 2 for an arbitrary convex polygon. We begin by
showing that our algorithm for centrally-symmetric polygons does not work in the
case of a triangle, a polygon which is not centrally-symmetric. We then describe how
the algorithm is to be modified. We analyze the algorithm when the input polygon is a
triangle, the simplest case that is not centrally-symmetric. Following this, we extend
the analysis to the general case, invoking the tools developed for the previous special
cases.

4.1 A Bad Example for Algorithm 1

The reason that Algorithm 1 works for centrally-symmetric polygons, but does not
work for triangles, is because of the ways that wedges from a triangle can intersect.
Using the definitions from the previous section, a triangle could have a wedge that
is not nonantipodal or subantipodal with respect to an i-wedge. Because of this, it
could be possible that when running computeCover() for Ci (k) that all of the points
inside of some j -wedge could be eligible to be colored in iteration i, and it could be
possible that they are all assigned the same color.

For an example of this, see Figs. 15 and 16. Suppose we are working with the
triangle P in Fig. 15. In Fig. 16, each of the small yi dots correspond to a single point
in Y , and the larger Yi dots correspond with k − 1 points in Y . The level curve C0(k)

is drawn with dotted lines, and a 2-wedge W2(x) is drawn with solid lines. W2(x)

contains only the points yi for i = 1,2, . . . , k. We want to run computeCover() for
C0(k) to obtain Ω(k) colors, while hoping that Ω(k) points from W2(x) are left un-
colored. However, computeCover() could pick all of the yi points in its first iteration
and assign all of these points the same color. W2(x) contains at least k points from Y ,
but all of the points it contains have now been colored, and assigned the same color.
Thus, the algorithm fails.

326 Discrete Comput Geom (2011) 46:313–333

Fig. 16 Algorithm 1 would
assign all of the points in W2(x)

the same color when coloring
points for C0(k)

Fig. 17 An example of a set Ai . In this example, A0 = {2} since only the side of P parallel with p2p3
has the qualifying property

4.2 The Algorithm for General Convex Polygons

Recall that in the ith iteration of the algorithm, computeCover() takes as input a set
of points Xi ⊆ Y . Only points from Xi are eligible to be assigned a color during
iteration i. The way we modify the algorithm to work for all convex polygons is by
choosing our set Xi more carefully. For centrally-symmetric polygons, it suffices to
let Xi consist of all uncolored points in W ≤k

i . In the case of triangles, we want to

choose a subset of the uncolored points in W ≤k
i . Intuitively, we want to only color

the points which are the “furthest away” from Ci (k). By doing this, we can show that
if we assign a color to a point within some j -wedge, then there must be “a lot” of
points remaining within the j -wedge.

Now we will introduce a notion which will be crucial in determining which points
are “far away” from Ci (k). Consider the natural linear ordering of the lines parallel to
side pjpj+1 of P with the line through vertices pj and pj+1 being smaller than the
line through any of the other vertices of P . For x, y ∈ R

2, we define the partial order
<j such that x <j y if the pjpj+1 parallel line through x is less than the pjpj+1

parallel line through y. A similar notion was used in [11].
For a vertex pi , let Ai denote the set of all indices j such that P has a tangent line

through pi parallel to pjpj+1. See Fig. 17 for an example.

Discrete Comput Geom (2011) 46:313–333 327

Algorithm 2
1: Y ′ ← Y

2: for each i ∈ {0,1,2, . . . ,μ − 1} do
3: L ← min{loadY ′(Wz(x)) : x ∈ Cz(k) and z = i, i + 1, . . . ,μ − 1}
4: for each c ∈ Ci (k) do
5: for each j ∈ Ai do
6: Let Xj(c) be the first L

2μ
points in Wi(c) ∩ Y ′ in decreasing order with

respect to the ordering <j .
7: X(c) ← {Wi(c) ∩ Y ′} \ ⋃

j∈Ai
Xj (c)

8: Xi ← ⋃
c∈Ci (k) X(c)

9: Run computeCover(i, Xi , L
64μ

). Let Yi ⊆ Xi be the points assigned a color
during this call.

10: Let Y ′ denote the uncolored points (i.e., Y ′ ← Y ′ \ Yi).

The algorithm is Algorithm 2. Note that the only difference between this algorithm
and Algorithm 1 is in how Xi is chosen.

We will first analyze the algorithm in the case when P is a triangle. We will
then show that we can use the ideas from the triangle case as well as the centrally-
symmetric case to analyze the algorithm when P is an arbitrary convex polygon.

4.3 Analysis for Triangles

First, we will elaborate on how Algorithm 2 chooses the set Xi for a triangle. Recall
the definition of the set Ai . For triangles, Ai = {i + 1} since only the line parallel
with pi+1pi+2 has the qualifying property. Note that this line is parallel with the side
of the triangle opposite of pi .

So when we get to the loop in Step 5 of the algorithm in iteration i, we will
only compute the set Xi+1(c) in Step 6. This set will consist of the first L

6 points
in Wi(c) ∩ Y ′ in decreasing order with respect to the ordering <i+1. The sorting is
thus done with respect to the side of the triangle opposite of pi . Thus in Step 7, the
set X(c) is the last 5L

6 points in Wi(c) ∩ Y ′ in decreasing order with respect to the
ordering <i+1. Then finally in Step 8, Xi is simply the union of X(c) for all c ∈ Ci (k).

The analysis for this algorithm has the same flavor as the analysis of Algorithm 1.
In iteration i of the algorithm, we will assign colors to some of the points in Xi so
that any i-wedge with apex on Ci (k) contains points colored with Ω(L) colors where
L is as defined in the algorithm. This is Ω(k) different colors as long as L, which
is k before the 0th iteration, is Ω(k) before the ith iteration. This is ensured in the
remainder of this section.

The analysis will again rely upon Observation 6, which is that for any z ∈ Ci (k),
we have that loadYi

(Wi(z)) ≤ L
32μ

. This holds also for Algorithm 2. We also need the
following observation.

Observation 10 For any z ∈ Ci (k), loadXi
(Wi(z)) ≥ L

2 .

328 Discrete Comput Geom (2011) 46:313–333

Fig. 18 The wedge W is
triangular with respect to an
i-wedge because there is a
triangle T with the required
property

Fig. 19 The wedge W is not
triangular with respect to an
i-wedge because the required
triangle does not exist

To see Observation 10, note that for each c ∈ Ci (k), we have:

loadXi

(
Wi(c)

) ≥ loadX(c)

(
Wi(c)

) ≥ L − |Ai | L

2μ
≥ L

2
.

Suppose we have a wedge W of any type other than i. We say that W is triangular
with respect to an i-wedge if there exists a triangle T with vertices t1 and t2 such that
the edges of T adjacent to t1 are parallel with the halflines of W and the edges of T

adjacent to t2 are parallel with the halflines of an i-wedge. Note that for this to be
possible, W must have a halfline that is parallel with a halfline of an i-wedge. Also
note that by the definition, a wedge of a triangle is triangular with respect to every
other type of wedge of the same triangle; see Figs. 18 and 19.

We will argue that each wedge W (of type other than i) will have at most a constant
factor of its uncolored points assigned a color during iteration i of the algorithm.
Again, we write the lemma in a general form as we will use it again in a later section.

Lemma 11 Suppose that W is a wedge that is triangular with respect to an i-wedge
and loadXi

(W) ≥ L
6 . Suppose that the side of W that is not parallel to any of the two

sides of the i-wedge is parallel to pjpj+1, where j ∈ Ai . (Note that if P is a triangle
then j = i + 1.) Further suppose that before the call to computeCover(i,Xi,

L
64μ

) in

iteration i, all i-wedges with apex on Ci (k) have load at least L
2 from points in Xi .

After the call to computeCover(i,Xi,
L

64μ
) in the ith iteration of the algorithm, W

has load at least L
5μ

from points in Y ′. (Note that Y ′ always denotes the uncolored
points in the algorithm.)

Proof Let x denote the apex of W . First suppose that W ∩ Ci (k) = ∅. Note that one of
the halflines of W is parallel with one of the halflines of an i-wedge. We will assume
that W has a halfline parallel with the side pi−1pi . The other case is symmetric; see
Fig. 20. In this case, we have that W ∩Xi ⊆ Wi(hi)∩Xi by the definition of the head
hi . Since W ∩ Xi ⊆ Wi(hi) ∩ Xi , we have that loadYi

(W) ≤ L
32μ

. Therefore, there is

(uncolored) load at least L
6 − L

32μ
> L

5μ
after iteration i.

Now we will assume that W ∩ Ci (k) �= ∅. Let z ∈ Ci (k) be a point such that Wi(z)∩
W �= ∅. Since we know that W has a halfline that is parallel with one of the halflines
of Wi(z), we know that there are only two types of intersections between these two
wedges:

Discrete Comput Geom (2011) 46:313–333 329

Fig. 20 Illustration for Lemma 11. Note that there cannot be any points in the shaded region due to the
definition of the head hi

Fig. 21 An illustration for the
triangular case. (a) A type 1
intersection. (b) A type 2
intersection

1. z ∈ W , one halfline of W intersects both halflines of Wi(z), and the other halfline
of W does not intersect with Wi(z).

2. x ∈ Wi(z), one halfline of Wi(z) intersects both halflines of W , and the other
halfline of Wi(z) does not intersect with W .

See Fig. 21 for an illustration.
Let {v1, v2, v3, . . .} denote the points in Xi ∩ W in decreasing order according to

the ordering <i . Let � = max{t |vt ∈ Yi}. If � ≤ L
10 then loadY ′(W) ≥ L

6 − L
10 ≥ L

5μ

after iteration i, so assume that � > L
10 . For t ∈ {0,1, . . . ,μ − 1} and for a point

s ∈ R
2, let Ht(s) denote the halfplane consisting of all points y such that y ≤t s.

Since v� ∈ Xi there is a u ∈ Ci (k) so that v� ∈ X(u) in iteration i of the algorithm.
Suppose that the intersection between Wi(u) and W is a type 1 intersection. Let Tv�

=
Wi(u) \ Hj(v�). Since v� ∈ X(u), we know that v� is one of the last L − L

2μ
points

in Wi(u) ∩ Y ′ with respect to the ordering <j . (See Algorithm 2 for the notation.)
Because we chose the points for X(u) with respect to this ordering, we know that
the first L

2μ
points with respect to the ordering <j from Wi(u) ∩ Y ′ must be in Tv�

.

Since, loadYi
(Wi(u)) ≤ L

32μ
, there must be at least L

2μ
− L

32μ
> L

5μ
uncolored points

left in Tv�
after iteration i. Since we are dealing with a type 1 intersection, Tv�

⊂ W ,
and thus W will contain at least L

5μ
uncolored points after iteration i and the lemma

holds. See Fig. 22(a) for an illustration.
Now suppose that the intersection between Wi(u) and W is a type 2 intersection.

Consider the region T ′
v�

= W \ Hi(v�). Since we are assuming � > L
10 and since

v� ∈ Wi(u), it must be that loadXi
(T ′

v�
) ≥ L

10 . Since we are dealing with a type 2

330 Discrete Comput Geom (2011) 46:313–333

Fig. 22 An example of the key
triangular regions. (a) An
illustration of Tv�

(the shaded
region). (b) An illustration of
T ′
v�

(the shaded region)

intersection, it must be that T ′
v�

⊂ Wi(u). Since loadYi
(Wi(u)) ≤ L

32μ
, we have that

loadYi
(T ′

v�
) ≤ L

32μ
and thus there will be at least L

10 − L
32μ

> L
5μ

uncolored points left

in T ′
v�

after iteration i. Since T ′
v�

⊆ W , there must be (uncolored) load at least L
5μ

in
W after iteration i. See Fig. 22(b) for an illustration. �

At this point, it is easy to prove a theorem similar to Theorem 7 to show that
Theorem 2 holds for the wedges of a triangle.

4.4 Analysis for Convex Polygons

In this section, we will analyze Algorithm 2 in the case when P is an arbitrary convex
polygon, thus proving Theorem 2. We will show that any j -wedge that contains Ω(k)

uncolored points prior to coloring points for Ci (k) will still contain Ω(k) uncolored
points after doing the coloring. We will use Lemmas 8, 9, and 11 in the analysis. We
note that the statements of Lemmas 8 and 9 and their proofs hold for Algorithm 2
as well. If pi and pj are not antipodal vertices of P , then we can use the analysis
of Lemma 8. If pi and pj are antipodal vertices of P , then we show that we can
partition the j -wedge into at most 3 wedges. One of these wedges can be analyzed
with Lemma 9 (the subantipodal case used for centrally-symmetric polygons), and
the other two wedges (if they exist) can be analyzed with the same arguments from
Lemma 11 (the triangle case).

Lemma 12 Suppose at the beginning of iteration i, all j -wedges with apex on Cj (k)

have load at least L from points in Y ′ for j ≥ i, where L is as computed in the ith
iteration of the algorithm. (Note that Y ′ always denotes the uncolored points in the
algorithm.) After the ith iteration of the algorithm, any j -wedge Wj(x), for j > i,
and with apex x on Cj (k) has load at least L

5μ
from points in Y ′.

Proof There are two main cases to consider:

• pi and pj are antipodal vertices of P , that is, there are parallel lines through pi

and pj such that both of the lines are tangent to P .
• pi and pj are not antipodal vertices of P .

Case 1: pi and pj are not antipodal vertices of P .
In this case, we can invoke Lemma 8 for each j -wedge Wj(x) with apex

x ∈ Cj (k) such that loadXi
(Wj (x)) ≥ L

6 (Lemma 12 trivially holds for Wj(x) if
loadXi

(Wj (x)) < L
6). We simply use the arguments from Lemma 8 with W :=

Wj(x).

Discrete Comput Geom (2011) 46:313–333 331

Fig. 23 An illustration for the antipodal case. If we are working with the corresponding i-wedge and
j -wedge (part (a)), then we obtain the corresponding W1

j
(x), W2

j
(x), and W3

j
(x) (part (b))

Fig. 24 An illustration for the
antipodal case. If we are
working with the corresponding
i-wedge and j -wedge (part (a)),
then W1

j
(x) = Wj (x) and

W2
j
(x) = W3

j
(x) = ∅ (part (b))

Case 2: pi and pj are antipodal vertices of P .
Since loadY ′(Wj (x)) ≥ L, if loadXi

(Wj (x)) ≤ L
2 then Wj(x) will clearly have

load at least L
5μ

after iteration i. So assume that loadXi
(Wj (x)) > L

2 .
Consider the line parallel with pi−1pi through x and the line parallel with

pipi+1 through x. Note these lines are parallel with the halflines of an i-wedge.
Let Ht(x) denote the halfplane consisting of all points y such that y ≤t x. Let
W 1

j (x) = Hi−1(x) ∩ Hi(x) ∩ Wj(x). Let W 2
j (x) = (Hi(x) ∩ Wj(x)) \ W 1

j (x). Let

W 3
j (x) = (Hi−1(x) ∩ Wj(x)) \ W 1

j (x). See Figs. 23 and 24 for an illustration. Note

that W 1
j (x),W 2

j (x), and W 3
j (x) form a partition of Wj(x). Also note that W 1

j (x)

cannot be empty but W 2
j (x) or W 3

j (x) could be empty. Since these three sets form a

partition of Wj(x) and loadXi
(Wj (x)) > L

2 , it must be that one of the three sets has
load at least L

6 from Xi .
Note that W 1

j (x) is subantipodal with respect to an i-wedge. We thus handle the

case when loadXi
(W 1

j (x)) ≥ L
6 by invoking Lemma 9 with W := W 1

j (x).

Note that W 2
j (x) and W 3

j (x) (assuming they are nonempty) are triangular with

respect to an i-wedge. Thus we can handle the cases when loadXi
(W 2

j (x)) ≥ L
6 and

loadXi
(W 3

j (x)) ≥ L
6 with Lemma 11 with W := W 2

j (x) or W := W 3
j (x), completing

the proof. �

We will now show that Theorem 2 holds for the wedges of any convex polygon:

Theorem 13 Let P̄ be any convex polygon with μ vertices. Let Y ⊂ R
2 be any set of

points so that |Y | ≥ k ≥ 1000μ · (5μ)μ, where k is a parameter. Algorithm 2 colors
the points in Y with Ω(k) colors in a way such that for any j -wedge W corresponding
to P̄ such that |W ∩ Y | ≥ k, W contains a point of each color.

Proof Algorithm 2 calls computeCover(i,Xi, t) for each 0 ≤ i ≤ μ − 1. The set Xi

in the ith iteration is an appropriately chosen subset of the points in Y not colored

332 Discrete Comput Geom (2011) 46:313–333

in iterations 0,1, . . . , i − 1. At the beginning of the ith iteration, let L denote, as
in the algorithm, the smallest number of uncolored points in a j -wedge with apex
on Cj (k), for i ≤ j ≤ μ − 1. The parameter t is chosen to be L

64μ
, and we have

minc∈Ci (k) |Wi(c) ∩ Xi | ≥ L
2 (due to the manner in which Xi is chosen in the algo-

rithm, see Observation 10). After the call to computeCover(i,Xi,
L

64μ
), any i-wedge

with apex on Ci (k) contains points colored 1,2, . . . ,L/64μ. Thus, the algorithm pro-
duces a coloring as required in Theorem 2, provided L ∈ Ω(k). This is established by
Lemma 12. It states that L, which equals k before the 0th iteration, drops by a factor
of at most 5μ with each iteration. �

This completes the proof of Theorem 2, and thus Theorem 1. We point out that
our proof technique in fact yields an efficient algorithm corresponding. That is, there
is a polynomial time algorithm that, given a k-fold covering using translates of the
convex polygon P , will output Ω(k) covers.

5 Conclusion and Open Problems

We now know that k-fold coverings by convex polygons can be “optimally decom-
posed”. The major open problem is to obtain results for disks, even in the case when
all of the disks have unit radius. The techniques for obtaining Ω(k) covers for convex
polygons involve reducing the problem to coloring points inside of wedges. We are
able to understand the complications involving the interactions of the wedges, and
we are able to color the points in a clever way to obtain our result. This largely has to
do with the fact that there are only a constant number of “types” of wedges; however,
we do not seem to have the tools to handle the interactions of the disks.

Acknowledgements We would like to thank the anonymous referees for their valuable feedback.

References

1. Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Orden, D., Ramos, P.: Decomposition of mul-
tiple coverings into more parts. In: SODA’09: Proceedings of the Nineteenth Annual ACM–SIAM
Symposium on Discrete Algorithms, pp. 302–310. Society for Industrial and Applied Mathematics,
Philadelphia (2009)

2. Buchsbaum, A.L., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted strip covering and the
sensor cover problem. In: SODA’07: Proceedings of the Eighteenth Annual ACM–SIAM Symposium
on Discrete Algorithms, pp. 1056–1063. Society for Industrial and Applied Mathematics, Philadelphia
(2007)

3. Mani, P., Pach, J.: Decomposition problems for multiple coverings with unit balls. Manuscript (1986)
4. Pach, J.: Covering the plane with convex polygons. Discrete Comput. Geom. 1, 73–81 (1986)
5. Pach, J., Tóth, G.: Decomposition of multiple coverings into many parts. Comput. Geom. 42(2), 127–

133 (2009)
6. Pach, J., Tardos, G., Tóth, G.: Indecomposable coverings. In: Akiyama, J., Chen, W.Y.C., Kano, M.,

Li, X., Yu, Q. (eds.) CJCDGCGT. Lecture Notes in Computer Science, vol. 4381, pp. 135–148.
Springer, Berlin (2005)

7. Pálvölgyi, D.: Indecomposable coverings with concave polygons. Discrete Comput. Geom. 44(3),
577–588 (2010). doi:10.1007/s00454-009-9194-y

http://dx.doi.org/10.1007/s00454-009-9194-y

Discrete Comput Geom (2011) 46:313–333 333

8. Pálvölgyi, D., Tóth, G.: Convex polygons are cover-decomposable. Discrete Comput. Geom. 43(3),
483–496 (2010)

9. Pandit, S., Pemmaraju, S.V., Varadarajan, K.R.: Approximation algorithms for domatic partitions of
unit disk graphs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.D.P. (eds.) APPROX-RANDOM. Lecture
Notes in Computer Science, vol. 5687, pp. 312–325. Springer, Berlin (2009)

10. Pemmaraju, S.V., Pirwani, I.A.: Energy conservation via domatic partitions. In: MobiHoc’06: Pro-
ceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pp. 143–154. ACM, New York (2006)

11. Tardos, G., Tóth, G.: Multiple coverings of the plane with triangles. Discrete Comput. Geom. 38(2),
443–450 (2007)

	Optimally Decomposing Coverings with Translates of a Convex Polygon
	Abstract
	Introduction
	Our Contribution

	Preliminaries
	Polygons to Wedges
	Level Curves
	Simple Algorithm for One Level Curve

	Our Algorithm for Centrally-Symmetric Polygons
	Arbitrary Convex Polygons
	A Bad Example for Algorithm 1
	The Algorithm for General Convex Polygons
	Analysis for Triangles
	Analysis for Convex Polygons

	Conclusion and Open Problems
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

