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Abstract We provide an O(log log OPT)-approximation algorithm for the problem
of guarding a simple polygon with guards on the perimeter. We first design a
polynomial-time algorithm for building ε-nets of size O( 1

ε
log log 1

ε
) for the instances

of HITTING SET associated with our guarding problem. We then apply the technique
of Brönnimann and Goodrich to build an approximation algorithm from this ε-net
finder. Along with a simple polygon P , our algorithm takes as input a finite set
of potential guard locations that must include the polygon’s vertices. If a finite set
of potential guard locations is not specified, e.g., when guards may be placed any-
where on the perimeter, we use a known discretization technique at the cost of mak-
ing the algorithm’s running time potentially linear in the ratio between the longest
and shortest distances between vertices. Our algorithm is the first to improve upon
O(log OPT)-approximation algorithms that use generic net finders for set systems of
finite VC-dimension.
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1 Introduction

1.1 The Art Gallery Problem

In computational geometry, art gallery problems are motivated by the question, “How
many security cameras are required to guard an art gallery?” The art gallery is mod-
eled as a connected polygon P . A camera, which we will henceforth call a guard, is
modeled as a point in the polygon, and we say that a guard g sees a point q in the
polygon if the line segment gq is contained in P . We call a set G of points a guarding
set if every point in P is seen by some g ∈ G. Let V (P ) denote the vertex set of P

and let ∂P denote the boundary of P . We assume that P is closed and non-degenerate
so that V (P ) ⊂ ∂P ⊂ P .

We consider the minimization problem that asks, given an input polygon P with
n vertices, for a minimum guarding set for P . Variants of this problem typically dif-
fer based on what points in P must be guarded and where guards can be placed,
as well as whether P is simple or contains holes. Typically, we want to guard ei-
ther P or ∂P , and our set of potential guards is typically V (P ) (vertex guards), ∂P

(perimeter guards), or P (point guards). For results on art gallery problems not re-
lated to minimization problems we direct the reader to O’Rourke’s book [18], which
is available for free online.

The problem was proved to be NP-complete first for polygons with holes by
O’Rourke and Supowit [19]. For guarding simple polygons it was proved to be
NP-complete for vertex guards by Lee and Lin [17]; their proof was generalized to
work for point guards by Aggarwal [1]. This raises the question of approximability.
There are two major hardness results. First, for guarding simple polygons, Eidenbenz
[9] proved that the problem is APX-complete, meaning that we cannot do better than
a constant-factor approximation algorithm unless P = NP. Subsequently, for guard-
ing polygons with holes, Eidenbenz et al. [10] proved that the minimization problem
is as hard to approximate as SET COVER in general if there is no restriction on the
number of holes. It therefore follows from results about the inapproximability of SET

COVER by Feige [11] and Raz and Safra [20] that, for polygons with holes, it is
NP-hard to find a o(logn)-approximation. These hardness results hold whether we
are dealing with vertex guards, perimeter guards, or point guards.

Ghosh [13] provided an O(logn)-approximation algorithm for guarding polygons
with or without holes with vertex guards. His algorithm decomposes the input poly-
gon into a polynomial number of cells such that each point in a given cell is seen by
the same set of vertices. This discretization allows the guarding problem to be treated
as an instance of SET COVER and solved using general techniques. This will be dis-
cussed further in Sect. 1.2. In fact, applying methods for SET COVER developed after
Ghosh’s algorithm, it is easy to obtain an approximation factor of O(log OPT) for
vertex guarding simple polygons or O(logh log OPT) for vertex guarding a polygon
with h holes.

When considering point guards or perimeter guards, discretization is far more
complicated since two distinct points will not typically be seen by the same set of
potential guards even if they are very close to each other. Deshpande et al. [7] obtain
an approximation factor of O(log OPT) for point guards or perimeter guards by de-
veloping a sophisticated discretization method that runs in pseudopolynomial time.
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It is a pseudopolynomial-time algorithm in that its running time may be linear in the
ratio between the longest and shortest distances between two vertices. Efrat and Har-
Peled [8] provided a randomized algorithm with the same approximation ratio that
runs in fully polynomial expected time; their discretization technique involves only
considering guards that lie on the points of a very fine grid.

Our contribution is an algorithm for guarding simple polygons, using either vertex
guards or perimeter guards. Our algorithm has a guaranteed approximation factor of
O(log log OPT) and the running time is polynomial in n and the number of potential
guard locations. This is the best approximation factor obtained for vertex guards and
perimeter guards. If no finite set of guard locations is given, we use the discretization
technique of Deshpande et al. and our algorithm is polynomial in n and Δ, where Δ

is the ratio between the longest and shortest distances between vertices.

1.2 Guarding Problems as Instances of HITTING SET

1.2.1 Set Cover and Hitting Set

SET COVER is a well-studied NP-complete optimization problem. Given a universe
U of elements and a collection S of subsets of U , SET COVER asks for a minimum
subset C of S such that

⋃
S∈C S = U . In other words, we want to cover all of the ele-

ments in U with the minimum number of sets from S . In general, SET COVER is not
only difficult to solve exactly (see, e.g., [12]) but is also difficult to approximate—no
polynomial-time approximation algorithm can have a o(logn) approximation factor
unless P = NP [20]. Conversely, a simple greedy heuristic (repeatedly picking the
set that covers the most uncovered elements) [6] for SET COVER attains an O(logn)

approximation factor. Another problem, HITTING SET, asks for a minimum subset
H of U such that S ∩ H �= ∅ for any S ∈ S . Any instance of HITTING SET can easily
be formulated as an instance of SET COVER and vice versa.

1.2.2 Set Systems of Guarding Problems

Guarding problems can naturally be expressed as instances of SET COVER or HIT-
TING SET. We wish to model an instance of a guarding problem as an instance of
HITTING SET. The desired set system (U , S) is constructed as follows. U contains
the potential guard locations. For each point p that needs to be guarded, Sp is the set
of potential guards that see p, and S = {Sp | p ∈ P }.
1.2.3 ε-Nets

Informally, if we wish to relax the HITTING SET problem, we can ask for a subset
of U that hits all heavy sets in S . This is the idea behind ε-nets. For a set system
(U , S) and an additive weight function w, an ε-net is a subset of U that hits every set
in S having weight at least ε · w(U ). An oft-exploited fact is that small ε-nets can be
constructed if a set system has bounded VC-dimension.

Definition 1 (VC-Dimension [22]) For a set system (U , S), let Y be a maximum
cardinality subset of U such that S ∩ Y = 2Y . The VC-dimension of (U , S) is equal
to |Y |.
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It is known that set systems of VC-dimension d admit ε-nets of size O(d
ε

log 1
ε
)

[3] and that this is asymptotically optimal without further restrictions [16]. It is also
known that set systems associated with the guarding of simple polygons with point
guards have constant VC-dimension [14, 21], and this bound also applies a fortiori
to perimeter guards and vertex guards. Thus when guarding simple polygons we can
construct ε-nets of size O( 1

ε
log 1

ε
) using general techniques. In a polygon with h

holes the VC-dimension is O(logh) [21] and therefore ε-nets of size O( 1
ε

log 1
ε

logh)

can be constructed.
Using techniques specific to vertex guarding or perimeter guarding a simple poly-

gon, we are able to break through the general �(d
ε

log 1
ε
) lower bound to build smaller

ε-nets. This result is stated in the following theorem.

Theorem 1 For the problem of guarding a simple polygon with vertex guards or
perimeter guards, we can build ε-nets of size O( 1

ε
log log 1

ε
) in polynomial time.

Proof In Sect. 3 we introduce the basic ideas that allow the construction of ε-nets of
size O(1/ε2). In Sect. 4 we give a more complicated, hierarchical technique that lets
us construct ε-nets of size O( 1

ε
log log 1

ε
). �

A similar result for a different problem was recently obtained by Aronov et al. [2],
who proved the existence of ε-nets of size O( 1

ε
log log 1

ε
) when S is either a set of

axis-parallel rectangles in R
2 or axis-parallel boxes in R

3.

1.2.4 Approximating HITTING SET with ε-Nets

Brönnimann and Goodrich [5] introduced an algorithm for using a net finder (an
algorithm for finding ε-nets) to find approximately optimal solutions for the HITTING

SET problem. Their algorithm gives an initial weighting to the elements in U . The net
finder is then used to find an ε-net for ε = 1/2c′, with c′ fixed at a constant between
1 and 2 · OPT. If there is a set in S not hit by the ε-net, the algorithm picks such a
set and doubles the weight of every element in it. It then repeats, finding a new ε-net
given the new weighting. This continues until the algorithm finds an ε-net that hits
every set in S . If the net finder constructs ε-nets of size f (1/ε), their main algorithm
finds a hitting set of size f (4 · OPT).

Previous approximation algorithms achieving guaranteed approximation factors of
�(log OPT) [7, 8] have used this technique, along with generic ε-net finders returning
ε-nets of size O( 1

ε
log 1

ε
) for set systems of constant VC-dimension. Instead, we use

our net finder from Theorem 1 to obtain the following corollary, whose proof is given
in Sect. 2.

Corollary 1 Let P be a simple polygon with n vertices and let G be a finite set of
potential guard locations such that V (P ) ⊆ G ⊂ ∂P . Let T ⊆ P be the set of points
we want to guard. There is an algorithm, running in time polynomial in n and |G|,
that outputs a guarding set for T of size O(OPT · log log OPT), where OPT is the size
of the minimum subset of G that guards T .



256 Discrete Comput Geom (2011) 46:252–269

1.2.5 Discretization

The number of iterations performed by the main algorithm (see Sect. 2.1.1) is
bounded by a function of the number of guard locations. Therefore if the set G of
potential guard locations is infinite, e.g., if G = ∂P , we must perform discretization
to find a finite set G′ ⊂ G of potential guard locations to consider. We assume that
the original set G consists of a polynomial number of closed intervals of ∂P .

We use the discretization technique of Deshpande et al. [7], designed for the more
general point guarding problem. For our restricted application, this algorithm breaks
G into a number of closed line segments having the property that, if a point x is seen
by a point g on a segment, x must be seen by at least one of the endpoints of the
segment containing g. The number of segments required is polynomial in n and Δ,
where Δ is the ratio between the longest and shortest distances between vertices. We
use the set of segment endpoints as the finite guarding set G′. It is not difficult to see
that, if G contains a hitting set of size k, G′ contains a hitting set of size at most 2k.

2 The Main Algorithm

Our main algorithm is an application of that presented by Brönnimann and
Goodrich [5]. Their algorithm provides a generic way to turn a net finder, i.e., an
algorithm for finding ε-nets for an instance of HITTING SET, into an approxima-
tion algorithm. Along with a net finder we also need a verifier, which either states
correctly that a set H is a hitting set, or returns a set from S that is not hit by H .

For now we assume the existence of an appropriate net finder and verifier, each
running in polynomial time. We describe the simple verifier in Sect. 2.1.2; we de-
scribe the net finder, our main contribution, in Sects. 3 and 4.

2.1 Main Algorithm

G is the finite set of potential guard locations and T is the (possibly infinite) set of
points that must be guarded. We first assign a weight function w to the set G. When
the algorithm starts each element of G has weight 1. The main idea of the algorithm
is to repeatedly find an ε-net H and, if H is not a hitting set (i.e., if it does not see
everything in T ), to choose a point p ∈ T that is not seen by H and double the weight
of any guard that sees p.

2.1.1 Bounding the Number of Iterations

For now assume we know the value of OPT and we set ε = 1
2·OPT . We give an upper

bound for the number of doubling iterations the algorithm can perform. Each iteration
increases the total weight of G by no more than a multiplicative factor of (1 + ε)

(since the guards whose weight we double have at most an ε proportion of the total
weight). Therefore after k iterations the weight has increased to at most

|G| · (1 + ε)k ≤ |G| · exp

(
k

2 · OPT

)

≤ |G| · 2( 3k
4·OPT ).
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Let H ⊆ G be an optimal hitting set (i.e., guarding set) of size OPT. For an element
h ∈ H define zh as the number of times the weight of h has been doubled. Since H is
a hitting set, in each iteration some guard in H has its weight doubled, so we have

∑

h∈H
zh ≥ k

and

w(H) =
∑

h∈H
2zh

≥ OPT · 2( k
OPT )

(
since 2x is a convex function

)
.

We now have

OPT · 2( k
OPT ) ≤ w(H) ≤ w(G) ≤ |G| · 2( 3k

4·OPT ),

which gives us

k ≤ 4 · OPT · log

( |G|
OPT

)

.

This bound also tells us that the total weight w(G) never exceeds |G|4
OPT3 .

We must now address the fact that the value of OPT is unknown. We maintain
a variable c′ which is our guess at the value of OPT, starting with c′ = 1. If the
algorithm runs for more than 4 · c′ · log(

|G|
c′ ) iterations without obtaining a guarding

set, this implies that there is no guarding set of size c′ so we double our guess. When
our algorithm eventually obtains a hitting set, we have OPT ≤ c′ ≤ 2 · OPT. The hitting
set obtained is a ( 1

2c′ )-net built by our net finder. Therefore, using the method from
Sect. 4 to build an ε-net of size O( 1

ε
log log 1

ε
), we obtain a guarding set of size

O(OPT · log log OPT).

2.1.2 Verification

The main algorithm requires a verification oracle that, given a set H of guards, either
states correctly that H guards T or returns a point p ∈ T that is not seen by H . We
can use the techniques of Bose et al. [4] to find the visibility polygon of any guard in
H efficiently. It will always be the case that |H | < n. Finding the union of visibility
polygons of guards in H can be done in polynomial time, as can comparing this union
with T .

3 Building Quadratic Nets

In this section we show how to build an ε-net using O(1/ε2) guards. This result is not
directly useful to us but we use this section to perform the geometric leg work, and
hopefully provide some intuition, without worrying about the hierarchical decompo-
sition to be described in Sect. 4. It should be clear that these ε-nets can be constructed
in polynomial time.
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3.1 Subdividing the Perimeter

For the construction both of the ε-nets in this section and those in the next section
we will subdivide the perimeter into a number of fragments. Fragment endpoints will
always lie on potential guard locations, but the weight of a guard location may be split
between multiple fragments and a fragment may consist of a single guard location.

The key difference between the construction of the ε-nets in this section and those
in the next section is the method of fragmentation. In this section, the perimeter will
simply be divided into m = 4/ε fragments each having weight ε

4w(G). For our pur-
poses, 1/ε will always be an integer so m will always be an integer.

3.2 Placing Extremal Guards

For two fragments Ai and Aj we will place guards at extreme points of visibility.
Those are the first and last points on Ai seen from Aj and the first and last points
on Aj seen from Ai . For a contiguous fragment we define the first (resp. last) point
of the segment according to the natural clockwise ordering on the perimeter. We use
G(Ai,Aj ) to denote the set of up to four extremal guards placed between Ai and Aj

(see Fig. 1).
These extreme points of visibility might not lie on potential guard locations. In

fact, it is entirely possible that two fragments Ai and Aj see each other even if no
guard location of Ai sees Aj and vice versa. If an extreme point of visibility is not a
potential guard location, we will simply not place a guard there. Our proofs, in par-
ticular the proof of Lemma 2, will only require guards on extreme points of visibility
that either lie on vertices or on fragment endpoints.

3.3 All Pairs Extremal Guarding

Our aim in this section is to build an ε-net by placing extremal guards for every pair
(Ai,Aj ) of fragments. We denote this set of guards with

SAP =
⋃

i �=j

G(Ai,Aj ).

Note that |SAP| ≤ 4
(
m
2

) = O(1/ε2). Also note that every fragment endpoint is in-
cluded in SAP, since an endpoint is an extreme point of visibility of its two incident
fragments.

Lemma 1 Any point not guarded by SAP sees at most four fragments.

Corollary 2 SAP is an ε-net of size O(1/ε2).

For the proof of Lemma 1 we need to present additional properties of the frag-
ments that can be seen by a point. For a point x, the fragments seen by x are ordered
clockwise in the order they appear on the boundary of P . We need to consider lines of
sight from x, and what happens when a transition is made from seeing one fragment
Ai to seeing the next fragment Aj . There are three possibilities:
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Fig. 1 Placing guards at
extreme points of visibility. The
vertices marked with black disks
belong to the set G(Ai,Aj ).
The non-vertex point marked
with a square also belongs to
G(Ai,Aj ) if and only if it is a
fragment endpoint

Fig. 2 In the proof of
Lemma 2, x sees every point on
the geodesic from pL to pR .
This can be seen by a gift
wrapping argument: starting
with a rubber band stretched
from pL to x, keep one end at
pL and slide the other end in a
straight line from x to pR . The
rubber band now lies along the
geodesic, and no point on it can
have ever been obscured from x

1. j = i + 1 and x sees the guard at the common endpoint of Ai and Aj

2. Aj occludes Ai , in which case we say that x has a left tangent to Aj (see Fig. 3)
3. Ai was occluding Aj , in which case we say that x has a right tangent to Ai (see

Fig. 4).

We say a fragment A owns a point x if x sees A in a sector of size at least π (see
Fig. 5). We assume any point x is owned by at most one fragment; if x is a fragment
endpoint it will itself be a guard, and otherwise if x is owned by two fragments then
only those two fragments can see it.

Lemma 2 Let Ai , Aj , Ak be fragments that are seen by x consecutively in clockwise
order. If x has a left tangent to Aj , and the combined angle of Aj and Ak at x is
no more than π , then x sees a guard in G(Aj ,Ak). Symmetrically, if x has a right
tangent to Aj , and the combined angle of Ai and Aj at x is no more than π , then x

sees a guard in G(Ai,Aj ).

Proof We can assume w.l.o.g. that x has a left tangent to Aj since the proof of the
other case is symmetric. There are now two cases we have to deal with, depending on
whether x has a right tangent to Aj (case 1) or a left tangent to Ak (case 2). Define
pL and pR , respectively, as the first and last points on Aj seen by x. Observe (see
Fig. 2) that x must see every vertex on the geodesic (shortest path inside P ) between
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Fig. 3 The point x has a left
tangent to Aj

Fig. 4 The point x has a right
tangent to Ai

pL and pR . Let q be the first point on Aj seen from Ak . In both cases 1 and 2 (see
Figs. 6 and 7), q must be a vertex of the geodesic between pL and pR . This can be
shown by contradiction; if q lies between consecutive vertices of this geodesic then
those two consecutive vertices must also be seen from Ak , and one of them comes
before q .

The restriction that the combined angle of Aj and Ak at x is no more than π is
necessary to ensure that the geodesic of interest from Ak to Aj does not ‘pass behind’
x to see a point on Aj before pL.

It should be emphasized that, since there is a left tangent to Aj , pL will always be
a vertex. Also, if pR is not a vertex it will not be the first point on Aj seen from Ak . �

The proof of Lemma 1 is now fairly straightforward.

Proof of Lemma 1 Let x be a point that sees at least five fragments. Assume x is not
a fragment endpoint, otherwise it is itself a guard in SAP. If we have a directed graph
whose underlying undirected graph is a cycle, then either we have a directed cycle or
we have a vertex with in-degree 2. By the same principle, either some fragment seen
by x has no tangent from x, or every fragment seen by x has a left tangent from x (or
every one has a right tangent, which can be handled symmetrically).
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Fig. 5 The point x has no
tangent to Ai , a left tangent to
Aj , both a left and right tangent
to Ak , and a right tangent to A� .
Aj owns x

Fig. 6 Case 1 in the proof of
Lemma 2. The point x has a left
tangent and a right tangent to Aj

If a fragment seen by x has no tangent from x, call such a fragment A0 and let
A−2, A−1, A0, A1, A2 be fragments seen by x in clockwise order. If the combined
angle at x of A−2 and A−1 is more than π , the combined angle of A1 and A2 is less
than π . So we can apply Lemma 2 with one of the two pairs of fragments to show
that x is seen by a guard.

If every fragment seen by x has a left tangent from x, then we can apply Lemma 2
using two consecutive fragments with a combined angle at x of less than π . �

Before we move on we will prove one more helpful lemma.

Lemma 3 The number of fragments seen by an unguarded point x that do not have
a tangent from x is at most 1.
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Fig. 7 Case 2 in the proof of
Lemma 2. The point x has a left
tangent to Aj and a left tangent
to Ak

Proof Assume the contrary and let A0 and Ai be two such fragments (assume
Ai �= A1, otherwise a contradiction could be reached immediately). If one such frag-
ment owns x, assume it is A0 and call the next two fragments seen by x in the
clockwise direction A1 and A2, respectively. By Lemma 2, x is seen by a guard
in G(A1,A2) so we reach a contradiction. If no such fragment owns x then assume
w.l.o.g. that, over the fragments seen by x between A0 and Ai going clockwise, the
combined angle at x is less than π (if this is not true it must be true going counter-
clockwise). Again, x is seen by a guard in G(A1,A2) so we reach a contradiction.

�

4 Hierarchical Fragmentation

In the last section we showed how a quadratic number of guards (i.e., O(1/ε2)) could
be placed to ensure that any unguarded point sees at most four fragments. In this
section we discuss how hierarchical fragmentation can be used to reduce the number
of guards required to O( 1

ε
log log 1

ε
). We will use SHF to denote the guarding set

constructed in this section. It should be clear that these ε-nets can be constructed in
polynomial time.

We can consider the hierarchy as represented by a tree. At the root there is a single
fragment representing the entire perimeter of the polygon. This root fragment is bro-
ken up into a certain number of child fragments. Fragmentation continues recursively
until a specified depth t is reached. We will set t = �log log 1

ε
�. The fragmentation

factor (equivalently, the branching factor of the corresponding tree) is not constant,
but rather depends on both t and the level in the hierarchy. The fragmentation factor
generally decreases as the level of the tree increases. Specifically, if bi is the frag-
mentation factor at the ith step, we have

bi =
{

22t−1+1 · 4t · 21−t · α, i = 1,

22t−i+1, 1 < i ≤ t,

where α ≤ 1 is a term introduced only to deal with an issue arising from ceilings and
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double exponentials, namely the fact that 22�log log 1/ε�
is not in O(1/ε). α is specified

in (3) later in this section.
If fi is the total number of fragments after the ith fragmentation step, this gives us

fi =
⎧
⎨

⎩

1, i = 0,

4t · 22t−2t−i−t+i+1 · α, 0 < i ≤ t,

4t · 22t · α, i = t,

since

fi =
i∏

j=1

bj

= 4t · 21−t · α ·
i∏

j=1

22t−j +1

= 4t · 21−t+∑i
j=1(2

t−j +1) · α
= 4t · 22t−2t−i−t+i+1 · α.

Our algorithm will place guards at all pairs of sibling fragments, i.e., fragments
having the same parent fragment. Whereas before we placed guards at the points in
G(Ai,Aj ) for any pair of fragments (Ai,Aj ), we now only do so if Ai and Aj are
siblings. For the purposes of this guard placement, the complement of the parent frag-
ment, i.e., the subset of G outside the parent fragment, will be considered a dummy
child fragment. That is, it will be considered a child fragment when placing guards,
but not when counting the number of child fragments seen from some point x as in
the statement of Corollary 3 or in the proof of Lemma 4. To denote the complement
of a fragment A we use A. Considering A to be a child of A when placing guards al-
lows us to consider the children of A as if they were fragments with guards placed for
all pairs. For example, we can obtain the following corollary from Lemmas 1 and 3.

Corollary 3 For an unguarded point x and a fragment A, the number of child frag-
ments of A seen by x is at most 3, and at most one of these child fragments does not
have a tangent from x.

The total number of guards placed will be

|SHF| ≤ 4
t∑

i=1

(
bi + 1

2

)

fi−1 ≤ 4
t∑

i=1

b2
i fi−1.

If t ≥ 6 we have bi ≤ 22t−i+1 for all values of i. This gives us

|SHF| ≤ 4α

t∑

i=1

22(2t−i+1) · 4t · 22t−2t−i+1−t+i

= 16tα

t∑

i=1

22t−t+i+2
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= 16tα · 22t−t+3(2t − 1
)

< 16tα · 22t+3

= 128tα · 22t

.

Recall that t = �log log 1
ε
�. We need to define α in a way that ensures b1 is an

integer. In addition, as required by our upcoming proof of Lemma 4 and Corollary 4,
the following two equations must hold:

|SHF| = O

(
1

ε
log log

1

ε

)

, (1)

ft

4t
≥ 1

ε
. (2)

To satisfy these three criteria, it suffices to set

α = �22t−1+1 · 4t · 2−t · 2log(1/ε)−2t �
22t−1+1 · 4t · 2−t

= �4t · 2log(1/ε)+1−t−2t−1�
4t · 22t−1+1−t

. (3)

We must now provide a generalization of Lemma 1 that works with our hierarchi-
cal fragmentation.

Lemma 4 Any point not guarded by SHF sees at most 4i fragments at level i.

Applying this with i = t and using (1) and (2), we get

Corollary 4 SHF is an ε-net of size O( 1
ε

log log 1
ε
).

Proof of Lemma 4 Let x be a point that does not see any guard in SHF. From the tree
associated with the hierarchical fragmentation, we consider the subtree of fragments
that see x. We define a branching fragment as a fragment with multiple children seen
by x and we claim that at any level there are at most two branching fragments. We
call a non-root fragment fruitful if it or one of its descendants is a branching fragment.
Corollary 3 tells us that any fragment has at most three children seen by x. At level 1
there are at most four fragments seen by x, so it follows that the number of fragments
seen by x at level i is at most 4i. We must now prove our claim that there are at most
two branching fragments at any level.

First we note that a branching fragment either has no tangent from x or owns x. To
see this, consider a fragment A that has a tangent from x and does not own x. Assume
w.l.o.g. that x has a left tangent to A and call the point of tangency pL. x must then
also have a left tangent to the child fragment A0 of A that contains pL. A0 must be
the leftmost child fragment of A seen by x. If x sees another child fragment A1 of A

to the right of A0, then by Lemma 2 it is seen by a guard in G(A0,A1).
For our casewise analysis, we now define six types of fragments with regard to x;

these types categorize all non-root fragments. The type of a fragment A depends on
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Table 1 Fragment types with
regard to an unguarded point x Fragment type Seen by x Owned by x Number of tangents

from x

I No No 0

II Yes No 1 or 2

III Yes No 0

IV Yes Yes 0

V Yes Yes 2

VI Yes Yes 1

Table 2 For a fragment of a given type, the possible child fragments seen by x

Fragment type Child fragments seen by x

I None.

II Exactly one of type (II). None of any other type.

III At most three of types (II–III), including at most one of type (III). None of any other type.

IV At most one of types (III–VI). At most three total.

V At most three of types (II and V), including at most one of type (V). None of any other
type.

VI Case 1: Exactly one of type (VI). None of any other type.

Case 2: At most three of types (II, III and V), including at most two of types (III and V).
None of any other type.

whether it is seen by x, whether it is owned by x, and how many tangents from x it
has. Fragment types are defined in Table 1.

For a fragment seen by x, we consider the possible child fragments that are also
seen by x. These possibilities, whose proofs we reserve for later, are summarized in
Table 2. Assuming for now that the claims in Table 2 are true, we can state several
facts:

• Only fragments of type (III–VI) can be fruitful.
• Only fragments of type (VI) can have more than one fruitful child, and they can

have at most two fruitful children.
• The parent of a fragment of type (VI) is either the root fragment or a fragment of

type (VI) with no other children.
• If the root has a child fragment of type (VI), the root cannot have a child of type

(III).

Together, these facts imply that any level has at most two fruitful fragments. We can
now state the following:

• Level 1 has at most four child fragments that see x, at most two of which are
fruitful.

• A fruitful fragment has at most three child fragments that see x, at most one of
which is fruitful.

• A non-fruitful fragment has at most one child fragment that sees x.
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Fig. 8 The only way a fragment
of type (V) can have three
children seen by x

Therefore any level has at most two fruitful fragments and the number of fragments
at level i that see x is at most 4i. It remains to prove the claims in Table 2. We do so
now, row by row.

(I) Trivial.
(II) Follows from Lemma 2.

(III) By Corollary 3, x can see at most three child fragments of A, at most one of
which is of type (III). Any other fragments seen by x must be of type (II).

(IV) If a child of A owns x it must be the only child of A that sees x, and this child
is also of type (IV). Otherwise, A would have a child fragment Ai that is seen
by x, does not own x, and is adjacent to A. x would then be seen by a guard in
G(Ai,A). Any other fragments seen by x must be of type (II).

(V) See Fig. 8. Because A is, in a sense, a ‘dummy’ child of type (III), A cannot
have a real child of type (III) by the proof of Lemma 3. Further, if A has a child
A0 that owns x, this child must also be of type (V). Otherwise assume w.l.o.g.
that A1, immediately clockwise from A0, has a left tangent from x. Then, using
A2 to denote the fragment clockwise from A1 (A2 might be A), x is seen by
G(A1,A2).

(VI) See Fig. 9. Case 1 is the trivial case in which x sees only one child fragment.
We now consider case 2 in which x sees more than one child fragment. Assume
w.l.o.g. that A has a right tangent. If A−1 is the child of A seen by x immediately
counterclockwise from A then A and A−1 together must span an angle of over
π at x, otherwise x is seen by G(A−1,A). This implies that no child other than
A−1 can own x.
First we consider the sub-case in which A−1 owns x. If A1 is the child of A

seen by x immediately clockwise from A then A1 cannot have a tangent from x

otherwise x would be seen by G(A,A1). If x can see A2, a child of A between
A1 and A−1, then x must have two tangents to A−1 otherwise it would be seen
by G(A1,A2).
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Fig. 9 The only way a fragment
of type (VI) can have three
children seen by x

Now we consider the sub-case in which no child of A owns x. By Corollary 3,
along with A and A−1, x can only be seen by two other children of A; again
call them A1 and A2. Since A1 and A2 are rotationally consecutive around x,
x must have a tangent to at least one of them (or be seen by a guard at their
common endpoint).
Therefore, if A has more than one child seen by x, at most two are of types (III)
and (V), and if there is a third it must be of type (II). �

5 Open Problems

• We have obtained a o(log OPT)-approximation factor for vertex guards and perime-
ter guards. Can the same be done for point guards?

• Can we do better than O(log log OPT) for perimeter guards? In particular, can we
find a constant-factor approximation algorithm to match the hardness of approxi-
mation result of Eidenbenz [9]?

• For simple polygons, the set systems associated with point guards have maximum
VC-dimension at least 6 and at most 23 [21]; it is believed that the true value is
closer to the lower end of this range, perhaps even 6 [14]. The upper bound of
23 holds a fortiori for set systems associated with perimeter guards but the lower
bound of 6 does not. A lower bound of 4 follows from a trivial modification to an
example for monotone chains [15]; we can increase this bound to 5 without too
much difficulty (see Fig. 10). Can set systems associated with perimeter guards
actually have VC-dimension as high as 6? And can the upper bound of 23 be im-
proved? It seems that improving the upper bound would be easier for perimeter
guards than for point guards.
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Fig. 10 A polygon with a set S of five points on the perimeter. The points in S = {1,2,3,4,5} are marked
with circles and labeled with large numbers. Each point in S sees all of S, and each guard seeing a sub-
set of S of size 3 or 4 is marked with a cross and labeled with small numbers indicating which points
in S it sees. Guards seeing the 16 subsets of S of size 0, 1, or 2 are not shown. Adding these is a sim-
ple matter of adding nooks with very small angles of visibility, thus we can construct a polygon with 5
points on the perimeter shattered by 25 perimeter guards. Such a polygon can also be obtained via a fairly
straightforward modification of the example of Kalai and Matoušek for point guards [14]
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