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Abstract We prove the Molecular Conjecture posed by Tay and Whiteley. This im-
plies that a graph G can be realized as an infinitesimally rigid panel-hinge framework
in R

d by mapping each vertex to a rigid panel and each edge to a hinge if and only if((
d+1

2

)− 1
)
G contains

(
d+1

2

)
edge-disjoint spanning trees, where

((
d+1

2

)− 1
)
G is the

graph obtained from G by replacing each edge by
((

d+1
2

)− 1
)

parallel edges.

Keywords The molecular conjecture · Panel-hinge frameworks · Rigid
realizations · Molecular frameworks · Combinatorial rigidity

1 Introduction

A d-dimensional body-hinge framework is a collection of d-dimensional rigid bodies
connected by hinges, where a hinge is a (d −2)-dimensional affine subspace, i.e. pin-
joints in 2-space, line-hinges in 3-space, plane-hinges in 4-space etc. The bodies are
allowed to move continuously in R

d so that the relative motion of any two bodies
connected by a hinge is a rotation around it (see Fig. 1) and the framework is called
rigid if every such motion provides a framework isometric to the original one.

We consider a body-hinge framework as a pair (G,p) of a multigraph G = (V ,E)

and a mapping p from e ∈ E to a (d − 2)-dimensional affine subspace p(e) in R
d .

Namely, v ∈ V corresponds to a body and uv ∈ E corresponds to a hinge p(uv)
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Fig. 1 (a) Two bodies connected by a hinge in three dimensions. (b) A body-hinge framework. (c) A pan-
el-hinge framework

Fig. 2 (a) The underlying graph G of the body-hinge framework depicted in Fig. 1(b). (b) Six edge-dis-
joint spanning trees in G̃ = 5G

which joins the two bodies corresponding to u and v. Then, G is said to be realized
as a body-hinge framework (G,p) in R

d . Tay [24] and Whiteley [31] independently
proved that the generic infinitesimal rigidity of a body-hinge framework is determined
by the underlying graph as follows.

Proposition 1.1 [24, 31] A graph G can be realized as an infinitesimally rigid body-
hinge framework in R

d if and only if G̃ contains D edge-disjoint spanning trees,
where D = (d+1

2

)
and G̃ denotes the graph obtained from G by replacing each edge

by (D − 1) parallel edges.

In general, the graph obtained from G by replacing each edge by k parallel copies
is denoted by kG, but in this paper we shall use the simple notation G̃ to denote
(D−1)G for our special interest in (D−1)G. Figure 2(a) shows the underlying graph
G of the body-hinge framework illustrated in Fig. 1(b). Since 5G contains six edge-
disjoint spanning trees as illustrated in Fig. 2(b), Tay-Whiteley’s theorem ensures that
G can be realized as an infinitesimally rigid body-hinge framework (G,p) in R

3.
A body-hinge framework (G,p) is called hinge-coplanar if, for each v ∈ V , all of

the (d − 2)-dimensional affine subspaces p(e) for edges e incident to v are contained
in a common (d − 1)-dimensional affine subspace (i.e. a hyperplane). In this case
replacing each body by a rigid panel does not change the rigidity of the framework.
Thus, a hinge-coplanar body-hinge framework is said to be a panel-hinge framework
(see Fig. 1(c)). In 1984, Tay and Whiteley [25] jointly posed the following conjecture.

Conjecture 1.2 [25] Let G = (V ,E) be a graph. Then, G can be realized as an
infinitesimally rigid body-hinge framework in R

d if and only if G can be realized as
an infinitesimally rigid panel-hinge framework in R

d .

Conjecture 1.2 is known as the Molecular Conjecture which has appeared in sev-
eral different forms [33, 36] and has been a long standing open problem in the rigidity
theory. For the special case d = 2, Whiteley [32] proved the conjecture for a family
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of multigraphs satisfying 2|E| = 3|V | − 3. Recently, the conjecture for d = 2 was
completely proved by Jackson and Jordán [14]. Their proof is done by replacing each
body of a panel-hinge framework by a rigid bar-joint framework (as in [32]), and they
introduced a new formula for the maximum rank of a 2-dimensional hinge-coplanar
body-hinge framework1 as a 2-dimensional bar-joint framework. (The definition of
bar-joint frameworks can be found in e.g. [8, 33].) Also, Jackson and Jordán [15]
showed a sufficient condition of the graph to have a panel-hinge realization in higher
dimension; G can be realized as an infinitesimally rigid panel-hinge framework in R

d

if (d − 1)G contains d edge-disjoint spanning trees. Although the overall strategy of
our proof is slightly close to that of [14], our proof directly calculates the rank of the
rigidity matrix of a specific panel-hinge realization without converting to a bar-joint
framework.

1.1 Road Map of the Proof

Our proof follows a standard strategy to prove the generic rigidity of frameworks:
first we introduce two simple operations that create a larger graph from a given graph,
which leads to a combinatorial induction of graphs on the number of vertices; then
we prove how to geometrically implement these operations in a way that realizes a
framework satisfying the desired degree of freedom. The proof is thus split into two
parts; the combinatorial step and the algebraic step.

More specifically, the paper proceeds as follows. We first in Sect. 3 investigate
the combinatorial property of graphs G such that G̃ contains D edge-disjoint span-
ning trees. Such graphs are called body-hinge rigid graphs. More generally, G is
called a k-degree of freedom body-hinge graph (simply called a k-dof-graph) if it is
realized as a generic body-hinge framework having k-degree of freedom (i.e., k new
edges are needed for G̃ to contain D edge-disjoint spanning trees by Proposition 1.1).
A k-dof-graph is called minimal if removing any edge results in a graph that is not a
k-dof-graph.

A combinatorial induction that generates a sequence of minimal k-dof-graphs is
proposed in Sect. 4. For this, we introduce two operations: (i) expanding a vertex to
a rigid subgraph2 and (ii) edge-splitting (i.e., subdividing an edge into two edges).
In the backward direction, these correspond to (i) contraction of a rigid subgraph
and (ii) splitting off at a vertex of degree two (i.e., contracting an edge incident to
a vertex of degree two), respectively. The main combinatorial result states that for
any 2-edge-connected minimal k-dof-graph G, there are exactly three cases for the
backward direction:

(I) if G has a proper rigid subgraph, then this subgraph can be contracted so that
the resulting graph G′ is minimal k-dof-graph;

(II) if G has no proper rigid subgraph with k > 0, then there is a vertex v of degree
two at which splitting off produces a minimal (k − 1)-dof-graph G′;

(III) if G has no proper rigid subgraph with k = 0, then there is a vertex v of degree
two at which splitting off produces a minimal 0-dof-graph G′.

1In [14], this is called a pin-collinear body-and-pin framework.
2This operation will be not defined explicitly, but implicitly defined as the inverse operation of contraction.
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In the algebraic step, we will provide a proof of the Molecular Conjecture by
showing that any minimal k-dof-graph G has a corresponding panel-hinge realiza-
tion having k-degree of freedom (Sects. 5 and 6). Our task is to provide a geometric
induction implementing the forward version of the combinatorial step according to
the above three cases in a way that attains the desired degree of freedom:

• (I) can be naturally implemented as replacing a rigid panel of G by a full dimen-
sional (i.e., affinely spanning the whole space) rigid framework (Sect. 6.2).

• In case (II) we can provide a realization of G from that of G′ obtained by the
induction (Sect. 6.3). A new panel (associated with v) is inserted so that the new
infinitesimal motion caused as the result of the insertion appears only around this
panel. This is essentially the same idea as that given in [33, Theorem 2.2.2] by
Whiteley to prove that the so-called 1-extension preserves the infinitesimal rigidity
of bar-joint frameworks.

• (III) is the most difficult case and will be discussed in Sect. 6.4. The proposed
construction is basically the same as (II), but in this case we shall try D distinct
frameworks and claim that at least one of them is rigid. The sketch of this case will
be given just before the proof.

1.2 Connection with Molecules

In R
3 the infinitesimal rigidity of panel-hinge frameworks has a special connection

with the flexibility of molecules. To identify flexible/rigid region in a protein is one
of the central issues in the field of molecular biology as this could provide insight
into its function and a means to predict possible changes of structural flexibility by
environmental factors such as temperature and pH. One of standard methods is to
model the protein as a body-hinge or a bar-joint framework and analyze the protein’s
rigidity/flexibility of these mathematical models.

Consider a molecule consisting of atoms connected by covalent bonds. It is known
that a molecule can be modeled as a bar-joint framework of the square of a graph
(see e.g. [10, 11, 16, 35, 37]). The square of a graph G = (V ,E) is defined as G2 =
(V ,E2), where E2 = E ∪ {uv ∈ V × V |u �= v and uw,wv ∈ E for some w ∈ V \
{u,v}}. A molecule can be also modeled as a body-hinge framework by regarding
each atom (vertex) as a rigid body and each bond (edge) as a hinge since in the square
of a graph a vertex and its neighbor form a complete graph. (A formal proof of the
equivalence of the two models can be seen in [35].) Notice, however, that this body-
hinge framework has a “special” hinge configuration, i.e., all the hinges incident to a
body are intersecting each other at the center of the body. Such a hinge configuration
is called hinge-concurrent, and a molecule is modeled as a hinge-concurrent body-
hinge framework [25, 35–37].

Recall that taking projective dual in R
3 transforms points to planes, lines to lines,

and planes to points preserving their incidences. This means that the dual of a hinge-
concurrent body-hinge framework is exactly a panel-hinge framework. Crapo and
Whiteley [4] observed that infinitesimal rigidity is invariant under projective duality,
which implies that G has an infinitesimally rigid panel-hinge realization if and only if
it has an infinitesimally rigid hinge-concurrent body-hinge realization. Therefore, the
correctness of the Molecular Conjecture implies that the flexibility of proteins can be
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combinatorially investigated by using the well-developed tree-packing algorithm on
the underlying graphs (see, e.g., [37] for more details). In fact, the so-called “pebble
game” algorithm [17] for packing spanning trees is implemented in several softwares,
e.g., FIRST [7, 16], ROCK [18], and others [1, 27]. From a mathematical point of
view, however, the correctness proof is incomplete because they rely on the Molecular
Conjecture. The result of this paper provides the theoretical validity of the algorithms
behind such softwares.

2 Preliminaries

In this section we shall provide a formal definition of body-hinge frameworks. Refer
to [4, 15, 24, 28, 29] for more detailed descriptions. Throughout the paper, d denotes
a fixed integer with d ≥ 2, and let D = (d+1

2

)
.

2.1 Extensors

It is known that rigidity properties are projectively invariant [4], and hence it is
useful to work in d-dimensional projective space. To do so, for any point pi =
(pi,1,pi,2, . . . , pi,d) ∈ R

d , we will assign the homogeneous coordinate (pi,1,pi,2,

. . . , pi,d ,1), denoted by pi .
Let U be a (k − 1)-dimensional affine subspace of R

d determined by points
p1, . . . , pk . We denote by A(p1, . . . ,pk) the k × (d + 1)-matrix whose ith row is
pi . For 1 ≤ i1 < i2 < · · · < ik ≤ d + 1, the Plücker coordinate Pi1,i2,...,ik of U is de-
fined as the (−1)1+i1+i2+···+ik times the determinant of the k × k-submatrix obtained
from A(p1, . . . ,pk) by taking ij th columns for 1 ≤ j ≤ k. The Plücker coordinate
vector of U is defined as the

(
d+1

k

)
-dimensional vector obtained by writing down all

of possible Plücker coordinates of U in some predetermined order.
Grassmann–Cayley algebra (see, e.g., [2, 6, 28]) treats a Plücker coordinate vector

at a symbolic level, that is, no coordinate basis is specified, and the symbolic version
of a Plücker coordinate vector is referred to as a k-extensor supporting U , which is
denoted by C(U) = p1 ∨ p2 ∨ · · · ∨ pk . Although we will work on the coordinatized
version, we would like to exploit this terminology to follow the conventional notation.

In general, for any p1, . . . , pk ∈ R
d , the k-extensor p1 ∨p2 ∨ · · ·∨pk denotes the(

d+1
k

)
-dimensional vector consisting of k × k-minors of A(p1, . . . ,pk) if k ≤ d + 1

and otherwise 0. For P = p1 ∨ · · · ∨ pk and Q = q1 ∨ · · · ∨ q l , the join of P and Q

is defined as P ∨ Q = p1 ∨ · · · ∨ pk ∨ q1 ∨ · · · ∨ q l .
It is known that p1 ∨ · · · ∨ pk �= 0 if and only if {p1, . . . ,pk} is linearly indepen-

dent and equivalently {p1, . . . , pk} is affinely independent. Also, we formally state
the following property since it will be used later.

Lemma 2.1 Let P = {p1,p2, . . . , pd+1} be a set of d + 1 points in R
d which is

affinely independent. Then, the set of (d − 1)-extensors {pj1
∨pj2

∨ · · · ∨pjd−1
: 1 ≤

j1 < j2 < · · · < jd−1 ≤ d + 1} is linearly independent.
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Proof Although this is a fundamental fact of extensors, let us show a proof for the
completeness. Suppose that it is dependent. Then, there exist scalars λj1,j2,...,jd−1 for

all
(
d+1
d−1

)
indices, indicating the dependence,

∑

1≤j1<···<jd−1≤d+1

λj1,j2,...,jd−1pj1
∨ pj2

∨ · · · ∨ pjd−1
= 0 (2.1)

and at least one scalar must be nonzero. Without loss of generality, we as-
sume λ1,2,...,d−1 �= 0. Then, taking the join of (2.1) with pd ∨ pd+1, we obtain
λ1,2,...,d−1p1 ∨ · · · ∨ pd+1 = 0. Since P is affinely independent, we also have
p1 ∨ · · · ∨pd+1 �= 0. This in turn implies λ1,2,...,d−1 = 0, which is a contradiction. �

2.2 Motions of Bodies and Hinge Constraints

For the simplicity, let us consider 3-dimensional case for an example. A motion of
a body is a direction-preserving isometry, which is written by a 4 × 4-matrix M ∈
SE(3), an element of the special Euclidean group (see, e.g., [23]). Let us consider
two bodies B and B ′ connected by a hinge H through p1 = (p1,x ,p1,y,p1,z) ∈ R

3

and p2 = (p2,x ,p2,y ,p2,z) ∈ R
3, and suppose that M,M ′ ∈ SE(3) are assigned to B

and B ′, respectively. Then, the hinge constraint by H is defined as Mp1 = M ′p1 and
Mp2 = M ′p2. Taking the derivative of these equalities (as M and M ′ vary continu-
ously), we have

Ipi = I ′pi for i = 1,2 (2.2)

where I and I ′ are elements of the tangent space to the identity of SE(3), so-called
the Lie algebra associated to SE(3), and we can regard them as infinitesimal motions
assigned to B and B ′. It is known that I is represented by

(
R v	
0 0

)
by using a 3 × 3-

skew symmetric matrix

R =
⎛

⎝
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞

⎠

and v = (vx, vy, vz) ∈ R
3 (see, e.g., [23]). Similarly, I ′ is represented by

(
R′ v′	
0 0

)
.

Hence, (2.2) is transformed to

(∣∣∣∣
ωy − ω′

y ωz − ω′
z

p1,y p1,z

∣
∣∣∣+ vx − v′

x,

∣
∣∣∣
ωz − ω′

z ωx − ω′
x

p1,z p1,x

∣
∣∣∣+ vy − v′

y,

∣∣∣∣
ωx − ω′

x ωy − ω′
y

p1,x p1,y

∣∣∣∣+ vz − v′
z,

∣∣∣∣
ωy − ω′

y ωz − ω′
z

p1,y − p2,y p1,z − p2,z

∣∣∣∣ ,

∣∣∣
∣

ωz − ω′
z ωx − ω′

x

p1,z − p2,z p1,x − p2,x

∣∣∣
∣ ,
∣∣∣
∣

ωx − ω′
x ωy − ω′

y

p1,x − p2,x p1,y − p2,y

∣∣∣
∣

)
= 0.
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It is easy to observe that this equation is satisfied if and only if there exists t ∈ R such
that

(
ω − ω′, v − v′)=t

(∣∣∣∣
p1,x 1
p2,x 1

∣∣∣∣ ,
∣∣∣∣
p1,y 1
p2,y 1

∣∣∣∣ ,
∣∣∣∣
p1,z 1
p2,z 1

∣∣∣∣ ,
∣∣∣∣
p1,y p1,z

p2,y p2,z

∣∣∣∣ ,

∣∣∣∣
p1,z p1,x

p2,z p2,x

∣∣∣∣ ,
∣∣∣∣
p1,x p1,y

p2,x p2,y

∣∣∣∣

)

where ω = (ωx,ωy,ωz). This implies that, if we identify the infinitesimal motions I

and I ′ with the 6-dimensional vectors s = (ω, v) and s′ = (ω′, v′), the hinge H con-
strains s − s′ to be proportional to p1 ∨p2, that is, a 2-extensor C(H) supporting H .

This observation can be generalized to d-dimensional case. Suppose that two bod-
ies B and B ′ are connected by a hinge A in R

d , and elements I and I ′ of the
Lie algebra of SE(d) are assigned to B and B ′. Then, we can identify I and I ′
with D-dimensional vectors s and s′, and the hinge H constrains s and s′ so that
s − s′ is in the vector space spanned by a (d − 1)-extensor C(H) supporting H . The
D-dimensional vectors s and s′ are referred to as screw centers in e.g. [4, 15, 24, 29].

2.3 Body-Hinge Frameworks

A d-dimensional body-hinge framework (G,p) is a pair of a multigraph G = (V ,E)

and a mapping p which associates a (d − 2)-dimensional affine subspace p(e) of R
d

with each e ∈ E. Based on the above discussion, an infinitesimal motion of (G,p) is
defined as an assignment S : V → R

D of a D-dimensional vector to each vertex such
that

S(u) − S(v) is in the vector space spanned by a (d − 1)-extensor C
(
p(e)
)

(2.3)

for every e = uv ∈ E. An infinitesimal motion S is called trivial if S(u) = S(v) for
all u,v ∈ V , and (G,p) is said to be infinitesimally rigid if all infinitesimal motions
of (G,p) are trivial. We usually regard an infinitesimal motion S as a point in R

D|V |,
which is a composition of |V | vectors, S(v) ∈ R

D for v ∈ V , if it is clear from the
context.

2.4 Rigidity Matrix

By the definition of infinitesimal motions, taking any basis {r1(p(e)), r2(p(e)), . . . ,

rD−1(p(e))} of the orthogonal complement of the vector space spanned by C(p(e)) ∈
R

D , we can say that S ∈ R
D|V | is an infinitesimal motion of (G,p) if and only if

(
S(u) − S(v)

) · ri
(
p(e)
)= 0

for all i with 1 ≤ i ≤ D − 1 and for all e = uv ∈ E. Hence, the constraints (2.3) to
be an infinitesimal motion are described by (D − 1)|E| linear equations over S. In
other words, S is infinitesimal motion of (G,p) if and only if it is in the null space of
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a (D − 1)|E| × D|V |-matrix R(G,p) written as

R(G,p) =

· · · u · · · v · · ·
⎛

⎝

...
...

⎞

⎠
e=uv · · ·0 · · · r(p(e)) · · ·0 · · · −r(p(e)) · · ·0 · · ·

...
...

where r(p(e)) denotes a (D − 1) × D-matrix defined by

r
(
p(e)
)=
⎛

⎜
⎝

r1(p(e))
...

rD−1(p(e))

⎞

⎟
⎠ .

Sequences of consecutive (D − 1) rows are indexed by elements of E, while se-
quences of consecutive D columns are indexed by elements of V . We call R(G,p)

the rigidity matrix of (G,p).
The null space of R(G,p), which is the space of all infinitesimal motions, is de-

noted by Z(G,p). Note that the dimension of Z(G,p) is uniquely determined by
(G,p) although the entries of R(G,p) may vary depending on the choice of basis of
the orthogonal complement of the space spanned by C(p(e)).

For 1 ≤ i ≤ D, let S∗
i be the infinitesimal motion of (G,p) such that, for each

v ∈ V , the ith component of S∗
i (v) is 1 and the others are 0. It is not difficult to

see that S∗
i is contained in Z(G,p) and S∗

i is a trivial infinitesimal motion. The fact
that {S∗

1 , S∗
2 , . . . , S∗

D} is linearly independent implies that the rank of R(G,p) is at
most D|V | − D = D(|V | − 1). Notice also that {S∗

1 , . . . , S∗
D} spans the space of all

trivial infinitesimal motions, and thus (G,p) is infinitesimally rigid if and only if the
rank of R(G,p) is exactly D(|V | − 1). More generally, the dimension of the space
of nontrivial infinitesimal motions is called the degree of freedom of (G,p), which
is equal to D(|V | − 1) − rankR(G,p). A body-hinge framework (G,p) is called
generic if the ranks of R(G,p) and its edge-induced submatrices take the maximum
values over all realizations of G [15].

2.5 Edge-Disjoint Spanning Trees

Let G = (V ,E) be a multigraph which may contain parallel edges but no self-
loop. For X ⊆ V , let G[X] be the graph induced by X. For F ⊆ E, let V (F) be
the set of the vertices spanned by F , and let G[F ] be the graph edge-induced by
F , i.e., G[F ] = (V (F ),F ). For X ⊆ V , let δG(X) = {uv ∈ E | u ∈ X,v /∈ X} and
let dG(X) = |δG(X)|. We shall omit set brackets when describing singleton sets,
e.g., dG(v) implies dG({v}). Throughout the paper, a partition P of V is a collec-
tion {V1,V2, . . . , Vm} of vertex subsets for some positive integer m such that Vi �= ∅
for 1 ≤ i ≤ m, Vi ∩ Vj = ∅ for any 1 ≤ i, j ≤ m with i �= j , and

⋃m
i=1 Vi = V . Note

that {V } is a partition of V for m = 1. Let δG(P ) and dG(P ) denote the set, and the
number, of edges of G connecting distinct subsets of P , respectively.

Let Ẽ denote the edge set of G̃ = (D − 1)G. Also, for e ∈ E, let ẽ denote the set
of corresponding D − 1 parallel copies of e in Ẽ. For F ⊆ E, let F̃ =⋃e∈F ẽ. We
index the edges of ẽ by 1 ≤ i ≤ D − 1, and ei , or (e)i , denotes the ith element in ẽ.
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The result of Tay and Whiteley (Proposition 1.1) reveals the strong relation be-
tween the rigidity of body-hinge frameworks and edge-disjoint spanning trees. The
following Tutte–Nash–Williams disjoint tree theorem is well-known (see e.g. [22,
Chap. 51]).

Proposition 2.2 [20, 26] A multigraph H contains c edge-disjoint spanning trees if
and only if dH (P ) ≥ c(|P | − 1) holds for each partition P of V .

We use the following conventional notation. For a partition P of V and a multi-
graph G, the D-deficiency of P in G̃ is defined by

defG̃(P ) = D
(|P | − 1

)− dG̃(P ) = D
(|P | − 1

)− (D − 1)dG(P ),

and the D-deficiency of G̃ is defined by

def
(
G̃
)= max

{
defG̃(P ) : P is a partition of V

}
.

Note that def(G̃) ≥ 0 since defG̃({V }) = 0. Proposition 2.2 implies that G̃ contains
D edge-disjoint spanning trees if and only if def(G̃) = 0.

There is another well-known characterization of an edge set containing D edge-
disjoint spanning trees, which is written in terms of a matroid (see e.g. [8, 33] for
the definition of a matroid in connection with rigidity theory). For G̃ = (V , Ẽ), let
us consider the matroid on Ẽ, denoted by M(G̃), induced by the following nonde-
creasing submodular function f : 2Ẽ → Z; for any F ⊆ Ẽ, f (F ) = D(|V (F)| − 1).
Namely, F ⊆ Ẽ is independent in M(G̃) if and only if |F ′| ≤ f (F ′) holds for ev-
ery nonempty F ′ ⊆ F (see [21, Corollary 12.1.2]). It is known that G̃ contains D

edge-disjoint spanning trees if and only if the rank of M(G̃), that is, the rank of Ẽ

in M(G̃) is equal to D(|V | − 1). We remark that M(G̃) is actually the union of D

graphic matroids on Ẽ, which means that an edge set is independent if and only if it
can be partitioned into D edge-disjoint forests.

Proposition 1.1 now implies that a multigraph G can be realized as an infinites-
imally rigid body-hinge framework if and only if the rank of M(G̃) is equal to
D(|V | − 1). A detailed relation between the deficiency of a graph and the rank of
the rigidity matrix was revealed in [15]. Let us summarize these preliminary results.

Proposition 2.3 [15] The followings are equivalent for a multigraph G = (V ,E):

(i) A generic body-hinge framework (G,p) has k degree of freedom, i.e.,
rankR(G,p) = D(|V | − 1) − k.

(ii) def(G̃) = k.
(iii) The rank of M(G̃) is equal to D(|V | − 1) − k, i.e., a base of M(G̃) can

be partitioned into D edge-disjoint forests whose total cardinality is equal to
D(|V | − 1) − k.

Let us note the following relation, observed from (ii) and (iii), between the defi-
ciency and the cardinality of a base of M(G̃); for a multigraph G = (V ,E) and a
base B of M(G̃),

|B| + def
(
G̃
)= D

(|V | − 1
)
. (2.4)
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Namely, the deficiency is equal to the corank of M(G̃) if G̃ consists of D(|V | − 1)

edges (see, e.g., [22] for more details).

3 Body-Hinge Rigid Graphs

In this section we shall further investigate combinatorial properties of body-hinge
frameworks. Proposition 2.3 says that a multigraph G = (V ,E) satisfying def(G̃) = k

for some integer k can be realized as a generic body-hinge framework having k de-
gree of freedom. Inspired by this fact, we simply say that G is a k-dof-graph if
def(G̃) = k for some nonnegative integer k. In particular, to emphasize the relation
between 0-dof-graphs and infinitesimal rigidity given in Proposition 1.1, we some-
times refer to a 0-dof-graph as a body-hinge rigid graph. It is not difficult to see the
following fact.

Lemma 3.1 Let G be a body-hinge rigid graph. Then, G is 2-edge-connected.

Proof Suppose that G is not 2-edge-connected. Then, there exists a nonempty sub-
set V ′ of V satisfying dG(V ′) ≤ 1 and V \ V ′ �= ∅. Consider a partition P =
{V ′,V \ V ′} of V . Then, we have def(G̃) ≥ D(|P | − 1) − (D − 1)dG(P ) ≥ 1, con-
tradicting def(G̃) = 0. �

Remark Let b and c be positive integers and let q = b/c. A multigraph G = (V ,E) is
called q-strong if cG contains b edge-disjoint spanning trees. Such graphs were first
studied by Gusfield [9], where he considered the maximum value of q for G to be
q-strong. This value was later called the strength of G by Cunningham [5]. Checking
whether G is q-strong or not can be solved in polynomial time, if q is regarded as a
constant, by explicitly constructing cG and checking the existence of b edge-disjoint
spanning trees in it, which can be efficiently done by a forest packing algorithm (and
hence it can be checked in polynomial time whether G is a body-hinge rigid graph).
Cunningham [5] provided a strongly polynomial time algorithm for checking whether
G is q-strong and also computing the strength of G. The concept of strength has been
extended to a general matroid by Catlin et al. [3].

In this paper, for our particular interest in q = D
D−1 , we named a D

D−1 -strong graph
as a body-hinge rigid graph. For the rigidity of body-hinge frameworks, Jackson and
Jordán [10, 12] recently provided several results on the q-strength of multigraphs,
which are basically concerned with partitions of V maximizing the deficiency. They
also defined a minimally q-strong graph (with respect to edge-inclusion) and showed
that a q-strong subgraph contained in a minimally q-strong graph is also minimal,
which is a special case of Lemma 3.3 given in the next subsection.

3.1 Minimally Body-Hinge Rigid Graphs

A minimal k-dof-graph is a k-dof-graph in which removing any edge results in a
graph that is not a k-dof-graph. In particular, a minimal 0-dof-graph is called a min-
imally body-hinge rigid graph. In this section we prove several new combinatorial
properties of a minimal k-dof-graph, which will be utilized in the proof of the Molec-
ular Conjecture.
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Lemma 3.2 Let G be a minimal k-dof-graph for some nonnegative integer k. Then,
G is not 3-edge-connected.

Proof Suppose, for a contradiction, that G is 3-edge-connected. We shall show that
the graph Ge obtained by removing an edge e = uv ∈ E is still a k-dof-graph, which
contradicts the minimality of G.

Consider any partition P = {V1,V2, . . . , V|P |} of V . If u and v are both in the same
vertex subset of P , then dG(P ) = dGe(P ), and consequently defG̃(P ) = defG̃e

(P ) ≤
k holds.

Suppose u and v are contained in distinct subsets of P . Without loss of gener-
ality, we assume that u ∈ V1 and v ∈ V2. Since G is 3-edge-connected, we have
dGe(Vi) ≥ 2 for i = 1,2 and dGe(Vi) ≥ 3 for i = 3, . . . , |P |. Hence, we have
dGe(P ) ≥ � 3(|P |−2)+2·2

2 � ≥ 3
2 |P | − 1, which implies,

defG̃e
(P ) ≤ D

(|P | − 1
)− (D − 1)

(
3

2
|P | − 1

)
= −|P |

2
(D − 3) − 1.

Since d ≥ 2 and D ≥ 3, we obtain defG̃e
(P ) < 0 ≤ k. Consequently, defG̃e

(P ) ≤ k

holds for any partition P of V , implying that Ge is a k-dof-graph and contradicting
the minimality of G. �

For a multigraph G = (V ,E), (2.4) implies that an edge e ∈ E can be removed
from G without changing the deficiency of G̃ if and only if there exists a base B

of the matroid M(G̃) such that B ∩ ẽ = ∅. Equivalently, a graph G = (V ,E) is a
minimal k-dof-graph for some nonnegative integer k if and only if B ∩ ẽ �= ∅ for any
edge e ∈ E and any base B of M(G̃). From this observation, it is not difficult to see
the following fact.

Lemma 3.3 Let G = (V ,E) be a minimal k-dof-graph for some nonnegative integer
k and let G′ = (V ′,E′) be a subgraph of G. Suppose def(G̃′) = k′. Then G′ is a
minimal k′-dof-graph.

Proof Consider M(G̃′), which is the matroid M(G̃) restricted to Ẽ′. Recall
that the set of bases of M(G̃′) is the set of maximal members of {B ∩ Ẽ′ |
B is a base of M(G̃)} (see, e.g., [21, Chap. 3, 3.1.15]). Since B ∩ ẽ �= ∅ holds for
any base B of M(G̃) and for any e ∈ E from the minimality of G, (B ∩ Ẽ′) ∩ ẽ �= ∅
holds for any base B of M(G̃) and for any e ∈ E′. Since any base B ′ of M(G̃′) can
be written as B ∩ Ẽ′ with some base B of M(G̃), B ′ ∩ ẽ �= ∅ holds for any e ∈ E′.
This implies that G′ is minimal. �

In a multigraph, a pair of edges is called a cut pair if the removal of these two
edges disconnects the graph. By Lemmas 3.1 and 3.2, we see that any minimally
body-hinge rigid graph G has a cut pair. Using this property, we can actually show a
nice combinatorial property; any 2-edge-connected minimal k-dof-graph contains a
vertex of degree two or three. Since this is not directly used in our proof of the Molec-
ular Conjecture, we omit the proof. Later, we shall also present a similar property in
Lemma 4.6.



658 Discrete Comput Geom (2011) 45: 647–700

3.2 Rigid Subgraphs

We say that a subgraph G′ of G is a rigid subgraph if G′ is a 0-dof-graph, i.e.,
G̃′ contains D edge-disjoint spanning trees on the vertex set of G′. In this subsection
we prove the following three lemmas related to rigid subgraphs.

Lemma 3.4 Let G = (V ,E) be a multigraph and let X be a circuit of the matroid
M(G̃). Then, G[V (X)] is a rigid subgraph of G. More precisely, X − e can be
partitioned into D edge-disjoint spanning trees on V (X) for any e ∈ X.

Proof A circuit X is a minimal dependent set of M(G̃) satisfying |X| >

D(|V (X)| − 1), and X − e is independent in M(G̃) for any e ∈ X, see, e.g., [21].
From |X| > D(|V (X)| − 1), we have |X − e| ≥ D(|V (X)| − 1). On the other
hand, since X − e is independent, we also have |X − e| ≤ D(|V (X − e)| − 1) ≤
D(|V (X)| − 1). As a result, |X − e| = D(|V (X)| − 1) and hence X − e can be
partitioned into D edge-disjoint spanning trees on V (X). �

Lemma 3.5 Let G = (V ,E) be a minimal k-dof-graph for a some nonnegative inte-
ger k, and let G′ = (V ′,E′) be a rigid subgraph of G. Then, the graph obtained from
G by contracting E′ is a minimal k-dof-graph.

Proof Let H be the graph obtained by contracting E′. By Lemma 3.1, G′ is con-
nected and hence V ′ becomes a single vertex after the contraction of E′. Let v∗ be
this new vertex in H , that is, H = ((V \ V ′) ∪ {v∗},E \ E′).

Let BG̃′ be a base of M(G̃′). Then, we have |BG̃′ | = D(|V ′| − 1) since G′ is a
0-dof-graph. Also, there exists a base B of M(G̃) which contains BG̃′ as its subset.
Let {F1,F2, . . . ,FD} be a partition of B into D edge-disjoint forests on V . We claim
the following:

Fi ∩ Ẽ′ forms a spanning tree on V ′ for each 1 ≤ i ≤ D. (3.1)

To see this, notice that BG̃′ ⊂ B ∩ Ẽ′ implies |B ∩ Ẽ′| ≥ |BG̃′ | = D(|V ′| − 1).
On the other hand, since Fi ∩ Ẽ′ is independent in a graphic matroid, we also have
|Fi ∩ Ẽ′| ≤ |V (Fi ∩ Ẽ′)|−1 ≤ |V (B ∩ Ẽ′)|−1 ≤ |V ′|−1 for each 1 ≤ i ≤ D. These
imply |B ∩ Ẽ′| =∑D

i=1 |Fi ∩ Ẽ′| ≤ D(|V ′| − 1) ≤ |B ∩ Ẽ′| and the equalities hold
everywhere, implying |Fi ∩ Ẽ′| = |V ′| − 1. Thus, (3.1) holds.

Due to (3.1), after the contraction of Ẽ′, Fi \ Ẽ′ does not contain a cycle in H̃

and again forms a forest on (V \ V ′) ∪ {v∗}. In other words, {F1 \ Ẽ′, . . . ,FD \ Ẽ′}
is a partition of B \ Ẽ′ into D edge-disjoint forests on (V \ V ′) ∪ {v∗} and hence
B \ Ẽ′ is independent in M(H̃ ). Since |B \ Ẽ′| = |B| − |BG̃′ | = D(|V | − 1) − k

− D(|V ′| − 1) = D(|V \ V ′ ∪ {v∗}| − 1) − k, def(H̃ ) ≤ k follows from (2.4).
To see def(H̃ ) ≥ k, let us consider a base BH̃ ⊆ Ẽ \Ẽ′ of M(H̃ ). Let {S1, . . . , SD}

be a partition of BH̃ into D edge-disjoint forests on (V \V ′)∪{v∗}. Also, since G′ is a
0-dof-graph, a base BG̃′ of M(G̃′) can be partitioned into D edge-disjoint spanning
trees {T1, . . . , TD} on V ′. Then, it is not difficult to see that Si ∪ Ti forms a forest
on V for each i, and thus BH̃ ∪ BG̃′ is an independent set of M(G̃). This implies
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|BH̃ ∪BG̃′ | ≤ D(|V | − 1)− k. Substituting |BH̃ | = D(|V \V ′ ∪ {v∗}|− 1)− def(H̃ )

and |BG̃′ | = D(|V ′| − 1), we obtain def(H̃ ) ≥ k.
The minimality of H can be checked by the same argument: If there exists a base

B ′̃
H

of M(H̃ ) which contains no edge of ẽ for some e ∈ E \ E′, then B ′̃
H

∪ BG̃′ is a

base of M(G̃) which contains no edge of ẽ, contradicting the minimality of G. �

Notice that, for every circuit X of M(G̃), V (X) induces a 2-edge-connected sub-
graph by Lemmas 3.1 and 3.4. This fact leads to the following property of a multi-
graph that is not 2-edge-connected.

Lemma 3.6 Let G = (V ,E) be a k-dof-graph. Let P = {V1,V2} be a partition of V ,
and let Gi = G[Vi] for i = 1,2. Then, we have the following:

If dG(P ) = 1, then k = def(G̃1) + def(G̃2) + 1.
If dG(P ) = 0, then k = def(G̃1) + def(G̃2) + D.

Proof Let us consider the first case. We denote by uv the edge connecting between
V1 and V2 with u ∈ V1 and v ∈ V2. Let E1 and E2 be the edge sets of G1 and G2,
and let E3 = {uv} and G3 = ({u,v},E3). Then, {E1,E2,E3} is a partition of E and
moreover there exists no circuit in M(G̃) which intersects more than one set among
{Ẽ1, Ẽ2, Ẽ3} since any circuit induces a 2-edge-connected subgraph by Lemmas 3.1
and 3.4. Thus, we can decompose the matroid as M(G̃) = M(G̃1) ⊕ M(G̃2) ⊕
M(G̃3), where ⊕ denotes the direct sum of matroids. Since the rank of the direct sum
of matroids is the sum of the ranks of these matroids, we obtain D(|V | − 1) − k =
D(|V1|−1)−def(G̃1)+D(|V2|−1)−def(G̃2)+D −1, where we used the obvious
fact that the rank of M(G̃3) is equal to D − 1. By |V | = |V1| + |V2|, we eventually
obtain the claimed relation.

The proof for the case dG(P ) = 0 is basically the same, and hence it is omitted. �

4 Operations for Minimal k-dof-graphs

In this section we shall discuss two simple operations on a minimal k-dof-graph.
One operation is the contraction of a proper rigid subgraph; G′ = (V ′,E′) is called
a proper rigid subgraph if it is a rigid subgraph of G satisfying 1 < |V ′| < |V |. We
have already seen in Lemma 3.5 that the contraction of a rigid subgraph produces a
smaller minimal k-dof-graph. Another operation is a so-called splitting off operation,
whose definition will be given in the next subsection. Our goal of this section is to
show Lemma 4.8, which states that any minimal k-dof-graph can be always converted
to a smaller minimal k-dof-graph or minimal (k − 1)-dof-graph by a contraction of a
proper rigid subgraph or splitting off at a vertex of degree two. We use this result in
the proof of the Molecular Conjecture for applying the induction. Also, as a corollary,
we obtain Theorem 4.9; any minimally body-hinge rigid graph can be constructed by
a sequence of these two simple operations, which must be an interesting result in its
own right.
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4.1 Splitting off Operation at a Vertex of Degree Two

For a vertex v of a graph G, we denote by NG(v) the set of vertices adjacent to
v in G. A splitting off at v is an operation which removes v and then inserts new
edge(s) between vertices of NG(v). We shall consider such an operation only at a
vertex v of degree two. Let NG(v) = {a, b}. We denote by Gab

v the graph obtained
from G by removing v (and the edges incident to v) and then inserting a new edge ab.
The operation that produces Gab

v from G is called a splitting off at v (along ab). So,
the resulting graph Gab

v is isomorphic to that obtained by contracting either va or vb.
The main result of this subsection is Lemma 4.3, which claims that splitting off

does not increase the deficiency but may not preserve the minimality of the result-
ing graph. Before showing Lemma 4.3, let us first investigate the relation between
independent sets of M(G̃) and those of M(G̃ab

v ) in the following lemmas.

Lemma 4.1 Let G = (V ,E) be a multigraph which has a vertex v of degree 2 with
NG(v) = {a, b}. For any independent set I of M(G̃), there exists an independent set

I ′ of M(G̃ab
v ) satisfying |I ′| = |I | − D and |ãb ∩ I ′| < D − 1.

Proof Let h = |(ṽa ∪ ṽb) ∩ I | and {F1, . . . ,FD} be a partition of I into D edge-
disjoint forests on V . Since dG(v) = 2, clearly dFi

(v) ≤ 2 holds for each i = 1, . . . ,D

(where dFi
(v) denotes the number of edges of Fi incident to v). Let h′ be the number

of forests Fi satisfying dFi
(v) = 2. Note that 2h′ + (D − h′) = h and h ≤ 2(D − 1),

which imply h′ ≤ D − 2. For a forest Fi satisfying dFi
(v) = 1, removing the edge

incident to v results in a forest on V − v. For a forest Fi satisfying dFi
(v) = 2,

removing the edges incident to v and inserting an edge of ãb, we can also obtain a
forest on V − v. We hence convert each Fi to a forest F ′

i on V − v by the above
operations such that |F ′

i | = |Fi | − 1 for each i. Moreover, since the total number of
edges of ãb needed to convert Fi to F ′

i is equal to h′, which is less than |ãb| = D −1,

F ′
1, . . . ,F

′
D can be taken to be edge-disjoint in G̃ab

v . Let I ′ =⋃D
i=1 F ′

i . Then, I ′ is an

independent set of M(G̃ab
v ) satisfying the required properties. �

The reverse direction of splitting off at a vertex of degree two is called edge-
splitting. More formally, edge-splitting (along an edge ab) is the operation that re-
moves an edge ab and then inserts a new vertex v with the two new edges va and vb.
The following lemma supplies the converse direction of Lemma 4.1.

Lemma 4.2 Let H = (V ,E) be a multigraph, ab be an edge of H , and Hv
ab be the

graph obtained by edge-splitting along ab. Let I ′ be an independent set of M(H̃ )

with h′ = |ãb ∩ I ′|. Then, (i) if h′ < D − 1, there exists an independent set I of
M(H̃ v

ab) satisfying |I | = |I ′| + D and |I ∩ ṽb| = h′ + 1, and (ii) otherwise there
exists an independent set I of M(H̃ v

ab) satisfying |I | = |I ′| + D − 1.

Proof Let {F ′
1, . . . ,F

′
D} be a partition of I ′ into D edge-disjoint forests on V . With-

out loss of generality, we assume (ab)i ∈ F ′
i for each 1 ≤ i ≤ h′.

If h′ < D − 1, consider the extension of each forest as follows: Fi = F ′
i − (ab)i +

(va)i + (vb)i for each 1 ≤ i ≤ h′, Fi = F ′
i + (va)i for h′ + 1 ≤ i ≤ D − 1 and FD =
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F ′
D +(vb)h′+1 (for i = D). Then, F1, . . . ,FD are D edge-disjoint forests contained in

H̃ v
ab and

⋃D
i=1 Fi , denoted I , is an independent set of M(H̃ v

ab). Since |Fi | = |F ′
i |+1,

we have |I | = |I ′| + D and also |I ∩ ṽb| = h′ + 1 as required.
When h′ = D − 1, let Fi = F ′

i − (ab)i + (va)i + (vb)i for each 1 ≤ i ≤ D − 1

and FD = F ′
D (for i = D). Then,

⋃D
i=1 Fi is an independent set of M(H̃ v

ab) with
cardinality |I ′| + D − 1. �

We are now ready to discuss the deficiency of the graph obtained by splitting off.

Lemma 4.3 Let G = (V ,E) be a minimal k-dof-graph which has a vertex v of degree
2 with NG(v) = {a, b}. Then, (i) Gab

v is either a k-dof-graph or a minimal (k − 1)-
dof-graph. Moreover, (ii) Gab

v is a k-dof-graph if and only if there is a base B ′ of
M(G̃ab

v ) satisfying |ãb ∩ B ′| < D − 1.

Proof Let B be a base of M(G̃). Then, by Lemma 4.1, there exists an independent
set I ′ of M(G̃ab

v ) satisfying |I ′| = |B| − D and |ãb ∩ I ′| < D − 1. Since |I ′| =
|B| − D = D(|V | − 1) − k − D = D(|V \ {v}| − 1) − k, the rank of M(G̃ab

v ) is at
least D(|V \ {v}| − 1) − k. This implies

def
(
G̃ab

v

)≤ k (4.1)

by (2.4), where the equality holds if and only if I ′ is a base of M(G̃ab
v ). Thus,

def(G̃ab
v ) = k holds if and only if there is a base B ′ of M(G̃ab

v ) with |ãb ∩ B ′| <

D − 1.
Let us consider the case where every base B ′ of M(G̃ab

v ) satisfies |ãb ∩ B ′| =
D − 1. In this case Gab

v is not a k-dof-graph and hence (4.1) implies

def
(
G̃ab

v

)≤ k − 1. (4.2)

By Lemma 4.2(ii), there exists an independent set J of M(G̃) satisfying |J | = |B ′|+
D − 1 = D(|V | − 1) − (def(G̃ab

v ) + 1), where |B ′| = D(|V \ {v}| − 1) − def(G̃ab
v ).

We thus obtain k = def(G̃) ≤ def(G̃ab
v ) + 1 by (2.4). Combining it with (4.2), we

eventually obtain def(G̃ab
v ) = k − 1, and Gab

v is a (k − 1)-dof-graph.
The minimality of Gab

v can be checked by using Lemma 4.2(ii) again. Suppose
that there exists an edge e such that Gab

v − e is still a (k − 1)-dof-graph. Note e �= ab

since every base B ′ of M(G̃ab
v ) satisfies |ãb∩B ′| = D −1 now. Taking a base which

contains no edge of ẽ in M(G̃ab
v ) and then extending it by applying Lemma 4.2(ii)

we will have a base of M(G̃) that also contains no edge of ẽ, contradicting the
minimality of G. Therefore, Gab

v is a minimal (k − 1)-dof-graph. �

Applying Lemma 4.3 to the case k = 0, we see that, for a minimally body-hinge
rigid graph G, Gab

v is always body-hinge rigid. However, as we mentioned, splitting
off may not preserve the minimality of Gab

v . For example, for a minimally body-
hinge rigid graph G′ shown in Fig. 3(a), consider the graph G obtained from G′ by



662 Discrete Comput Geom (2011) 45: 647–700

Fig. 3 (a) An example of a minimal 0-dof-graph G for which Gab
v is not a minimal 0-dof-graph for d = 2

and D = 3. Notice that G′ = Gv is a 0-dof-graph and hence Gab
v is not minimal. (b) An example of a

minimal 0-dof-graph G for which Gab
v is not minimal and also Gv is not a 0-dof-graph for d = 2 and

D = 3. Notice that there exist three edge-disjoint spanning trees in G̃ab
v that contain no edge of ẽ

attaching a new vertex v via the two new edges va and vb. Then, G (the left one
of Fig. 3(a)) is a minimally body-hinge rigid graph. On the other hand, the graph
obtained from G by splitting off at v is not minimal while just removing v (without
inserting the new edge ab) from G produces a minimally body-hinge rigid graph.
We refer to this operation as the removal of v to distinguish it from splitting off at v.
More formally, we denote by Gv the graph obtained by the removal of a vertex v of
degree two if one exists.

Lemma 4.4 Let G = (V ,E) be a k-dof-graph in which there exists a vertex v of
degree 2 with NG(v) = {a, b}. Then, def(G̃v) ≥ k holds. Moreover, if def(G̃v) = k,
then there exists a base B of M(G̃) satisfying |ṽb ∩ B| = 1.

Proof Consider a base B ′ of M(G̃v). Since G̃v is a subgraph of G̃ab
v , B ′ is an inde-

pendent set of M(G̃ab
v ). Also, since G can be obtained from Gab

v by edge-splitting
along ab, Lemma 4.2(i) can be applied to B ′ with h′ = 0 to derive that there exists
an independent set I of M(G̃) satisfying |I | = |B ′| + D and |ṽb ∩ I | = 1. This im-
plies that |I | = |B ′| + D = D(|V | − 1) − def(G̃v), and hence k = def(G̃) ≤ def(G̃v)

by (2.4).
If k = def(G̃) = def(G̃v) holds, then I is a base of M(G̃) and thus a desired base

exists. �

We remark that there is a situation in which Gv is not a k-dof-graph and also Gab
v

is not a minimal k-dof-graph. Figure 3(b) shows such an example.

Remarks The concept of splitting off was originated by Lovász [19], where he proved
that splitting off at a vertex v does not decrease the connectivity between two vertices
except for v. Also, he proved that a graph is 2k-edge-connected if and only if it can
be constructed from a single vertex by a sequence of two operations keeping the
2k-edge-connectivity: one is an edge addition and the other is the inverse of splitting
off operation. Characterizing graphs having some specific property in terms of an
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inductive construction is an important topic. In particular it is known that a graph
has k edge-disjoint spanning trees if and only if it can be constructed from a single
vertex by a sequence of three simple operations keeping the property [20]. We should
remark that this result cannot be directly applied to q-strong graphs for a rational q

which is the case for our problem and there is no result concerning a construction of
q-strong graphs to the best of our knowledge.

4.2 Minimal k-dof-graphs Having No Proper Rigid Subgraph

As shown in Fig. 3, splitting off does not preserve the minimality in general. However,
if we concentrate on a graph which has no proper rigid subgraph, it can be shown that
splitting off preserves the minimality. We hence concentrate on graphs having no
proper rigid subgraph throughout this subsection. Let us first show properties of such
graphs in Lemmas 4.5 and 4.6.

Lemma 4.5 Let G = (V ,E) be a multigraph which contains no proper rigid sub-
graph. Then, the followings hold.

(i) If G is a minimal 0-dof-graph, then (D − 1)|E| < D(|V | − 1) + D − 1.
(ii) If G is a k-dof-graph with k > 0, then Ẽ is the base of M(G̃) and hence

(D − 1)|E| = D(|V | − 1) − k.

Proof (i) Let us consider the case k = 0. Let e be an arbitrary edge of E, and let h∗
be the minimum value of |̃e ∩ B| taken over all bases B of M(G̃). Also, let B∗ be a
base of M(G̃) satisfying |̃e ∩ B∗| = h∗. Notice h∗ ≥ 1 due to the minimality of G.
We shall show the following fact:

Ẽ \ ẽ ⊂ B∗. (4.3)

Suppose, for a contradiction, that an edge fi ∈ Ẽ \ ẽ is not contained in B∗. We con-
sider the fundamental circuit X within B∗ + fi . Then, G[V (X)] is a rigid subgraph
by Lemma 3.4. Since there exists no proper rigid subgraph in G, V (X) = V must
hold. Moreover, X ∩ ẽ �= ∅ also holds since otherwise there exist D edge-disjoint
spanning trees on V which contain no edge of ẽ by Lemma 3.4, contradicting the
minimality of G. Therefore, there exists the base B = B∗ + fi − ej of M(G̃) satis-
fying |B ∩ ẽ| < |B∗ ∩ ẽ| = h∗, where ej ∈ X ∩ ẽ. This contradicts the choice of B∗,
and hence (4.3) follows.

By (4.3) and |B∗| = D(|V |− 1), the total number of edges in G̃ is equal to |B∗|+
(|̃e| − h∗) = D(|V | − 1) + (D − 1 − h∗), which is less than D(|V | − 1) + D − 1 by
h∗ ≥ 1.

(ii) Let us consider the case of k > 0. We shall show the following fact, which is
analogous to (4.3):

Ẽ is independent in M(G̃). (4.4)

Suppose for a contradiction that Ẽ is dependent. Then, there exists an edge fi ∈ Ẽ

that is not contained in a base B of M(G̃). Consider again the fundamental circuit
X within B + fi . By Lemma 3.4, G[V (X)] is a rigid subgraph. Since G contains
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no proper rigid subgraph from the lemma assumption, V (X) = V must hold. More-
over, V (X) = V implies that G contains D edge-disjoint spanning trees on V , which
consist of edges of X. This in turn implies k = 0, contracting k > 0. Thus, (4.4)
follows. �

The following lemma shows the existence of small degree vertices.

Lemma 4.6 Let G = (V ,E) be a 2-edge-connected minimal k-dof-graph which con-
tains no proper rigid subgraph. Then, either G is a cycle graph of at most d vertices
or it contains a chain v0v1 . . . vd of length d such that vivi+1 ∈ E for 0 ≤ i ≤ d − 1
and dG(vi) = 2 for 1 ≤ i ≤ d − 1.

Proof Let us denote the average degree of the vertices of G by davg. Lemma 4.5
implies (D − 1)|E| < D(|V | − 1) + D − 1 < D|V |. Hence, we have

davg = 2|E|
|V | <

2D

D − 1
= 2 + 2

D − 1
≤ 3 (4.5)

where the last inequality follows from D ≥ 3. This implies that G has a vertex of
degree two.

If G is a cycle, then the statement clearly holds. (If it consists of more than
d vertices, then the latter property holds.) Hence let us consider the case where
G contains a vertex of degree more than two. For a nonnegative integer i, let
Xi = {v ∈ V | dG(v) = i}. Note that, since G is 2-edge-connected, X0 = ∅ and
X1 = ∅ hold. We say that a chain u0u1 . . . uj is maximal if dG(u0) > 2, dG(uj ) > 2
and dG(ui) = 2 for all 1 ≤ i ≤ j − 1. Let C be the collection of all maximal chains in
G. Note that C is nonempty (because G is not a cycle), and each vertex of degree two
belongs to exactly one maximal chain. Suppose, for a contradiction, that the length
of each maximal chain is at most d − 1. Then, each maximal chain contains at most
d − 2 vertices of degree two and hence we have

|X2| ≤ (d − 2)|C|. (4.6)

For a maximal chain u1u2 . . . uj , we call the edges u1u2 and uj−1uj the end edges
of the chain. Then the set of all end edges of the maximal chains in C is a subset of
the edges incident to the vertices of

⋃
i≥3 Xi . Hence we have

2|C| ≤
∑

i≥3

i|Xi |. (4.7)

Combining (4.6) and (4.7), we obtain

2|X2| ≤
∑

i≥3

i(d − 2)|Xi |.

Summing up this inequality and (the twice of) |V | =∑i≥2 |Xi |, we further obtain

∑

i≥3

(
i(d − 2) + 2

)|Xi | ≥ 2|V |. (4.8)
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It is not difficult to see that the following inequality holds:

(D − 1)(i − 2) ≥ i(d − 2) + 2 for all i ≥ 3.

Hence, by (4.8), we have
∑

i≥3

(D − 1)(i − 2)|Xi | ≥ 2|V |. (4.9)

As a result,

davg =
∑

i≥2 i|Xi |
|V |

= 2 +
∑

i≥3(i − 2)|Xi |
|V |

(
by 2|V | =

∑

i≥2

2|Xi |
)

= 2 +
∑

i≥3(D − 1)(i − 2)|Xi |
(D − 1)|V |

≥ 2 + 2

D − 1

(
by (4.9)

)

> davg
(
by (4.5)

)

which is a contradiction. �

Let us start to investigate the deficiencies of graphs obtained by the operations
defined in Sect. 4.1, assuming that G contains no proper rigid subgraph.

Lemma 4.7 Let G = (V ,E) be a minimal k-dof-graph with |V | ≥ 3 which contains
no proper rigid subgraph. Let v be a vertex of degree two. Then, def(G̃v) > k.

Proof Note that Gv is a proper subgraph of G. Since there exists no proper rigid
subgraph in G, Gv is not a 0-dof-graph. This proves the statement for k = 0.

When k > 0, Ẽ is the base of M(G̃) from Lemma 4.5(ii). Since Ẽ is the unique
base of M(G̃) and |ṽb ∩ Ẽ| �= 1 holds, Lemma 4.4 implies def(G̃v) > k. �

Lemma 4.8 Let G = (V ,E) be a minimal k-dof-graph that contains no proper rigid
subgraph. Then, for any vertex v of degree two with NG(v) = {a, b}, the following
holds:

(i) If k = 0, then Gab
v is a minimal 0-dof-graph.

(ii) If k > 0, then Gab
v is a minimal (k − 1)-dof-graph.

Proof We remark that Gv is not a k-dof-graph by Lemma 4.7. Also, by Lemma 4.3,
Gab

v is either a k-dof-graph or a minimal (k − 1)-dof-graph.
Let us show (i). In the case k = 0, Gab

v is clearly a 0-dof-graph and thus we only
need to show the minimality of Gab

v . To see this, we claim the following:

For any circuit X of the matroid M
(
G̃ab

v

)
,X ∩ ãb �= ∅ holds. (4.10)
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Suppose X ∩ ãb = ∅. Then, X is a subset of Ẽ. Hence, X is a circuit of M(G̃) with
v /∈ V (X). Lemma 3.4 implies that G[V (X)] is a proper rigid subgraph of G, which
contradicts the lemma assumption. Thus (4.10) follows.

Suppose that Gab
v is not a minimal 0-dof-graph. Then, there exists an edge e such

that Gab
v − e is still a 0-dof-graph. (Note e �= ab since Gv is not a 0-dof-graph by

Lemma 4.7.) Also, there exists a base B1 of M(G̃ab
v ) with B1 ∩ ẽ = ∅. Let h =

|B1 ∩ ãb|, and let us denote the edges of B1 ∩ ãb by (ab)1, . . . , (ab)h. We repeatedly
perform the following process for i = 1, . . . , h: Insert an edge ei ∈ ẽ into Bi and let
Xi be the fundamental circuit of Bi + ei (in M(G̃ab

v )). By (4.10), Xi ∩ ãb �= ∅ holds
and hence we can obtain a new base Bi+1 by removing (ab)i ∈ Xi ∩ ãb. (Namely,
we obtain the base Bi+1 = Bi + ei − (ab)i of M(G̃ab

v ).) Repeating this process, we
eventually obtain the base Bh+1 of M(G̃ab

v ), which contains no edge of ãb. Note that
Bh+1 is a base of M(G̃v) as well as a base of M(G̃ab

v ) with cardinality |Bh+1| =
|B1| = D(|V \ {v}| − 1), which implies def(G̃v) = 0 by (2.4). This contradicts that
Gv is not a 0-dof-graph (by Lemma 4.7) and thus (i) follows.

Next let us show (ii). If Gab
v is not a k-dof-graph, then the statement follows be-

cause Gab
v is a minimal (k − 1)-dof-graph by Lemma 4.3. Suppose, for a contradic-

tion, that Gab
v is a k-dof-graph. By Lemma 4.3 there exists a base B ′ of M(G̃ab

v )

satisfying |ãb ∩ B ′| < D − 1. Without loss of generality, we assume (ab)1 /∈ B ′.
Consider the fundamental circuit Y of B ′ + (ab)1 and let G′ = G[V (Y )]. Then, by
Lemma 3.4, G′ is a 0-dof-graph on V (Y ). Since Gab

v is a k-dof-graph with k > 0,
G′ must be a proper subgraph of Gab

v , i.e., V (Y ) is a proper subset of V \ {v}. Let
I = Y − (ab)1. Observe that I is an independent set of M(G̃′) with |I ∩ ãb| < D −1
due to (ab)1 /∈ I ⊆ B ′. We perform edge-splitting along ab in G′. Lemma 4.2(i) im-
plies that the resulting graph contains an independent set with cardinality |I | + D,
which is equal to D(|V (Y )| − 1) + D = D(|V (Y ) ∪ {v}| − 1). Hence the resulting
graph is a 0-dof-graph. Moreover, this 0-dof-graph is a proper subgraph of G since
V (Y ) is a proper subset of V \ {v}. Therefore, G contains a proper rigid subgraph,
which contradicts the lemma assumption. �

4.3 A Sequence of Minimally Body-Hinge Rigid Graphs

Combining the results obtained so far, it is not difficult to observe the existence of an
inductive sequence of minimally body-hinge rigid graphs.

Theorem 4.9 Let G be a minimally body-hinge rigid graph with |V | ≥ 2. Then,
there exists a sequence G = G1,G2, . . . ,Gm of minimally body-hinge rigid graphs
such that

• Gm is a graph consisting of two vertices {u,v} and two parallel edges connecting
u and v, and

• Gi+1 is obtained from Gi by either splitting off at a vertex of degree 2 or the
contraction of a proper rigid subgraph for each i = 1, . . . ,m − 1.

Proof By Lemma 3.1, any minimally body-hinge rigid graph is a 2-edge-connected
0-dof-graph. Hence, if G contains no proper rigid subgraph, then G has a vertex of
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degree two by Lemma 4.6. Combining this fact with Lemma 4.8, either (i) G contains
a proper rigid subgraph G′ = (V ′,E′) or (ii) there exists a vertex v of degree 2 with
NG(v) = {a, b} such that Gab

v is a minimal 0-dof-graph, that is, a minimally body-
hinge rigid graph. Recall that, if (i) holds, the graph obtained by the contraction of
E′ is again a minimally body-hinge rigid graph by Lemma 3.5. Hence, in either case,
we obtain a new minimally body-hinge rigid graph G2 = (V2,E2) with 2 ≤ |V2| <

|V |. By inductively repeating this process, we eventually obtain a minimally body-
hinge rigid graph Gm which consists of two vertices and two parallel edges between
them. This inductive process shows a desired sequence of minimally body-hinge rigid
graphs. �

5 Infinitesimally Rigid Panel-Hinge Realizations

Recall the notation given in Sect. 2.4: C(p(e)) denotes a (d − 1)-extensor supporting
the (d −2)-dimensional affine space p(e), {r1(p(e)), . . . , rD−1(p(e))} denotes a basis
of the orthogonal complement of the 1-dimensional vector space spanned by C(p(e)),
and r(p(e)) denotes the (D − 1) × D-matrix whose ith row vector is ri(p(e)). The
rigidity matrix of (G,p) is written as (2.4), where consecutive D − 1 rows and D

columns are indexed by elements of E and V , respectively. Let us denote the (D −
1) × D|V |-submatrix associated with e ∈ E by R(G,p; e), i.e.,

R(G,p; e) = ( ···· · · ···
0

···· · ·
u

r
(
p(e)
) ···· · · ···

0
···· · ·

v

− r
(
p(e)
) ···· · · ···

0
···· · ·). (5.1)

We remark rankR(G,p; e) = D − 1 since rank r(p(e)) = D − 1. Also, we con-
sider the one-to-one correspondence between ei ∈ ẽ and the ith row of R(G,p; e),
which is denoted by R(G,p; ei). Namely, for e = uv ∈ E and 1 ≤ i ≤ D − 1, it is a
D|V |-dimensional vector described as

R(G,p; ei) = ( ···· · · ···
0

···· · ·
u

ri
(
p(e)
) ···· · · ···

0
···· · ·

v

− ri
(
p(e)
) ···· · · ···

0
···· · ·).

Any vector in R
D|V | can be regarded as a composition of |V | vectors in R

D each
of which is associated with a vertex v ∈ V in a natural way. Similarly, let us denote
by R(G,p;v) the (D − 1)|E| × D-submatrix of R(G,p) induced by the consecutive
D columns associated with v. For F ⊆ E and X ⊆ V , R(G,p;F,X) denotes the
submatrix of R(G,p) induced by the rows of R(G,p; e) for e ∈ F and the columns
of R(G,p;v) for v ∈ X.

We need the following technical lemma.

Lemma 5.1 Let (G,p) be a body-hinge framework in R
d for a multigraph G =

(V ,E). Then, for any vertex v ∈ V , rankR(G,p;E,V \ {v}) = rankR(G,p) holds,
i.e., the rank of the rigidity matrix is invariant under the removal of the consecutive
D columns associated with v.

Proof For 1 ≤ i ≤ D, let bi be the vector in R
D|V | such that the ith coordinate of the

consecutive D coordinates associated with v is equal to 1 and the other entries are
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all 0. Let R′ be the matrix obtained from R(G,p) by adding bi as new rows for all i.
Then, appropriate fundamental row operations change R′ to the following form:

R′ =
v V \{v}(
I 0

)

R(G,p)

Row operations−−−−−→
v V \{v}(
I 0

)

0 R(G,p;E,V \ {v})
where I denotes the D × D identity matrix. Hence, the statement is true if and only
if rankR′ = rankR(G,p) + D.

It is known that the space of nontrivial infinitesimal motions is unchanged if one of
bodies is fixed (see, e.g., [29, Sect. 2]). Since adding b1, . . . , bD means the tie down
of the body associated with v, rankR′ = rankR(G,p) + D holds. �

5.1 Generic Nonparallel Panel-Hinge Realizations

A panel-hinge framework is a body-hinge framework (G,p) such that, for each
v ∈ V , all of the (d − 2)-dimensional affine subspaces p(e) for e ∈ δG(v) are con-
tained in a common hyperplane. We denote this hyperplane for each v ∈ V by
ΠG,p(v). (If the choice of such a hyperplane is not unique, we choose an arbitrary
one.) As in body-hinge frameworks, the infinitesimal rigidity of a panel-hinge frame-
work (G,p) is defined in terms of the rigidity matrix R(G,p) given in (2.4).

Before providing a proof of the Molecular Conjecture, we need to introduce the
concept of nonparallel realizations, which is essentially taken from [15, Sect. 7]. For a
simple graph G (i.e., no parallel edges exist in G), a panel-hinge framework (G,p) is
called nonparallel 3 if ΠG,p(u) and ΠG,p(v) are not parallel for any distinct u,v ∈ V ;
ΠG,p(u) and ΠG,p(v) are said to be nonparallel if ΠG,p(u) ∩ ΠG,p(v) is a (d − 2)-
dimensional affine subspace.

For a simple graph G = (V ,E), consider a mapping c : V → R
d such that c(u)

and c(v) are linearly independent for each u,v ∈ V with u �= v. Then, a hyperplane
associated with v ∈ V with respect to c is defined as Π(v) = {x ∈ R

d | x · c(v) +
1 = 0}. Since c(u) and c(v) are linearly independent, Π(u) ∩ Π(v) is a (d − 2)-
dimensional affine space. Hence, the mapping c induces a mapping p on E, i.e.,
p(uv) = Π(u)∩Π(v) for uv ∈ E, and (G,p) is a nonparallel panel-hinge framework
of G. Conversely, given a nonparallel (G,p), p induces the mapping c : V → R

d such
that ΠG,p(v) = {x ∈ R

d | x · c(v) + 1 = 0} for each v ∈ V (provided that no panel
passes through the origin).

A nonparallel panel-hinge framework (G,p) is called generic if the set of coordi-
nates of c(v) for all v ∈ V is algebraically independent over the rational field.4 We
note that almost all nonparallel panel-hinge realizations are generic. Since each entry
of R(G,p) can be written as a polynomial of the coordinates of c(v), v ∈ V (see [15,
Lemma 7.1] for more detail), the rank of R(G,p) takes the maximum value over all
nonparallel panel-hinge realizations of G if (G,p) is generic.

3In [15], such a framework is called nondegenerate.
4The definition in terms of algebraic independence produces a smaller class of frameworks than that of
conventional generic frameworks (in terms of the maximality of rigidity matrices). We just use this defini-
tion to make our proof simpler.
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It is known that, even though (G,p) has some parallel panels, we can perturb them
so that the resulting realization becomes nonparallel without decreasing the rank of
the rigidity matrix [15, Lemma 7.1]. The following lemma states a special case of
this result, but let us provide a proof for completeness.

Lemma 5.2 Let G be a simple graph and (G,p) be a panel-hinge realization of
G. Suppose that there exists a pair (a, b) ∈ V × V with a �= b satisfying ΠG,p(a) =
ΠG,p(b) and that ΠG,p(u) and ΠG,p(v) are nonparallel for every pair (u, v) ∈ V ×V

with u �= v except for (a, b). Then, there is a nonparallel panel-hinge realization
(G,p′) satisfying rankR(G,p′) ≥ rankR(G,p).

Proof We shall only consider the case of ab ∈ E. The case of ab /∈ E can be handled
similarly. Note that ab is unique because G is simple.

Since the rank of the rigidity matrix is invariant under an isometric transformation
of the whole framework, we can assume ΠG,p(a) = ΠG,p(b) = {x = (x1, . . . , xd) ∈
R

d | xd = 0} and p(ab) = {x ∈ R
d | xd−1 = 0, xd = 0}. We shall rotate ΠG,p(a)

continuously around p(ab). To indicate the rotation, let us introduce a parameter
t ∈ R and define Πt(a) = {x ∈ R

d | txd−1 + xd = 0}. Note that Π0(a) = ΠG,p(a)

and p(ab) ⊆ Πt(a) ∩ ΠG,p(b) for any t ∈ R.
Since Π0(a) and ΠG,p(v) are nonparallel for any v ∈ V \ {a, b} from the lemma

assumption, there exists a small ε > 0 such that Πt(a) and ΠG,p(v) are nonparallel
within −ε < t < ε. Hence, the following mapping pt on E is well-defined within
−ε < t < ε:

pt (e) =
{

p(e) if e ∈ E \ δG(a) ∪ {ab},
Πt (a) ∩ ΠG,p(v) if e = av ∈ δG(a) \ {ab}.

Notice that p0(e) = p(e) for all e ∈ E and (G,p0) = (G,p) holds. Also, (G,pt )

is a nonparallel panel-hinge realization for any 0 < t < ε. Since each pt (e), e ∈ E

moves continuously with respect to t , each minor of R(G,pt ) can be described as a
continuous function of t within −ε < t < ε. This implies that there exists a small ε′
with 0 < ε′ ≤ ε such that (G,pt ) is a nonparallel panel-hinge realization satisfying
rankR(G,pt ) ≥ rankR(G,p0) for any 0 < t < ε′. �

5.2 Molecular Conjecture

We now start to show our main result. We first claim the rigidity of graphs consisting
of a small number of vertices since it will be used several times (including the base
case of the induction).

Lemma 5.3 Let G = (V ,E) be the graph consisting of two vertices {u,v} and two
parallel edges {e, f } between u and v. Then, G can be realized as an infinitesi-
mally rigid panel-hinge framework (G,p) such that ΠG,p(u) = ΠG,p(v). In particu-
lar, rankR(G,p; {e, f }, v) = D holds if p(e) �= p(f ).
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Proof A (d − 1)-extensor of a (d − 2)-dimensional affine space is uniquely deter-
mined up to a scalar multiplication. This implies that the two extensors C(p(e))

and C(p(f )) span the same vector space if and only if p(e) = p(f ). Therefore, if
p(e) �= p(f ), the orthogonal complements of the vector spaces spanned by C(p(e))

and C(p(f )), that is, the row spaces of r(p(e)) and r(p(f )) are distinct. We hence
have rankR(G,p; {e, f }, v) = D by rankR(G,p; e, v) = rank r(p(e)) = D − 1.
Since we can realize G as a framework (G,p) such that ΠG,p(u) = ΠG,p(v) and
p(e) �= p(f ), the statement follows. �

If G is a cycle graph, its realization can be easily analyzed directly from the def-
inition of infinitesimal motions. The detailed calculation can be seen in [4, Propo-
sition 3.4] or [34, Proposition 3] for the 3-dimensional case and the technique can
apply to the general dimensional case without any modification.

Lemma 5.4 [4, 34] Let G = (V ,E) be a cycle graph with 3 ≤ |V | ≤ D. Then, G can
be realized as an infinitesimally rigid nonparallel panel-hinge framework (G,p).

Let us state the main theorem of this paper.

Theorem 5.5 Let G = (V ,E) be a minimal k-dof-graph with |V | ≥ 2 for some non-
negative integer k. Then, there exists a (nonparallel, if G is simple) panel-hinge real-
ization (G,p) in R

d satisfying rankR(G,p) = D(|V | − 1) − k.

Since the proof is quite long, let us first write up a corollary which follows from
Theorem 5.5. The following theorem proves the Molecular Conjecture in a strong
sense combined with Proposition 2.3.

Theorem 5.6 Let G = (V ,E) be a multigraph. Then, G can be realized as a panel-
hinge framework (G,p) in R

d which satisfies rankR(G,p) = D(|V | − 1) − def(G̃).

Proof Let k = def(G̃). By Proposition 2.3, we have rankR(G,p) ≤ D(|V | − 1) − k

for any realization (G,p) of G. When G is not a minimal k-dof-graph, we can re-
move some edges from G keeping the deficiency of G̃ so that the resulting graph
becomes a minimal k-dof-graph. Let G′ = (V ,E′) be the obtained minimal k-dof-
graph. (If G is a minimal k-dof-graph, then let G′ = G.) By Theorem 5.5, there
is a panel-hinge realization (G′,q) satisfying R(G′,q) = D(|V | − 1) − k. More-
over, since the infinitesimal rigidity is projectively invariant (see e.g., [4, Sect. 3.6]),
we may assume ΠG′,q(u) ∩ ΠG′,q(v) �= ∅ for every u,v ∈ V . Namely, for any
u,v ∈ V , ΠG′,q(u) ∩ ΠG′,q(v) contains a (d − 2)-dimensional affine subspace. De-
fine a mapping p on E such that p(uv) = q(uv) for uv ∈ E′ and otherwise p(uv)

is a (d − 2)-dimensional affine subspace contained in ΠG′,q(u) ∩ ΠG′,q(v). It is
obvious that (G,p) is a panel-hinge realization of G and moreover rankR(G,p) ≥
rankR(G′,q) = D(|V | − 1) − k. We thus obtain a panel-hinge realization satisfying
rankR(G,p) = D(|V | − 1) − k. �
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Let (G,p) be a nonparallel panel-hinge framework in R
3. We can associate a

body-hinge framework (G,p∗) with (G,p), where p∗(e) is dual to p(e) (when ex-
tending to the real projective 3-space). Then, (G,p∗) has a “hinge-concurrent” prop-
erty such that, for any v ∈ V and any e ∈ δG(v), p∗(e) passes through the point
c(v) (defined in Sect. 5.1). Body-hinge frameworks satisfying the hinge-concurrent
property are called molecular frameworks [13, 34] since they are used to study the
flexibility of molecules. Since the infinitesimal rigidity is invariant under a projective
transformation (see [4, Sect. 3.6] or [30] for more detailed descriptions on this topic),
it follows from Theorem 5.6 that a simple graph G = (V ,E) can be realized as a
molecular framework (G,p) which satisfies rankR(G,p) = D(|V | − 1) − def(G̃).

Let us consider bar-joint rigidity in 3-dimensional space. For a graph G of the
minimum degree at least two, Whiteley showed in [35] that G can be realized as
a rigid molecular framework if and only if G2 can be realized as an infinitesimally
rigid bar-joint framework. Jackson and Jordán proved in [10, 13] that the Molecular
Conjecture (Conjecture 1.2) is equivalent to the following statement:

Corollary 5.7 Let G = (V ,E) be a graph with minimum degree at least two. Then
r(G2) = 3|V | − 6 − def(G̃), where r denotes the rank function of the 3-dimensional
generic rigidity matroid.

Further combinatorial results on 3-dimensional bar-joint frameworks of square
graphs can be found in [10, 13].

6 Proof of Theorem 5.5

The proof is done by induction on |V |. Let us consider the base case |V | = 2. Let
V = {u,v}. By Lemma 3.2, any minimal k-dof-graph is not 3-edge-connected and
hence we have three possible cases: (i) E is empty, (ii) E consists of a single edge e

connecting u and v, and (iii) E consists of two parallel edges {e, f } between u and
v. The cases (i) and (ii) are trivial since any realization satisfies the statement. The
case (iii) has been treated in Lemma 5.3.

Let us consider G with |V | ≥ 3. We shall split the proof into four cases:

• G is not 2-edge-connected (Sect. 6.1).
• G contains a proper rigid subgraph (Sect. 6.2).
• G is 2-edge-connected, contains no proper rigid subgraph, and k > 0 (Sect. 6.3).
• G is 2-edge-connected, contains no proper rigid subgraph, and k = 0 (Sect. 6.4).

In each case, we will assume the following induction hypothesis on |V |:
For any minimal kH -dof-graph H = (VH ,EH ) for some nonnegative integer kH
with |VH | < |V |, there is a (nonparallel, if GH is simple) panel-hinge realization
(GH ,pH ) in R

d satisfying rankR(GH ,pH ) = D(|VH | − 1) − kH .
(6.1)
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6.1 G is Not 2-edge-connected

This case is handled rather easily.

Lemma 6.1 Let G = (V ,E) be a minimal k-dof-graph that is not 2-edge-connected.
Suppose that (6.1) holds. Then, there is a (nonparallel, if G is simple) panel-hinge
realization (G,p) in R

d satisfying rankR(G,p) = D(|V | − 1) − k.

Proof Let us consider the case where G is connected. Since G has a cut edge uv,
G can be partitioned into two subgraphs G1 = (V1,E1) and G2 = (V2,E2) such that
u ∈ V1, v ∈ V2, V1 ∩ V2 = ∅, V1 ∪ V2 = V and δG({V1,V2}) = {uv}. Let k1 and
k2 be the deficiencies of G̃1 and G̃2, respectively. Then, k = k1 + k2 + 1 holds by
Lemma 3.6 and also Gi is a minimal ki -dof-graph for each i = 1,2 by Lemma 3.3.
By (6.1), we have a (nonparallel, if Gi is simple) panel-hinge realization (Gi,pi )

satisfying rankR(Gi,pi ) = D(|Vi | − 1) − ki for each i = 1,2. Since the choices of
p1 and p2 are independent of each other and also since the rank of the rigidity matrix
is invariant under an isometric transformation of the whole framework, we can take p1

and p2 such that ΠG1,p1(v1) and ΠG2,p2(v2) are nonparallel for any pair of v1 ∈ V1

and v2 ∈ V2. In particular, ΠG1,p1(u) ∩ ΠG2,p2(v) is a (d − 2)-dimensional affine
subspace in R

d . Define a mapping p as

p(e) =

⎧
⎪⎨

⎪⎩

p1(e) if e ∈ E1,

p2(e) if e ∈ E2,

ΠG1,p1(u) ∩ ΠG2,p2(v) if e = uv.

Then, (G,p) is a (nonparallel, if G is simple) panel-hinge realization of G. By
δG({V1,V2}) = {uv}, the rigidity matrix R(G,p) can be described as

R(G,p)=
V1 V2

E1

⎛

⎝
R(G1,p1) 0

⎞

⎠
uv R(G,p;uv)

E2 0 R(G2,p2)

=
V1\{u} u v V2\{v}

E1

⎛

⎝
R(G1,p1;E1,V1 \ {u}) R(G1,p1;E1, u) 0 0

⎞

⎠uv 0 r(p(uv)) −r(p(uv)) 0 .

E2 0 0 R(G2,p2)

Notice that rankR(G1,p1;E1,V1 \ {u}) = rankR(G1,p) = D(|V1| − 1) − k1 holds
by Lemma 5.1. Note also rank r(p(uv)) = D − 1 from the definition. Hence, by
k = k1 + k2 + 1 and |V | = |V1| + |V2|, we obtain rankR(G,p) ≥ rankR(G1,p1;E1,

V1 \ {u}) + rank r(p(uv)) + rankR(G2,p2) = D(|V1| − 1) − k1 + (D − 1) +
D(|V2| − 1) − k2 = D(|V | − 1) − (k1 + k2 + 1) = D(|V | − 1) − k.

The proof for disconnected graphs G can be proved in the same manner. �
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6.2 G Contains a Proper Rigid Subgraph

Let us first describe a proof sketch. Let G′ = (V ′,E′) be a proper rigid subgraph
in a minimal k-dof-graph G = (V ,E). Note that G′ is a minimal 0-dof-graph by
Lemma 3.3 with 1 < |V ′| < |V |. Let G/E′ = ((V \ V ′) ∪ {v∗},E \ E′) be the
graph obtained from G by contracting the edges of E′, where v∗ is the new ver-
tex obtained by the contraction. Then, by Lemma 3.5, G/E′ is a minimal k-dof-
graph with |(V \ V ′) ∪ {v∗}| < |V |. Therefore, by induction, there exist panel-hinge
realizations (G′,p1) and (G/E′,p2) satisfying rankR(G′,p1) = D(|V ′| − 1) and
rankR(G/E′,p2) = D(|V \V ′ ∪ {v∗}|−1)−k. Based on these realizations, we shall
construct a realization of G. Intuitively, we shall replace the body associated with v∗
in (G/E′,p2) by (G′,p1), by regarding (G′,p1) as a rigid body in R

d and show that
the rank of the resulting framework becomes rankR(G′,p1) + rankR(G/E′,p2),
which is equal to D(|V | − 1) − k. In order to obtain a nonparallel realization if G

is simple, we need three subcases. Lemma 6.2 deals with the case where G is not a
simple graph. Lemma 6.3 deals with the case where G is simple and there exists a
proper rigid subgraph G′ = (V ′,E′) such that G/E′ is also simple. Lemma 6.5 deals
with the rest of the cases.

Lemma 6.2 Let G = (V ,E) be a minimal k-dof-graph with |V | ≥ 3. Suppose that G

is not simple and also that (6.1) holds. Then, there is a panel-hinge realization (G,p)

in R
d satisfying rankR(G,p) = D(|V | − 1) − k.

Proof Let e and f be multiple edges connecting a and b for some a, b ∈ V . Then,
notice that the graph G[{e, f }] edge-induced by {e, f } is a proper rigid subgraph
in G since ẽ ∪ f̃ contains D edge-disjoint spanning trees on {a, b}. Hence we can
assume G′ = G[{e, f }] = (V ′ = {a, b},E′ = {e, f }). By Lemma 5.3, there exists a
panel-hinge realization (G′,p1) of G′ such that rankR(G′,p1) = D and ΠG′,p1(a) =
ΠG′,p1(b). Also, by (6.1), there exists a panel-hinge realization (G/E′,p2) satisfying
rankR(G/E′,p2) = D(|V | − 2) − k. Since the choices of p1 and p2 are independent
of each other, we can take p1 and p2 in such a way that ΠG/E′,p2(v

∗) = ΠG′,p1(a) =
ΠG′,p1(b). Define a mapping on E as

p(e) =
{

p1(e) if e ∈ E′(= {e, f })
p2(e) if e ∈ E \ E′.

(6.2)

Intuitively, (G,p) is a panel-hinge realization of G obtained from (G/E′,p2) by
identifying the panels of a and b with that of v∗, and in fact it can be easily veri-
fied from the definition that (G,p) is a panel-hinge realization satisfying ΠG,p(u) =
ΠG/E′,p2(u) for each u ∈ V \ {a, b} and ΠG,p(u) = ΠG/E′,p2(v

∗) for each u ∈ {a, b}.
Let us take a look at the rigidity matrix R(G,p):

R(G,p) =
V ′ V \V ′

E′ (R(G′,p1) 0
)

E\E′ ∗ R(G,p;E \ E′,V \ V ′) .
(6.3)
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Since p(e) = p2(e) for every e ∈ E \ E′ by (6.2), we can take5 the entries of
R(G,p;E \ E′,V \ V ′) to be

R
(
G,p;E \ E′,V \ V ′)= R

(
G/E′,p2;E \ E′,V \ V ′). (6.4)

We also remark that R(G/E′,p2;E \ E′,V \ V ′) is the matrix obtained from
R(G/E′,p2) by deleting the D consecutive columns associated with v∗. Hence, by
(6.4) and Lemma 5.1, we obtain

rankR
(
G,p;E \ E′,V \ V ′)= rankR

(
G/E′,p2;E \ E′,V \ V ′)

= rankR
(
G/E′,p2

)
. (6.5)

As a result, by (6.3) and (6.5), we obtain

rankR(G,p) ≥ rankR
(
G′,p1

)+ rankR
(
G,p;E \ E′,V \ V ′)

= rankR
(
G′,p1

)+ rankR
(
G/E′,p2

)

= D + D
(|V | − 2

)− k = D
(|V | − 1

)− k. �

Lemma 6.3 Let G = (V ,E) be a minimal k-dof-graph with |V | ≥ 3. Suppose that
G is simple and contains a proper rigid subgraph G′ = (V ′,E′) such that G/E′ is
simple. Also suppose that (6.1) holds. Then, there exists a nonparallel panel-hinge
realization (G,p) satisfying rankR(G,p) = D(|V | − 1) − k.

Proof The story of the proof is basically the same as that of Lemma 6.2 although
we need a slightly different mapping p. By Lemma 3.5 and (6.1), there exist nonpar-
allel panel-hinge realizations (G′,p1) and (G/E′,p2) satisfying rankR(G′,p1) =
D(|V ′| − 1) and rankR(G/E′,p2) = D(|V \ V ′ ∪ {v}| − 1) − k. From the defini-
tion of generic nonparallel panel-hinge realizations of simple graphs discussed in
Sect. 5.1, p1 and p2 can be taken in such a way that the set of all coefficients ap-
pearing in the equations expressing the hyperplanes ΠG′,p1(v1) for all v1 ∈ V ′ and
ΠG/E′,p2(v2) for all v2 ∈ V \ V ′ is algebraically independent over Q. We define a
mapping p on E as follows:

p(e) =

⎧
⎪⎨

⎪⎩

p1(e) if e ∈ E′

p2(e) if e ∈ E \ (E′ ∪ δG(V ′))
ΠG/E′,p2(u) ∩ ΠG′,p1(v) if e = uv ∈ δG(V ′) with u ∈ V \ V ′, v ∈ V ′.

(6.6)
Then, (G,p) is a nonparallel panel-hinge realization of G since all p(e) for e ∈
δG(v1) are contained in ΠG′,p1(v1) for each v1 ∈ V ′ and all p(e) for e ∈ δG(v2)

are contained in ΠG/E′,p2(v2) for each v2 ∈ V \ V ′. Consider the rigidity ma-
trix R(G,p), which can be described in the same way as (6.3). We shall derive

5Recall the discussion in Sect. 2.4; the entries of the rigidity matrix are not uniquely defined and depend on
the choice of a basis of the orthogonal complement of the vector space spanned by each (d − 1)-extensor
although the null space of the rigidity matrix is determined uniquely.
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rankR(G,p;E \ E′,V \ V ′) = rankR(G/E′,p2) as was done in the proof of the
previous lemma. This will prove rankR(G,p) = D(|V |− 1)− k as before. To obtain
this relation, we shall compare p2 with the restriction pE\E′ of p on E \ E′, that is,

pE\E′(e) =
{

p2(e) if e ∈ E \ (E′ ∪ δG(V ′))
ΠG/E′,p2(u) ∩ ΠG′,p1(v) if e = uv ∈ δG(V ′) with u ∈ V \ V ′, v ∈ V ′.

(6.7)
The body-hinge framework (G/E′,pE\E′) is not a panel-hinge realization in general;
all hinges pE\E′(e) of e ∈ δG/E′(u) are contained in the panel ΠG/E′,p2(u) for each
u ∈ V \ V ′ while the hinges pE\E′(e) of e ∈ δG/E′(v∗) may not be on a panel. Intu-
itively, (G/E′,pE\E′) is a body-hinge realization of G/E′ such that every v ∈ V \V ′
is realized as a panel ΠG/E′,p2(v) while v∗ may be realized as a d-dimensional body.

Claim 6.4 rankR(G/E′,pE\E′) ≥ rankR(G/E′,p2) holds.

Proof As mentioned in [15] and also in Sect. 5.1, each entry of the rigidity ma-
trix of a nonparallel realization can be written in terms of the coefficients ap-
pearing in the equations representing the panels associated with v ∈ V . Although
(G/E′,pE\E′) is not a panel-hinge realization, due to the definition (6.7), each en-
try of R(G/E′,pE\E′) is also described in terms of the coefficients appearing in
the equations expressing ΠG′,p1(v1) for v1 ∈ V ′ and ΠG/E′,p2(v2) for v2 ∈ V \ V ′.
Notice that the collection of all the nonparallel panel-hinge realizations of G/E′
is a subset of the collection of all possible realizations of G/E′ determined by
(6.7) for some choices of p1 and p2, because for any (G/E′,p2) we can obtain
(G/E′,pE\E′) = (G/E′,p2) by setting ΠG′,p1(u) to be ΠG/E′,p2(v

∗) for all u ∈ V ′.
This implies rankR(G/E′,pE\E′) ≥ rankR(G/E′,p2) since p1 and p2 have been
taken in such a way that the set of all coefficients appearing in the equations repre-
senting the panels is algebraically independent over Q (and hence R(G/E′,pE\E′)
takes the maximum rank over all realizations of G/E′ determined by (6.7)). �

Let us take a look at the rigidity matrix R(G,p) written in (6.3). Since pE\E′ is
the restriction of p on E \ E′, we have

R
(
G,p;E \ E′,V \ V ′)= R

(
G/E′,pE\E′ ;E \ E′,V \ V ′). (6.8)

We remark that R(G/E′,pE\E′ ;E \ E′,V \ V ′) is the matrix obtained from
R(G/E′,pE\E′) by deleting the D consecutive columns associated with v∗. There-
fore, by (6.8), Lemma 5.1, and Claim 6.4, we obtain

rankR
(
G,p;E \ E′,V \ V ′)= rankR

(
G/E′,pE\E′ ;E \ E′,V \ V ′)

= rankR
(
G/E′,pE\E′

)

≥ rankR
(
G/E′,p2

)
. (6.9)

By (6.3) and (6.9), we eventually obtain rankR(G,p) ≥ rankR(G′,p1) +
rankR(G,p;E \ E′,V \ V ′) ≥ rankR(G′,p1) + rankR(G/E′,p2) = D(|V ′| − 1) +
D(|V \ V ′ ∪ {v∗}| − 1) − k = D(|V | − 1) − k. �
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Lemma 6.5 Let G be a minimal k-dof-graph with |V | ≥ 3 that contains a proper
rigid subgraph. Suppose that G is simple but contains no proper rigid subgraph G′ =
(V ′,E′) such that G/E′ is simple. Also suppose that (6.1) holds. Then, there exists a
nonparallel panel-hinge realization (G,p) satisfying rankR(G,p) = D(|V |−1)−k.

Proof We shall consider a different approach from those of the previous lemmas,
based on the following observation.

Claim 6.6 G is a 0-dof-graph and there exists a vertex v of degree two such that Gv

is a minimal 0-dof-graph, where Gv is the graph obtained from G by the removal
of v.

Proof Let us take a vertex-inclusionwise maximal proper rigid subgraph G′ =
(V ′,E′) of G. Note that G′ is a minimal 0-dof-graph by Lemma 3.3. Since G/E′ is
not simple, there exist a vertex v ∈ V \ V ′ and two edges, denoted by e and f , which
are incident to v and some other vertices of V ′. Let G′′ = (V ′ ∪ {v},E′ ∪ {e, f }).
Then, G′ is the graph obtained from G′′ by the removal of v. By Lemma 4.4, we ob-
tain def(G̃′′) ≤ def(G̃′) = 0. Hence G′′ is also a 0-dof-graph and equivalently a rigid
subgraph of G. Since G′ is taken as a vertex-inclusionwise maximal proper rigid sub-
graph of G, G′′ cannot be a proper rigid subgraph and consequently V = V ′ ∪ {v}.
This implies that G is a 0-dof-graph. Also, the minimality of G implies G = G′′.
Since v is a vertex of degree two in G′′ = G, the removal of v from G results in the
minimal 0-dof-graph G′. �

Let v be a vertex of degree two whose removal results in a minimal 0-dof-graph Gv

as shown in Claim 6.6. Let NG(v) = {a, b}. Note that Gv is simple since G is simple.
Hence, by (6.1), there exists a nonparallel panel-hinge realization (Gv,q) satisfying
rankR(Gv,q) = D(|V \ {v}| − 1). We define a mapping p on E as follows:

p(e) =

⎧
⎪⎨

⎪⎩

q(e) if e ∈ E \ {va, vb}
Π◦ ∩ ΠGv,q(a) if e = va

Π◦ ∩ ΠGv,q(b) if e = vb

where Π◦ is a (d − 1)-dimensional affine subspace that is not parallel to ΠGv,q(u)

for u ∈ V \ {v} and does not contain ΠGv,q(a) ∩ ΠGv,q(b) (so that Π◦ ∩ ΠGv,q(a) �=
Π◦ ∩ ΠGv,q(b)). Clearly, (G,p) is a nonparallel panel-hinge realization. Let us take
a look at the rigidity matrix R(G,p):

R(G,p) =
v V \{v}

va
⎛

⎝
R(G,p;va, v) ∗ ⎞

⎠vb R(G,p;vb, v) ∗
E\{va,vb} 0 R(G,p;E \ {va, vb},V \ {v}) .

(6.10)

Since Gv = (V \ {v},E \ {va, vb}) and also p(e) = q(e) holds for any e ∈ E \
{va, vb}, we can take the entries of the rigidity matrix in such a way that R(G,p;E \
{va, vb},V \{v}) = R(Gv,q). Also, notice that the top-left 2(D−1)×D-submatrix,
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i.e. R(G,p; {va, vb}, v), has rank equal to D by Lemma 5.3. We thus obtain
rankR(G,p) ≥ rankR(G,p; {va, vb}, v) + rankR(G,p;E \ {va, vb},V \ {v}) =
D + rankR(Gv,q) = D + D(|V \ {v}| − 1) = D(|V | − 1). �

This completes the case where G contains a proper rigid subgraph.

6.3 G is 2-edge-connected, Contains No Proper Rigid Subgraph, and k > 0

Let us consider the remaining case for proving Theorem 5.5; G is 2-edge-connected
and has no proper rigid subgraph. We shall further split this case into two subcases
depending on whether k > 0 or k = 0. This subsection deals with the case k > 0. We
need the following two easy observations, which contribute to the claim that Gab

v is
always simple.

Lemma 6.7 Let G = (V ,E) be a 2-edge-connected minimal k-dof-graph with |V | ≥
3 for some nonnegative integer k. Suppose also that G contains no proper rigid sub-
graph. Then, the following holds:

(i) If |V | = 3, then k = 0 and there is a nonparallel panel-hinge realization (G,p)

satisfying rankR(G,p) = D(|V | − 1).
(ii) If |V | ≥ 4, then Gab

v is a simple graph for any vertex v of degree two, where
NG(v) = {a, b}.

Proof We remark that G is simple since multiple edges induce a proper rigid sub-
graph. When |V | = 3, G is a triangle because G is simple and 2-edge-connected.
Hence, by Lemma 5.4, there is a nonparallel panel-hinge framework (G,p) satisfy-
ing rankR(G,p) = D(|V | − 1).

Let us consider (ii). If Gab
v is not simple, then Gab

v contains two parallel edges
between a and b because the original graph G is simple. This implies ab ∈ E.
Therefore G contains a triangle G[{va, vb, ab}] as its subgraph. Since a triangle is
a 0-dof-graph, G contains a proper rigid subgraph, contradicting the lemma assump-
tion. �

Lemma 6.8 Let G = (V ,E) be a 2-edge-connected minimal k-dof-graph with |V | ≥
3 for some integer k with k > 0. Suppose that there exists no proper rigid subgraph
in G and that (6.1) holds. Then, there is a nonparallel panel-hinge realization (G,p)

in R
d satisfying rankR(G,p) = D(|V | − 1) − k.

Proof By Lemma 4.6, G has a vertex v of degree two with NG(v) = {a, b}. Since
k > 0 and there is no proper rigid subgraph in G, Lemma 4.8 implies that Gab

v is a
minimal (k − 1)-dof-graph. Also, by Lemma 6.7, we can assume that Gab

v is simple.
Hence, by (6.1), there exists a generic nonparallel panel-hinge realization (Gab

v ,q)
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Fig. 4 The realizations given in the proof of Lemma 6.8 around v, where the panels associated with the
vertices other than v, a, b are omitted. (a) (Gab

v ,q). (b) (G,p1)

in R
d , which satisfies

rankR
(
Gab

v ,q
)= D

(∣∣V \ {v}∣∣− 1
)− (k − 1). (6.11)

Let Ev = E \ {va, vb}. Define a mapping p1 on E as follows:

p1(e) =

⎧
⎪⎨

⎪⎩

q(e) if e ∈ Ev(= E \ {va, vb})
L if e = va

q(ab) if e = vb

(6.12)

where L is a (d − 2)-dimensional affine subspace contained in ΠGab
v ,q(a). In Fig. 4,

we illustrate this realization. We need to prove the following fact.

Claim 6.9 (G,p1) is a panel-hinge realization of G for any choice of (d − 2)-
dimensional affine subspace L contained in ΠGab

v ,q(a).

Proof From the definition of p1 and from the fact that (Gab
v ,q) is a panel-hinge

realization, every hinge p1(e) for e = uw ∈ E \ {va, vb} is appropriately contained
in the panels ΠGab

v ,q(u) and ΠGab
v ,q(w). This implies that, for every u ∈ V \ {v, a, b},

all the hinges p1(e) for e ∈ δG(u) are contained in ΠGab
v ,q(u).

Notice that p1(vb) = q(ab) ⊂ ΠGab
v ,q(b) and hence all the hinges p1(e) for e ∈

δG(b) are contained in ΠGab
v ,q(b). Similarly, p1(va) = L ⊂ ΠGab

v ,q(a) implies that
all the hinges p1(e) for e ∈ δG(a) are contained in ΠGab

v ,q(a).
Finally, as for the two hinges p1(va) and p1(vb) for δG(v) = {va, vb}, p1(vb) =

q(ab) ⊂ ΠGab
v ,q(a) and p1(va) = L ⊂ ΠGab

v ,q(a) hold. Hence, all the hinges p1(e)

for e ∈ δG(v) are contained in ΠGab
v ,q(a). Thus (G,p1) is a panel-hinge realiza-

tion. �

Although ΠG,p1(v) and ΠG,p1(a) are parallel in (G,p1), at the end of the proof
we will convert (G,p1) to a nonparallel panel-hinge realization by slightly rotating
ΠG,p1(v) without decreasing the rank of the rigidity matrix. The following is an
important observation provided by the configuration p1 of (6.12): From p1(e) = q(e)
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for every e ∈ Ev ,

R
(
G,p1;Ev,V \ {v})= R

(
Gab

v ,q;Ev,V \ {v}) (6.13)

(i.e., the part of the framework (G,p1) which is not related to {va, vb, ab} is exactly
the same as that of (Gab

v ,q)). Let us take a look at R(G,p1):

R(G,p1) =
v a b V \{v,a,b}

va
⎛

⎝
r(p1(va)) −r(p1(va)) 0 0

⎞

⎠vb r(p1(vb)) 0 −r(p1(vb)) 0
Ev 0 R(G,p1;Ev,V \ {v}) .

(6.14)

We shall perform fundamental column operations on R(G,p1) which add the j th
column of R(G,p1;v) to that of R(G,p1;a) for each 1 ≤ j ≤ D one by one, i.e.,
R(G,p1) is changed to

R(G,p1) =
v a b V \{v,a,b}

va
⎛

⎝
r(p1(va)) 0 0 0

⎞

⎠vb r(p1(vb)) r(p1(vb)) −r(p1(vb)) 0
Ev 0 R(G,p1;Ev,V \ {v}) .

(6.15)

Substituting p1(vb) = q(ab) and (6.13) into (6.15), R(G,p1) can be expressed by

R(G,p1)=
v a b V \{v,a,b}

va
⎛

⎝
r(p1(va)) 0 0 0

⎞

⎠vb r(p1(vb)) r(q(ab)) −r(q(ab)) 0
Ev 0 R(Gab

v ,q;Ev,V \ {v})

=
v V \{v}

va
⎛

⎝
r(p1(va)) 0

⎞

⎠vb

Ev

r(p1(vb))

0
R(Gab

v ,q)
(6.16)

where we used the fact that R(Gab
v ,q) is expressed by

R
(
Gab

v ,q
)=

a b V \{v,a,b}
ab
(

r(q(ab)) −r(q(ab)) 0
)

Ev R(Gab
v ,q;Ev,V \ {v}) .

(6.17)

Therefore, from (6.11) and (6.16), we can show that R(G,p1) has the desired rank,
as follows:

rankR(G,p1) ≥ rank r
(
p1(va)

)+ rankR
(
Gab

v ,q
)

= D − 1 + D
(∣∣V \ {v}∣∣− 1

)− (k − 1)

= D
(|V | − 1

)− k.

As we have remarked, (G,p1) can be converted to a nonparallel realization with-
out decreasing the rank of the rigidity matrix by Lemma 5.2. Thus, the statement
follows. �
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6.4 G is 2-edge-connected, Contains No Proper Rigid Subgraph, and k = 0

The remaining case is the most difficult one. Since the proof is quite complicated, we
shall first show the 3-dimensional case, which must be most important. We then deal
with the general dimensional case.

6.4.1 3-Dimensional Case (D = 6)

Lemma 6.10 Let G = (V ,E) be a 2-edge-connected minimal 0-dof-graph with
|V | ≥ 3. Suppose that there exists no proper rigid subgraph in G and that (6.1) holds.
Then, there is a nonparallel panel-hinge realization (G,p) in 3-dimensional space
satisfying rankR(G,p) = 6(|V | − 1).

Since the proof is lengthy, we first describe the proof outline.

Sketch of the proof Since d = 3 and no proper rigid subgraph exists in G, Lemma 4.6
implies that there exist two vertices of degree two which are adjacent with each other.
Let v and a be two such vertices and let NG(v) = {a, b} for some b ∈ V and NG(a) =
{v, c} for some c ∈ V (see Fig. 6(a)). Lemma 4.8 implies that both Gab

v and Gvc
a are

minimal 0-dof-graphs. Here Gvc
a is the graph obtained by performing splitting off at

a along vc. By (6.1), there exist generic nonparallel panel-hinge realizations (Gab
v ,q)

and (Gvc
a ,qρ) where qρ will be defined later.

We shall first consider the realization (G,p1) of G based on (Gab
v ,q) which

is exactly the same as the one we considered in Lemma 6.8 (see Fig. 6(d)). As
in the proof of Lemma 6.8, we shall perform the row operations on R(G,p1) so
that R(Gab

v ,q) appears as a submatrix of R(G,p1) (see Fig. 5). Let us remark
the difference between k = 0 (the current situation) and k > 0 (Lemma 6.8). In
the proof of Lemma 6.8, we have proved that (G,p1) attains the desired rank as
rankR(G,p1) ≥ 5+rankR(Gab

v ,q) = 5+6(|V \{v}|−1)−(k−1) = 6(|V |−1)−k,
where rankR(Gab

v ,q) was equal to 6(|V \ {v}| − 1) − (k − 1) since Gab
v was a mini-

mal (k − 1)-dof-graph. In contrast, since rankR(Gab
v ,q) = 6(|V \ {v}| − 1), we only

have rankR(G,p1) ≥ 5 + rankR(Gab
v ,q) = 5 + 6(|V \ {v}|− 1) = 6(|V | − 1) − 1 in

the current situation, which does not complete the proof since we need to show rank
R(G,p1) = 6(|V | − 1).

In order to show the existence of one more independent row, we use the fact that,
in G̃ab

v , there exists at least one edge among ãb which is not used in a base of the
combinatorial matroid M(G̃ab

v ) (Lemma 4.3). By using induction hypothesis, we can
show that a corresponding redundant row exists in R(Gab

v ,q) among those associated
with ãb. Let (ab)i∗ be the edge associated with such a redundant row. Then, this row
can be converted to a zero vector by row operations in R(Gab

v ,q). We shall perform

Fig. 5 Row operations
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these row operations on R(G,p) by focusing on the fact that R(Gab
v ,q) is a submatrix

of R(G,p). Then, these row operations change R(G,p) to the right-most matrix of
Fig. 5 (assuming that (ab)i∗ is the top row in R(Gab

v ,q)). Our goal is to show that
the top-left 6 × 6-submatrix of the right-most matrix is non-singular.

Unfortunately, there is a case where this 6×6-submatrix is singular no matter how
we select p1(va). Contrary to the case of k > 0, we need to construct two more panel-
hinge realizations (G,p2) and (G,p3). These two realizations are constructed based
on the graphs Gab

v and Gvc
a , respectively. The realization (G,p2) can be constructed

in the manner symmetric to (G,p1) by changing the role of a and b as shown in
Fig. 6(e). (Although (G,p1) and (G,p2) are not nonparallel, we will convert them
to nonparallel panel-hinge realizations by slightly rotating the panel of v without
decreasing the rank of the rigidity matrix by using Lemma 5.2.)

(G,p3) is constructed as follows. It is not difficult to see that Gvc
a is isomorphic

to Gab
v (see Fig. 6(b) (f)) and hence there is the realization (Gvc

a ,qρ) that represents
the same panel-hinge framework as (Gab

v ,q) by regarding the panel of a in (Gab
v ,q)

as that of v in (Gvc
a ,qρ) as shown in Fig. 6(g). We shall then construct the realiza-

tion (G,p3) based on (Gvc
a ,qρ) as shown in Fig. 6(h) (see (6.31) and (6.32) for the

definitions of qρ and p3).
Let us briefly explain why at least one of (G,p1), (G,p2) and (G,p3) attains the

desired rank with certain choices of p1(va),p2(vb),p3(ac). We first take a look at
when the top-left 6×6-submatrix of R(G,p1) given in the right-most matrix of Fig. 5
becomes singular. We focus on the following fact: (i) The last row vector, denoted r ,
of this 6 × 6-submatrix (see the right-most one of Fig. 5) is indeed a nonzero linear
combination of ri(p1(vb)), i = 1, . . . ,5 from the way of row operations. Moreover,
from the definition of p1, we have p1(vb) = q(ab). Hence, r is actually a linear com-
bination of ri(q(ab)), i = 1, . . . ,5. (ii) From the definition of the rigidity matrix, if
the top-left 6 × 6-submatrix is singular, r is in the orthogonal complement of p1(va).
Since we can take any line on the panel ΠGab

v ,q(a) as p1(va), we found that r is
in the orthogonal complement of the vector space spanned by the extensors whose
supporting lines lie on ΠGab

v ,q(a).
We shall perform the same analysis on (G,p2) and (G,p3): If the top-left 6 × 6-

submatrix of (G,p2) (obtained by the similar row operations as in Fig. 5), then (i′)
the last row vector r ′ of this 6×6-submatrix is a linear combination of ri(q(ab)), i =
1, . . . ,5. Due to the symmetry of the construction, it can be observed that r ′ is indeed
equal to r ; (ii′) if the top-left 6 × 6-submatrix is singular for any choice of p2(vb),
r is in the orthogonal complement of the vector space spanned by the extensors whose
supporting lines lie on the plane ΠGab

v ,q(b).
If the top-left 6×6-submatrix of (G,p3) (obtained by appropriate row operations),

then (i′′) the last row vector r ′′ of the corresponding 6 × 6-submatrix is a linear com-
bination of ri(q(ac)), i = 1, . . . ,5. A key observation is that r ′′ is equal to r (with
the reversed sign) because a is a degree two vertex in Gab

v . (Roughly speaking, r and
r ′′ can be regarded as forces applied to the panel ΠGab

v ,q(a) in R(Gab
v ,q) through the

hinges q(ab) and q(ac), respectively. Since this panel is incident to only q(ab) and
q(ac), r ′′ must be equal to −r .) (ii′′) If the top-left 6 × 6-submatrix is singular for
any choice of p3(ac), r is in the orthogonal complement of the vector space spanned
by the extensors whose supporting lines lie on the plane ΠGab

v ,q(c).
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In total, if all these three 6 × 6-submatrices are singular, r is in the orthogonal
complement of the vector space spanned by the extensors whose supporting lines lie
on ΠGab

v ,q(a), ΠGab
v ,q(b), or ΠGab

v ,q(c). However, if the configuration of these three
panels is generic, then the set of extensors on them becomes 6-dimensional. This
contradicts that r is nonzero. Thus, we conclude that the top-left 6 × 6-submatrix is
non-singular for at least one of R(G,pi ), i = 1,2,3, and this attains the desired rank,
6(|V | − 1). �

Let us start the rigorous proof.

Proof of Lemma 6.10 We use notation v, a, b, and c defined in the sketch of the
proof. As remarked in the proof of the previous lemma, G is a simple graph. Also, by
Lemma 6.7, we can assume that |V | ≥ 4 and Gab

v is simple in the subsequent proof.
Hence, by (6.1), there exists a generic nonparallel panel-hinge realization (Gab

v ,q) in
R

3, which satisfies

rankR
(
Gab

v ,q
)= 6

(∣∣V \ {v}∣∣− 1
)
. (6.18)

Let Ev = E \ {va, vb}. Let us recall that the mapping p1 on E was defined by
(6.12). We symmetrically define a mapping p2 on E as follows:

p2(e) =

⎧
⎪⎨

⎪⎩

q(e) if e ∈ Ev

q(ab) if e = va

L′ if e = vb

(6.19)

where L′ is a (d − 2)-dimensional affine subspace contained in ΠGab
v ,q(b). Then, the

argument symmetric to Claim 6.9 implies that (G,p2) is a panel-hinge realization of
G. The frameworks (G,p1) and (G,p2) are depicted in Fig. 6(d) and (e), respectively.

Putting aside for a while the discussion concerning how R(G,p3) is defined, we
shall first investigate when R(G,p1) or R(G,p2) takes the desired rank (for some
choice of L ⊂ ΠGab

v ,q(a) or L′ ⊂ ΠGab
v ,q(b)). R(G,p1) was described by (6.16), and

R(G,p2) is given as follows:

R(G,p2) =
v a b V \{v,a,b}

vb
⎛

⎝
r(p2(vb)) 0 −r(p2(vb)) 0

⎞

⎠va r(p2(va)) −r(p2(va)) 0 0
Ev 0 R(G,p2;Ev,V \ {v}) .

(6.20)

In a manner similar to the case of R(G,p1), we perform the fundamental col-
umn operations on R(G,p2) which add the j th column of R(G,p2;v) to that of
R(G,p2;b) for each 1 ≤ j ≤ 6. Substituting p2(va) = q(ab) and R(G,p2;Ev,V \
{v}) = R(Gab

v ,q;Ev,V \ {v}) into the resulting matrix, we obtain

R(G,p2) =
v V \{v}

vb
⎛

⎝
r(p2(vb)) 0

⎞

⎠
va

Ev

r(p2(va))

0
R(Gab

v ,q)

(6.21)

(see the proof of Lemma 6.8 for more details).
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As discussed in the sketch of the proof, we shall further convert R(G,p1) of (6.16)
to the matrix given in (6.29) by applying appropriate fundamental row operations
based on the claim below (Claim 6.11). The matrix given by (6.29) has the following
two properties; (i) the entries of the submatrix R(G,p1; (vb)i∗ ,V \ {v}) (whose size
is 1×6|V \{v}|) are all zero, and (ii) the bottom-right submatrix (denoted by R(Gab

v \
(ab)i∗ ,q) in (6.29)) has rank equal to 6(|V \{v}|−1). This implies that, if the top-left
6 × 6-submatrix of (6.29) has full rank, then rankR(G,p1) = 6 + 6(|V \ {v}| − 1) =
6(|V | − 1) holds. Symmetrically, we shall convert R(G,p2) to that given in (6.30)
which has the properties similar to (i) and (ii).

Let us first show how R(G,p1) given in (6.16) is converted to (6.29). For this,
let us focus on R(Gab

v ,q) given in (6.17) for a while. We say that a row vector of
R(Gab

v ,q) is redundant if removing it from R(Gab
v ,q) does not decrease the rank of

the matrix. The following claim is a key observation, which states a relation between
the combinatorial matroid M(G̃ab

v ) (i.e., the union of 6 graphic matroids) and the
linear matroid derived from the row dependence of R(Gab

v ,q).

Claim 6.11 In R(Gab
v ,q), there exists a redundant row vector among those associ-

ated with ab.

Proof Recall a combinatorial property of Gab
v given in Lemma 4.3: Since Gab

v is a
minimal k-dof-graph (with k = 0), Lemma 4.3(ii) says that there exists a base B ′
of the matroid M(G̃ab

v ) satisfying |B ′ ∩ ãb| < 5. This implies that G̃ab
v has some

redundant edge (ab)i among ãb with respect to M(G̃ab
v ) (i.e., removing (ab)i from

G̃ab
v does not decrease the rank of M(G̃ab

v )). We show that this redundancy also
appears in the linear matroid derived from R(Gab

v ,q).
Let B ′ be a base of the matroid M(G̃ab

v ) satisfying |B ′ ∩ ãb| < 5 mentioned above.
Let h = |B ′ ∩ ãb|. Then, we have h ≤ 4 and |B ′| = 6(|V \ {v}| − 1) (since Gab

v is a
0-dof-graph). We shall consider the graph Gv that is obtained from Gab

v by removing
ab. Clearly, B ′ \ ãb is an independent set of M(G̃v) with cardinality 6(|V \ {v}| −
1) − h and hence we have def(G̃v) ≤ h by (2.4). Namely, Gv is a k′-dof-graph for
some nonnegative integer k′ with k′ ≤ h ≤ 4. Also, Gv is minimal by Lemma 3.3.
Let qEv denote the restriction of q to the edge set Ev of Gv . We claim the following.

rankR(Gv,qEv ) = 6
(∣∣V \ {v}∣∣− 1

)− k′ ≥ 6
(∣∣V \ {v}∣∣− 1

)− 4. (6.22)

To see this, recall that, by induction hypothesis (6.1), the rigidity matrix of any
generic nonparallel panel-hinge realization of Gv takes rank equal to 6(|V \ {v}| −
1) − k′.6 Recall also that (Gab

v ,q) was defined as a generic nonparallel realization of
Gab

v in the inductive step. Hence, q was taken in such a way that the set of all the
coefficients appearing in the equations expressing the panels is algebraically inde-
pendent over Q. This property clearly remains in the realization restricted to Ev and

6If one particular nonparallel realization achieves rank equal to 6(|V \ {v}| − 1) − k′ , then all generic
nonparallel realizations attain the same rank by the definition.
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hence (Gv,qEv ) is also a generic nonparallel panel-hinge realization of Gv . Thus,
(6.22) holds.

Note that R(Gv,qEv ) is the matrix obtained from R(Gab
v ,q) by removing the 5

rows associated with ab. Note also that R(Gab
v ,q) has rank equal to 6(|V \ {v}| − 1)

by (6.18). Hence, from (6.22), adding at most 4 row vectors associated with ab to
the rows of R(Gv,qEv ), we obtain a set of row vectors which spans the row space
of R(Gab

v ,q). This implies that at least one row vector associated with ab is redun-
dant. �

Let i∗ be the index of a redundant row associated with ab shown in Claim 6.11.
Namely, denoting by R(Gab

v \ (ab)i∗ ,q) the matrix obtained from R(Gab
v ,q) by re-

moving the row associated with (ab)i∗ , we have

rankR
(
Gab

v \ (ab)i∗ ,q
)= rankR

(
Gab

v ,q
)= 6

(∣∣V \ {v}∣∣− 1
)
. (6.23)

Also, since R(Gab
v ,q; (ab)i∗) is redundant, it can be expressed as a linear combina-

tion of the other row vectors of R(Gab
v ,q). Thus, there exists a scalar λej

for each
ej ∈ Ẽv ∪ ãb such that

∑

1≤j≤5

λ(ab)j R
(
Gab

v ,q; (ab)j
)+

∑

e∈Ev,1≤j≤5

λej
R
(
Gab

v ,q; ej

)= 0 (6.24)

where

λ(ab)i∗ = 1. (6.25)

In other words, fundamental row operations change the matrix R(Gab
v ,q) so that

the row associated with (ab)i∗ becomes a zero vector. Such row operations can be
extended to R(G,p1) of (6.16), by focusing on the fact that R(G,p1;E \ {vb},V \
{v}) is equal to R(Gab

v ,q), so that the part of a row vector of R(G,p1) corresponding
to V \ {v} becomes zero as in Fig. 5.

Let us show that the resulting matrix can be described as (6.29) (up to some row
exchanges). To show this, let us take a look at the row operations more precisely.
Since the row associated with (ab)i∗ in R(Gab

v ,q) corresponds to that associated
with (vb)i∗ in R(G,p1) (see (6.16)), performing such row operations is equivalent to
the addition of

∑

1≤j≤5,j �=i∗
λ(ab)j R

(
G,p1; (vb)j

)+
∑

e∈Ev,1≤j≤5

λej
R(G,p1; ej ) (6.26)

to the row associated with (vb)i∗ in (6.16). Namely, the row operations convert
R(G,p1; (vb)i∗) of (6.16) to

∑

1≤j≤5

λ(ab)j R
(
G,p1; (vb)j

)+
∑

e∈Ev,1≤j≤5

λej
R(G,p1; ej ) (6.27)

where λ(ab)i∗ = 1. (Compare it with the left hand side of (6.24).) From R(G,p1;E \
{va},V \ {v}) = R(Gab

v ,q) and from (6.24), the components of (6.27) associated
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with V \ {v} become all zero. As for the remaining part of the new row vector (6.27)
(i.e., the components associated with v), since R(G,p1;Ev, v) = 0 holds as shown
in (6.16), we have

∑

1≤j≤5

λ(ab)j R
(
G,p1; (vb)j , v

)+
∑

e∈Ev,1≤j≤5

λej
R(G,p1; ej , v)

=
∑

1≤j≤5

λ(ab)j R
(
G,p1; (vb)j , v

)
.

Note that R(G,p1; (vb)j , v) = rj (p1(vb)) = rj (q(ab)) by the definition of the rigid-
ity matrix and by p1(vb) = q(ab). Thus, we have seen that the new row vector (6.27)
can be written as

( v∑
j λ(ab)j rj (q(ab)),

V \{v}
0
)
. (6.28)

As a result, the fundamental row operations change R(G,p1) of (6.16) to the matrix
described as (up to some row exchange of (vb)i∗ )

R(G,p1) =
v V \{v}

va
⎛

⎝
r(p1(va)) 0

⎞

⎠(vb)i∗
∑

j λ(ab)j rj (q(ab)) 0
∗ R(Gab

v \ (ab)i∗ ,q)
.

(6.29)

Applying the symmetric argument to R(G,p2) shown in (6.21), we also have

R(G,p2) =
v V \{v}

vb
⎛

⎝
r(p2(vb)) 0

⎞

⎠(va)i∗
∑

j λ(ab)j rj (q(ab)) 0
∗ R(Gab

v \ (ab)i∗ ,q)
.

(6.30)

Note that the same λ(ab)j ,1 ≤ j ≤ 5 and the index i∗ are used in (6.29) and (6.30)
since they are determined by (Gab

v ,q) and are independent of p1 and p2. It is not
difficult to see that, if the top-left 6 × 6-submatrix of (6.29) has full rank, then we
obtain rankR(G,p1) ≥ 6+rankR(Gab

v \(ab)i∗ ,q) = 6(|V |−1) by (6.29) and (6.23),
and we are done. Symmetrically, if the top-left 6×6-submatrix of (6.30) has full rank,
then R(G,p2) attains the desired rank. In d = 2 we can show that the corresponding
top-left submatrix has full rank in at least one of (6.29) and (6.30), but this may not be
true for d ≥ 3. Hence, we shall introduce another framework (G,p3) in the following
discussion.

Let us consider splitting off at a along vc. (Recall that a is a vertex of degree
two.) Then, since v and a are adjacent vertices of degree two, it is not difficult to
see that the resulting graph Gvc

a is isomorphic to Gab
v (see Fig. 6(b) and (f)) by the

isomorphism ρ : V \ {a} → V \ {v}, i.e., ρ(v) = a and ρ(u) = u for u ∈ V \ {v, a}.
The isomorphism ρ induces the mapping qρ on E \ {va, ac} ∪ {vc} in a natural way
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defined by, for e = uw ∈ E \ {va, ac} ∪ {vc},

qρ(e) = q
(
ρ(u)ρ(w)

)=

⎧
⎪⎨

⎪⎩

q(ab) if e = vb

q(ac) if e = vc

q(e) otherwise.

(6.31)

The isomorphism ρ between Gab
v and Gvc

a implies that (Gvc
a ,qρ) and (Gab

v ,q) rep-
resent the same panel-hinge framework in R

3. In particular, we have ΠGvc
a ,qρ (u) =

ΠGab
v ,q(u) for each u ∈ V \ {v, a} and ΠGvc

a ,qρ (v) = ΠGab
v ,q(a).

We shall construct a similar extension of the mapping qρ as was done in p1 or p2.
Define a mapping p3 on E as

p3(e) =

⎧
⎪⎨

⎪⎩

qρ(e) if e ∈ E \ {va, ac}
L′′ if e = ac

qρ(vc) if e = va

(6.32)

where L′′ is a (d − 2)-dimensional affine subspace contained in ΠGvc
a ,qρ (c)(=

ΠGab
v ,q(c)) and it can be shown as in Claim 6.9 that (G,p3) is a panel-hinge real-

ization of G in R
3 for any choice of L′′ ⊂ ΠGab

v ,q(c) (see Fig. 6(h)). Combining
(6.31) and (6.32), we actually have

p3(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(ac) if e = va

q(ab) if e = vb

L′′ if e = ac

q(e) otherwise.

(6.33)

Therefore, we have

r
(
p3(va)

)= r
(
q(ac)

)

r
(
p3(vb)

)= r
(
q(ab)

)
(6.34)

R
(
G,p3;E \ {va, vb, ac},V \ {v, a})= R

(
Gab

v ,q;E \ {va, vb, ac},V \ {v, a}).

We are now going to convert the rigidity matrix R(G,p3) to that given in (6.41),
which is an analogous form to (6.29) or (6.30). Let us take a look at R(G,p3):

R(G,p3) =

a v c b V \{v,a,b,c}
ac
⎛

⎜⎜
⎝

−r(p3(ac)) 0 r(p3(ac)) 0 0
⎞

⎟⎟
⎠

vb 0 r(p3(vb)) 0 −r(p3(vb)) 0
va −r(p3(va)) r(p3(va)) 0 0 0

0 0 R(G,p3;E \ {va, vb, ac},V \ {v, a})

.

(6.35)
Consider the fundamental column operations which add the j th column of R(G,p3;a)

to that of R(G,p3; c) for each 1 ≤ j ≤ 6. Then R(G,p3) results in the following ma-
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trix:

R(G,p3) =

a v c b V \{v,a,b,c}
ac
⎛

⎜⎜
⎝

−r(p3(ac)) 0 0 0 0
⎞

⎟⎟
⎠

vb 0 r(p3(vb)) 0 −r(p3(vb)) 0
va −r(p3(va)) r(p3(va)) −r(p3(va)) 0 0

0 0 R(G,p3;E \ {va, vb, ac},V \ {v, a}) .

(6.36)
Substituting (6.34) into (6.36), R(G,p3) becomes

R(G,p3) =

a v c b V \{v,a,b,c}
ac
⎛

⎜⎜
⎝

−r(p3(ac)) 0 0 0 0
⎞

⎟⎟
⎠

vb 0 r(q(ab)) 0 −r(q(ab)) 0
va −r(p3(va)) r(q(ac)) −r(q(ac)) 0 0

0 0 R(Gab
v ,q;E \ {va, vb, ac},V \ {v, a}) .

(6.37)
Note that R(Gab

v ,q) can be described by (up to some row exchanges)

R
(
Gab

v ,q
)=

a c b V \{v,a,b,c}
ab
⎛

⎝
r(q(ab)) 0 −r(q(ab)) 0

⎞

⎠ac r(q(ac)) −r(q(ac)) 0 0
0 R(Gab

v ,q;E \ {va, vb, ac},V \ {v, a})
(6.38)

which is equal to R(G,p3;E \ {ac},V \ {a}) given in (6.37). Therefore, (6.37) be-
comes

R(G,p3) =

a V \{a}
ac
⎛

⎜⎜
⎝

−r(p3(ac)) 0
⎞

⎟⎟
⎠vb

va

0

−r(p3(va))

0

R(Gab
v ,q) .

(6.39)

Recall that the row of R(Gab
v ,q) associated with (ab)i∗ is redundant, i.e., remov-

ing the row associated with (ab)i∗ from R(Gab
v ,q) preserves the rank of R(Gab

v ,q)

as shown in (6.23). In order to indicate the dependence of the row vectors within
R(Gab

v ,q), we have introduced λej
∈ R for each ej ∈ Ẽv ∪ ãb so that they satisfy

(6.24).
We shall again consider the row operations which convert R(Gab

v ,q; (ab)i∗) to a
zero vector within R(Gab

v ,q) and apply these row operations to the matrix R(G,p3)

of (6.39) as shown in Fig. 7.
Note that, within the equation R(G,p3;E \ {ac},V \ {a}) = R(Gab

v ,q) of (6.39),
we have the following row correspondence:

R
(
G,p3;vb,V \ {a})= R

(
Gab

v ,q;ab
)

R
(
G,p3;va,V \ {a})= R

(
Gab

v ,q;ac
)

R
(
G,p3; e,V \ {a})= R

(
Gab

v ,q; e) for each e ∈ E \ {va, vb, ac}.
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Fig. 7 Row operations on R(G,p3)

In particular, the row of (ab)i∗ in R(Gab
v ,q) is corresponding to the row of (vb)i∗ in

R(G,p3). Therefore, we have performed the fundamental row operations which add
∑

1≤j≤5,j �=i∗
λ(ab)j R

(
G,p3; (vb)j

)+
∑

1≤j≤5

λ(ac)j R
(
G,p3; (va)j

)

+
∑

e∈E\{va,vb,ac}
1≤j≤5

λej
R(G,p3; ej )

to R(G,p3; (vb)i∗) of (6.39). Namely, by λ(ab)i∗ = 1, the resulting row becomes

∑

1≤j≤5

λ(ab)j R
(
G,p3; (vb)j

)+
∑

1≤j≤5

λ(ac)j R
(
G,p3; (va)j

)

+
∑

e∈E\{va,vb,ac}
1≤j≤5

λej
R(G,p3; ej ). (6.40)

By using the row correspondence between R(G,p3) and R(Gab
v ,q) and also by using

(6.24), the new row vector (6.40) can be reduced to, (by the same analysis as in the
case of R(G,p1)),

( a

−∑j λ(ac)j rj (p3(va)),
V \{a}

0
)
.

Notice that, since the row of (va)j in R(G,p3) is corresponding to the row of (ac)j
in R(Gab

v ,p3), the coefficient of rj (p3(va)) is indexed by (ac)j . Moreover, since
p3(va) = q(ac) by (6.34), this becomes

( a

−∑j λ(ac)j rj (q(ac)),
V \{a}

0
)
.

As a result, R(G,p3) of (6.39) is changed to the following matrix by the row opera-
tions:

R(G,p3) =
a V \{a}

ac
⎛

⎝
r(p3(ac)) 0

⎞

⎠(vb)i∗
∑

j λ(ac)j rj (q(ac)) 0
∗ R(Gab

v \ (ab)i∗ ,q)

(6.41)

where R(Gab
v \ (ab)i∗ ,q) was defined as the matrix obtained from R(Gab

v ,q) by
removing the row associated with (ab)i∗ and satisfies (6.23).
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We finally show in the following Claim 6.12 that at least one of the top-left 6 × 6-
submatrices of (6.29), (6.30), and (6.41) has full rank. Let us simply denote these
three submatrices by M1,M2 and M3, respectively, i.e.,

M1 =
(

r(p1(va))∑
j λ(ab)j rj (q(ab))

)

M2 =
(

r(p2(vb))∑
j λ(ab)j rj (q(ab))

)

M3 =
(

r(p3(ac))∑
j λ(ac)j rj (q(ac))

)
.

According to definitions (6.12), (6.19) and (6.32), we denote p1(va) = L, p2(vb) =
L′, and p3(ac) = L′′, where we may choose any (d −2)-dimensional affine subspaces
L ⊂ ΠGab

v ,q(a), L′ ⊂ ΠGab
v ,q(b), and L′′ ⊂ ΠGab

v ,q(c), respectively. Hence, M1,M2,
and M3 are described as

M1 =
(

r(L)∑
j λ(ab)j rj (q(ab))

)

M2 =
(

r(L′)∑
j λ(ab)j rj (q(ab))

)

M3 =
(

r(L′′)∑
j λ(ac)j rj (q(ac))

)
.

(6.42)

The following Claim 6.12 implies that at least one of R(G,p1), R(G,p2) and
R(G,p3) attains the desired rank 6(|V | − 1).

Claim 6.12 At least one of M1,M2, and M3 has full rank for some choices of L ⊂
ΠGab

v ,q(a), L′ ⊂ ΠGab
v ,q(b), and L′′ ⊂ ΠGab

v ,q(c).

Proof Let r ∈ R
6 be

∑
j λ(ab)j rj (q(ab)). Note that r is a nonzero vector because

r1(q(ab)), . . . , r5(q(ab)) are linearly independent and also λ(ab)i∗ = 1. Suppose that
M1 given in (6.42) does not have full rank. Then, r is contained in the row space of
r(L). This is equivalent to that r is contained in the orthogonal complement of the
vector space spanned by a 2-extensor C(L) supporting L. Similarly, if M2 given in
(6.42) does not have full rank, then r is contained in the orthogonal complement of
the vector space spanned by C(L′).

We claim the following: If M3 does not have full rank, then r is also contained in
the orthogonal complement of the space spanned by C(L′′). To see this, we need to
remind ourselves of (6.24) indicating the row dependence within R(Gab

v ,q). Focus-
ing on the six consecutive components associated with a in (6.24), we have

∑

e∈Ev∪{ab}
1≤j≤5

λej
R
(
Gab

v ,q; ej , a
)= 0. (6.43)
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Recall that R(Gab
v ,q; e, a) = 0 holds if e is not incident to a in Gab

v according to
the definition of a rigidity matrix. Since only ab and ac are incident to a in Gab

v , we
actually have

0 =
∑

e∈Ev∪{ab}
1≤j≤5

λej
R
(
Gab

v ,q; ej , a
)

=
∑

1≤j≤5

λ(ab)j R
(
Gab

v ,q; (ab)j , a
)+

∑

1≤j≤5

λ(ac)j R
(
Gab

v ,q; (ac)j , a
)

=
∑

1≤j≤5

λ(ab)j rj
(
q(ab)

)+
∑

1≤j≤5

λ(ac)j rj
(
q(ac)

)
.

This in turn implies

r = −
∑

1≤j≤5

λ(ac)j rj
(
q(ac)

)
. (6.44)

If M3 does not have full rank, then
∑

j λ(ac)j rj (q(ac)) is contained in the orthogonal
complement of the space spanned by C(L′′), which means that r is contained in the
orthogonal complement of the space spanned by C(L′′) as well, by (6.44).

As a result, we found that, if none of M1, M2 and M3 has full rank, then there
exists a nonzero vector r ∈ R

6 contained in the orthogonal complement of the vector
space spanned by the set of 2-extensors

( ⋃

L⊂Π(a)

C(L)

)
∪
( ⋃

L′⊂Π(b)

C(L′)
)

∪
( ⋃

L′′⊂Π(c)

C(L′′)
)

, (6.45)

where Π(u) denotes ΠGab
v ,q(u) for each u ∈ {a, b, c}. Therefore, in order to show that

at least one of M1, M2 and M3 has full rank, it is enough to show that the dimension
of the vector space spanned by (6.45) is equal to 6.

To show this, let us take four points in R
3 as follows; p1 = Π(a) ∩ Π(b) ∩

Π(c),p2 ∈ Π(a)∩Π(b)\Π(c),p3 ∈ Π(b)∩Π(c)\Π(a), and p4 ∈ Π(c)∩Π(a)\
Π(b). Since (Gab

v ,q) is a generic nonparallel framework, we can take such four
points in such a way that they are affinely independent. Also, notice that any line
connecting two points among {p1, . . . , p4} is contained in Π(a) ∪ Π(b) ∪ Π(c), and
hence any 2-extensor obtained from two points among {p1, . . . , p4} belongs to (6.45).
Recall that, by Lemma 2.1, the set of 2-extensors {pi ∨pj | 1 ≤ i < j ≤ 4} is linearly
independent, which means that the dimension of the vector space spanned by (6.45)
is equal to

(4
2

)= 6. �

As a result, at least one of (G,p1), (G,p2) and (G,p3) attains rank equal to
6(|V |−1). Although (G,p1), (G,p2) and (G,p3) are not nonparallel, we can convert
them to nonparallel panel-hinge realizations by slightly rotating the panel associated
with v (or that associated with a) without decreasing the rank of the rigidity matrix
by Lemma 5.2. This completes the proof of Lemma 6.10. �



692 Discrete Comput Geom (2011) 45: 647–700

6.4.2 General Dimension

Finally let us describe the general dimensional version of Lemma 6.10.

Lemma 6.13 Let G = (V ,E) be a 2-edge-connected minimal 0-dof-graph with
|V | ≥ 3. Suppose that there exists no proper rigid subgraph in G and that (6.1)
holds. Then, there is a nonparallel panel-hinge realization (G,p) in R

d satisfying
rankR(G,p) = D(|V | − 1).

Proof By Lemma 4.6, either G is a cycle of length at most d or G has a chain
of length d . If G is a cycle of length at most d , then we are done by Lemma 5.4.
Hence, let us consider the case where G has a chain v0v1v2 . . . vd of length d (where
dG(vi) = 2 for 1 ≤ i ≤ d − 1).

The proof strategy is exactly the same as d = 3. In general case, we shall con-
sider d distinct frameworks based on the chain v0v1v2 . . . vd . For each 1 ≤ i ≤ d − 1,
the graph G

vi−1vi+1
vi

obtained by splitting off at vi is a minimal 0-dof-graph by
Lemma 4.8. Let us simply denote G

vi−1vi+1
vi

by Gi for each 1 ≤ i ≤ d − 1. By (6.1),
there exist nonparallel panel-hinge realizations (Gi,qi ) for 1 ≤ i ≤ d − 1 such that
they represent the same framework in R

d . Based on (Gi,qi ), we shall construct d

distinct frameworks for G in the same way as in 3-dimensional case. We shall show
that at least one of them attains the desired rank.

Let us start the proof. Consider G1 = (V \ {v1},E \ {v0v1, v1v2} ∪ {v0v2}). By
(6.1), there exists a generic nonparallel panel-hinge framework (G1,q1) which satis-
fies

R(G1,q1) = D
(|V | − 2

)
. (6.46)

We first define two frameworks (G,p0) and (G,p1) based on (G1,q1); for e ∈ E,

p0(e) =

⎧
⎪⎨

⎪⎩

q1(e) if e ∈ E \ {v0v1, v1v2}
L0 if e = v0v1

q1(v0v2) if e = v1v2

(6.47)

p1(e) =

⎧
⎪⎨

⎪⎩

q1(e) if e ∈ E \ {v0v1, v1v2}
q1(v0v2) if e = v0v1

L1 if e = v1v2

(6.48)

where L0 is a (d −2)-dimensional affine subspace contained in ΠG1,q1(v0) and L1 is
the one contained in ΠG1,q1(v2). Then, as was shown in Claim 6.9, it is not difficult to
see that (G,p0) is a panel-hinge framework such that ΠG,p0(u) = ΠG1,q1(u) for u ∈
V \ {v1} and ΠG,p0(v1) = ΠG1,q1(v0). Similarly, (G,p1) is a panel-hinge framework
such that ΠG,p1(u) = ΠG1,q1(u) for u ∈ V \ {v1} and ΠG,p1(v1) = ΠG1,q1(v2).

Let us take a look at R(G,p0) given by

R(G,p0) =
v1 v0 v2 V \{v0,v1,v2}

v0v1

⎛

⎝
r(p0(v0v1)) −r(p0(v0v1)) 0 0

⎞

⎠v1v2 r(p0(v1v2)) 0 −r(p0(v1v2)) 0
0 R(G,p0;E \ {v0v1, v1v2},V \ {v1}) .

(6.49)
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We shall apply the matrix manipulation as was given in the proof of Lemma 6.10,
which converts the matrix of (6.14) to that of (6.29). Here, the vertices v1, v0 and v2

play the roles of v, a and b (of R(G,p1) in the previous lemma), respectively. The
matrix R(G,p0) of (6.49) is changed to the following form by appropriate column
and row operations by using the fact that the rows associated with v0v2 in R(G1,q1)

correspond to those associated with v1v2 in R(G,p0):

R(G,p0) =
v1 V \{v1}

v0v1

⎛

⎝
r(L0) 0

⎞

⎠(v1v2)i∗
∑

j λ(v0v2)j rj (q1(v0v2)) 0
∗ R(G1 \ (v0v2)i∗ ,q1)

(6.50)

where several new notations appearing in (6.50) are defined as follows: the integer i∗
is the index of a redundant row vector among those associated with v0v2 in R(G1,q1)

(such a redundant edge always exists by Claim 6.11), and R(G1 \ {(v0v2)i∗},q1)

denotes the matrix obtained by removing the row of (v0v2)i∗ from R(G1,q1), which
satisfies

rankR
(
G1 \ {(v0v2)i∗

}
,q1
)= rankR(G1,q1) = D

(|V | − 2
)
. (6.51)

Also, the scalar λ(v0v2)j comes from the redundancy of R(G1,q1; (v0v2)i∗) within
R(G1,q1), i.e., since R(G1,q1; (v0v2)i∗) is redundant in R(G1,q1), it can be ex-
pressed by a linear combination of the other row vectors of R(G1,q1) and hence we
have introduced λej

for each e ∈ E \ {v0v1, v1v2} ∪ {v0v2} and 1 ≤ j ≤ D − 1 such
that λ(v0v2)i∗ = 1 and

∑

e∈E\{v0v1,v1v2}∪{v0v2}
1≤j≤D−1

λej
R(G1,q1; ej ) = 0. (6.52)

This dependency will play a key role in the proof.
Symmetrically, we can convert R(G,p1) to the following matrix by appropriate

row and column fundamental operations:

R(G,p1) =
v1 V \{v1}

v1v2

⎛

⎝
r(L1) 0

⎞

⎠(v0v1)i∗
∑

j λ(v0v2)j rj (q1(v0v2)) 0
∗ R(G1 \ (v0v2)i∗ ,q1)

.

(6.53)

Notice that the row vectors associated with v0v2 in R(G1,q1) correspond to those
associated with v0v1 in R(G,p1).

We are now going to construct the other d − 2 frameworks. Consider Gi =
G

vi−1vi+1
vi

= (V \ {vi},E \ {vi−1vi, vivi+1} ∪ {vi−1vi+1}) for 2 ≤ i ≤ d − 1. We shall
focus on the following isomorphism ρi : V \ {vi} → V \ {v1} between G1 and Gi for
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each 2 ≤ i ≤ d − 1:

ρi(u) =
{

u if u ∈ V \ {v1, v2, . . . , vi−1, vi}
vj+1 if u = vj ∈ {v1, v2, . . . , vi−1}. (6.54)

Based on the isomorphism ρi , we consider the nonparallel panel-hinge framework
(Gi,qi ) for 2 ≤ i ≤ d − 1, which is exactly the same framework as (G1,q1), such
that

ΠGi,qi
(u) = ΠG1,q1

(
ρi(u)

)
for each u ∈ V \ {vi}. (6.55)

More formally, (Gi,qi ) is defined by the mapping qi on the edge set of Gi , which is
E \ {vi−1vi, vivi+1} ∪ {vi−1vi+1}, defined as follows:

qi (uw) = q1
(
ρi(u)ρi(w)

)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q1(uw) if uw ∈ E \ {v0v1, v1v2, . . . , vd−1vd}
q1(v0v2) if uw = v0v1

q1(vj vj+1) if uw = vj−1vj for 2 ≤ j ≤ i − 1

q1(vivi+1) if uw = vi−1vi+1

q1(vj vj+1) if uw = vjvj+1 for i + 1 ≤ j ≤ d − 1.

(6.56)
Based on (Gi,qi ), we shall construct the framework (G,pi ) for each 2 ≤ i ≤ d −1

as follows (see Fig. 8):

pi (e) =

⎧
⎪⎨

⎪⎩

qi (e) if e ∈ E \ {vi−1vi, vivi+1}
qi (vi−1vi+1) if e = vi−1vi

Li if e = vivi+1

(6.57)

where Li is a (d − 2)-dimensional affine subspace contained in ΠGi,qi
(vi+1). Note

that ΠGi,qi
(vi+1) = ΠG1,q1(ρi(vi+1)) = ΠG1,q1(vi+1) by (6.54) and (6.55). In other

words, Li is taken as a (d − 2)-dimensional affine subspace satisfying

Li ⊂ ΠG1,q1(vi+1). (6.58)

As was shown in Claim 6.9, it is not difficult to see that (G,pi ) is a panel-hinge frame-
work satisfying ΠG,pi

(u) = ΠGi,qi
(u) = ΠG1,q1(ρi(u)) for each u ∈ V \ {vi} and

ΠG,pi
(vi) = ΠGi,qi

(vi+1) = ΠG1,q1(vi+1). Hence, (G,pi ) is a panel-hinge frame-
work such that only the panels of vi and vi+1 coincide and all the other pairs of panels
are nonparallel. We remark that (G,pi ) can be converted to a nonparallel panel-hinge
framework without decreasing the rank of the rigidity matrix by Lemma 5.2.

Combining (6.56) and (6.57), we have, for 2 ≤ i ≤ d − 1,

pi (e) = q1(e) for e ∈ E \ {v0v1, v1v2, . . . , vd−1vd}
pi (v0v1) = q1(v0v2)

pi (vj−1vj ) = q1(vj vj+1) for 2 ≤ j ≤ i

pi (vivi+1) = Li

pi (vj vj+1) = q1(vj vj+1) for i + 1 ≤ j ≤ d − 1 (if i �= d − 1).

(6.59)
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Let us consider R(G,pi ):

R(G,pi ) =
vi vi+1 vi−1 V \{vi−1,vi ,vi+1}

vivi+1

⎛

⎝
r(pi (vivi+1)) −r(pi (vivi+1)) 0 0

⎞

⎠vi−1vi r(pi (vi−1vi)) 0 −r(pi (vi−1vi)) 0
0 R(G,pi;E \ {vi−1vi, vivi+1},V \ {vi}) .

(6.60)
We now convert R(G,pi ) to the matrix which contains R(G1,q1) as its submatrix;
perform the column operations which add the j th column of R(G,pi;vi) to that of
R(G,pi;vi+1) for each 1 ≤ j ≤ D and then substitute all of (6.59) into the resulting
matrix. Then, it is not difficult to see that R(G,pi ) of (6.60) is changed to

R(G,pi ) =
vi V \{vi }

vivi+1

⎛

⎝
r(Li) 0

⎞

⎠
vi−1vi

r(q1(vivi+1))

0
R(G1,q1)

(6.61)

where we used the following row correspondence between R(G,pi;E \ {vivi+1},
V \ {vi}) and R(G1,q1) derived from (6.59):

R(G,pi ) R(G1,q1)

e

v0v1

vj−1vj

vj ′vj ′+1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇐⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e

v0v2

vjvj+1

vj ′vj ′+1

for e ∈ E \ {v0v1, . . . , vd−1vd}

for 2 ≤ j ≤ i

for i + 1 ≤ j ′ ≤ d − 1

(6.62)

(and the column correspondence follows from the isomorphism ρi defined in (6.54)).
In particular, the row associated with (v0v2)i∗ in R(G1,q1) corresponds to the row
associated with (v0v1)i∗ in R(G,pi ).

Recall that the row of R(G1,q1) associated with (v0v2)i∗ is redundant. As before,
we consider the row operations which convert R(G1,q1; (v0v2)i∗) to a zero vector
and apply these row operations to the matrix R(G,pi ) of (6.61). More precisely,
following the row correspondence described in (6.62), we shall perform the funda-
mental row operations which add the row vectors of R(G,pi;E \ {vivi+1}) to the
row R(G,pi; (v0v1)i∗) with the weight λej

. Namely, the row operations change the
row associated with (v0v1)i∗ in (6.61) to the following row vector:

∑

1≤j≤D−1

λ(v0v2)j R
(
G,pi; (v0v1)j

)

+
∑

2≤j ′≤i,1≤j≤D−1

λ(vj ′vj ′+1)j
R
(
G,pi; (vj ′−1vj ′)j

)
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+
∑

i+1≤j ′≤d−1
1≤j≤D−1

λ(vj ′vj ′+1)j
R
(
G,pi; (vj ′vj ′+1)j

)

+
∑

e∈E\{v0v1,...,vd−1vd }
1≤j≤D−1

λej
R(G,pi; ej ) (6.63)

where λ(v0v2)i∗ = 1.
By (6.52), all the entries of the part of the new row vector (6.63) associated with

V \ {vi} become zero. Also, as for the rest part of the new row (6.63) associated with
vi , since the entries of R(G,pi;E \ {vi−1vi, vivi+1}, vi) of (6.61) are all zero, the
row operations change R(G,pi; (v0v1)i∗ , vi) to

∑

1≤j≤D−1

λ(vivi+1)j rj
(
pi (vi−1vi)

)

which is equal to
∑

1≤j≤D−1

λ(vivi+1)j rj
(
q1(vivi+1)

)

since pi (vi−1vi) = q1(vivi+1) by (6.59). Therefore, the fundamental row operations
actually change R(G,pi ) of (6.61) to the following matrix (up to some row exchange
of (v0v1)i∗ ):

R(G,pi ) =
vi V \{vi }

vivi+1

⎛

⎝
r(Li) 0

⎞

⎠(v0v1)i∗
∑

j λ(vivi+1)j rj (q1(vivi+1)) 0
∗ R(G1 \ (v0v2)i∗ ,q1)

.

(6.64)

Let us denote the top-left D × D-submatrices of (6.50) and (6.53) by M0 and M1,
and also that of (6.64) by Mi for 2 ≤ i ≤ d − 1, i.e.,

M0 =
(

r(L0)∑
j λ(v0v2)j rj (q(v0v2))

)
M1 =

(
r(L1)∑

j λ(v0v2)j rj (q(v0v2))

)

Mi =
(

r(Li)∑
j λ(vivi+1)j rj (q(vivi+1))

)
for 2 ≤ i ≤ d − 1.

Recall that L0 can be taken as any (d − 2)-dimensional affine subspace satisfying
L0 ⊂ ΠG1,q1(v0), while, for 1 ≤ i ≤ d − 1, Li can be any (d − 2)-dimensional affine
subspace satisfying Li ⊂ ΠG1,q1(vi+1). Then, as in the proof of 3-dimensional case,
the remaining task is to show the following fact:

At least one of M0,M1, . . . ,Md−1 has full rank for an Li,0 ≤ i ≤ d − 1. (6.65)

If this is true, then we obtain rankR(G,pi ) ≥ rankMi +rankR(G1 \{(v0v2)i∗},q1) =
D + D(|V | − 2) = D(|V | − 1) by (6.51).
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Let us show (6.65). Let r =∑j λ(v0v2)j rj (q(v0v2)) ∈ R
D . Suppose M0 (and M1,

resp.) does not have full rank. Then, r is contained in the row space of r(L0) (and
r(L1), resp.), that is, r is contained in the orthogonal complement of the vector space
spanned by a (d − 1)-extensor C(L0) (and that of C(L1), respectively). Also, due to
the fact that vi is a vertex of degree two in G1 for all 2 ≤ i ≤ d − 1, we can easily
show the following fact in a manner similar to the previous lemma (cf. (6.44)):

∑

1≤j≤D−1

λ(vivi+1)j rj
(
q(vivi+1)

)= ±r for 2 ≤ i ≤ d − 1. (6.66)

Notice that (6.66) implies that Mi does not have full rank if and only if r is contained
in the orthogonal complement of the vector space spanned by C(Li). Therefore, none
of M0,M1, . . . ,Md−1 has full rank for any choice of Li,0 ≤ i ≤ d − 1 if and only if
r is contained in the orthogonal complement of the vector space spanned by

⋃

0≤i≤d−1

( ⋃

Li⊂Πi

C(Li)

)
(6.67)

where Π0 = ΠG1,q1(v0) and Πi = ΠG1,q1(vi+1) for each i with 1 ≤ i ≤ d −1. There-
fore, in order to show that at least one of M0, M1, . . . ,Md−1 has full rank, it is enough
to show that the dimension of the vector space spanned by (6.67) is equal to D.

Since the framework (G1,q1) is a generic nonparallel framework, the set of the
coefficients appearing in the equations expressing Πi,0 ≤ i ≤ d − 1 is algebraically
independent over the rational field. Therefore, for any j hyperplanes among them,
their intersection forms a (d − j)-dimensional affine space. We take d + 1 distinct
points in R

d as follows: for each 0 ≤ i ≤ d −1, pi ∈⋂0≤j≤d−1,j �=i Πj \Πi and pd =⋂
0≤j≤d−1 Πj . Clearly, {p0,p1, . . . , pd} is affinely independent, and also notice that

any (d − 2)-dimensional affine subspace spanned by d − 1 points among them is
contained in

⋃
0≤j≤d−1 Πj . This implies that any (d − 1)-extensor obtained from

d − 1 points belongs to the set of (6.67). Thus the dimension of the vector space
spanned by (6.67) is equal to

(
d+1
d−1

)= D by Lemma 2.1.
This completes the proof of Lemma 6.13 as well as Theorem 5.5 in general di-

mension. �

7 Conclusion

We have proved that any body-hinge rigid graph can be realized as an infinitesi-
mally rigid panel-hinge framework based on the new inductive sequence of mini-
mally body-hinge rigid graphs. This settles the Molecular Conjecture affirmatively
for general dimension. Also, as a corollary we found that a 3-dimensional bar-joint
framework (G2,p) is infinitesimally rigid on a generic joint configuration if and only
if 5G contains six edge-disjoint spanning trees. This provides the mathematical va-
lidity of using the pebble game algorithms for computing the degree of freedom of
molecules.

We should remark that the study of a bar-joint realization of the square of a graph
has not been completed yet. Indeed, Corollary 5.7 tells us how to compute the rank
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of the whole graph only, and the explicit formula of the rank function has not been
clarified yet. The research should be continued to understand general 3-dimensional
bar-joint frameworks whose combinatorial characterization remains unexplained.
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