
Discrete Comput Geom (2011) 45: 723–736
DOI 10.1007/s00454-011-9343-y

Kinetic Spanners in R
d

Mohammad Ali Abam · Mark de Berg

Received: 10 July 2009 / Revised: 13 October 2009 / Accepted: 16 October 2009 /
Published online: 5 April 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We present a new (1 + ε)-spanner for sets of n points in R
d . Our span-

ner has size O(n/εd−1) and maximum degree O(logd n). The main advantage of our
spanner is that it can be maintained efficiently as the points move: Assuming that the
trajectories of the points can be described by bounded-degree polynomials, the num-
ber of topological changes to the spanner is O(n2/εd−1), and using a supporting data
structure of size O(n logd n), we can handle events in time O(logd+1 n). Moreover,
the spanner can be updated in time O(logn) if the flight plan of a point changes. This
is the first kinetic spanner for points in R

d whose performance does not depend on
the spread of the point set.

Keywords Geometric spanners · Kinetic data structures

1 Introduction

Background Let G = (V ,E) be an edge-weighted graph, and let dG (u, v) denote
the distance in G —that is, the length of the (weighted) shortest path in G —between
u and v. Let t ≥ 1 be a real number. A t-spanner of G is a subgraph S = (V ,ES) of
G such that for any two vertices u,v ∈ V , we have dS (u, v) ≤ t · dG (u, v). In other

M.A. was supported by MADALGO Center for Massive Data Algorithmics, a Center of the Danish
National Research Foundation.
M.dB. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project
no 639.023.301.

M.A. Abam (�)
Department of Computer Science, TU Dortmund, 44221 Dortmund, Germany
e-mail: aabaam@gmail.com

M. de Berg
Department of Computing Science, TU Eindhoven, PO Box 513, 5600 MB Eindhoven,
The Netherlands

mailto:aabaam@gmail.com

724 Discrete Comput Geom (2011) 45: 723–736

words, the distance between two vertices in the spanner approximates the distance
in the original graph up to a factor t . The smallest t for which this property holds is
called the dilation (or: stretch factor) of S . In this paper we are interested in spanners
in a geometric context. Here the graph G is the complete Euclidean graph on a set P

of n points in R
d . A geometric t-spanner is then a Euclidean graph S on P such that

dS (u, v) ≤ t · |pq| for all points p,q ∈ P , where |pq| denotes the Euclidean distance
between p and q . Since their introduction by Chew [6] in 1986, numerous papers on
geometric spanners have appeared—see, for instance, the surveys [10, 14, 22]—and
there is even a book devoted to geometric spanners [19]. From now on, we limit our
discussion to geometric spanners.

When constructing spanners, the main goal is to obtain a small dilation while not
using too many edges. As it turns out, this is indeed always possible: for any set of
n points in R

d and any ε > 0, one can construct a (1 + ε)-spanner that uses only
O(n/εd−1) edges [19]. The construction can be done in O((n/εd−1) logd−1 n) time.
In fact, one can obtain spanners with a number of additional properties, such as small
weight—more precisely, weight proportional to the weight of a minimum spanning
tree (MST)—and bounded degree.

Most algorithms for constructing geometric spanners work on a given, fixed point
set P . In some applications, however, one may want to insert and/or delete points
from P . Then one would prefer not to reconstruct the spanner from scratch at each
update. Gao et al. [11] were the first to study dynamic spanners. They show how to
maintain a (1 + ε)-spanner of size O(n/εd). Unfortunately, the update time of their
structure depends on α(P), the spread of the point set P . (The spread of a point set
is the ratio of the maximum pairwise distance to the minimum pairwise distance; it
is always Ω(

√
n) but, in general, cannot not be bounded as a function of n.) More

precisely, the update time they obtain is O((logα(P))/εd). In a series of papers,
Roddity [20] and Gottlieb and Roddity [12, 13] improved this result, culminating in
a spanner of size O(n/εO(d)) with O((logn)/εO(d)) update time [13].

Another interesting variant, first studied by Gao et al. [11], is where the points
in P move along continuous trajectories. This setting is inspired by simulations in
molecular dynamics and mobile networks, and it is the setting we study in this paper.

Previous Results Gao et al. [11] study the problem of maintaining spanners for
moving point in the kinetic-data-structures framework introduced by Basch et al. [4].
In this framework, one wants to maintain certain attribute—a (1 + ε)-spanner for
given ε > 0 in our case—for a set of moving objects. This is done by maintaining,
besides the attribute itself, some additional information that helps to detect when
(and how) the attribute needs to be updated. In particular, a set of certificates (which
are simple geometric tests, such as one point being to the left of another point) is
maintained with the property that as long as the certificates are valid, the attribute
is still correct. Whenever a certificate fails—this is called an event—the KDS needs
to be updated. To this end, the certificate failure times are stored in an event queue.
Two main criteria for evaluating the quality of a kinetic data structure (KDS) are the
following.

• Efficiency: the worst-case number of events processed by the KDS (under the as-
sumption that the trajectories can, e.g., be described by bounded-degree polyno-
mials). Note that not all events lead necessarily to changes in the attribute; some

Discrete Comput Geom (2011) 45: 723–736 725

events are only needed to update the supporting data structures. A KDS is called
efficient when the number of events is not much more than the worst-case number
of changes to the attribute.

• Response time: the time needed to update the KDS at each event. The goal is to
achieve polylogarithmic response time.

Note that the product of these two criteria gives a bound on the total time spent in
maintaining the attribute over the entire motion. Thus, any good KDS should at least
have good bounds for these two criteria. The other two criteria are the compactness of
the KDS, which is essentially the amount of storage it uses, and the locality, which is
the maximum number of certificates involving any given object. The latter is impor-
tant since whenever an object changes its motion, the failure times of the certificates
it is involved in should be recomputed (and the event queue should then be updated).
A more extensive discussion of KDSs can be found in one of the survey papers by
Guibas [15, 16].

Observe that the attribute that we are interested in—a (1 + ε)-spanner of the given
point set—is not uniquely defined. Thus we should compare the number of events
to the worst-case minimum number of events processed by any kinetic spanner. For
any given t , a kinetic t-spanner of subquadratic size must process Ω(n2) events in
the worst case. (To see this, consider a group of n/2 stationary points on the x-axis
and another group of n/2 points on a line slightly below the x-axis, such that the
second group passes the stationary points from left to right.) Since we are aiming
for a (1 + ε)-spanner, we therefore need to process Ω(n2) events in the worst case.
Thus we call a kinetic (1 + ε)-spanner efficient when it processes O(n2 polylog n)

events. The spanner of Gao et al. processes O(n2 logα(P)) events. Hence, it is
only efficient when the spread of the point set is polynomial. The response time is
O((logα(P))/εd), so it depends on the spread as well.1 Recently Abam et al. [2]
presented a simple and efficient kinetic spanner for points moving in the plane. Their
spanner has size O(n/ε2), it processes O(nλs+2(n)/ε2) events, and each event can
be handled in O(1) time, plus O(logn) to update the event queue. Here λs+2(n)

is the maximum length on an (n, s + 2) Davenport–Schinzel sequence; λs+2(n) is
near-linear in n [21]. Unfortunately, their approach cannot be generalized to higher
dimensions, because they use the fact that the Delaunay triangulation has a linear
number of edges (for any convex distance function)—something which is no longer
true in dimensions d ≥ 3. Moreover, their kinetic spanner is not local, since a point
can be involved in O(n) certificates.

This leads us to the main topic of our paper: is it possible to design a kinetic
(1 + ε)-spanner for points in dimensions d ≥ 3 that is efficient—that is, processes
only a near-quadratic number of events—and has polylogarithmic response time?

Our Results We show that it is indeed possible to obtain an efficient kinetic spanner
in dimensions d ≥ 3; our construction is also valid for d = 2. More precisely, we

1One may try to kinetize the dynamic spanner of Gottlieb and Roddity [13]. The hope would be that, since
it can handle insertions and deletions in O(logn) time, one can also obtain a kinetic spanner with O(logn)

response time. However, we do not know how to do this efficiently—for instance, one would have to detect
efficiently when the spanner needs to be updated—nor do we know what the number of events would be.

726 Discrete Comput Geom (2011) 45: 723–736

present a new kinetic (1 + ε)-spanner of size O(n/εd−1) for n moving points in R
d

(for any fixed d) that processes O(n2/εd−1) events in the worst case (assuming that
the points follow bounded-degree algebraic trajectories). Each event can be handled
in O(logd+1 n) time using an auxiliary data structure of size O((n/εd−1) logd n).
Moreover, each point is involved in O(1/εd−1) certificates, which implies that our
kinetic spanner is local and a motion update can be handled in O(logn) time. Fur-
thermore, our dependency on ε is better than for the kinetic spanner of Abam et al. [2]
(and also than in the dynamic spanner of Gottlieb and Roddity [13]): our dependency
for d = 2 is O(1/ε), while the dependency of Abam et al. is O(1/ε2). Moreover, our
structure processes slightly fewer events.

2 The Spanner

Let P be a set of n points in R
d , and let ε be a given positive constant. We will first

present our new algorithm to construct a spanner for P , and then we will show how
to maintain the spanner when the points in P move.

2.1 The Construction

The θ -Graph Our spanner construction is based on the θ -graph approach [7, 17],
which works as follows. Let θ be a suitably small (depending on ε) constant. We
define a θ -cone to be the intersection of d nonparallel half-spaces such that the angle
of any two rays emanating at the cone’s apex and being inside the cone is at most θ .
Now let C be a collection of O(1/θd−1) interior-disjoint θ -cones, each with their apex
at the origin, that together cover R

d . We call the cones in C canonical cones. (When
d = 2, the canonical cones can be obtained by drawing O(1/θ) rays emanating from
the origin such that the angle between two consecutive rays is at most θ .) For a cone
σ ∈ C and a point p ∈ R

d , let σ(p) denote the translated copy of σ whose apex
coincides with p.

The θ -graph for P is now constructed by adding at most |C| edges for each point
p ∈ P . Namely, for each cone σ ∈ C , we connect p to the point q ∈ P ∩ σ(p) that
is closest to p (with ties broken arbitrarily). This produces a (1 + ε)-spanner if we
choose θ such that cos θ − sin θ ≥ 1/(1 + ε)—see [7, 17]. Finding the point inside
σ(p) that is closest to p is costly, however, and it is also hard to maintain such a
closest point in the kinetic setting. Hence, a slightly different notion of closest point
is used in the θ -graph construction. To this end, we choose for each σ ∈ C one of its
edges as its representative edge, and we define distσ (p, q) to be the distance from
p to the orthogonal projection of q onto σ(p)’s representative edge. Now, instead
of connecting p to a point q ∈ σ(p) that minimizes the Euclidean distance to p,
we connect it to a point q that minimizes distσ (p, q)—see Fig. 1(a). From now on,
whenever we speak of “a closest point to p in σ(p),” we refer to such a point q .

To prove that the θ -graph produced in this manner is a (1 + ε)-spanner, we can
use the following lemma.

Lemma 2.1 Let C be a collection of θ -cones, where cos 2θ − sin 2θ ≥ 1/(1 + ε).
Let σ ∈ C be a cone, and let q and r be two points in σ(p) such that distσ (p, r) ≤

Discrete Comput Geom (2011) 45: 723–736 727

Fig. 1 (a) Point p will be connected to q even though r is slightly closer in terms of Euclidean distance.
(b) The degree of p1 in the θ -graph is n − 1

distσ (p, q). Then

|pr| + (1 + ε) · |rq| ≤ (1 + ε) · |pq|.
Proof We distinguish two cases:

(i) |pq| ≥ |pr|: Because |pq| is the longest edge in the triangle pqr , we have

|rq| ≤ |pq| − (cos∠qpr − sin∠qpr)|pr|.
Hence,

|pr| + (1 + ε) · |rq| ≤ |pr| + (1 + ε) · (|pq| − (cos θ − sin θ)|pr|)

≤ (1 + ε) · |pq|,
because

cos θ − sin θ ≥ cos 2θ − sin 2θ ≥ 1/(1 + ε).

(ii) |pq| < |pr|: Since distσ (p, r) ≤ distσ (p, q), we have ∠prq > π/2 − ∠qpr .
(See Fig. 2(a) for an illustration of this fact in the plane.) Moreover, since
the segments pq and pr are inside σ(p), we have ∠qpr ≤ θ . Finally, from
0 ≤ ∠qpr ≤ θ and π/2 − θ ≤ ∠prq ≤ π/2 it follows that

|rq|/|pq| = sin∠qpr/ sin∠prq ≤ sin θ/ cos θ.

Therefore,

|pr| + (1 + ε) · |rq| ≤ |pq| + |rq| + (1 + ε) · |rq|
≤ (

1 + (2 + ε)(sin θ/ cos θ)
)|pq|.

Then to prove the lemma, we just need to show that (1 + (2 + ε)(sin θ/ cos θ)) ≤
1 + ε under the assumption that cos 2θ − sin 2θ ≥ 1/(1 + ε). This inequality can
simply be reduced to (cos θ − sin θ)/(cos θ + sin θ) ≥ 1/(1 + ε). We proceed as
follows:

(cos θ − sin θ)/(cos θ + sin θ) = (
cos2 θ − sin2 θ

)
/(cos θ + sin θ)2

= (cos 2θ)/(1 + sin 2θ)

≥ cos 2θ − sin 2θ

≥ 1/(1 + ε),

which proves our claim. �

728 Discrete Comput Geom (2011) 45: 723–736

Fig. 2 (a) Illustration for Lemmas 2.1 and 2.4. (b) Ai and Bi are separated by σ(z) and σ̄ (z) for some
point z. Points are labeled in order of increasing distance to z on 	σ

Fig. 3 (a) A simple method to make the pair (Ai ,Bi) well-connected, which does not kinetize well.
(b) The partitioning of Ai and Bi into groups, and one possible way of connecting A2

i
to B1

i
such that

no point from B1
i

receives more than two connections. Connections between other pairs of groups are not
shown

Lemma 2.1 implies that concatenating the edge pr to a (1 + ε)-path from r to q

yields a (1 + ε)-path from p to q . (A (1 + ε)-path from p to q is a path whose length
is at most (1 + ε) · |pq|.) This can be used to show by induction that if we connect
every point p to the closest point in each of its cones, we get indeed a (1+ε)-spanner.
From now on, we fix an angle θ with θ = Ω(ε) and cos 2θ − sin 2θ ≥ 1/(1 + ε), and
we fix a set C of θ -cones with |C| = O(1/θd−1) = O(1/εd−1).

One of the disadvantages of the θ -graph is that points can get very high degree.
The point p1 in Fig. 1(b), for example, will be the closest point in n− 2 cones shown
in the figure and, hence, have degree at least n − 2. This is especially problematic in
the kinetic setting: when p1 and p2 in Fig. 1(b) exchange their order (in the projection
onto these cone’s representative edges), then we have to replace the edges pip1 for
3 ≤ i ≤ n by the edges pip2. Hence, we need Ω(n) time to process such an event.
There are also variants of the θ -graph, such as the ordered θ -graph [5], where every
point has low degree, but these spanners are also difficult to maintain kinetically.
In the following we explain how to modify the θ -graph approach in a novel way to
obtain a spanner of maximum degree O(logd n).

The Cone-Separated Pairs Decomposition First, we introduce the concept of cone-
separated pair decomposition (CSPD). Let σ̄ (p) be the reflection of σ(p) about p.

Definition 2.2 Let P be a set of points in R
d , and let σ ∈ C be a cone. A cone-

separated pair decomposition, or CSPD for short, for P with respect to σ is a collec-
tion Ψσ := {(A1,B1), . . . , (Am,Bm)} of pairs of subsets from P such that

(i) For every two points p,q ∈ P with q ∈ σ(p), there is a unique pair (Ai,Bi) ∈ Ψσ

such that p ∈ Ai and q ∈ Bi .
(ii) For any pair (Ai,Bi) ∈ Ψσ and every two points p ∈ Ai and q ∈ Bi , we have

q ∈ σ(p) and, hence, p ∈ σ̄ (q).

Discrete Comput Geom (2011) 45: 723–736 729

By condition (ii) for any i, there must be a point z ∈ R
d such that Ai ⊂ σ̄ (z) and Bi ⊂

σ(z)—see Fig. 2(b). For example, we can take z to be the apex of the intersection of
all the cones centered at points in Ai . We can obtain a CSPD such that every point
p ∈ P appears in only O(logd n) subsets in a fairly standard manner, using range-
searching techniques. Next we sketch this.

Recall that the cones σ(pi) for 1 ≤ i ≤ n are all translates of the same canonical
cone σ ∈ C . Let Tσ be a (multidimensional) range tree [9] for reporting all points from
P that lie in any such translated cone. Let B(ν) ⊂ P be the canonical subset of a node
ν at level d of the range tree, that is, the points stored at subtree rooted at ν. Then we
can select the points inside a query cone as the union of O(logd n) disjoint canonical
subsets B(ν). Moreover, any point p ∈ P is contained in O(logd n) canonical subsets
B(ν). Now we perform a query with each cone σ(pi) for 1 ≤ i ≤ n. For a node ν at
level d of the tree Tσ , let A(ν) be the subset of points pi ∈ P such that B(ν) is one of
the canonical subsets selected when we query with σ(pi). Our CSPD now consists
of the pairs (A(ν),B(ν)). This leads to the following lemma.

Lemma 2.3 For any set P of n points in R
d and any cone σ ∈ C , there is a CSPD

Ψσ = {(A1,B1), . . . , (Am,Bm)} such that every p ∈ P appears in O(logd n) pairs
(Ai,Bi).

From CSPDs to Spanners Let S = (P,ES) be a Euclidean graph on P , and let
(Ai,Bi) be a pair in some CSPD Ψσ for P . We say that (Ai,Bi) is well connected in
S if for any two points p ∈ Ai and q ∈ Bi , we have (i) there is an edge (p, r) ∈ ES
such that r ∈ σ(p) and distσ (p, r) ≤ distσ (p, q), or (ii) there is an edge (q, r) ∈ ES
such that r ∈ σ̄ (q) and distσ̄ (q, r) ≤ distσ̄ (p, q).

Lemma 2.4 Let P be a set of points, and let {Ψσ : σ ∈ C} be a collection of CSPDs
for P , where C is a set of canonical cones as defined above. Let S = (P,ES) be a
Euclidean graph where every pair (Ai,Bi) in each Ψσ is well connected. Then S is
a (1 + ε)-spanner for P .

Proof The proof is by induction on |pq|. (More precisely, we order the pairwise
distances and use induction on this ordering.) Let (p, q) be the closest pair, and
let σ ∈ C be such that q ∈ σ(p). We claim that there is no point r ∈ σ(p) with
distσ (p, r) < distσ (p, q). For the sake of contradiction, assume that there is such
a point. Then ∠qrp > ∠rpq—see Fig. 2(a) and note that θ is a small angle. But this
implies |rq| < |pq|, contradicting our assumption and proving the claim. Now let
(Ai,Bi) ∈ Ψσ be such that p ∈ Ai and q ∈ Bi ; there is such a pair, because Ψσ is a
cone-separated pair decomposition. By the claim we just proved, p and q are adja-
cent in the orthogonal projection of Ai ∪ Bi onto the line through σ ’s representative
edge. Since (Ai,Bi) is well connected, this implies that (p, q) ∈ ES . Therefore, the
base case is true.

Now consider two arbitrary points p,q ∈ P . Let σ ∈ C be the cone such that
q ∈ σ(p), and let (Ai,Bi) ∈ Ψσ be the pair such that p ∈ Ai and q ∈ Bi . Since
(Ai,Bi) is well connected, we can assume without loss of generality that there is a
point r ∈ P ∩σ(p) such that distσ (p, r) ≤ distσ (p, q) and (p, r) ∈ ES . Then |pq| >

730 Discrete Comput Geom (2011) 45: 723–736

|rq|; this follows in the same way as the claim for the base case. By the induction
hypothesis, there is a (1 + ε)-path in S between r and q . Hence, by Lemma 2.1 there
is a (1 + ε)-path in S between p and q . �

It remains to show how to make the pairs (Ai,Bi) ∈ Ψσ well connected without
using too many edges. Next we explain how this can be done.

As remarked above, there must be a point z ∈ R
d such that Ai ⊂ σ̄ (z) and Bi ⊂

σ(z). Let 	σ be a line through z that is parallel to the representative edge of σ—see
Fig. 2(b). Project all the points in Ai ∪ Bi onto 	σ . Then the projections of the points
in Ai lie on one side of z, while the projections of the points in Bi lie on the other side
of z. Label the points from Ai as a1, . . . , ak and label the points from Bi as b1, . . . , bl ,
both in order of increasing distance to z. An easy way to make sure that (Ai,Bi) is
well connected is to add the edge (ai, bi) to our graph for any 1 ≤ i ≤ min(k, l), as
depicted in Fig. 3. Unfortunately, such a set of edges is costly to maintain when the
points move: when a new point enters a cone, we may have to change many edges.
Therefore, we proceed as follows. We partition the set Ai into a logarithmic number
of groups A0

i , . . . ,A
h
i such that A

j
i := {a2j , . . . , a2j+1−1}. We say that a group A

j
i is

full when it contains exactly 2j points. Note that every group is full, except possibly
for the last group, Ah

i . Similarly, we partition Bi into groups B
j
i . Next, we define the

set E(Ai,Bi) of edges connecting the points in Ai to those in Bi .

• For each group A
j
i , with j > 0, we add a collection of edges as follows. Let k :=

|Bj−1
i |. Consider the first 2k points of A

j
i , that is, the points a2j , . . . , a2j +2k−1.

We connect each of these 2k points to one of the points in B
j−1
i in such a way that

each point in B
j−1
i receives only two connections.

• For each group B
j
i with j > 0, we add a collection of edges in the same way: we

connect each of the first 2|Aj−1
i | points in B

j
i to a point in A

j−1
i in such a way that

each point in A
j−1
i receives only two connections.

• We connect the point in A0
i to the point in B0

i .

Lemma 2.5 The set E(Ai,Bi) of edges connects every point in Ai to at most
three points in Bi , and vice versa. Moreover, the pair (Ai,Bi) is well connected by
E(Ai,Bi).

Proof It follows directly from the construction that each point is connected to at most
three other points, as claimed. To prove that (Ai,Bi) is well connected, consider a

pair of points p,q with p ∈ A
j
i and q ∈ B

j ′
i . We will show that either (i) there is

an edge (p, r) ∈ E(Ai,Bi) such that r ∈ σ(p) and distσ (p, r) ≤ distσ (p, q), or (ii)
there is an edge (q, r) ∈ E(Ai,Bi) such that r ∈ σ̄ (q) and distσ̄ (q, r) ≤ distσ̄ (p, q).

Assume without loss of generality that j ≤ j ′. If j = j ′ = 0, we are done, since
there is an edge connecting the point in A0

i (which is p) to the point in B0
i (which

is q). If j > 0, then B
j−1
i must exist and be full. Hence, E(Ai,Bi) includes an edge

(p, r) for p to some r ∈ B
j−1
i . Since q ∈ B

j ′
i and j ′ ≥ j > j − 1, we thus have

distσ (p, r) ≤ distσ (p, q), and we are done. �

Discrete Comput Geom (2011) 45: 723–736 731

By applying the above procedure to every pair (Ai,Bi) in each Ψσ , we thus obtain
a graph S = (P,ES) which is a (1 + ε)-spanner. The number of edges in S will be
O(n logd n/εd−1), however. Next we show how to remedy this.

A Linear-Size Spanner In the following we show how to get a spanner S ∗ =
(P,ES ∗) with a linear number of edges, by pruning some of the edges from S =
(P,ES). Consider an edge (p, q) ∈ ES and a cone σ ∈ C such that q ∈ σ(p) and
p ∈ σ̄ (q). Then we add the edge (p, q) to ES ∗ if and only if (i) among all points
r ∈ σ(p) such that (p, r) is an edge, q is the one closest to p; or (ii) among all points
r ∈ σ̄ (q) such that (q, r) is an edge, p is the one closest to q . It is easy to see that
every cone-separated pair (Ai,Bi) is still well connected in S ∗. Moreover, the graph
S ∗ has O(n/εd−1) edges, since each edge can be charged to a unique combination of
a point in P and a cone in C .

Lemma 2.6 In the graph S ∗ = (P,ES ∗), every cone-separated pair is well con-
nected. Moreover, S ∗ has O(n/εd−1) edges, and every point has degree O(logd n).

2.2 Kinetic Maintenance of the Spanner

To summarize, our spanner works as follows. First we compute a CSPD Ψσ for every
σ ∈ C using a range tree Tσ . Then we produce a graph S = (P,ES) such that every
cone-separated pair (Ai,Bi) is well connected in S . Finally, we obtain our linear-size
spanner S ∗ = (P,ES ∗) by pruning some edges from S ; namely, for each cone σ and
point p, we just add the edge (p, q) ∈ ES to E∗

S , where q is closest to p among the
points inside σ(p) that are connected to p in S .

To kinetize our spanner, we therefore have to maintain the CSPD’s Ψσ as the points
move, and we have to maintain for each p and σ the closest point to p among those
inside σ(p) that are connected to p in S .

Rank-Based Range Trees Fix a cone σ ∈ C . Recall that the construction of Ψσ is
based on a range tree Tσ . Basch et al. [3] describe how to maintain a range tree in the
kinetic setting: whenever two points exchange their order in one of the coordinates,
delete and reinsert those points. Thus, all they need is a dynamic range tree. Un-
fortunately, the existing dynamic range trees—which use global or local rebuilding
techniques [18], or the method of Willard and Lueker [23]—do not apply in our case,
since they either only give amortized bounds or they require splitting and merging
operations (which are hard for our CSPDs). Therefore, we take a different approach,
which uses the rank-based technique that was also used to design kinetic BSPs [8]
and kinetic kd-trees [1].

The basic idea is to define a skeleton tree which does not depend on the positions
of the points. Since the structure of the skeleton does not depend on the positions of
the points, it is static: no rebalancing operations are needed to maintain the skeleton as
the points move. (One caveat: to save storage, certain parts of the skeleton are pruned,
and which parts are pruned does depend on the positions.) In which canonical subsets
of the skeleton tree a given point is stored, will depend only on the ranks of the coor-
dinates of the point. This means the only events are when two points p and q swap

732 Discrete Comput Geom (2011) 45: 723–736

order along one of the coordinate axes. When that happens, p and q exchange their
rank (in that coordinate)—the ranks of the other points are not influenced. Hence, to
update the tree, we only need to delete and reinsert p and q with their new ranks.
This changes only O(logd n) canonical subsets. We then have to update the spanner
edges defined for these canonical subsets. Below we make this idea precise.

Let h1, . . . , hd be the planes defining the cone σ . For each hi , we define a co-
ordinate axis xi orthogonal to hi and we let xi(p) denote the xi -coordinate of a
point p. To simplify the discussion, we assume that for two points p,q ∈ P , we have
xi(p) �= xi(q) for all i. (Of course, coordinates will temporarily be equal when two
points swap order, but the description below refers to the time intervals in between
such events.) For a point p ∈ P , let ranki (p) denote the rank of xi(p) in the set
{xi(q) : q ∈ P }.

First we define the skeleton of our rank-based range tree, denoted T skel
σ . Let n :=

|P |. (In the kinetic setting, n is fixed.) The skeleton of a one-dimensional rank-based
range tree is simply a balanced binary tree on n leaves, where the leaves correspond
to ranks 1 to n from left to right; each internal node ν corresponds to a range of
ranks, namely the ranks of all leaves in the subtree rooted at ν. The skeleton of a
d-dimensional rank-based range tree consists of a main tree, which is also a balanced
binary tree on n leaves, where each internal node ν has an associated structure Tν

that is the skeleton of a (d − 1)-dimensional rank-based range tree. Note that every
tree in any level is a balanced binary tree on n ranks 1 to n independent of how many
points in P lie in the tree. Therefore, the size of the skeleton of a d-dimensional rank-
based range tree is Θ(nd). Our rank-based range tree, however, uses only O(n logd n)

space. It will be obtained by pruning the skeleton, as described later. Note that we do
not maintain or explicitly construct the skeleton; the skeleton is only used to define
our rank-based range tree in an easy way.

Next, we describe where the points from P are stored in T skel
σ —this will give us

the sets P(ν)—and how the sets R(ν) are obtained, thus providing us with the pairs
(P (ν),R(ν)) in the CSPD Ψσ .

We insert the points from P into T skel
σ in the usual way. Thus, for a point p ∈ P ,

we follow the path in T skel
σ ’s main tree to the leaf corresponding to ranki (p), and

for each node ν on the search path, we recursively insert p into Tν (using the ranks
rank2(p), . . . , rankd(p)). For a node ν at any level in the tree, let P(ν) denote its
canonical subset, which is the set of points p whose search path passes through ν.
We explicitly store the sets P(ν) for the nodes in the tree at level d (that is, the trees
defined for the d th coordinate). Observe that any point p ∈ P is stored in O(logd n)

such d-level canonical subsets, which are distributed over O(logd−1 n) d-level trees.
Next, we search for each p ∈ P with the range σ(p) in T skel

σ , also in the usual way.
Thus, we select in the main tree O(logn) nodes whose ranges together cover the x1-
range of σ(p)—more precisely, the rank1-range—and we recursively search in the
associated trees of these nodes. Notice that the canonical subsets P(ν) of the selected
nodes at level-d trees together contain exactly the points inside σ(p). For a node ν

at any level, let R(ν) denote the set of ranges that select that node. The sets R(ν)

for level-d nodes are explicitly stored with those nodes. As explained previously, the
pairs (P (ν),R(ν)) for d-level nodes form the pairs in the CSPD Ψσ .

The total size of all sets P(ν) and R(ν) is O(n logd n). However, the skeleton still
has size Θ(nd). Next, we show how to prune T skel

σ to reduce its size to O(n logd n).

Discrete Comput Geom (2011) 45: 723–736 733

Define a node ν at any level in T skel
σ to be active if one of the following holds:

(1) P(ν) is nonempty. (Note that P(ν) is necessarily nonempty if P(ν′) is nonempty
for some descendant ν′ of ν.)

(2) R(ν) is nonempty, or there is a descendant ν′ of ν such that R(ν′) is nonempty.

A node that is not active is called inactive. We obtain our rank-based range tree T rb
σ

by pruning every inactive node of T skel
σ (P). It is not hard to construct the rank-based

range tree in O(n logd n) time, by not first constructing the full skeleton, but only cre-
ating the active nodes as the points and ranges are inserted. This leads to the following
lemma.

Lemma 2.7 For any set P of n points in R
d and any canonical cone σ ∈ C , the rank-

based range tree T rb
σ uses O(n logd n) storage and can be constructed in O(n logd n)

time. Moreover, the size of the CSPD Ψσ based on T rb
σ is O(n logd n), and every point

p ∈ P appears in O(logd n) pairs of Ψσ .

Kinetic Maintenance We have described the rank-based range tree T rb
σ and how to

obtain the CSPD Ψσ from it. It remains to show how to maintain T rb
σ and Ψσ (as well

as the graph S = (P,ES) constructed over Ψσ) as the points move.
The combinatorial structure of T rb

σ depends only on the ranks of the points on the
axes x1, . . . , xd—it does not change as long as the order of the points along all axes
remains the same. Hence we maintain, for each axis xi , the points from P in an array
Ai[1..n] which is sorted on xi -order. Thus Ai[j] will contain the point p such that
ranki (p) = j . Now suppose that two points p,q swap their xi -order. To handle such
an event, we delete p and q , and then reinsert them with their new ranks. Note that a
rank change for p also implies a change in the cone σ(p). More precisely, the ranks
of one of the planes bounding σ(p) changes. The same is true for q . Hence, we also
need to delete and reinsert σ(p) and σ(q).

These deletions and reinsertions of p, q , σ(p), and σ(q) do not change anything
for the other points and cones, because their ranks are not influenced by the swap of
p and q . Hence, the rank-based range tree remains unchanged except for O(logd n)

nodes that involve p and q . Insertions (and deletions) therefore involve two steps:
determining those nodes and updating the set E(P (ν),R(ν)) of edges created for the
cone-separated pairs for such nodes at level d .

Step 1: Finding the affected nodes.
This step is relatively straightforward. First, consider the insertion of a point p. We
simply search in T rb

σ and add p to the sets P(ν) for all nodes on the search path in
d-level trees. The only slight complication is that sometimes the search path may
proceed to a node that does not exist yet, because it was inactive. In such a case we
simply create a new node with {p} as its canonical subset. From this node we then
proceed in the same way, creating the whole path to the leaf for p, and also creating
associated structures—which will be single paths (with associated structures), etc.
The insertion of a range σ(p) is done in a similar way: search with the range in T rb

σ

to determine the nodes ν where σ(p) ∈ R(ν), creating new nodes where necessary.
Deletions of points and ranges are done in a symmetric way (possibly deleting nodes
that become inactive).

734 Discrete Comput Geom (2011) 45: 723–736

Step 2: Updating the sets E(P (ν),R(ν)).
Now consider a d-level node ν such that P(ν) or R(ν) change due to the insertion or
deletion of a point or range. We describe how to insert a point into P(ν); insertions
into R(ν) and deletions are handled in a similar fashion.
We only have to do something if both P(ν) and R(ν) are nonempty. Recall that
to create the edge set E(P (ν),R(ν)) for the cone-separated pair (P (ν),R(ν)), the
sets P(ν) and R(ν) are partitioned into a logarithmic number of groups P(ν)j and
R(ν)j . From a group P(ν)j we then added edges to R(ν)j−1 in such a way that
each q ∈ R(ν)j−1 receives only two edges (and vice versa).
To insert p into P(ν), we first determine the group P(ν)j to which p belongs. To
this end, we maintain P(ν) in sorted order in a tree—this can be done without any
asymptotic overhead. If P(ν)j is already full, then its last element, p′, must move
to the next group, P(ν)j+1. In this case, p can take over the edges from p′, and
we recursively insert p′ into P(ν)j+1. The recursive insertion of p′ into P(ν)j+1

may cause the last point, p′′, from P(ν)j+1 to be inserted into P(ν)j+2, etc. The
recursion ends when we insert a point into a nonfull group, (This could in fact be
an empty group if the last group was already full. In this case we must create a new
group.)
When we insert a point p into a nonfull group P(ν)j , there will be some point
in R(ν)j−1 that does not have two “incoming” edges from P(ν)j yet; we give p

an edge to such a point, and we are done. (There is one special case here: when
R(ν)j−1 is the last group among the R(ν)i ’s, it could happen that the set R(ν)j−1

to which we want to connect is not full, or maybe does not even exist. Then we only
need to take action if p is among the first 2|R(ν)j−1| points of P(ν)j .) To be able
to quickly find such a point, we maintain a list of all points in R(ν)i that do not yet
have two incoming edges. (We do the same for P(ν)i to deal with insertions into
R(ν).) This extra information uses linear space in the size of P(ν) and is easy to
maintain.
The whole procedure for inserting p into P(ν) works in O(logn) time.

Other Events There is one other type of event we must deal with, namely when two
points in some set P(ν) or R(ν) exchange their order with respect to σ ’s represen-
tative edge. Note that this does imply a change to the tree T rb

σ —indeed the represen-
tative edge of σ does not correspond to one of the axes for which T rb

σ is defined. To
detect this type of event, we maintain for each σ an array Aσ [1..n] on all points in P

sorted according to their order with respect to σ ’s representative edge. When we have
a swap between points p,q in this array, we check if there are any sets P(ν) or R(ν)

that contain both p and q . All we then need to do is let them exchange their edges in
E(P (ν),R(ν)).

Maintaining the Pruned Spanner S ∗ = (P,ES ∗) Above we described how to main-
tain the rank-based range tree T rb

σ and the graph S = (P,ES) induced by it. However,
to get a linear-size spanner, we need to maintain the pruned spanner S ∗ = (P,ES ∗).
Recall that S ∗ is obtained by selecting, for each cone σ and point p, the edge
(p, q) ∈ S such that q is closest to p among the points inside σ(p) and adjacent
to p in S .

Discrete Comput Geom (2011) 45: 723–736 735

To maintain this edge kinetically, we observe that the selected edge for a point p

and a cone σ can only change if two other points change order with respect to σ ’s
representative edge—one of these points being the current selected point for p, the
other being the new one. Thus, whenever two points q, r swap their order, we need
to check for all points p such that (p, q) and (p, r) are edges in ES whether we need
to update p’s selected edge. This can be done in O(logd n) time, since the maximum
degree in S is O(logd n).

Putting it All Together In total, our kinetic spanner uses d + 1 sorted lists for each
cone σ ∈ C to maintain the spanner S ∗ through time. Therefore, the number of events
to be handled is O(n2/εd−1) under the assumption that every point follows bounded-
degree polynomials. As explained above, each event can be handled in O(logd+1 n)

time. Moreover, each point is involved in at most two certificates per sorted list, so in
O(1/εd−1) certificates in total. Hence, flight plan updates take only O((logn)/εd−1)

time. (The logarithmic factor is for updating the event queue when the failure times
of the certificates has changed.)

Theorem 2.8 For any ε > 0 and any set P of n points in R
d , there is a kinetic (1+ε)-

spanner of size O(n/εd−1) and maximum degree O(logd n). Moreover, every point is
involved in O(1/εd−1) certificates, and the number of events is O(n2/εd−1) assum-
ing the trajectories of the points can be described by bounded-degree polynomials.
Each event can be handled in O(logd+1 n) time using a supporting data structure
that needs O((n/εd−1) logd n) storage. A flight plan update takes O((logn)/εd−1)

time.

Remark 2.9 Note that the bound on the number of events only uses the fact that
any two points exchange their order along any one of the representative edges O(1)

times. This fact follows from the assumption that the trajectories are bounded-degree
polynomials, but may hold in other settings as well.

3 Concluding Remarks

We have presented a new (1 + ε)-spanner for a set of points in R
d . Our spanner has

size O(n/εd−1) and can be maintained in O(logd+1 n) time per event as the points
move. The number of events matches the Ω(n2) lower bound from Gao et al. [11].
This is the first efficient kinetic (1 + ε)-spanner for which the number of events and
the response time do not depend on the spread of the point set and that works for
any fixed dimension. Unfortunately, the weight of our spanner can be much larger
than the weight of a minimum spanning tree. We leave developing an efficient kinetic
(1+ε)-spanner whose total weight is O(wt(MST(P))) as a topic for further research.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

736 Discrete Comput Geom (2011) 45: 723–736

References

1. Abam, M.A., de Berg, M., Speckmann, B.: Kinetic kd-trees and longest-side kd-trees. In: Proc. ACM
Symposium on Computational Geometry, pp. 364–372 (2007)

2. Abam, M.A., de Berg, M., Gudmundsson, J.: A simple and efficient kinetic spanner. In: Proc. ACM
Symposium on Computational Geometry, pp. 306–310 (2008)

3. Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proc. ACM Symposium
on Computational Geometry, pp. 344–351 (1997)

4. Basch, J., Guibas, L., Hershberger, J.: Data structures for mobile data. J. Algorithms 31, 1–28 (1999)
5. Bose, P., Gudmundsson, J., Morin, P.: Ordered theta graphs. Comput. Geom. 28, 11–18 (2004)
6. Chew, L.P.: There is a planar graph almost as good as the complete graph. In: Proc. ACM Symposium

on Computational Geometry, pp. 169–177 (1986)
7. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proc. ACM Sympo-

sium on Theory of Computing, pp. 56–65 (1987)
8. de Berg, M., Comba, J., Guibas, L.J.: A segment-tree based kinetic BSP. In: Proc. ACM Symposium

on Computational Geometry, pp. 134–140 (2001)
9. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and

Applications, 3rd edn. Springer, Berlin (2008)
10. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computa-

tional Geometry, pp. 425–461. Elsevier, Amsterdam (2000)
11. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. Comput. Geom. 35(1–2),

2–19 (2006)
12. Gottlieb, L.-A., Roditty, L.: Improved algorithms for fully dynamic geometric spanners. In: Proc.

ACM–SIAM Symposium on Discrete Algorithms, pp. 591–600 (2008)
13. Gottlieb, L.-A., Roditty, L.: An optimal dynamic spanner for doubling metric spaces. In: Proc. Euro-

pean Symposium on Algorithms, pp. 478–489 (2008)
14. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In: Gonzalez, T. (ed.) Hand-

book on Approximation Algorithms and Metaheuristics. Chap. 52. Chapman & Hall/CRC, Boca Ra-
ton (2006)

15. Guibas, L.J.: Kinetic data structures: A state of the art report. In: Proc. Workshop on Algorithmic
Foundations of Robotics, pp. 191–209 (1998)

16. Guibas, L.J.: Motion. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational
Geometry, 2nd edn. pp. 1117–1134. CRC Press, Boca Raton (2004)

17. Keil, J.M.: Approximating the complete Euclidean graph. In: Proc. Scandinavian Workshop Algo-
rithm Theory. Lecture Notes Computer Science, vol. 318, pp. 208–213. Springer, Berlin (1988)

18. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and Computational
Geometry. EATCS Monographs. Springer, Berlin (1984)

19. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge
(2007)

20. Roditty, L.: Fully dynamic geometric spanners. In: Proc. ACM Symposium on Computational Geom-
etry, pp. 373–380 (2007)

21. Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cam-
bridge University Press, Cambridge (1995)

22. Soares, J.: Graph spanners: A survey. Congr. Numer. 89, 225–238 (1992)
23. Willard, D.E., Lueker, G.S.: Adding range restriction capability to dynamic data structures. J. ACM

32(3), 597–617 (1985)

	Kinetic Spanners in Rd
	Abstract
	Introduction
	Background
	Previous Results
	Our Results

	The Spanner
	The Construction
	The theta-Graph
	The Cone-Separated Pairs Decomposition
	From CSPDs to Spanners
	A Linear-Size Spanner

	Kinetic Maintenance of the Spanner
	Rank-Based Range Trees
	Kinetic Maintenance
	Other Events
	Maintaining the Pruned Spanner S*=(P, ES*)
	Putting it All Together

	Concluding Remarks
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

