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Abstract In this paper, we study the problems of (approximately) representing a
functional curve in 2-D by a set of curves with fewer peaks. Representing a function
(or its curve) by certain classes of structurally simpler functions (or their curves) is a
basic mathematical problem. Problems of this kind also find applications in applied
areas such as intensity-modulated radiation therapy (IMRT). Let f be an input piece-
wise linear functional curve of size n. We consider several variations of the problems.
(1) Uphill–downhill pair representation (UDPR): Find two nonnegative piecewise lin-
ear curves, one nondecreasing (uphill) and one nonincreasing (downhill), such that
their sum exactly or approximately represents f. (2) Unimodal representation (UR):
Find a set of unimodal (single-peak) curves such that their sum exactly or approx-
imately represents f. (3) Fewer-peak representation (FPR): Find a piecewise linear
curve with at most k peaks that exactly or approximately represents f. Furthermore,
for each problem, we consider two versions. For the UDPR problem, we study its
feasibility version: Given ε > 0, determine whether there is a feasible UDPR solution
for f with an approximation error ε; its min-ε version: Compute the minimum ap-
proximation error ε∗ such that there is a feasible UDPR solution for f with error ε∗.
For the UR problem, we study its min-k version: Given ε > 0, find a feasible solution
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with the minimum number k∗ of unimodal curves for f with an error ε; its min-ε ver-
sion: given k > 0, compute the minimum error ε∗ such that there is a feasible solution
with at most k unimodal curves for f with error ε∗. For the FPR problem, we study
its min-k version: Given ε > 0, find one feasible curve with the minimum number k∗
of peaks for f with an error ε; its min-ε version: given k ≥ 0, compute the minimum
error ε∗ such that there is a feasible curve with at most k peaks for f with error ε∗.
Little work has been done previously on solving these functional curve representa-
tion problems. We solve all the problems (except the UR min-ε version) in optimal
O(n) time, and the UR min-ε version in O(n + m logm) time, where m < n is the
number of peaks of f. Our algorithms are based on new geometric observations and
interesting techniques.

Keywords Curve approximation · Curve simplification · Curves with fewer peaks ·
Algorithm design

1 Introduction

1.1 Problem Descriptions

In this paper, we study the problems of exactly or approximately representing a 2-D
functional curve by a set of curves with fewer peaks. Let f be an arbitrary input piece-
wise linear functional curve of size n. In general, when representing f by one or more
structurally simpler curves, g(1),g(2), . . . ,g(k) (k ≥ 1), we are interested in the fol-
lowing aspects of the representation: (1) the representation mode, which defines the
types of and constraints on the simpler curves used, (2) the representation complex-
ity, which is the number of simpler curves involved in the representation, and (3) the
representation error, which is the vertical distance between the input functional curve
f and the sum of the simpler curves in the representation, i.e.,

∑k
i=1 g(i).

For simplicity, we describe the input piecewise linear curve f by (f1, f2, . . . , fn),
where fi = f(xi) is the value of f at the ith x-coordinate xi (xi < xi+1 for each i).
Without loss of generality (WLOG), the xi ’s are all omitted in our discussion. For the
consistency of our algorithmic manipulation and analysis, we need to define carefully
the peaks of a functional curve f = (f1, f2, . . . , fn), with a little subtlety. Clearly, a
peak is at a local maximal height. If multiple consecutive vertices of f all have the
same local maximal height and if this group of vertices does not include the last
vertex of f, then we define the peak for this group of vertices as only the first vertex
of the group. However, if the group includes the last vertex of f, then we define the
peak as the last vertex of the group (and of f). Figure 1 shows an example of peaks
by our definition. The precise definition of peaks is as follows: we call fi a peak of
f if (1) i = 1 and there is a j with 1 < j ≤ n such that f1 = · · · = fj−1 > fj , or
(2) 1 < i < n, fi−1 < fi and there is a j with i < j ≤ n such that fi = · · · = fj−1 >

fj , or (3) i = n and there is a j with 1 ≤ j ≤ n − 1 such that fj < fj+1 = · · · = fn.
Specifically, we consider three modes of representation in this paper. (1) Uphill–

downhill pair representation (UDPR): Represent a curve f by two curves, one non-
decreasing (uphill) and one nonincreasing (downhill). (2) Unimodal representation
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Fig. 1 Illustrating the peaks
(the black points) on a piecewise
linear curve

Fig. 2 An uphill curve y and a
downhill curve z of size n each
can sum up to form a functional
curve f with O(n) peaks

(UR): Represent f by a set of unimodal curves. A functional curve g is unimodal (or
single-peak) if there is only one peak on g. (3) Fewer-peak representation (FPR):
Represent f by a functional curve with at most a given number k of peaks. It is in-
teresting to note that a nondecreasing curve and a nonincreasing curve of size n each
can sum up to form a functional curve f with O(n) peaks (e.g., see Fig. 2). The er-
ror measure we use in this paper is the uniform error metric, also known as the L∞
metric.

We are concerned with several versions of these problems. For the UDPR prob-
lem, its representation complexity (i.e., the number of curves in the representation)
is always 2. We consider: (1) the feasibility version, which seeks to decide whether
an uphill–downhill pair representation is feasible subject to a given bound ε on the
representation error, and (2) the min-ε version, which aims to minimize the repre-
sentation error ε∗ among all feasible uphill–downhill pair representations. For the
UR problem, the representation complexity is the number of unimodal curves in the
representation. For the FPR problem, the representation complexity is the number of
peaks on the sought curve. For each of the UR and FPR problems, we consider: (1)
the min-k version, which minimizes the representation complexity k∗ subject to a
given error bound ε, and (2) the min-ε version, which minimizes the representation
error ε∗ subject to a given bound k on the representation complexity.

For all these problems, we require that f and all the simpler functional curves
involved be nonnegative (i.e., on or above the x-axis). This nonnegativeness require-
ment is justified by real applications discussed later. Note that this requirement ac-
tually makes the problems more theoretically interesting. We should point out that
without the above nonnegativeness constraint, some curve representation problems
become much easier to solve. For example, for the UDPR problem, if without the
nonnegativeness constraint, it is commonly known that one can always find an uphill
curve by summing the parts of the curve f with positive first derivative and a downhill
curve by summing the parts of f with negative first derivative such that the sum of
these two curves is exactly f. Further, in many statistics applications, the data are all
nonnegative, e.g., the ages of people in a country, the precipitation of an area, the
household income of a state, the employment rate of a time period, etc.
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1.2 Motivations and Related Work

Representing a curve by certain classes of structurally simpler curves is a basic prob-
lem that is of theoretical value and practical applicability. Motivated by applications
in data mining [15, 16], Chun et al. gave a linear time algorithm [11] for approximat-
ing a piecewise linear curve by a single unimodal curve, under the L2 error measure.
In [9], Chun et al. studied an extended case in which the approximating function has
k peaks, for a given number k, under the Lp error measure. This problem is similar to
our FPR min-ε problem except that our error measure is different. The algorithm in
[9] computes an optimal solution in O(km2 +nm logn) time, where m is the number
of peaks on the input curve. In addition, an O(n logn) time algorithm for computing
an optimal unimodal function to approximate a piecewise linear curve under the Lp

error measure is also given [9]. As shown in [9, 11, 15, 16], the algorithms above
are applicable to certain data mining problems. Motivated by applications in statis-
tics [20, 24, 26], Stout [25] considered the unimodal regression problem, aiming to
approximate a set of n points by a unimodal step function. He gave three algorithms
with time bounds O(n logn), O(n), and O(n) for the problem under L1, L2, and L∞
error measures, respectively. Another related problem is the isotonic regression prob-
lem of approximating a set of points by a nondecreasing step function under the Lp

error measure. This problem has been studied considerably in the statistics area (see
[20, 24–26] for more details). A one-peak problem in high dimension was studied in
[10]. Chen et al. [6] considered the problem of approximating a function on a d-D
voxel grid by one unimodal function under the L2 error metric.

In addition to applications in data mining and statistics, our studies are also mo-
tivated by a dose decomposition problem in intensity-modulated radiation therapy
(IMRT). IMRT is a modern cancer treatment technique aiming to deliver a prescribed
conformal radiation dose to a target tumor while sparing the surrounding normal tis-
sue and critical structures [30, 31]. A prescribed dose function (or curve) f normally
can be made into a piecewise linear form. In the rotational delivery approach [29]
(also called dynamic IMRT), a prescribed dose function f is delivered by repeatedly
rotating the radiation source around the patient. In each rotation (called a path), a
portion of the prescribed dose f is delivered in a continuous manner. A unimodal
dose function can be delivered by a path smoothly and accurately. Thus, it is desir-
able to exactly or approximately represent an arbitrary dose curve f by (the sum of)
a minimum set of unimodal curves, for a fast and accurate delivery of the prescribed
dose.

In the IMRT settings, Bansal et al. [1] and Chen et al. [7] studied the shape rect-
angularization problems, which approximate a piecewise linear curve by the sum of
a minimum set of constant window functions (or rectangular blocks). (A constant
window function W(·) is defined on an interval I such that W(x) is a fixed value
h > 0 for any x ∈ I and is 0 otherwise.) Since the shape rectangularization problems
are NP-hard [7, 8] (in fact, APX-hard [1]), approximation algorithms were given, and
some special cases were solved optimally [1, 7]. Note that constant window functions
are a more restricted form of unimodal functions.

Various curve approximation problems have been studied extensively in computa-
tional geometry and other applied areas such as cartography, databases, geographic
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Table 1 Summary of our
results: m is the number of peaks
in the input function f of size n

UDPR UR FPR

feasibility min-ε min-k min-ε min-k min-ε

Running time O(n) O(n) O(n) O(n + m logm) O(n) O(n)

information systems, image processing, machine learning, and numerical comput-
ing. However, most curve approximation problems seek to simplify a given curve by
another “simpler” curve (e.g., with fewer line segments) under certain error criteria
(e.g., see [2, 3, 5, 18, 19, 21, 23, 27, 28]). In contrast, although the curve representa-
tion problems studied in this paper (which use the sum of a set of structurally simpler
curves to approximate a given curve) are of mathematical interest and importance, to
our best knowledge, not much previous work on these problems has been found in
the literature.

1.3 Our Contributions

Based on new geometric observations, we develop efficient algorithmic techniques
for various versions of the curve representation problems. For the UDPR problem,
we give O(n) time algorithms for both its feasibility version and min-ε version. For
the UR problem, we present an O(n) time algorithm for its min-k version, and an
O(n + m logm) time algorithm for its min-ε version, where m < n is the number of
peaks on f. For the FPR problem, our min-k and min-ε algorithms both take O(n)

time. Our results are summarized in Table 1.
Given an error ε > 0, our UDPR feasibility algorithm first computes a key struc-

ture called characteristic curve, which is crucial to identifying the best possible
uphill–downhill pair representations. Once the characteristic curve is available, the
feasibility can be decided easily. For the UDPR min-ε problem, a “natural” way to
tackle it is to make use of the UDPR feasibility algorithm. Based on geometric ob-
servations, one can determine O(n2) “critical” errors each of which may cause a
topological change of the characteristic curve. It is the topological changes of the
characteristic curve that affect the feasibility of the UDPR problem. Consequently,
the optimal error ε∗ can be obtained by using the UDPR feasibility algorithm as a
search engine. Although there are O(n2) errors, they can be represented implicitly.
An interesting technique, called binary search on sorted arrays, can then be applied
to find ε∗ in O(n logn) time. However, we can do better. By exploiting the geometric
structures, we manage to identify a subset of no more than n critical errors. Thus
using a prune and search approach, we obtain the optimal error ε∗ in only O(n) time.

Our UR algorithms are hinged on several key ideas. Interestingly, based on geo-
metric insights, we model the UR problem in a way that a series of UDPR problems
needs to be solved. Thus, the UDPR feasibility algorithm is utilized as a subroutine
for solving the UR min-k problem. The UR min-k algorithm works in a greedy fash-
ion, in O(n) time. For the UR min-ε problem, like the UDPR min-ε algorithm, we
can find a set S of possible errors which may cause changes to the minimum number
of unimodal curves needed to represent f, and |S| = O(n4). To solve the problem
efficiently, our strategy is to first prune the error set S to a subset S′ of size O(n2),
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by using the UR min-k algorithm as the search engine combined with the technique
of binary search on sorted arrays. Note that both S and S′ are represented and stored
implicitly. Next, we design an efficient data structure that, after a linear time prepro-
cessing, can report each relevant error in S′ in O(1) time. Consequently, the optimal
error ε∗ can be obtained efficiently, in actually O(n + m logm) time, where m < n is
the number of peaks on the input curve f.

For the FPR problem, based on its geometry, our O(n) time algorithm solves the
min-k version in a greedy fashion. For its min-ε version, as our UDPR min-ε algo-
rithm, we determine in O(n) time the O(n) critical errors which may cause changes
to the minimum number of peaks on the optimal representation curve for f. Conse-
quently, the problem is solvable in O(n) time. Note that for any FPR solution, by
truncating it properly, we can always obtain a feasible solution for the corresponding
UR problem but it is not necessarily an optimal solution.

It might be tempting to seek an O(n) time UR min-ε algorithm by applying similar
ideas as those for our UDPR and FPR min-ε algorithms. However, so far neither
one works for us. The reason is that in either the UDPR or FPR case, each critical
error can affect the optimal solution only in a “local” manner, while in the UR case,
an error can affect the optimal solution “globally”. For example, in the FPR min-ε
problem, based on our geometric observations, for each peak on the current optimal
representation curve, we can determine the error value δ such that when the allowed
error ε ≥ δ, the peak will disappear from the curve without affecting other peaks on
the current representation curve (see Sect. 4 for more details). However, we are not
able to do this for the UR case; in other words, we do not know when a unimodal
curve in the current representation curve set will not be necessary for representing f
without affecting other unimodal curves in the curve set. A faster UR min-ε solution
might require more powerful geometric structures (if any).

Although the problems studied in this paper can be viewed as curve approximation
problems (e.g., see [2, 3, 5, 18, 19, 21, 23, 27, 28]), we are not aware of any previous
curve approximation results that are based on our key geometric structures and ob-
servations such as the characteristic curve and critical errors. It is also interesting to
note that while the unimodal representation problems are nearly linear time solvable,
in contrast, the shape rectangularization problems, which can be viewed as a more
restricted case of the unimodal representation problems, are NP-hard [1, 7, 8].

The rest of the paper is organized as follows. In Sect. 2, we consider the uphill–
downhill pair representation problems. In Sect. 3, we solve the unimodal representa-
tion problems. The fewer-peak representation problems are studied in Sect. 4.

2 The Uphill–Downhill Pair Representation Problem

In this section, we study the following uphill–downhill pair representation (UDPR)
problem: Given a piecewise linear functional curve f = (f1, f2, . . . , fn) (n ≥ 2) and
an error bound ε ≥ 0, find a pair of piecewise linear curves y = (y1, y2, . . . , yn) and
z = (z1, z2, . . . , zn), such that (1) |yi + zi −fi | ≤ ε for every 1 ≤ i ≤ n, (2) y1 ≤ y2 ≤
· · · ≤ yn, (3) z1 ≥ z2 ≥ · · · ≥ zn, and (4) y and z are both nonnegative. If constraint
(4) is removed, i.e., the sought curves need not be nonnegative, then we call the
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Fig. 3 Illustrating the profile
curves I (f) and D(f) of the
curve f

Fig. 4 Illustrating SK(f) (the
dashed curve) of f (the solid
curve)

corresponding problem the relaxed UDPR problem. Interestingly, our solutions for
the UDPR problems are used as a subroutine for solving the UR problems in Sect. 3.

2.1 Preliminaries

We first define some notations used throughout the paper. Given f = (f1, f2, . . . , fn),
we define a nondecreasing (uphill) piecewise linear functional curve I (f) =
(I (f1), I (f2), . . . , I (fn)) and a nonincreasing (downhill) piecewise linear functional
curve D(f) = (D(f1),D(f2), . . . ,D(fn)) as follows: I (f1) = 0, I (fi) = I (fi−1) +
max{fi − fi−1,0} for 2 ≤ i ≤ n; D(f1) = f1, D(fi) = D(fi−1)− max{fi−1 − fi,0}
for 2 ≤ i ≤ n. Essentially, I (f) is the curve that starts at I (f1) = 0 and increases
by the same amount as that from fi−1 to fi if fi > fi−1 and stays the same oth-
erwise; D(f) starts at D(f1) = f1 and decreases by the same amount as that from
fi−1 to fi if fi−1 > fi and stays the same otherwise. Figure 3 shows an example.
We call these two curves I (f) and D(f) the profile curves of f. Observe that since
fi = I (fi) + D(fi) for each 1 ≤ i ≤ n (this can be easily proved by induction), the
profile curves of f form a solution for the relaxed UDPR problem of f with any error
ε ≥ 0. In Fig. 2, the two curves y and z form a feasible solution for the relaxed UDPR
problem on f and ε = 0, but not for the UDPR problem if the x-axis passes through
the point b instead of the point a.

For a curve f = (f1, f2, . . . , fn), similar to the peak definition, we call fi a valley
if (1) i = 1 and there is a j with 1 < j ≤ n such that f1 = · · · = fj−1 < fj , or (2) 1 <

i < n, fi−1 > fi and there is a j with i < j ≤ n such that fi = · · · = fj−1 < fj ,
or (3) i = n and there is a j with 1 ≤ j ≤ n − 1 such that fj > fj+1 = · · · = fn.
Clearly, there is exactly one valley (resp., peak) between any two consecutive peaks
(resp., valleys) on a curve. For a curve f, we define its skeleton SK(f) by connecting
each peak (resp., valley) to its right side consecutive valley (resp., peak) with a line
segment (see Fig. 4). A curve f′ is called a skeleton curve if each f ′

i is either a peak or
a valley and a general curve otherwise. Below we sometimes “abuse” the notation by
denoting SK(f) by f. Note that the following analysis on skeleton curve can also be
done on a general curve and the reason we define the skeleton curve is for simplicity
of exposition and to derive a tight algorithm time bound.
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Fig. 5 Illustrating the
characteristic curve R(f, ε) (the
dashed one). The two solid
curves are f + ε and f − ε

Given a skeleton curve f = (f1, f2, . . . , fn) and ε ≥ 0, the characteristic curve of
f and ε, denoted by R(f, ε), is defined as R(f, ε) = (R1,R2, . . . ,Rn), where R1 =
f1 + ε, Ri is equal to fi − ε if Ri−1 < fi − ε, Ri is fi + ε if Ri−1 > fi + ε, and
Ri = Ri−1 otherwise (see Fig. 5). The skeleton curve plays an important role in our
following algorithms.

2.2 The Feasibility of the UDPR Problem

In this section, we study the feasibility of the UDPR problem. For ε ≥ 0, we say that a
curve f = (f1, f2, . . . , fn) (with n ≥ 2) is ε-UDP-representable if the UDPR problem
on f and ε is feasible. We first focus on the UDPR feasibility algorithm for a skeleton
curve. We will show later that f is ε-UDP-representable if and only if its skeleton
SK(f) is ε-UDP-representable, and the solution for f (resp., SK(f)) can be obtained
in linear time once we have the solution for SK(f) (resp., f). The UDPR feasibility of
a skeleton curve can be determined by the following lemma.

Lemma 1 Given a skeleton curve f = (f1, f2, . . . , fn) and ε > 0, suppose R(f, ε)
is its characteristic curve. Then f is ε-UDP-representable if and only if D(Rn) ≥ 0.
Moreover, if f is ε-UDP-representable, then the profile curves of R(f, ε) form a UDPR
solution.

Proof If D(Rn) ≥ 0, then since I (R1) = 0, the profile curves I (R(f, ε)) and
D(R(f, ε)) of R(f, ε) are both nonnegative. Due to the facts that I (R(f, ε)) +
D(R(f, ε)) = R(f, ε) and R(f, ε) is bounded between the two curves f + ε and f − ε

(e.g., see Fig. 5), the two profile curves of R(f, ε) form a feasible UDPR solution for
f and ε.

Suppose f is ε-UDP-representable. Let an uphill curve y = (y1, y2, . . . , yn) and a
downhill curve z = (z1, z2, . . . , zn) form a feasible UDPR solution for f and ε. To
show D(Rn) ≥ 0, since zn ≥ 0, it is sufficient to prove D(Rn) ≥ zn. We claim that,
for any 1 ≤ i ≤ n, I (Ri) ≤ yi and D(Ri) ≥ zi .

We prove the claim by induction. Note that |yi +zi −fi | ≤ ε for any 1 ≤ i ≤ n. For
i = 1, since y1 ≥ 0, we have I (R1) = 0 ≤ y1 and D(R1) = f1 +ε ≥ f1 +ε −y1 ≥ z1.
For i ≥ 2, by induction, we have I (Ri−1) ≤ yi−1 and D(Ri−1) ≥ zi−1. Since yi ≥
yi−1, zi ≤ zi−1, and yi + zi ≥ fi − ε, we have yi ≥ max{yi−1, fi − ε − zi−1}. On
the other hand, by the definition of the I (·) curve, I (Ri) = max{I (Ri−1), I (Ri−1) +
Ri − Ri−1} = max{I (Ri−1),Ri − D(Ri−1)}. We claim I (Ri) = max{I (Ri−1), fi −
ε − D(Ri−1)}. To see why, if I (Ri−1) ≥ fi − ε − D(Ri−1), then clearly I (Ri) =
I (Ri−1). Otherwise (I (Ri−1) < fi − ε − D(Ri−1), which means Ri−1 < fi − ε),
we have Ri = fi − ε, and hence the claim still holds. Due to the above claim and
by the induction hypothesis (i.e., I (Ri−1) ≤ yi−1 and D(Ri−1) ≥ zi−1), we have
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I (Ri) = max{I (Ri−1), fi − ε − D(Ri−1)} ≤ max{yi−1, fi − ε − zi−1} ≤ yi . Thus
we prove I (Ri) ≤ yi . Similarly, we can prove D(Ri) ≥ zi . �

Given a skeleton curve f and ε ≥ 0, since the characteristic curve R(f, ε) and its
profile curves can all be computed in linear time, by Lemma 1, we immediately have
the following result.

Lemma 2 The UDPR feasibility problem on a skeleton curve f and ε ≥ 0 is solvable
in O(n) time.

The problem on an arbitrary piecewise linear functional curve can be handled by
the next lemma.

Lemma 3 For a general piecewise linear functional curve f = (f1, f2, . . . , fn) and
ε ≥ 0, f is ε-UDP-representable if and only if SK(f) is ε-UDP-representable. Fur-
thermore, given a feasible solution for SK(f) (resp., f), a feasible solution for f (resp.,
SK(f)) can be obtained in O(n) time.

Proof In the xy-plane, let xi be the x-coordinate for fi , 1 ≤ i ≤ n, i.e., the point
(xi, fi) is the ith vertex of f. The vertices of SK(f) are a subset of the vertices of f.
Let |SK(f)| = m. For the ith vertex of SK(f), 1 ≤ i ≤ m, let l(i) denote the index of
the same vertex on f. If f is ε-UDP-representable, then its UDPR feasible solution
can clearly yield a feasible solution for SK(f).

If SK(f) is ε-UDP-representable, then by Lemma 1, the profile curves of
R(SK(f), ε) form a feasible solution for SK(f). Let these profile curves be an up-
hill curve y = (y1, y2, . . . , ym) and a downhill curve z = (z1, z2, . . . , zm). A feasible
solution for f consisting of an uphill curve y′ = (y′

1, y
′
2, . . . , y

′
n) and a downhill curve

z′ = (z′
1, z

′
2, . . . , z

′
n) can be obtained in O(n) time, as follows.

For each 1 ≤ i ≤ m−1, by the definition of SK(f) = (fl(1), fl(2), . . . , fl(m)), either
fl(i) > fl(i+1) or fl(i) < fl(i+1). WLOG, we assume it is the former case (the latter
case can be handled similarly). The case with l(i + 1) = l(i) + 1 is trivial. In the
following, we assume l(i + 1) > l(i) + 1. Let the characteristic curve R(SK(f), ε) be
(R1,R2, . . . ,Rm). Since fl(i) > fl(i+1), the portion of f from fl(i) to fl(i+1) is nonin-
creasing, and thus we have Ri ≥ Ri+1. By the definition of profile curves, yi+1 = yi

and zi+1 = zi − (Ri − Ri+1). The values y′
j and z′

j for all l(i) ≤ j ≤ l(i + 1) can
be obtained as follows. First, let y′

l(i) = yi, z
′
l(i) = zi and y′

l(i+1) = yi+1, z
′
l(i+1) =

zi+1. Since yi + zi = Ri and yi+1 + zi+1 = Ri+1, we have y′
l(i) + z′

l(i) = Ri ∈
[fl(i) − ε, fl(i) + ε] and y′

l(i+1) + z′
l(i+1) = Ri+1 ∈ [fl(i+1) − ε, fl(i+1) + ε]. For

any j with l(i) < j < l(i + 1), set y′
j = y′

l(i), which means the y′ values do not
change from y′

l(i) to y′
l(i+1). If Ri = Ri+1, then z′

l(i) = z′
l(i+1). We set z′

j = z′
l(i) for

any l(i) < j < l(i + 1). Due to fl(i) ≥ fj ≥ fl(i+1) for any l(i) < j < l(i + 1) and
y′
j +z′

j = Ri = Ri+1, it must be fj −ε ≤ y′
j +z′

j ≤ fj +ε for any l(i) < j < l(i +1).
If Ri > Ri+1, let L = Ri −fl(i), and thus |L| ≤ ε. (Note that when Ri > Ri+1, it must
be Ri+1 = fl(i+1)+ε.) Going from fl(i) to fl(i+1) on f, suppose t is the smallest index
such that ft + L < Ri+1; then we set z′

j = fj + L for l(i) < j < t and z′
j = z′

l(i+1)

for t ≤ j < l(i +1). Figure 6 shows an example in which the fourth vertical line from
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Fig. 6 Illustrating the three
(dashed) curves y′ + z′ , z′, and
y′ . The three solid curves are
f + ε, f, and f − ε

Fig. 7 The “downhill” portions
of a curve

the left stands for t . It is easy to see that the z′ values from l(i) to l(i + 1) are non-
increasing and for any l(i) < j < l(i + 1), it must be fj − ε ≤ y′

j + z′
j ≤ fj + ε. In

this way, a feasible UDPR solution for f can be obtained in O(n) time, which proves
the lemma. �

From Lemmas 2 and 3, we have the following theorem.

Theorem 1 The UDPR feasibility problem on an arbitrary piecewise linear func-
tional curve f of size n and ε ≥ 0 is solvable in O(n) time.

2.3 The min-ε Version of the UDPR Problem

In this section, we consider the UDPR min-ε problem, seeking the minimum possible
error ε for f to be ε-UDP-representable. In light of Lemma 3, we only need to develop
an algorithm for the skeleton of f. Let ε∗ denote the sought minimum error. At first
sight, one might attempt to solve the UDPR min-ε problem by utilizing the result in
Theorem 1 and performing binary search for ε∗. But that would lead to a superlinear
time solution. Our UDPR min-ε algorithm takes O(n) time.

2.3.1 Useful Geometric Observations

Given a skeleton curve f = (f1, f2, . . . , fn) and ε ≥ 0, by Lemma 1, f is ε-UDP-
representable if and only if D(Rn) ≥ 0. By the definition of the profile curves, we
have D(Rn) = R1 − ∑n

i=2 max{0,Ri−1 − Ri} and R1 = f1 + ε. For a general func-
tional curve h = (h1, h2, . . . , hn), we define H(h) to be

∑n
i=2 max{0, hi−1 −hi}. Ge-

ometrically, the value of H(h) is the sum of the “height drops” of all the “downhill”
portions of the curve h (see Fig. 7). Then we have D(Rn) = f1 + ε − H(R(f, ε)).

On the characteristic curve R(f, ε) = (R1,R2, . . . ,Rn), we call Ri an R-peak if Ri

is a peak on R(f, ε) with 1 < i < n. Thus R1 and Rn cannot be R-peaks. For each
R-peak Ri , we define its allied R-valley to be Rj , where Rj is the first valley on
R(f, ε) to the right of Ri , i.e., j = min{t | t > i and Rt is a valley}. An R-peak Ri
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Fig. 8 Illustrating an allied pair
(Ri,Rj ) (black points) on
R(f, ε) (the dashed curve)

and its allied R-valley Rj form an allied pair (Ri,Rj ) (see Fig. 8). The following
observation is based on the geometric properties of the characteristic curve.

Observation 1 For any ε ≥ 0, if Ri is an R-peak on R(f, ε), then Ri = fi − ε and fi

is a peak on f; if Rj is the allied R-valley of the R-peak Ri on R(f, ε), then Rj = fj +ε

and fj is a valley on f.

We name the sequence of the allied pairs of R(f, ε) (from left to right) the topology
of R(f, ε).

Lemma 4 Given a skeleton curve f and an error ε ≥ 0, if both the curves R(f, ε)
and R(f, ε + �ε) has the same topology for a value �ε, then H(R(f, ε + �ε)) =
H(R(f, ε)) − 2�ε · α, where α is the number of allied pairs on R(f, ε) (as well as on
R(f, ε + �ε)).

Proof WLOG, assume �ε ≥ 0. Let R(f, ε) = (R1,R2, . . . ,Rn) and R(f, ε + �ε) =
(R′

1,R
′
2, . . . ,R

′
n). Denote the set of the allied pairs on R(f, ε) by S. For each pair

(Ri,Rj ) ∈ S, since both the curves have the same topology, (R′
i ,R

′
j ) is an allied pair

on R(f, ε + �ε). Suppose Ri is the first R-peak on R(f, ε). Let C denote the sum of
the “height drops” of the “downhill” portion from R1 to Ri−1 (note that C > 0 if and
only if f1 is a peak on f). Since R1 is at f1 + ε and the downhill portion for C ends at
ft + ε for some 1 < t < i, C is a constant as long as the topology of R(f, ε) does not
change. By the allied pair definition, we have H(R(f, ε)) = C +∑

(Ri ,Rj )∈S(Ri −Rj)

and H(R(f, ε+�ε)) = C +∑
(R′

i ,R
′
j )∈S(R′

i −R′
j ). Therefore, when the error changes

from ε to ε+�ε, since the topology does not change, for each allied pair (Ri,Rj ), by
Observation 1, we have (1) Ri = fi − ε and R′

i = fi − (ε +�ε), and (2) Rj = fj + ε

and R′
j = fj + (ε + �ε). Thus Ri − R′

i = R′
j − Rj = �ε, which yields the lemma

due to |S| = α. �

The above lemma implies that if the topology of R(f, ε) does not change for ε ∈
[ε1, ε2], then H(R(f, ε)) is a continuous decreasing linear function in that interval.
Denote by M(ε) the number of allied pairs on R(f, ε). Thus M(0) is the number
of allied pairs on f (when ε = 0, R(f, ε) = f). Note that as ε increases from 0 to
∞, at some values of ε, the topology of R(f, ε) will change and the value of M(ε)

will decrease by some integer t ≥ 1. When ε is large enough, M(ε) becomes zero
and never decreases any more. Thus, M(ε) is a nonincreasing step function (see
Fig. 9), and the number of steps is at most M(0). Suppose the ith “step” of M(ε)

is defined on the interval [εi, εi+1); then we call εi a critical error if i ≥ 1 (ε1 = 0
is not considered to be a critical error). Formally, ε′ is a critical error if and only if
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Fig. 9 M(ε) is a step function

Fig. 10 Illustrating
ε′
i
= (fi − fk′ )/2 for the

peak fi

M(L(ε′)) − M(ε′) > 0, where L(ε′) is a value less than ε′ but infinitely close to it.
We use a multi-set E to denote the set of all critical errors: For each critical error ε′,
if M(L(ε′)) − M(ε′) = t ≥ 1, then E contains t copies of ε′. Thus |E| is exactly
equal to M(0).

From a geometric point of view, R(f, ε) changes its topology only when a peak of
the curve f − ε “touches” some point of a horizontal segment of R(f, ε) starting at a
valley of f + ε. (Since each horizontal segment of R(f, ε) starts at a valley of f + ε, it
cannot be touched by another valley of f + ε.) When a peak fi − ε of f − ε touches
a horizontal segment of R(f, ε) starting at a valley fj + ε of f + ε, we have fi − ε =
fj + ε, implying ε = |fi−fj |

2 . Let E′ = {|fi − fj |/2 | for any peak fi and valley fj

on f}. Then clearly, the critical error set E is a subset of E′. Thus we have the follow-
ing lemma.

Lemma 5 Given a skeleton curve f, the function G(ε) = f1 + ε − H(R(f, ε)) (i.e.,
G(ε) = D(Rn)) is a continuous increasing piecewise linear function for ε ≥ 0. More
specifically, the interval [0,+∞) for ε can be partitioned into |E′| + 1 sub-intervals
by the elements in E′, such that in each such sub-interval, G(ε) is an increasing linear
function of ε.

2.3.2 The Algorithm

Our algorithm first determines the multi-set E explicitly and then computes ε∗.
Let P(f) denote the set of indices of all peaks on f except f1 and fn. When ε = 0,

since R(f, ε) is the same as f, Ri is an R-peak on R(f, ε) if and only if i ∈ P(f).
Thus |P(f)| = M(0). For each i ∈ P(f), let i′ = min{t | i < t ≤ n + 1, ft > fi}
(with fn+1 = +∞); in other words, fi′ is the leftmost peak to the right of fi that
is larger than fi , or i′ = n + 1 if there is no such peak on f. Let i′′ = max{t | 0 ≤
t < i, ft ≥ fi} (with f0 = +∞), i.e., fi′′ is the rightmost peak to the left of fi that
is larger than or equal to fi , or i′′ = 0 if there is no such peak (see Fig. 10). For
each i ∈ P(f), let fk′ = min{ft | i < t < i′}, fk′′ = min{ft | i′′ < t < i}, and ε′

i =
(fi −max{fk′, fk′′ })/2. Figure 10 shows an example. Note that for each ε′

i , the paring
of fi and max{fk′, fk′′ } is similar to the paring of extrema in persistent homology [13,
32] (which is an algebraic study of measuring topological features of shapes and of
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functions), and the value 2ε′
i is called persistence there. The next lemma is crucial for

computing E.

Lemma 6 For any ε ≥ 0, 1 < i < n, Ri is an R-peak on R(f, ε) if and only if i ∈ P(f)
and ε < ε′

i .

Proof For each i ∈ P(f), we define i′, i′′, k′, and k′′ as above.
If Ri is an R-peak, then by Observation 1, i ∈ P(f) and Ri = fi − ε. We prove

ε < ε′
i by contradiction. Assume ε ≥ ε′

i . There are two cases to consider: ε′
i = (fi −

fk′)/2 or ε′
i = (fi − fk′′)/2. If ε′

i = (fi − fk′)/2, suppose Rj is its allied R-valley,
then (1) if i′ < n + 1, it must be j ≤ i′ − 1 due to Ri = fi − ε and fi′ > fi ; (2) if
i′ = n + 1, then obviously j ≤ i′ − 1. Thus in either case, j ≤ i′ − 1. For each t with
i < t ≤ j , we have ft − ε < fi − ε ≤ ft + ε due to fk′ ≤ ft < fi and ε ≥ (fi −
fk′)/2. By the definition of the characteristic curve, for every i < t ≤ j , Rt should be
equal to Ri , implying that Rj is not the allied R-valley of Ri , a contradiction. If ε′

i =
(fi −fk′′)/2, then either i′′ > 0 or i′′ = 0. In either case, we claim Rk′′ ≥ Ri . If i′′ > 0,
then due to fi′′ ≥ fi and Ri = fi − ε, we have Ri′′ ≥ fi′′ − ε ≥ Ri . If Ri′′ < fk′′ + ε,
then Rk′′ = Ri′′ ≥ Ri since fk′′ = min{ft | i′′ ≤ t ≤ k′′} and fi′′ = max{ft | i′′ ≤
t ≤ k′′}. Similarly, if Ri′′ ≥ fk′′ + ε, then by the definition of the curve R(f, ε) and
fk′′ = min{ft | i′′ ≤ t ≤ k′′}, it must be Rk′′ = fk′′ + ε. Due to ε ≥ ε′

i = (fi − fk′′)/2
and Ri = fi − ε, we have Rk′′ ≥ Ri . If i′′ = 0, then since R1 = f1 + ε and fk′′ =
min{ft | 1 ≤ t ≤ k′′}, by the definition of R(f, ε), it must be Rk′′ = fk′′ + ε. Thus
Rk′′ ≥ Ri still holds due to ε ≥ (fi − fk′′)/2. Since Rk′′ ≥ Ri , fk′′ = min{ft | k′′ ≤
t ≤ i}, and fi = max{ft | k′′ ≤ t ≤ i}, we have Rt = Ri for any k′′ ≤ t < i. Thus
Ri−1 = Ri , a contradiction to the fact that Ri is an R-peak. This proves ε < ε′

i .
If i ∈ P(f) and ε < ε′

i , then both ε < (fi − fk′)/2 and ε < (fi − fk′′)/2 hold.
Due to ε < (fi − fk′′)/2, we have fk′′ + ε < fi − ε. Since Rk′′ ≤ fk′′ + ε, we have
Rk′′ < fi − ε. Since fk′′ = min{ft | i′′ < t < i} and fi > max{ft | k′′ < t < i}, by
the definition of characteristic curve, we have Ri−1 = max{Rk′′ ,max{ft − ε | k′′ <

t < i}} < fi − ε = Ri . Then to finish proving that Ri is an R-peak, it suffices to
show that there is a j with i < j ≤ n such that Ri = Ri+1 = · · · = Rj−1 > Rj . Since
fi ≥ max{ft | i ≤ t ≤ k′}, we have Ri ≥ max{Rt | i ≤ t ≤ k′}. If there is a t with
i < t < k′ such that Ri = Ri+1 = · · · = Rt−1 > Rt , then we are done. Otherwise, it
must be Ri = Ri+1 = · · · = Rk′−1. Due to ε < (fi −fk′)/2, we have fi − ε > fk′ + ε.
Since Ri = fi − ε and Rk′ ≤ fk′ + ε, we have Ri = Ri+1 = · · · = Rk′−1 > Rk′ . Thus
Ri is an R-peak on R(f, ε). �

In light of the above lemma, the multi-set E can be determined based on the fol-
lowing lemma.

Lemma 7 E = {ε′
i | for each i ∈ P(f)}.

Proof Recall that there are t copies of ε′ in E if and only if M(L(ε′)) − M(ε′) =
t ≥ 1. Let S = {ε′

i | for any i ∈ P(f)} be a multi-set. Since |E| = M(0) = |P(f)| =
|S|, to prove E = S, it suffices to show that for each ε′

i ∈ S, if there are t copies of ε′
i

in S, then there are also t copies of ε′
i in E.
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For each ε′
i , suppose r elements in S are larger than or equal to ε′

i . Then the
number of elements in S that are larger than L(ε′

i ) is r . If we let ε = L(ε′
i ), then by

Lemma 6, there are r R-peaks on R(f, ε) (or M(L(ε′
i )) = r). Suppose there are t

copies of ε′
i in S; then there are r − t elements in S that are larger than ε′

i . When
ε = ε′

i , by Lemma 6, there are r − t R-peaks on R(f, ε) (or M(ε′
i ) = r − t). Since

M(L(ε′
i )) − M(ε′

i ) = t , E contains t copies of ε′
i . This proves the lemma. �

To compute E explicitly, although the framework and techniques in persistent
homology [13, 32] might be applied, we give a simple optimal O(n) time algorithm,
as follows. For each i ∈ P(f), if we know i′ and i′′, then ε′

i can be obtained in O(1)

time by a range minimum data structure [17] (with an O(n) time preprocessing).
For all i ∈ P(f), computing i′ is essentially the following problem: Given an array
A[1, . . . , n], for each 1 ≤ i ≤ n, find i′ that is the index of the first element after A[i]
such that A[i] < A[i′]. This problem can be easily solved in O(n) time. For each
i ∈ P(f), i′′ can be computed similarly. Thus E can be obtained in O(n) time.

Consequently, the value ε∗ can be computed by the following lemma.

Lemma 8 After E is obtained, ε∗ can be computed in O(|E|) time.

Proof Assume that the elements in E are ε1 ≤ ε2 ≤ · · · ≤ εM , where M = |E| =
M(0) (this assumption is only for analysis since we do not sort them in the algo-
rithm). By Lemma 5, the function G(ε) = f1 + ε − H(R(f, ε)) is increasing, and thus
ε∗ is the unique value with G(ε∗) = 0. By Lemma 4, G(0) = f1 − H(R(f,0)), G(ε1) =
G(0)+ε1 +2M ·ε1, and G(ε2) = G(0)+ε2 +2M ·ε1 +2(M −1) ·(ε2 −ε1). Generally,
if we let ε0 = 0, then for 1 ≤ i ≤ M , G(εi) = G(0) + εi + 2

∑i−1
t=0(M − t)(εt+1 − εt ).

Thus, geometrically, G(ε) is a piecewise linear concave increasing function whose
slope, when ε ∈ [εi, εi+1), is 1 + 2(M − i) for any 0 ≤ i ≤ M (let εM+1 be ∞). Note
that if the elements in E are already sorted, then it is easy to compute ε∗ in linear
time since each G(εi) can be obtained from G(εi−1) in O(1) time and G(ε) is an
increasing function. However, as we show below, we can still compute ε∗ in linear
time without sorting the elements in E. Define h(i, j) = ∑j−1

t=i (M − t)(εt+1 − εt ).
Then G(εi) = G(0) + εi + 2h(0, i). By a simple deduction, we can get h(i, j) =
∑j−1

t=i+1 εt + (M − j + 1)εj − (M − i)εi . Thus, we can compute the value of h(i, j)

in O(j − i) time if we know all the values εi, εi+1, . . . , εj (actually, in the algo-
rithm below, when computing h(i, j), all the values εi, εi+1, . . . , εj are determined
by using the selection algorithm [12]). Further, G(0) can be easily computed in linear
time.

To obtain ε∗, we do the following: (1) Search in E for the two elements ε′ and
ε′′ such that ε′ is the largest element in E with G(ε′) ≤ 0 and ε′′ is the smallest one
with G(ε′′) > 0; (2) compute the smallest value ε∗ ∈ [ε′, ε′′] such that G(ε∗) = 0.
In step (1), to find ε′, a straightforward way is to first sort all elements in E, and
then from the smallest element to the largest one, check the value of G(εi) for each
εi . But that takes O(M logM) time. An O(M) time algorithm, based on prune and
search, works as follows. We first use the selection algorithm [12] to find the me-
dian εM/2 in E and compute G(εM/2), for which we need to spend O(M

2 ) time to
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compute h(0, M
2 ). If G(εM/2) = 0, then the algorithm stops with ε∗ = εM/2. Oth-

erwise, let E1 = {εi | i < M
2 } and E2 = {εi | i > M

2 }. If G(εM/2) < 0, then we
continue the same procedure on E2. Since we already have the value of h(0, M

2 ),
when computing h(0, j) for j > M

2 , we only need to compute h(M
2 + 1, j) because

h(0, j) = h(0, M
2 ) + h(M

2 + 1, j), which takes O(j − M
2 ) time. If G(εM/2) > 0, then

we continue the same procedure on E1. Thus the total time for computing ε′ is O(M).
To obtain ε′′, note that ε′′ is the smallest element in E that is larger than ε′, and thus
ε′′ can be found in linear time. Step (2) takes O(1) time since when ε ∈ [ε′, ε′′], G(ε)

is a linear function. �

Therefore, we have the following result.

Theorem 2 The UDPR min-ε problem on f = (f1, f2, . . . , fn) can be solved in O(n)

time.

3 The Unimodal Representation Problem

In this section, we study both the min-k and min-ε versions of the unimodal rep-
resentation (UR) problem. Note that all unimodal curves in the representation are
required to be nonnegative. In the following, when we say unimodal curve, we mean
nonnegative unimodal curve.

3.1 Some Key Lemmas

For any two integers i′, i′′ with i′ < i′′, denote by [i′ . . . i′′] the sequence of integers
between i′ and i′′, i.e., [i′ . . . i′′] = {i′, i′ +1, . . . , i′′}. For a functional curve f defined
using the indices in {1,2, . . . , n}, denote by f[i′ . . . i′′] the portion of f restricted to the
indices in {i′, i′ + 1, . . . , i′′}.

We now give some geometric observations for the unimodal representations. Our
purpose is to outline the underlying geometric structures that can be utilized to re-
model the UR problem.

Lemma 9 Let h(1),h(2), . . . ,h(k) be k ≥ 1 unimodal functional curves defined on
[1 . . . n]. Assume that for each j , h(j) peaks at i∗j , with 1 ≤ i∗1 ≤ i∗2 ≤ · · · ≤ i∗k ≤ n.

Then the curve h = ∑k
j=1 h(j) satisfies:

(1) h is nonnegative and nondecreasing on [1 . . . i∗1 ],
(2) h is 0-UDP-representable on [i∗j . . . i∗j+1] for each j = 1,2, . . . , k − 1, and
(3) h is nonnegative and nonincreasing on [i∗k . . . n].

Proof Since every h(j) is nondecreasing on [1 . . . i∗1 ] and nonincreasing on [i∗k . . . n],
(1) and (3) of the lemma follow. (2) of the lemma holds due to the fact that on
[i∗j . . . i∗j+1], h(1),h(2), . . . ,h(j) are all nonincreasing, and h(j+1),h(j+2), . . . ,h(k) are
all nondecreasing. Thus for each j , the portion of the curve h on [i∗j . . . i∗j+1] is equal
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to the sum of a nondecreasing curve y(j) = ∑k
t=j+1 h(t) and a nonincreasing curve

z(j) = ∑j

t=1 h(t). �

Lemma 10 Given a functional curve h defined on [1 . . . n], if there exist k ≥ 1 inte-
gers 1 ≤ i∗1 ≤ i∗2 ≤ · · · ≤ i∗k ≤ n in [1 . . . n] such that

(1) h is nonnegative and nondecreasing on [1 . . . i∗1 ],
(2) h is 0-UDP-representable on [i∗j . . . i∗j+1] for each j = 1,2, . . . , k − 1, and
(3) h is nonnegative and nonincreasing on [i∗k . . . n], then there exist k unimodal

curves h(1),h(2), . . . ,h(k) defined on [1 . . . n] such that h = ∑k
j=1 h(j).

Proof For each 1 ≤ j ≤ k − 1, since h is 0-UDP-representable on [i∗j . . . i∗j+1], by

Theorem 1, we can write h[i∗j . . . i∗j+1] = y(j) + z(j), where y(j) is nondecreasing

and z(j) is nonincreasing on [i∗j . . . i∗j+1], with y
(j)

i∗j
= 0 and z

(j)

i∗j+1
= 0. If we let y(0)

be h[1 . . . i∗1 ] and z(k) be h[i∗k . . . n], then for each 1 ≤ j ≤ k, define the unimodal
functional curve h(j) as y(j−1) + z(j), more specifically as

h
(1)
i =

⎧
⎨

⎩

hi, i ∈ [1 . . . i∗1 ],
z
(1)
i , i ∈ [i∗1 . . . i∗2 ],

0, i ∈ [i∗2 + 1 . . . n],

h
(j)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i ∈ [1 . . . i∗j−1 − 1],
y

(j−1)
i , i ∈ [i∗j−1 . . . i∗j ],

z
(j)
i , i ∈ [i∗j . . . i∗j+1],

0, i ∈ [i∗j+1 + 1 . . . n],
for j = 2,3, . . . , k − 1,

h
(k)
i =

⎧
⎨

⎩

0, i ∈ [1 . . . i∗k−1 − 1],
y

(k)
i , i ∈ [i∗k−1 . . . i∗k ],

hi, i ∈ [i∗k . . . n].

Then h(j) is unimodal on [1 . . . n] for each 1 ≤ j ≤ k, and h = ∑k
j=1 h(j). �

3.2 The min-k Version of the Unimodal Representation Problem

Lemmas 9 and 10 imply that the min-k version of the UR problem on f and ε is
equivalent to finding the minimum number of intermediate points i∗1 ≤ i∗2 ≤ · · · ≤ i∗k
in [1 . . . n], such that (1) f[1 . . . i∗1 ] (resp., f[i∗k . . . n]) can be represented by a nonneg-
ative nondecreasing (resp., nonincreasing) curve with an error no more than ε, (2) for
each j with 1 ≤ j ≤ k − 1, f[i∗j . . . i∗j+1] is ε-UDP-representable.

The problem of representing a functional curve by a nonnegative nondecreasing or
nonincreasing curve can be solved in a similar spirit as the UDPR feasibility problem,
as shown below.

Lemma 11 Given a nonnegative functional curve f = (f1, f2, . . . , fn) and ε ≥ 0, f
can be represented by a nonnegative nondecreasing (resp., nonincreasing) curve with
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Fig. 11 Illustrating the
nondecreasing curve (dashed) in
Lemma 11

an error no bigger than ε if and only if fj − ε ≤ fi + ε (resp., fj + ε ≥ fi − ε)
holds for all 1 ≤ j < i ≤ n. Moreover, if the problem is feasible, then it always has
a solution y defined by yi = max{0,maxi

j=1{fj − ε}} (resp., yi = mini
j=1{fj + ε}),

which can be computed in O(n) time (see Fig. 11).

Given f = (f1, f2, . . . , fn) and ε ≥ 0, our min-k algorithm for the UR problem
works in a greedy fashion: (1) Find the largest index i∗1 such that f[1 . . . i∗1 ] can be
represented by a nonnegative nondecreasing curve with an error no bigger than ε;
(2) find the smallest index c, such that f can be represented by a nonnegative nonin-
creasing curve on [c . . . n] with an error no bigger than ε; (3) if i∗1 ≥ c, then we are
done; otherwise, by a linear scan from i∗1 , find the largest index i∗2 such that f[i∗1 . . . i∗2 ]
is ε-UDP-representable in O(i∗2 − i∗1 ) time (by examining each fi for i∗1 ≤ i ≤ i∗2 ); the
same procedure continues until i∗k ≥ c. When the algorithm stops, k is the minimum
number of unimodal curves needed to represent f with an error ≤ ε.

In addition to Lemmas 9 and 10, the correctness of the algorithm is also due to the
following fact: If f can be represented by a nonnegative nondecreasing or nonincreas-
ing curve (resp., a pair of nondecreasing and nonincreasing curves) on an interval
[a . . . b] with an error ≤ ε, then f can also be represented by a nonnegative non-
decreasing or nonincreasing curve (resp., a pair of nondecreasing and nonincreasing
curves) on any sub-interval [a′ . . . b′] ⊆ [a . . . b] with an error ≤ ε. By Theorem 1
and Lemma 11, the above min-k algorithm takes O(n) time. We thus have the next
theorem.

Theorem 3 The UR min-k problem on f = (f1, f2, . . . , fn) and ε ≥ 0 is solvable in
O(n) time.

Additionally, by a somewhat similar proof as that for Lemma 3, we have the fol-
lowing result which will also be useful for our UR min-ε algorithm given in the next
section.

Lemma 12 Given a curve f = (f1, f2, . . . , fn) and ε ≥ 0, f can be represented by
k unimodal curves if and only if SK(f) can be represented by k unimodal curves.
Furthermore, given a feasible solution for SK(f) (resp., f), a feasible solution for f
(resp., SK(f)) can be obtained in O(n) time.

Proof Let fi be at the point (xi, fi) (the ith vertex) of f. The vertices of SK(f) are a
subset of the vertices of f. Let |SK(f)| = m. For the ith vertex of SK(f), 1 ≤ i ≤ m, let
l(i) denote the index of the same vertex on f. If f can be represented by k unimodal
curves, then obviously these k unimodal curves can also yield a solution for SK(f).

Denote SK(f) by (g1, g2, . . . , gm), with gi = fl(i) for 1 ≤ i ≤ m. Given ε ≥ 0,
if SK(f) can be represented by k unimodal curves h(1),h(2), . . . ,h(k) (let h =
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∑k
j=1 h(j) = (h1, h2, . . . , hm)), then by Lemma 9, we have 1 ≤ i∗1 ≤ i∗2 ≤ · · · ≤ i∗k ≤

m such that (1) gi − ε ≤ hi ≤ gi + ε for each 1 ≤ i ≤ m; (2) h is nonnegative and
nondecreasing on [1 . . . i∗1 ]; (3) h is 0-UDP-representable on [i∗j . . . i∗j+1] for each
1 ≤ j ≤ k − 1; (4) h is nonnegative and nonincreasing on [i∗k ,m]. To show that f can
also be represented by k unimodal curves, by Lemma 10, it suffices to find a curve
h′ = (h′

1, h
′
2, . . . , h

′
n) such that (1) fi − ε ≤ h′

i ≤ fi + ε for each 1 ≤ i ≤ n; (2) h′
is nonnegative and nondecreasing on [1 . . . l(i∗1 )]; (3) h′ is 0-UDP-representable on
[l(i∗j ) . . . l(i∗j+1)] for each 1 ≤ j ≤ k − 1; (4) h′ is nonnegative and nonincreasing on
[l(i∗k ) . . . n].

In the rest of this proof, we denote an index interval [a . . . b] for f (resp., SK(f))
by [a . . . b]f (resp., [a . . . b]SK(f)). The curve h′ is constructed from h in three dif-
ferent ways for the three intervals [1 . . . l(i∗1 )]f, [l(i∗1 ), l(i∗k )]f, and [l(i∗k ), n]f, re-
spectively. For [1 . . . l(i∗1 )]f, for each i ∈ [1 . . . i∗1 ]SK(f), let h′

l(i) = hi ; for each i ∈
[1 . . . i∗1 ]SK(f) and l(i) < j < l(i + 1): If h′

l(i) = h′
l(i+1), then set h′

j = h′
l(i); else

set h′
j = fj + h′

l(i) − fl(i). It is easy to check that for any t ∈ [1 . . . l(i∗1 )]f, it must
be ft − ε ≤ h′

t ≤ ft + ε and h′ is nonnegative nondecreasing on [1 . . . l(i∗1 )]f. For
[l(i∗1 ), l(i∗k )]f, for each 1 ≤ j < k, since h is 0-UDP-representable on [i∗j . . . i∗j+1]SK(f)

and gt − ε ≤ ht ≤ gt + ε for each t ∈ [i∗j . . . i∗j+1]SK(f), SK(f) is ε-UDP-representable
on [i∗j . . . i∗j+1]SK(f). By Lemma 3, f is ε-UDP-representable on [l(i∗j ) . . . l(i∗j+1)]f;
let its two feasible solution curves be y and z. Thus the curve y + z is 0-UDP-
representable on [l(i∗j ) . . . l(i∗j+1)]f. We let h′[l(i∗j ) . . . l(i∗j+1)]f be y + z. Thus for
each 1 ≤ j ≤ k − 1, h′ is 0-UDP-representable on [l(i∗j ) . . . l(i∗j+1)]f and ft − ε ≤
h′

t ≤ ft + ε for each l(i∗j ) ≤ t ≤ l(i∗j+1). For [l(i∗k ), n]f, we define h′ similarly as for
h′[1 . . . l(i∗1 )]f. The only difference is that h′ is nondecreasing on [1 . . . l(i∗1 )]f, while
it is nonincreasing on [l(i∗k ), n]f. �

3.3 The min-ε Version of the Unimodal Representation Problem

The UR min-ε problem is: Given a functional curve f = (f1, f2, . . . , fn) and an in-
teger k > 0, find the smallest error ε∗ such that f can be represented by at most k

unimodal curves. In the following, we first give an overview of our algorithm and
then discuss the details of the algorithm.

3.3.1 An Overview of the Algorithm

Given a curve f, denote by K(ε) the minimum number of unimodal curves for repre-
senting f with an error no bigger than ε. Clearly, K(ε) changes in a monotone fashion
with respect to ε (K(ε) is a step function like M(ε) in Fig. 9). To solve the min-ε
problem, we use our min-k algorithm in the previous section as a black-box search
engine, and perform a search for the optimal error ε∗. The structures of the unimodal
representations specified in Lemmas 9 and 10 imply that we need to consider only
those ε values that may cause a feasibility change to one of the following represen-
tations: (1) representing f[i′ . . . i′′] (1 ≤ i′ < i′′ ≤ n) by a pair of nondecreasing and
nonincreasing curves with an error ≤ ε, (2) representing f[1 . . . i] (1 ≤ i ≤ n) by a
nondecreasing curve with an error ≤ ε, or (3) representing f[j . . . n] (1 ≤ j ≤ n) by
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a nonincreasing curve with an error ≤ ε. As will be discussed later, the algorithm
has two main steps. The first step prunes the errors incurred by the representations
of types (2) and (3) above, and the second step prunes the errors incurred by the
representations of type (1). Finally, the error ε∗ is found.

Given a curve f = (f1, f2, . . . , fn), by Lemma 12, it suffices to consider the UR
min-ε algorithm for its SK(f) curve. After obtaining the minimum error ε∗ for SK(f),
we need to use only an additional O(n) time to produce the solution curves for f.
The next algorithm focuses on SK(f) although it works for any general curve. In the
following, we assume SK(f) = g = (g1, g2, . . . , gm) (i.e., |SK(f)| = m).

Given k > 0, our UR min-ε algorithm has two steps. (1) Search in S = {0} ∪
{|gi −gj |/2 | 1 ≤ i, j ≤ m} for ε′, ε′′ ∈ S, such that ε′ is the largest element in S with
K(ε′) > k and ε′′ is the smallest element in S with K(ε′′) ≤ k. (2) With ε′ and ε′′, find
the smallest value ε∗ ∈ (ε′, ε′′] with K(ε∗) ≤ k. The correctness of this algorithm is
obvious.

Note that ε′ and ε′′ are two consecutive elements in S in the sense that for any
ε̂ ∈ S, either ε̂ ≤ ε′ or ε̂ ≥ ε′′. Thus, by Lemma 11, changing the error ε from ε′ to ε′′
(with ε ∈ (ε′, ε′′]) does not cause a feasibility change on representing g[1 . . . i] (resp.,
g[j . . . n]) by an uphill (resp., downhill) curve. Therefore, when ε changes from ε′
to ε′′, the decreasing of the function K(ε) is due to the feasibility change of the uphill–
downhill pair representations of some g[i′ . . . i′′]’s, for 1 ≤ i′ < i′′ ≤ m. Denote by
ε[i′, i′′] the minimum error ε such that g[i′ . . . i′′] is ε-UDP-representable, and define
S′ = {ε[i′, i′′] | 1 ≤ i′ < i′′ ≤ m}. Thus, S′ must contain the sought optimal error ε∗.
The second step is to find ε∗ in S′. Every step of the algorithm takes O(m logm)

time. The details are given as follows.

3.3.2 The Algorithmic Details

Our algorithm implementation makes use of an interesting technique, which we call
binary search on sorted arrays, for the following problem: Given M arrays Ai ,
1 ≤ i ≤ M , each containing O(N) elements in sorted order, find a certain element
δ in A = ⋃M

i=1 Ai . Further, assume that there is a “black-box” decision procedure Π

available, such that given any value a, Π reports a ≤ δ or a > δ in O(T ) time. We
have the following result.

Lemma 13 Given M arrays Ai , 1 ≤ i ≤ M , each containing O(N) elements in
sorted order, a sought element δ in A = ⋃M

i=1 Ai can be determined in O((M +T ) ×
log(NM)) time, where O(T ) is the time taken by one call to a “black-box” decision
procedure Π .

Proof The algorithm is of a similar spirit as the linear time selection algorithm [12].
We first sketch the idea and then give the details. For each array Ai , we choose a
constant number of its elements as “representative elements”. Then, we compute the
(weighted) median, say ma , of these O(M) representative elements, and determine
whether ma ≤ δ by calling the procedure Π , after which half of the representative
elements can be pruned. Further, the representative elements are carefully chosen
such that a constant fraction of the elements in all M arrays can be pruned. We ap-
ply the above procedure recursively on the remaining elements. After O(log(NM))
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iterations, the sought element δ is found. In each iteration, we need to compute those
O(M) representative elements and their (weighted) median and call the procedure Π

once, which altogether take O(M + T ) time. The details are given below. Note that
the idea above is also somewhat similar to those in [14, 22].

For simplicity of discussion, we assume that every array Ai has at most N el-
ements. Without loss of generality, assume the elements in every array Ai are in
nondecreasing order. Below we give the pseudo-code of the algorithm, in which each
array Ai maintains a lower index Li and an upper index Ui such that all currently “ac-
tive” elements of Ai (i.e., elements that have not been pruned) are between Li and Ui .
Initially, Li (resp., Ui ) is the index of the first (resp., last) element of Ai . Denote the
total number of currently “active” elements in A by W . Initially, W = |A| = O(NM).

Pseudo-code

1. If W ≤ 7M , then repeatedly apply the median selection algorithm [12] to the W

active elements in A and use binary search to find the sought element δ, where the
decision procedure Π is used to determine the search direction. Else, go to Step 2.

2. For each array Ai , if it has less than seven elements (i.e., Ui − Li + 1 < 7), we
say that Ai is “not active” and its elements will not be considered until finally
in Step 1. Otherwise, it is “active” and we partition its active elements, i.e., those
between Li and Ui , into seven blocks of roughly equal sizes. So every active array
is partitioned into seven blocks. Clearly, all active elements of A are partitioned
into O(M) blocks.

3. For every such block Bj , let mj be an arbitrary one of its elements and mj is
considered as a representative element for the block Bj . Let wj = |Bj | be the
weight of mj . Apply the weighted median selection algorithm [12] to find the
weighted median m′ of all O(M) representative elements in O(M) time. Call the
procedure Π to determine whether m′ ≤ δ.

4. If m′ ≤ δ, then in each array Ai , let Bj be the block whose median mj is the
largest among all blocks of Ai with mj ≤ m′ (if there are multiple largest mj ’s,
take the one with the largest index). Prune all blocks of Ai that are strictly before
Bj (i.e., no pruning is done on Bj ). Finally, update Li and Ui for Ai accordingly.

If m′ > δ, the pruning is done in a symmetric way.
5. Using the updated Li and Ui , recalculate W . Go to Step 1.

The correctness of the above algorithm is obvious from its description and pseudo-
code. For the running time, when W ≤ 7M , Step 1 takes O(M + T logM) time.
Recall that T is the time for one call to the procedure Π . In Step 2, every active array
is partitioned into seven blocks. It is not difficult to see that this guarantees that the
selected weighted median m′ prunes away at least one quarter of the active elements
in A in Step 4. The running time of Steps 2 to 5 per iteration is clearly O(M + T ).

Denote the running time of the algorithm by T (W) (initially W = O(NM)).
Hence, we have T (W) ≤ T ( 3W

4 ) + c · (M + T ) if W > 7M (c > 0 is a constant), and
T (W) = O(M + T logM) if W ≤ 7M . Therefore, T (W) = O((M + T ) log(MN)).
The lemma follows. �

In the following, we discuss our implementation on our UR min-ε algorithm, in
which Lemma 13 plays an important role. Note that the technique of binary search
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on sorted arrays discussed above is for solving a very basic problem and we believe
our result may find other applications as well.

For Step (1), note that K(ε) is monotone with respect to ε; further, the set S

can be represented implicitly as O(m) sorted arrays of size O(m) each. Specifi-
cally, after the gi ’s are sorted in O(m logm) time, say, into g1, g2, . . . , gm, let array
Ai = {|gi − gj |/2 | j = i + 1, . . . ,m} for every i = 1,2, . . . ,m − 1. Then, we get
m sorted arrays each of which contains at most m elements. Thus, ε′ and ε′′ can be
found in O(m logm) time based on Lemma 13, using our UR min-k algorithm as the
decision procedure Π .

For Step (2), our task is to find ε∗ in the set S′. Recall that S′ = {ε[i′, i′′] | 1 ≤
i′ < i′′ ≤ m}, and ε[i′, i′′] is the minimum error ε such that g[i′ . . . i′′] is ε-UDP-
representable. Step (2) can be carried out by performing a similar search as in Step
(1) on S′ for the optimal value ε∗ ∈ (ε′, ε′′]. Further, since ε∗ ∈ (ε′, ε′′], we only
need to consider those elements of S′ which are in (ε′, ε′′]. The key to this hinges
on computing efficiently, for any given 1 ≤ i′ < i′′ ≤ m, the value ε[i′, i′′] (if it is in
(ε′, ε′′]).

We design a data structure such that, after an O(m) time preprocessing, for
any query q(i′, i′′), 1 ≤ i′ < i′′ ≤ m, the following can be determined in O(1)

time: Whether ε[i′, i′′] ∈ (ε′, ε′′]; if it is, then report the value of ε[i′, i′′]; other-
wise, report whether ε[i′, i′′] < ε′ or ε[i′, i′′] > ε′′. Define G(ε,g[i′ . . . i′′]) to be
gi′ + ε − H(R(g[i′ . . . i′′], ε)). If we replace G(ε) in Lemma 5 by G(ε,g[i′ . . . i′′]),
then by the definition of ε′ and ε′′, when ε ∈ (ε′, ε′′], G(ε,g[i′ . . . i′′]) is a linear func-
tion and ε[i′, i′′] is the unique error ε̂ such that G(ε̂,g[i′ . . . i′′]) = 0. If ε[i′, i′′] ∈
(ε′, ε′′], then once G(ε′,g[i′ . . . i′′]) and G(ε′′,g[i′ . . . i′′]) are available, ε[i′, i′′] can
be obtained in O(1) time. Further, ε[i′, i′′] < ε′ if and only if G(ε′,g[i′ . . . i′′]) > 0,
and ε[i′, i′′] > ε′′ if and only if G(ε′′,g[i′ . . . i′′]) < 0. Thus, to answer each query
q(i′, i′′) in O(1) time, it suffices to compute the two values H(R(g[i′ . . . i′′], ε′)) and
H(R(g[i′ . . . i′′], ε′′)) (and consequently, G(ε′,g[i′ . . . i′′]) and G(ε′′,g[i′ . . . i′′])) in
O(1) time. This is made possible by our O(m) time preprocessing algorithm given
below. We only show the preprocessing algorithm for H(R(g[i′ . . . i′′], ε′)) (the case
for H(R(g[i′ . . . i′′], ε′′)) is handled similarly).

The main idea for this is to make use of the geometric relations between the
(general and long) characteristic curve R(g, ε′) and the (specific and shorter) char-
acteristic curve R(g[i′ . . . i′′], ε′). More specifically, we use the value H(R(g, ε′))
to help compute H(R(g[i′ . . . i′′], ε′)). As part of the preprocessing, we com-
pute, in O(m) time, the value H(R(g, ε′)), and further, keep all the prefix values
H(R(g[1 . . . i], ε′)) for 1 ≤ i ≤ n. Considering the relations between the charac-
teristic curves R(g, ε′) and R(g[i′, i′′], ε′), there are two possible cases: (I) The
characteristic curve R(g[i′ . . . i′′], ε′) “merges” into the characteristic curve R(g, ε′)
(Fig. 12(a)); (II) R(g[i′ . . . i′′], ε′) does not merge into R(g, ε′) (Fig. 12(b)). To deal
with Case (I), after R(g, ε′) is computed, with an O(m) time preprocessing (given in
Lemma 14), we can store the merge point i′ for every i′ in [1 . . .m] (this merge point
does not depend on i′′), as well as the total amount of “downhill drops” from i′ to
its i′ (denote this amount by C(i′)). In this way, the value of H(R(g[i′ . . . i′′], ε′))
is equal to C(i′) + H(R(g[1 . . . i′′], ε′)) − H(R(g[1 . . . i′], ε′)) (see Fig. 12(a)),
which can be obtained in O(1) time from the prefix values H(R(g[1 . . . i′′], ε′))
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Fig. 12 Illustrating the two cases for computing the representability of R(g[i′ . . . i′′], ε′):
(a) R(g[i′ . . . i′′], ε′) merges into R(g, ε′); (b) R(g[i′ . . . i′′], ε′) does not merge into R(g, ε′)

and H(R(g[1 . . . i′], ε′)). Note that the merge point i′ of i′ also allows us to decide
in O(1) time which of the two cases holds for a query q(i′, i′′). For Case (II), the
key observation is that the value of H(R(g[i′ . . . i′′], ε′)) is gi′ − h[i′, i′′], where
h[i′, i′′] is the minimum value of g on [i′ . . . i′′]. Thus, with a range minimum data
structure [17] (which can be constructed in linear time), we can report h[i′, i′′], and
consequently H(R(g[i′ . . . i′′], ε′)), in O(1) time.

Lemma 14 The merge points i’s for all i ∈ [1 · · ·m] can be obtained in totally O(m)

time.

Proof We first compute the two curves g + ε′ and g − ε′, and then the characteristic
curve R(g, ε′). In the region R bounded between g + ε′ and R(g, ε′), we perform
a rightwards horizontal trapezoidal decomposition from the vertices of g + ε′. This
trapezoidal decomposition can certainly be computed by Chazelle’s linear time al-
gorithm in [4], but the problem here is actually much simpler since both g + ε′ and
R(g, ε′) are monotone to the x-axis. This produces a set L of horizontal line segments
in R. We then connect these segments to R(g, ε′) by following downhill paths along
L ∪ (g + ε′), until reaching some points on R(g, ε′) (if a point on R(g, ε′) is reach-
able). Note that for each segment l ∈ L, such a downhill path connecting l to R(g, ε′)
(if any) is unique. This process creates a forest, with the whole curve R(g, ε′) being
the root of one of the trees, T . For each vertex v of g + ε′ in R, we then find the first
point on R(g, ε′) along T , denoted by v (if v is not in the tree T containing R(g, ε′),
then v = +∞). Clearly, these structures can all be built in O(m) time. Thus, in O(m)

time, we can compute the merge points for all i ∈ [1 . . .m]. �

Since we are concerned with only those error values in (ε′, ε′′], for a query
q(i′, i′′), if ε[i′, i′′] > ε′′, we simply set ε[i′, i′′] = +∞. Likewise, if ε[i′, i′′] < ε′,
we set ε[i′, i′′] = −∞. With this value-setting, for any [j ′ . . . j ′′] ⊆ [i′ . . . i′′], we
have ε[j ′, j ′′] ≤ ε[i′, i′′]. Thus, the set S′ can be viewed as consisting of O(m)

sorted arrays of size O(m) each. Precisely, for each 1 ≤ i′ ≤ m − 1, let array
Ai = {ε[i′, i′′] | i′′ = i′ + 1, . . . ,m}. Further, S′ can be represented implicitly as dis-
cussed above and any element of S′ can be obtained in O(1) time (after an O(m)

time preprocessing). Therefore, by using the searching technique in Lemma 13, we
can find the error ε∗ ∈ S′ in O(m logm) time.
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Fig. 13 Illustrating the curve
R′(f, ε, δ) (the dashed one). The
two solid curves are f + ε and
f − ε

Theorem 4 Given an integer k > 0, the UR min-ε problem on a curve f =
(f1, f2, . . . , fn) is solvable in O(n + m logm) time, where m is the size of SK(f).

4 The Fewer-Peak Representation Problem

In this section, we study the FPR problem. Both the min-k and min-ε versions are
solved by linear time algorithms based on several geometric observations.

4.1 The FPR min-k Algorithm

As in Sect. 2, given a general functional curve f, we first consider the algorithm for
its skeleton curve SK(f), and then handle the original curve f.

Given a skeleton curve f = (f1, f2, . . . , fn) and ε ≥ 0, we define a curve
R′(f, ε, δ) = (R′

1,R
′
2, . . . ,R

′
n), where R′

1 = δ and the other n − 1 curve values are set
by using the same rules as the definition of the characteristic curve R(f, ε), namely,
for i = 2,3, . . . , n, set the value of R′

i to fi − ε if R′
i−1 < fi − ε, and fi + ε if

R′
i−1 > fi + ε, and R′

i−1 otherwise (e.g., see Fig. 13).

Let i′ (1 ≤ i′ ≤ n) be the largest integer such that
⋂i′

i=1[fi − ε, fi + ε] = [a, b]
is not empty. Note that then there exist t and t ′ with 1 ≤ t ≤ i′ and 1 ≤ t ′ ≤ i′ such
that b = ft + ε and a = ft ′ − ε. Our FPR min-k algorithm is based on the following
lemma.

Lemma 15 Given a skeleton curve f = (f1, f2, . . . , fn) and ε ≥ 0, R′(f, ε, δ) is an
optimal solution of the FPR min-k problem, where δ can be any value in [a, b] (see
Fig. 13).

Proof If i′ = n, then for any δ ∈ [a, b], R′(f, ε, δ) is a horizontal line. Thus R′(f, ε, δ)
has no peak (by our definition of peaks), implying that it is an optimal solution. Below
we assume i′ < n.

According to the definition of i′, there are two cases: fi′+1 − ε > b or a >

fi′+1 + ε. In the following, we only analyze the former case (the latter case can
be handled similarly). Assume that g is an optimal solution for f and ε. For any
δ ∈ [a, b], suppose there are k peaks on R′(f, ε, δ). Below, we prove that g has at
least k peaks, and consequently, R′(f, ε, δ) is an optimal solution.

Let β(0) = 1. Define α(1) = max{i | fj − ε ≤ fi + ε, for j = β(0), β(0) +
1, . . . , i} (see Fig. 14). By Lemma 11, α(1) is the rightmost index of f such that
f[β(0), α(1)] (i.e., the portion of f from fβ(0) to fα(1)) can be represented by
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Fig. 14 Illustrating the proof
for Lemma 15: The dashed
curve is R′(f, ε, δ)

a nonnegative nondecreasing curve with an error at most ε. If α(1) < n, define
β(1) = max{i | fj + ε ≥ fi − ε, for j = α(1), α(1) + 1, . . . , i} (see Fig. 14). By
Lemma 11, β(1) is the rightmost index of f such that f[α(1), β(1)] can be repre-
sented by a nonnegative nonincreasing curve with an error at most ε. If α(1) = n,
we simply let β(1) = n. Note that fi′+1 − ε > b. A simple but critical observation
is that g must have at least one peak in the portion g[β(0), β(1)]. Further, the curve
R′(f, ε, δ) has exactly one peak in the portion R′(f, ε, δ)[β(0), β(1)] (see Fig. 14).

If β(1) = n, then we are done with the proof. Otherwise, similarly, define α(2) =
max{i | fj − ε ≤ fi + ε, for j = β(1), β(1) + 1, . . . , i}. If α(2) < n, define β(2) =
max{i | fj + ε ≥ fi − ε, for j = α(2), α(2) + 1, . . . , i}. If α(2) = n, we simply let
β(2) = n. Again, g must have at least one peak in the portion g[β(1), β(2)], and
R′(f, ε, δ) has exactly one peak in the portion R′(f, ε, δ)[β(1), β(2)]. If we repeat the
same procedure as above until either α(i) or β(i) is n, we can obtain that the number
of peaks in g is at least k, i.e., the number of peaks in R′(f, ε, δ). �

It is easy to check that for any ε > 0, for any two values δ1 and δ2 both in [a, b],
R′

i is a peak on R′(f, ε, δ1) if and only if R′
i is a peak on R′(f, ε, δ2). Since R′(f, ε, δ)

can be easily computed in linear time, the FPR min-k problem on a skeleton curve is
solvable in linear time. By following a similar proof as for Lemma 3, we obtain the
following lemma.

Lemma 16 For any general functional curve f and ε ≥ 0, f can be approximated
by a k-peak function if and only if SK(f) can be approximated by a k-peak function.
Furthermore, given a feasible solution for SK(f) (resp., f), a feasible solution for f
(resp., SK(f)) can be obtained in O(n) time.

Proof The proof is quite similar to that for Lemma 3. We only sketch it here. Let
fi be at the point (xi, fi) (the ith vertex) of f. Let |SK(f)| = m. For the ith vertex
of SK(f), 1 ≤ i ≤ m, let l(i) denote the index of the same vertex on f. If f can be
represented by a k-peak function, then obviously SK(f) can also be represented by
the same k-peak function.

Given f = (f1, f2, . . . , fn) and ε ≥ 0, suppose by Lemma 15 we find a k-peak
function g = (g1, g2, . . . , gm) to represent SK(f) with an error no bigger than ε.
Let g’s profile curves be a nondecreasing curve y = (y1, y2, . . . , ym) and a nonin-
creasing curve z = (z1, z2, . . . , zm). In the same way as for the proof of Lemma 3,
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we can find a nondecreasing curve y′ = (y′
1, y

′
2, . . . , y

′
n) and a nonincreasing curve

z′ = (z′
1, z

′
2, . . . , z

′
n) such that (1) fi − ε ≤ y′

i + z′
i ≤ fi + ε for each 1 ≤ i ≤ n, and

(2) if g is nonincreasing (resp., nondecreasing) from gi to gi+1, then g′ = y′ + z′ is
also nonincreasing (resp., nondecreasing) from g′

l(i) to g′
l(i+1). It is easy to see that the

curve g′ thus obtained is a feasible k-peak function for f and ε, and can be computed
in O(n) time. �

Theorem 5 The FPR min-k problem on f = (f1, f2, . . . , fn) and ε ≥ 0 is solvable in
O(n) time.

4.2 The FPR min-ε Algorithm

Given a skeleton curve f, when ε = 0, we have δ = a = b = f1 and R′(f, ε, δ) is
exactly the curve f. Intuitively, as ε increases from 0 to ∞, the number of peaks on
R′(f, ε, δ) decreases, that is, some peaks on R′(f, ε, δ) disappear. If we define the
R-peaks, P(f), and ε′

i (for each i ∈ P(f)) in the same way as in Lemma 6, then by
following a similar proof as for Lemma 6, we have the next lemma.

Lemma 17 For any ε ≥ 0, if δ ∈ [a, b], then for each 1 < i < n, R′
i is an R-peak on

R′(f, ε, δ) if and only if i ∈ P(f) and ε < ε′
i .

Geometrically, when ε increases from 0 to ∞, ε∗ is the minimum error when there
are at most k peaks left on R′(f, ε, δ). Define the multi-set E as {ε′

i | i ∈ P(f)}. Since
the peaks on R′(f, ε, δ) consist of all its R-peaks and possibly R′

1 and R′
n if one of

them or both are peaks, by Lemma 17, ε∗ must be one of the (m−k)th, (m−k+1)th,
and (m−k+2)th smallest elements in E, where m is the number of peaks on f. Thus,
ε∗ can be obtained by the following theorem.

Theorem 6 The FPR min-ε problem on f = (f1, f2, . . . , fn) and k ≥ 0 is solvable in
O(n) time.

Proof A straightforward linear time algorithm works as follows. (1) Compute the
(m− k)th smallest element in E and let it be ε′. (2) Compute R′(f, ε′, δ), and if there
are no more than k peaks, then ε∗ = ε′; otherwise, go to the next step. (3) Compute
the (m−k +1)th smallest element in E and let it be ε′′. (4) Compute R′(f, ε′′, δ), and
if there are no more than k peaks, then ε∗ = ε′′; otherwise, ε∗ is the (m − k + 2)th
smallest element in E.

Note that the above algorithm assumes k ≥ 2. When k = 0 or k = 1, the problem
can be solved in linear time in a similar way. �
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