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Abstract Using lower bounds on components of the distance spectrum of a code
on the Euclidean sphere obtained by linear programming, we derive new, better than
known, upper bounds on the size of multiple packings of spherical caps on the surface
of the sphere.
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1 Introduction

Let S
n−1(x̄, r) ⊂ R

n be the sphere of radius r centered at x̄ ∈ R
n, and B

n(x̄, r) ⊂ R
n

be the (closed) ball of radius r centered at x̄. Denote S
n−1 �= S

n−1(0̄,1). We say that
a (finite) set Kn ⊂ S

n−1(0̄, r) is a packing by balls or spherical caps of radius t with
multiplicity L iff for any set of (L+1) different points {x̄1, . . . , x̄L+1} ⊂ Kn, we have

L+1⋂

i=1

Bn(x̄i , t) = ∅.

The same condition can be written as

max
x̄∈Rn

∣∣Bn(x̄, t) ∩ Kn
∣∣ ≤ L.
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The set Kn is also a code guaranteeing list decoding within radius t with the list size
at most L.

Let tL(Kn) be the supremum of t with the above property. Next we consider a
sequence of codes Kn, n = 2,3, . . . , on the unit sphere and assume that n → ∞ and
ln |Kn| ∼ Rn for some R > 0. We call R the code rate. Our goal is to obtain an
asymptotic upper bound on

tL = lim sup
n→∞

sup
|Kn|≥exp(Rn)

sup tL(Kn)

n
.

The best previously known bound was first proved by Blachman and Few in [3],
and later it was rederived in [4] using an alternative approach.

Theorem 1 The following inequality is valid:

R ≤ 1

2
ln

L

(L + 1)t2
L

, (1)

tL ≤
(

1

2
ln

L

(L + 1)R

)1/2

. (2)

This is to be compared with the best currently known lower (existence) bound on
tL which has been proved in [4]:

R ≥ 1

2
ln

L

(L + 1)t2
L

+ 1

2L
ln

1

(L + 1)(1 − t2
L)

.

In this paper we derive a new upper bound on tL.

Theorem 2 The following inequality is valid:

tL ≤
(

1 − L

L
+ 1

minφ∈(e−R,1)

(
φ sin θ�(R+lnφ)

2

)2

)−1/2

, (3)

where θ� is the unique root of the equation

1 + sin z

2 sin z
· H

(
1 − sin z

1 + sin z

)
= R, (4)

and

H(x) = −x lnx − (1 − x) ln(1 − x).

As we will see, this bound improves on (2).
The idea of the proof, presented in the next section, is as follows. We use an

inequality derived in [2] that shows that in a spherical code of given size there exists
a code vector having in its vicinity an essentially large number of neighboring code
vectors. This is equivalent to saying that there exists a ball of dimension one less than
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the initial containing many code vectors. Applying this inequality recursively L + 1
times, we conclude that there exist a ball containing at least L + 1 code vectors. The
radius of this ball can be easily translated into an upper bound on the radius of L-
fold packing. Bounding the mentioned radius completes the derivation. Furthermore,
using a simplification of the bound, we prove that, at least for low rates, it is better
than the best earlier known bound (2).

2 Proof of Theorem 2

For a spherical code K, we define its distance spectrum respective to a c̄ ∈ K as
follows:

bK(x, c̄) = {
c̄1 : c̄1 ∈ K, (c̄, c̄1)

/(‖c̄‖‖c̄1‖
) = x

}
,

where (ā, b̄) = a1b1 +· · ·+anbn stands for the scalar product. We will see that in any
code of given size there exists a code vector possessing a big number of neighboring
code vectors.

To state such a result, we will need some notation. For θ ≤ 2ϕ, let

αϕ(θ) = 2 arcsin
sin(θ/2)

sinϕ
,

βϕ(θ) = arccos
cosϕ

cos(θ/2)
,

j (x, y) = (1 + y)H

(
y

1 + y

)

− ln

(
1

2

(
x +

√
(1 + 2y)2x2 − 4y(1 + y)

))

+ (1 + 2y) ln
(1 + 2y)x + √

(1 + 2y)2x2 − 4y(1 + y)

2y(1 + y)
.

For a given R, denote by ρ� the unique solution of the equation

R = (1 + ρ)H

(
ρ

1 + ρ

)
.

Notice that

2
√

ρ�(1 + ρ�)

1 + 2ρ�

= cos θ�,

and if θ is the minimum angle between any pair of points from a code Kn ⊂ S
n−1,

then the rate R of this code satisfies the inequality [6]

R ≤ R(θ).

We will use the following result from [2] (see also [1] for a weaker result).
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Theorem 3 For Kn ⊂ S
n−1(0̄, r) with

ln |Kn| = Rn
(
1 + o(1)

)

and ρ,ϕ satisfying

e−R ≤ sinϕ ≤ 1, 0 ≤ ρ ≤ ρ�(R + ln sinϕ),

there exists θ and c̄ ∈ Kn such that

2
√

ρ(1 + ρ)

1 + 2ρ
≤ cosαϕ(θ). (5)

Moreover, after shifting the code vectors by o(1), n → ∞, from their initial positions
in such a way that they still belong to the sphere, we have

1

n
lnbKn(cos θ, c̄) ≥ R + 2 ln sinϕ − ln sinβϕ(θ) − j

(
cosαϕ(θ), ρ

) + o(1). (6)

It is easy to see that bKn(cos θ, c̄) is the number of code vectors (after shifting)
in the cross-section of the sphere by the hyperplane orthogonal to the vector c̄ in the
point r cos θ c̄, where r is the radius of the sphere.

Next, we describe a recursive procedure of constructing a simplex of (L + 1)

codewords {c̄0, . . . , c̄L} ⊂ Kn with sufficiently small pairwise distances and there-
fore yielding the existence of a ball Bn(x̄, r) of sufficiently small minimum radius r

containing all the points from the simplex.
We start with the code Kn

0 ⊂ S
n−1 and consider the cross-section of S

n−1 by a
hyperplane. Then for some c̄0, the following is true: for each ϕ1, ρ1 as in Theorem 3,
there exists θ1, as in Theorem 3, such that the cross-section of S

n−1 by the hyper-
plane orthogonal to c̄0 and having the distance cos θ1 from the origin contains (after
shifting) the number of code vectors bKn

0
(cos θ1, c̄0) which satisfies inequality (6).

Further notice that the cross-section of the sphere by hyperplane is again a
sphere of dimension one less. The new sphere has radius r sin θ and is centered in
r cos(θ)

c̄0‖c̄0‖ (given the initial sphere has radius r).
Next, we shift the center of this new sphere to the origin and once again con-

sider the cross-section of this new sphere by hyperplane as at the previous step. Now
we have the new code Kn

1 of cardinality bKn
0
(cos θ1, c̄0), and the new cross-section

contains (after shifting), for given

arcsin
(
e
− lnbKn

0
(cos θ1,c̄0)/n) ≤ ϕ2 ≤ π/2,

0 ≤ ρ2 ≤ ρ�

(
lnbKn

0
(cos θ1, c̄)/n + ln sinϕ1

)
,

at least

bKn
1
(cos θ2, ρ1)
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code vectors from Kn
1 , where

lnbKn
1
(cos θ2, c̄1)

n
≥ lnbKn

0
(cos θ1, c̄0)

n
+ 2 ln sinϕ2 − ln sinβϕ2(θ2)

− j
(
cosαϕ2(θ2), ρ2

) + o(1).

At this second step we choose new ϕ2, ρ2, θ2, c̄1.

This procedure can be continued further on. Let us provide a formal description of
the procedure. At the 0th step we have a code Kn

0 ⊂ S
n−1, ln |Kn

0 | ∼ nR0 (R0 = R).

At the ith step, i ≥ 1, we obtain a code Kn
i of rate 1

n
ln |Kn

i | ∼ Ri such that

Ri ≥ Ri−1 + 2 ln sinϕi − ln sinβϕi
(θi) − j

(
cosαϕi

(θi), ρi

)
.

We undertake this action (L+ 1) times, and at the ith step, i ≥ 1, we pick a new code
vector c̄i such that its distance from c̄j , 0 ≤ j < i, is

dj = 2rj sin
θj+1

2
.

We stop when we fix (L + 1) code vectors c̄i ∈ Kn
i , i = 0,1, . . . ,L. Note also that

Kn
L ⊂ Kn

L−1 ⊂ · · · ⊂ Kn
0 . Now we optimize the set dj , j = 0,1, . . . ,L − 1, in such

a way that the simplex on the vertices c̄i is contained in a ball of minimum possible
radius tL (the optimization is over ϕi, ρi, and at the same time assuming the worst
case for the choice of θi ). This way we deduce the existence of a point in R

n covered
by (L + 1) balls of radius tL with the centers in coding points, which yields that an
arbitrary code of rate R on the Euclidean sphere is an L-packing by balls of a radius
strictly smaller than tL.

We call the set (θ1, . . . , θL) admissible if there exist sets ϕ1, . . . , ϕL; ρ1, . . . , ρL,

such that

e−Ri−1 ≤ sinϕi, 0 ≤ ρi ≤ ρ�(Ri−1 + ln sinϕi−1),

and

Ri = Ri−1 + 2 ln sinϕi − ln sinβϕi
(θi) − j

(
cosαϕi

(θi), ρi

)
,

i = 1, . . . ,L. We say that the set (ϕ1, . . . , ϕL, ρ1, . . . , ρL) is admissible if there exists
a set θ1, . . . , θL which is admissible for these ϕi, ρi .

If t (d0, . . . , dL−1) is the minimum radius of a ball which contains the simplex
{c̄0, . . . , c̄L} such that ‖c̄i − c̄j‖ = di = 2ri sin θi+1

2 , i < j , and ri = ri−1 sin θi , r0 = 1,
then (see, for example, [5])

t (d0, . . . , dL−1) = max
I :γ I (Γ I )−1(γ I )T ≥0

1

2

√
γ I

(
Γ I

)−1(
γ I

)T
, (7)

where

γ = (γ1, . . . , γL), Γ = ‖Γij‖,
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and

γi = d2
0 , Γi,j = (c̄0 − c̄i , c̄0 − c̄j ).

Here γ I ,Γ I are the vector and matrix which are obtained from the initial vector γ

and matrix Γ by deleting the elements having indices i and i, j not belonging to I.

Also note that (7) has sense only if Γ is not singular, i.e., since it is the Gramm
matrix, the vectors c̄i − c̄0 are linearly independent. As we will see later, it is indeed
the case.

Thus we have the following upper bound:

tL ≤ max
admissible {ϕi , ρi }

min
admissible{θi } for {ϕi ,ρi }

t (d0, . . . , dL−1). (8)

Since the bound (8) is rather cumbersome, uses complicated optimizations, and
is not given in a closed analytical form, we will simplify it. Apparently, the consid-
ered simplification essentially worsens the bound (8); however, it allows explicitly
demonstrating that it improves on the bound (1) in a low rates range. We restrict our
attention to the case where di = dj , i, j > 1, and moreover to the situation where at
the first step we choose the angle θ1 defined by the equation

R = R0 = min
θ/2≤ϕ≤π/2

(
R�

(
αϕ(θ)

) − ln sinϕ
)

(9)

or

θ1 = θ ′
�(R)

�= 2 min
e−R≤φ≤π/2

arcsin

(
φ sin

θ�(R + ln sinφ)

2

)
.

One can easily see that these formulas are the equations which yield the best known
upper bound for the conventional (L = 1) packings of the Euclidean sphere [6].

Let us start from a code K0 ⊂ S
n−1 of rate R = R0. Let ϕ1 = ϕ be the value on

which the minimum in (9) is achieved. Set

ρ1 = ρ�(R + ln sinϕ0) − ε, ε � ρ�(R + ln sinϕ).

The function

f (θ,ρ) = −2 ln sinϕ + ln sinβϕ(θ) + j
(
cosαϕ(θ), ρ

)

is increasing in θ , and

f (0, ρ) = (1 + ρ)H

(
ρ

1 + ρ

)
.

Thus, for some θ1 < θ ′
�(R) + δ, δ � θ ′

�,

R1 ≥ R − (R + ln sinϕ) − f (θ1, ρ1) = ε1.

Next, for the code Kn
1 ⊂ S

n−1(0̄, sin θ ′
�(R)) of rate R1, we use a version of the Plotkin

bound, which is a particular case of (1). Actually, in [4] it was proved that for a
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fixed N , one can extract a simplex c̄1, . . . , c̄N from an arbitrary code of growing size
on the sphere of a fixed radius such that

d(c̄i , c̄j ) = d + o(1), i �= j,

i.e., the pairwise distances between vectors from this simplex asymptotically do not
depend on the choice of these pairs. We omit the proof of this fact here and refer to
the one in [4]. Then (1) yields that ‖c̄i − c̄j‖ ≤ √

2r, where r is the radius of the
sphere, and in our case,

r = sin θ ′
�(R).

We have

‖c̄i − c̄j‖ ≤ √
2 sin θ ′

�(R).

Note that these last considerations are consistent with the previous procedure where
we consequently chose the codes Kn

1, . . . , Kn
L. Indeed at each step i ≥ 1 we choose

Kn
i such that |Kn

i | = exp(εin) with the minimum distance

d ≤ √
2 sin θ ′

�(R).

Now we have the simplex c̄0, . . . , c̄L with d(c̄i , c̄j ) = d + o(1), i �= j > 0. As we
have already mentioned, the minimum radius rL of a closed ball which contains all
these points is determined by (7).

From the theorem of cosines it follows that

d2 + o(1) = (c̄i − c̄j )
2

= (c̄i − c̄0)
2 + (c̄j − c̄0)

2 − 2(c̄i − c̄0, c̄j − c̄0)

= 2r2 − 2(c̄i − c̄0, c̄j − c̄0);
therefore (up to o(1)),

Γij = r2 − d2/2, i �= j,

and

Γii = r2.

Here r is the radius of the sphere which is the cross-section of the unit sphere by the
hyperplane.

Thus, we have

Γ =

⎛

⎜⎜⎜⎝

a b b b . . . b

b a b b . . . b
... . . .

b b b b . . . a

⎞

⎟⎟⎟⎠ ,

where

a = r2, b = r2 − d2/2, (10)
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Γ I has the same form, and γ = (a, a, . . . , a). Furthermore,

detΓ I = (a − b)|I |−1((|I | − 1
)
b + a

)
.

At the same time,

detΓ I = aAI
ii + b

∑

k: k �=i

AI
ik

and
∑

k

AI
ik = AI

ii +
∑

k: k �=i

AI
ik

= AI
ii + 1

b

(
b

∑

k: k �=i

AI
ik

)

= AI
ii + 1

b

(
b

∑

k: k �=i

AI
ik + aAI

ii − aAI
ii

)

= 1

b
detΓ I + AI

ii

(
1 − a

b

)
,

where AI
ik is the algebraic complement of the element Γ I

ik.

Hence,

γ I
(
Γ I

)−1(
γ I

)T = a2 ∑
k,i A

I
i,k

detΓ I

= a2
∑

k

∑
i A

I
ik

detΓ I

= a2|I |detΓ I

b detΓ I
+ a2AI

ii(1 − a
b
)|I |

detΓ I

= a2|I |
b

+ a2|I |(a − b)|I |−2((|I | − 2)b + a)(1 − a
b
)

(a − b)|I |−1((|I | − 1)b + a)

= a2|I |
b

− a2|I |((|I | − 2)b + a)

b((|I | − 1)b + a)

= a2|I |
(|I | − 1)a + b

. (11)

We see that γ I (Γ I )−1(γ I )T > 0 for all choices of nonempty I . Computing the deriv-
ative of the expression (11) over |I |, we see that it is positive for a > b, and hence
max in (7) is attained on I = {1,2, . . .L}. Furthermore,

γΓ −1γ T = a2L

(L − 1)b + a
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and

t = a

2

√
L

(L − 1)b + a
.

Taking into account relation (10), we obtain

t = r2

2

√
L

(L − 1)(r2 − d2/2) + r2

= r

2

(
1 − L − 1

2L

d2

r2

)−1/2

. (12)

Since r = 2 sin
θ ′
�(R)

2 and (we omit o(1))

d = √
2 sin θ ′

�(R) = 2
√

2 sin
θ ′
�(R)

2
cos

θ ′
�(R)

2
,

from (12) we get

t = sin
θ ′
�(R)

2√
1
L

cos2 θ ′
�(R)

2 + sin2 θ ′
�(R)

2

=
(

1 + 1

L
cot2

θ ′
�(R)

2

)−1/2

,

or

cot
θ ′
�(R)

2
=

√
Lt−2 − L,

θ ′
�(R) = 2 arccot

√
Lt−2 − L.

Now using (9) we obtain the following bound:

2 arccot
√

Lt−2 − L

≤ 2 min
arcsin e−R≤ϕ≤π/2

arcsin

(
sinϕ sin

θ�(R + ln sinϕ)

2

)
. (13)

Denote

q = 1
/

min
e−R≤φ≤1

(
φ sin

θ�(R + lnφ)

2

)
.

Then (13) is equivalent to the inequality, which is our final bound,

tL ≤
(

L − 1

L
+ q2/L

)−1/2

. (14)
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Theorem 2 is proved. �
One can easily see that the derivative in R of the right-hand side of (14) is

2qq ′
R

L(q2/L + (L − 1)/L)3/2
R→0→ −∞,

and at the same time, the derivative in R of the right-hand side of

tL ≤
√

L

L + 1
e−R, (15)

equals −
√

L
L+1 for R = 0. Moreover, they both equal

√
L

L+1 at the zero rate. This
proves that the bound (14) is better on some interval of low rates.
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