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Abstract An abstract regular polytope P of rank n can only be realized faithfully
in Euclidean space E

d of dimension d if d ≥ n when P is finite, or d ≥ n − 1 when
P is infinite (that is, P is an apeirotope). In case of equality, the realization P of
P is said to be of full rank. If there is a faithful realization P of P of dimension
d = n + 1 or d = n (as P is finite or not), then P is said to be of nearly full rank. In
previous papers, all the at most four-dimensional regular polytopes and apeirotopes
of nearly full rank have been classified. This paper classifies the regular polytopes
and apeirotopes of nearly full rank in all higher dimensions.

Keywords Abstract regular polytope · Realization · Faithful · Nearly full rank ·
Fine Schläfli symbol

1 Introduction

While the finite regular polyhedra and honeycomb of cubes in ordinary three-
dimensional space have long been known, various generalizations of them—which
are also regular in a similar geometric sense—occur only considerably more recently.
Petrie and Coxeter [3] described the sponges which bear their name, Grünbaum [13]
found all but one of the remaining regular apeirohedra in E

3, while Dress [8, 9] found
the missing example and proved that the classification was then complete. In [23] (see
also [24, Sects. 7E, 7F]—this monograph is a general reference to what was known
up to 2002), the present author and Schulte classified completely all the faithfully
realized regular polytopes and discrete regular apeirotopes in dimensions up to three,
including a quick proof of Dress’s result. This author then successively classified
in [16] the regular polytopes and apeirotopes of full rank in each higher dimension
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(the terms used here will be defined later), in [17] the four-dimensional (finite) reg-
ular polyhedra (those with planar faces can be recovered from [1, 2]), and in [18]
the four-dimensional regular apeirotopes of rank 4. The polytopes of the latter two
papers are of nearly full rank; in this paper, we classify such regular polytopes and
apeirotopes in dimension at least five.

Let us briefly outline the contents of the paper. In Sects. 2 and 3 we describe those
parts of the general theory of regular polytopes and their realizations which we need.
In Sect. 4 we discuss notation, and in Sect. 5 we recall various operations which
lead from one regular polytope or apeirotope to another. Certain of the polytopes are
blended and so arise from lower-dimensional ones; we treat these in Sect. 6. The
vertex-figure of a polytope (or apeirotope) of nearly full rank is itself of full or nearly
full rank; in Sect. 7 we treat the former possibility and generalize results which have
been obtained previously in lower dimensions. Section 8 imposes some important
further restrictions in the ‘gateway’ dimension 5. In Sect. 9 we describe two con-
structions which lead from finite regular polytopes to regular apeirotopes, obtaining
results analogous to those of [18]. In several earlier papers, we have used a certain
mixing operation which is, in a sense, a dual of the Petrie operation; in Sect. 10 we
generalize this operation, which is called Petrie contraction. Section 11 introduces a
family of polytopes and apeirotopes which build on Petrie contraction and turn out to
be closely related to the Gosset polytopes. In Sect. 12, we apply twisting operations
to derive some regular polytopes and apeirotopes from Coxeter groups; we also show
that many polytopes of the previous sections can be obtained by a variant of twisting.
Section 13 then treats further polytopes obtained by twisting, again related to Gosset
polytopes. In lower dimensions, there are regular polytopes and apeirotopes whose
symmetry groups consist of direct isometries alone; in Sect. 14, we show that there
is one solitary extra example of such in E

5, and no more in higher dimensions. Fi-
nally, in Sect. 15 we conclude the paper with some comments about possible future
directions for this line of research.

For the general background on abstract regular polytopes, we refer the reader to
the monograph [24]; for the most part, we shall not cite original papers on the theory
of abstract regular polytopes directly. In this paper, we concentrate almost entirely
on the geometric aspects of the theory, that is, on realized regular polytopes. In some
respects, particularly in the abstract theory, we have changed notation from that used
hitherto. The motivation for this is to introduce a greater degree of consistency. It is
hoped that the reader familiar with earlier work (especially [24]) will not find these
changes confusing.

2 Abstract Regular Polytopes

We briefly review what we need of the abstract theory. An abstract regular polytope
P of rank n (or n-polytope for short) is identified with its automorphism group G =
〈r0, . . . , rn−1〉. Here, the canonical generators rj are involutory, rj and rk commute
if |j − k| ≥ 2, and they satisfy the intersection property

〈r i | i ∈ J〉 ∩ 〈r i | i ∈ K〉 = 〈r i | i ∈ J ∩ K〉 (2.1)
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for each J,K ⊆ N := {0, . . . , n − 1}; this makes G a string C-group. If we define
Gj := 〈r i | i �= j 〉 for each j ∈ N, then the initial j -face Fj of P is (identified with)
Gj , and the general j -face is a right coset Gj s of Gj (with s ∈ G). Finally, two faces
are incident if they meet (as cosets). In fact, we have a partial ordering of P given
by Gj s ≤ Gkt when j ≤ k and Gj s ∩ Gkt �= ∅; formally, we adjoin two copies of
G itself as the unique (−1)- and n-faces of P , thus making P a poset with (unique)
minimum and maximum elements.

Remark 2.1 While polytope is the generic term, we often use the term apeirotope for
an infinite polytope.

If we let pj be the period of rj−1rj for j = 1, . . . , n − 1, then {p1, . . . , pn−1} is
called the Schläfli type of P . In general, we can allow some pj = ∞; however, in the
present context, this may only happen for j = 1.

Remark 2.2 The use of heavy braces denotes abstract regular polytopes, to distin-
guish them from geometric ones; subsequently, we shall introduce modifications of
the notation. In this context, the entries are always integers or ∞, because they are
periods of group elements.

For each 0 ≤ k < m ≤ n, the subgroup 〈rk, . . . , rm−1〉 is also a string C-group;
the corresponding regular (m − k)-polytope is called the (initial) (k,m)-section of P
(thus the (0, n)-section is P itself). There are various special cases. For k = 0, we
have the m-face of P , with vertex, edge, ridge and facet the cases m = 0, 1, n − 3
and n−2, respectively. For m = n, we have the (n−k)-coface of P , with k = 1 and 2
giving the vertex- and edge-figure, respectively. (Observe that ‘coface’ as defined here
is to be distinguished from the term ‘co-face’ of [24, p. 23]; thus r-coface means co-
(n − r − 1)-face in the earlier terminology, with the prefix now—more conveniently,
we feel—denoting the rank.)

Remark 2.3 If we write Grs := Gr ∩ Gs for r < s, then for k ≤ j < m, the j -faces
of the initial (k,m)-section are Gjg, with g ∈ Gk−1,m; observe that, if i < k − 1 or
i > m, then r i fixes all the section.

If P with group 〈r0, . . . , rn−1〉 and Q with group 〈s0, . . . , sm−1〉 are two regular
polytopes such that there exists a group homomorphism Φ with

rjΦ =
{

sj if j ≤ m − 1,

e if j ≥ m,

then we say that P covers Q or that Q is a quotient of P . Note that we specifically
allow rank P > rank Q.

The amalgamation problem asks whether, given two regular n-polytopes P and
Q such that the vertex-figure of P and the facet of Q are isomorphic, there exists
a regular (n + 1)-polytope whose facet is P and vertex-figure is Q. If one such
does exist, then there is a universal one, denoted {P , Q}, which covers (as quo-
tients) any other. In terms of the corresponding automorphism groups G and H ,
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we must think of G = 〈r0, . . . , rn−1〉 and H = 〈r1, . . . , rn〉, so that the group of
{P , Q} is 〈r0, . . . , rn〉, with no relators apart from (0n)2 (which we need to make a
string group) other than those arising from G and H . A further important question is
whether the universal amalgam is finite if P and Q are.

These ideas have natural geometric counterparts, where universality often comes
into consideration.

3 Realizations

There are many candidates for spaces in which regular polytopes P might be real-
ized geometrically. The usual (and generally most useful) context of realizations is of
those in Euclidean spaces, because it is in these that we obtain the richest structure;
see [14]. However, it is worth noting that some basic results have a common state-
ment if they are posed for realizations in spherical or hyperbolic spaces as well (see
particularly [16, Sect. 3]); we shall occasionally adopt this approach here.

In this geometric context, we have a representation of G as a homomorphic image
G = GΦ in the group I = I(E) of isometries of some Euclidean space E. Then
G = 〈R0, . . . ,Rn−1〉, where each Rj = rjΦ is a reflexion (that is, involutory) or the
identity I , which we often identify with its mirror of fixed points

{x | xRj = x}.
The structure of the corresponding realization P of the abstract polytope P is given
by Wythoff’s construction. We identify (geometric) faces with their vertex-sets, bear-
ing in mind the partial order induced from the abstract polytope. There is an initial
vertex v ∈ W := R1 ∩ · · · ∩ Rn−1, the Wythoff space of the realization. The vertex-set
of the initial j -face is vertFj := vGj , where Gj = GjΦ for j = 1, . . . , n − 1; all
other (proper) faces are images of the initial faces under G . Thus vertP = vG . It is
also convenient to define F−1 := ∅ and Fn := P : thus, F−1 ⊆ F0 ⊆ · · · ⊆ Fn. The
(affine) subspace E := aff vertP spanned by vertP is called the ambient space of P ;
we lose no generality in thinking of this as the whole space in which we work. We
then write dimP := dim E, which is the dimension of P .

The realization P of P is faithful if the representation is an isomorphism of groups
and the abstract and geometric posets are isomorphic.

By definition, G yields the initial faces of P ; in particular, Fn−1 is the facet of
P ; its symmetry group is Gn−1 := 〈R0, . . . ,Rn−2〉. There is no harm in adopting the
intuitive view-point that an edge is the (line-)segment joining its two vertices, and
that a 2-face is the polygon determined by its constituent (vertices and) edges. If we
write w for the mid-point of the edge {v, vR0}, then w is the initial vertex of the
vertex-figure of P , whose symmetry group is G0 = 〈R1, . . . ,Rn−1〉.

We often find it more convenient to use vR0 rather than w as the initial vertex
of the vertex-figure; for most purposes, this makes little difference, since the combi-
natorics are not altered, and we have the added convenience that the vertices of the
vertex-figure occur among those of the polytope itself. In the finite case, we usually
suppose that the origin o is the centre of P (that is, the centroid of its vertices); thus,
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G is an orthogonal group. When we are dealing with apeirotopes, it is usual to take
the initial vertex v = F0 to be o, so that now G0 is an orthogonal group.

More generally, if we write Wk := ⋂{Ri | i �= k} and take vk ∈ Wk \ Rk , then vk

is the initial vertex of the (initial) (k,m)-section, whose vertex-set is vk Gk−1,m, with
Grs := GrsΦ for each r and s. Bear in mind Remark 2.3 here; effectively, of course,
the symmetry group of this section is 〈Rk, . . . ,Rm−1〉.

Remark 3.1 If we drop the intersection property (2.1), then we obtain a regular pre-
polytope (geometric or abstract, as appropriate). Pre-polytopes occur quite naturally
in the context of realizations, in which case we often use the terms degenerate or
non-polytopal.

There are important restrictions on faithful realizations, which we state in general
terms; we refer to [24, Sects. 5B, 5C] for proofs.

Theorem 3.2 Let P be a faithful realization of a finite abstract regular polytope P ,
whose ambient space is Euclidean. Then dimP ≥ rank P .

Theorem 3.3 Let P be a faithful realization of an abstract regular apeirotope P ,
whose ambient space is Euclidean. Then dimP ≥ rank P − 1.

A unified picture of these two results is obtained by taking the ambient space of
a finite regular polytope to be a sphere, whose dimension is one less than that of the
corresponding Euclidean space. See [16] for further details on this.

The difference dimP − rankP in the finite case, or dimP − rankP + 1 for an
apeirotope, will be called the rank deficit of P , denoted rankdefP . Then P is of full
rank if rankdefP = 0. In this paper, we are classifying polytopes P of nearly full
rank, meaning that rankdefP = 1.

We shall call the sequence (dimR0,dimR1, . . . ,dimRn−1) the mirror vector of
the realization (in previous works, we have used the less evocative term dimension
vector—the new name was suggested by Pellicer and Schulte [25]). In lower dimen-
sions d (≤ 4) an important first step in the classification of the faithfully realized
regular polytopes of a fixed rank n in a fixed space was to determine which mirror
vectors could occur. We have already solved this problem in [17] for the finite case of
nearly full rank with (R0,R1,R2) in E

4; we shall merely quote those results where
appropriate and not repeat the analysis. However, the other tools we have available
mean that we place less emphasis on the mirror vector here.

In the subsequent discussion of blends, we need a somewhat weaker condition than
faithfulness. Let P be a realization of an abstract regular n-polytope P whose ambient
space A is a sphere or Euclidean space according as P is bounded or unbounded.
(Note that regular apeirotopes can have bounded realizations.) If G(P ) is the group
of P , with generators (R0, . . . ,Rn−1), then we call P untrivial if Rj �= I for each j =
0, . . . , n−1. If Rk = I for some k, then we say that P is k-trivial. Recall from [14] or
[24, Lemma 5A6] that, since we always confine our attention to the ambient space, if
Rk = I , then Rj = I for each j > k. Now exactly the same inductive argument based
on vertex-figures as in [16] shows that dimRj ≥ j , at least so long as P is not j -
trivial, except that we can have dimRn−1 = n − 2. Applying this to k-faces (bearing
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in mind that a realization may collapse onto a k-face, thus replacing n by k in the
previous sentence), we deduce the triviality criterion:

Theorem 3.4 A realization P of an abstract regular polytope P with ambient space
A (a sphere or Euclidean space, as appropriate) is k-trivial for each k > dim A.

Remark 3.5 In the case of a finite (or bounded) realization P in a Euclidean space E,
the degeneracy criterion of Theorem 3.4 says that P is k-trivial for each k ≥ dim E.

If we have (not necessarily faithful or even polytopal) realizations of the ab-
stract regular polytope (or apeirotope) P in two Euclidean spaces, say P with
mirrors S0, . . . , Sn−1 in X and Q with mirrors T0, . . . , Tn−1 in Y (possibly some
Sj = L or Tj = M), then their blend has mirrors Rj := Sj × Tj in E := X × Y for
j = 0, . . . , n− 1. Indeed, if v ∈ S1 ∩ · · ·∩Sn−1 and w ∈ T1 ∩ · · ·∩Tn−1 are the initial
vertices of the two realizations, then (v,w) can be chosen as the initial vertex of the
blend, which we write P # Q. A realization which cannot be expressed as a blend in
a non-trivial way is called pure.

Theorem 3.4 has the following consequence.

Theorem 3.6 Let P be an untrivial realization of some abstract regular polytope or
apeirotope. If P is of full rank, then P must be pure. If P is of nearly full rank but is
not pure, then one component of P is one-dimensional (and the other is pure).

Proof We consider the case of bounded P ; the proof in the other case is analogous.
Let dimP = d . If P is blended with a component of dimension r > 0, then this com-
ponent must be k-trivial for k ≥ r . Similarly, the other component must be k-trivial
for k ≥ d − r . Hence P itself is k-trivial for k ≥ max{r, d − r}, and we immediately
deduce the claims of the theorem. �

Remark 3.7 In practice, we often regard components of a blend as (pre-)polytopes
in their own right, particularly in the context of Theorem 3.6. In this context, we can
actually allow P and Q to be realizations of different regular polytopes P and Q,
regarding them as realizations of a common regular polytope which covers both P
and Q.

There is a last restriction on realizations of apeirotopes which we wish to impose,
that of discreteness. (In general, a discrete realization which is a blend can have non-
discrete components, but this will not happen here.) This means that P has a discrete
vertex-set vertP = vG , and hence a finite vertex-figure; in the present context, this
will also imply that G itself is crystallographic. The special group of P is the subgroup
S := 〈S0, . . . , Sn−1〉 of the orthogonal group, where (identified with its mirror) Sj :=
Rj − Rj for each j ; of course, Sj is the translate of Rj which contains o. (With
the convention v = o, we have Sj = Rj for j ≥ 1.) Then S must be crystallographic
and, in particular, must be finite and cannot have ordinary rotations (with axes of
codimension 2) of periods other than 2, 3, 4 or 6.

We end the section with what we call the nearest points criterion; this provides
an easy way to eliminate many possibilities in Sect. 14. If X is a finite set of points
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in an ambient space A (a sphere or Euclidean space) and v /∈ X is a further point,
we denote by α(v,X) the smallest angle subtended at v in A by some pair of points
of X. Then the following should be obvious.

Proposition 3.8 Let P be a regular polytope (apeirotope) with initial vertex v, and
let X be the set of vertices of P (other than v) nearest to v. Then α(v,X) > π/3
(α(v,X) ≥ π/3, respectively).

Proof If the given condition failed to hold, then two points of X would be closer to
each other than they are to v, a contradiction to the definition of X and the regularity
of P . (Note that the angle of a spherical equilateral triangle is greater than π/3.) �

Remark 3.9 Observe that the example {5,3} as the vertex-figure of { 5
2 ,5,3} shows

that Proposition 3.8 need not hold when X is, instead, the vertex-set of the vertex-
figure of P at v. (The notation for the classical regular polytopes follows [4].)

4 Notation

In this section, we briefly review the notation which we and others have introduced
in earlier work. We first look at regular polygons in their own right, and then insofar
as they contribute to the description of polytopes of higher rank. At the present stage,
the term ‘polytope’ is generic.

A regular polygon is a blend of planar regular polygons {q} for some rational
q > 2, a segment {2} and the linear apeirogon {∞}, not all of which need be present
(rotations through irrational multiples of π do not occur here, and so no special no-
tation for them is necessary). The notation for such a polygon is {p}, where

p = s

t1, . . . , tk

is a generalized fraction; here, s, t1, . . . , tk are non-negative integers such that 0 ≤
t1 < · · · < tk ≤ 1

2 s, with greatest common divisor (s, t1, . . . , tk) = 1. Then

{p} =
{

s

t1

}
# · · · #

{
s

tk

}
,

where each fraction is taken to be reduced to its lowest terms; here, t1 = 0 corresponds
to {∞}, and tk = 1

2 s corresponds to {2}.
We shall need a little later the concept of the supplement {p′′} of {p}. If q ≥ 2 is

rational, define q ′′ by

1

q
+ 1

q ′′ = 1

2
,

with the obvious definitions 2′′ = ∞ and ∞′′ = 2. If {p} = {q1} # · · · # {qk} with
∞ ≥ q1 > · · · > qk ≥ 2, then we define

{
p′′} := {

q ′′
k

}
# · · · #

{
q ′′

1

}
.
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The reversal of order of the components is for consistency with the previous conven-
tion.

A geometric regular polygon is determined by the pair (S0, S1) of generating re-
flexions of its symmetry group, and the choice of an initial vertex v ∈ S1. With a
regular n-polytope P with group generators (R0, . . . ,Rn−1) are associated two par-
ticular regular polygons:

• its Petrie polygon, with S0 := R0R2 · · · and S1 := R1R3 · · · (products of all alter-
nating terms);

• its deep hole, with S0 := R0 and S1 := R1R2 · · ·Rn−2Rn−1Rn−2 · · ·R2R1.

In each case, the initial vertex of the polygon is always taken to be the initial vertex
of P itself.

Remark 4.1 Here and elsewhere these concepts have obvious abstract analogues,
which the notation { · } will indicate.

A fine Schläfli symbol for a regular polytope P takes the same form as its Schläfli
type, except that now the entries are generalized fractions, and there may be addi-
tional specifications. Polyhedra (that is, the polytopes of rank 3) are the basic building
blocks of polytopes of higher rank. Unfortunately, the general notation for polytopes
based on polyhedra can get very cumbersome. As in the abstract case, a regular n-
polytope whose (initial) facet is P and (initial) vertex-figure is Q is denoted {P,Q},
but this may only yield a partial description of it. (For instance, {{3,3}, {3,4}} is an
alternative designation of the 4-cross-polytope β4 = {3,3,4}, although in practice
one would never use it.) Note that the vertex-figure of P must coincide with the facet
of Q. If it is not actually universal, then extra relations are needed to determine its
group. In two particular cases, we have some simple notation:

• with given Petrie polygon {r}, the notation is {P,Q : r};
• with given deep hole {h}, the notation is {P,Q | h}.
The two notations can be combined to give {P,Q : r | h} if necessary. As with the
other entries in the Schläfli symbol, since we are attempting a geometric description
of our polytope, it will usually be the case that r and h are generalized fractions. For
an abstract description of the group, it is the numerators of the fractions in the whole
notation which are significant (a 0 in the denominator means that we think of the
corresponding number as ∞, but since this imposes no relation on the group, we do
not mention it unless it is the first entry of the Schläfli type).

Remark 4.2 In many cases, we do not have a complete description of the group of
a geometric regular polytope or apeirotope, and then a notation such as {P,Q : r}
or {P,Q | h} (particularly with generalized fractional entries) is intended only to
indicate the type of the Petrie polygon or deep hole. When we know that the notation
actually specifies the group, we shall say so.

Remark 4.3 In contrast, there are many cases where a fine Schläfli symbol specifies
the polytope geometrically, but not abstractly. For example, the great dodecahedron is
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geometrically (up to similarity) {5, 5
2 }, whereas abstractly it is {5,5 | 3}; the notation

distinguishes it from the isomorphic small stellated dodecahedron { 5
2 ,5}. The notion

of such specification is called rigidity; we shall discuss it in more detail in [19].

As we have said, we can deploy similar notation in the abstract case. However, one
often needs to indicate less obvious group relations. Let G = 〈r0, . . . , rn−1〉 be the
group of a regular polytope P of Schläfli type {p1, . . . , pn−1}. If rj (1) · · · rj (m) = e is
a relation in G, then we write J := j (1) . . . j (m) for the corresponding relator (thus,
using the indices alone detaches the relator from the particular notation employed
for the generators), so with rj is associated the index j . If G is determined by the
Schläfli type and the relators J1, . . . , Jr (excluding those giving the Schläfli type),
then we write

P := {p1, . . . , pn−1}/〈〈J1, . . . , Jr 〉〉.
For instance, with all entries integral,

{p1, . . . , pn−1 : r} = {p1, . . . , pn−1}/
〈〈(

012 . . . (n − 1)
)r 〉〉

,

{p1, . . . , pn−1 | h} = {p1, . . . , pn−1}/
〈〈(

012 . . . (n − 2)(n − 1)(n − 2) . . .21
)h〉〉

.

There is further notation to give a more precise description of polyhedra, but we
will explain it in the appropriate place when we need it.

5 Operations

There are various operations which yield new regular polytopes from old ones. Two
important techniques for obtaining groups of new regular polytopes are mixing and
twisting. By mixing we mean picking out from an existing group (often, but not
always, itself the group of a polytope) elements which themselves form a suitable
canonical generating set. We shall later meet examples of this: Petrie contraction in
Sect. 10, which will be extended in Sect. 11, as well as various things like the Petrie
operation π . By twisting we mean adjoining to such a group one or more (usually
involutory) automorphisms. The two techniques are not exclusive, as we shall see
in Sect. 12, particularly since we find it convenient in our treatment to allow inner
automorphisms as well (thus, strictly speaking, this is mixing rather than twisting).

In this section, with one exception we are concerned with operations which are
reversible (in fact, they will be involutory). These have all been discussed in earlier
papers already cited, and so our treatment of them will be fairly short.

So, let P be a regular n-polytope (or apeirotope), whose group G = G(P ) has
generating reflexions (R0, . . . ,Rn−1). It is important to remember that we regard Rj

indifferently as an involutory isometry or as its mirror (of fixed points). If R is a linear
reflexion, then so is −R = (−I )R = R⊥, where the second expression (−I )R thinks
of it as an isometry, while the third R⊥ identifies it with its mirror. Indeed, it may be
appropriate to write −I = {o}, since it is the reflexion with mirror the origin; hence,
the reflexion in a general point w may be written {w} on the same principle.



Discrete Comput Geom (2011) 46:660–703 669

If P is finite, in which case we may suppose that its centre is the origin o, then
we clearly obtain a new group if we replace Rj by −Rj . If P is an apeirotope, then
we usually take its initial vertex to be the origin o, in which case we have the same
possibility for j ≥ 1. However, such sign changes will usually not give rise to a new
polytope. Two cases where we often obtain polytopes are j = 0 if P is finite, or j = 1
if P is infinite. We discuss these first and then briefly mention further operations of a
similar kind.

So, let P be finite of rank n, with G = G(P ) generated by (R0, . . . ,Rn−1). To set
things in a general context, define Z := R0 ∩ · · · ∩ Rn−1 (as a mirror). When P has
centre o in its ambient space E, we have Z = {o}; for simplicity, we shall assume
this. We then define P ζ by its group Gζ with generators (R0Z,R1, . . . ,Rn−1) =:
(S0, . . . , Sn−1); thus (in effect) ζ changes the sign of R0 in E. More generally, re-
placing Rj by RjZ is an operation denoted by ζj , so that ζ = ζ0; we rarely need the
cases j ≥ 1 (see also Remark 5.2).

Remark 5.1 If P is a blend of the form P = P ′ # {2}, then it is easy to see that
P ζ = (P ′)ζ , with the dimension lowered by 1; we shall tacitly exclude this case in
the following discussion, but the reader should observe how it plays a rôle in the
following Theorem 5.3.

Remark 5.2 The lower bound on dimRj which we used for Theorem 3.4 also ex-
cludes the deployment of ζj in most cases.

The effect of ζ on the vertex-figure Q of P is straightforward: the vertex-figure of
P ζ is −Q = QZ (we could replace the initial vertex v by vZ to preserve Q, but it is
more convenient not to). The effect of ζ on a proper (initial) face F < P depends on
two things: whether the centre c = c(F ) of F coincides with o or not, and whether F

is a blend with one component {2} or not.

Theorem 5.3 Let F be an initial (proper) face with centre c of a finite regular poly-
tope P with centre o. Then, under ζ , the corresponding initial face F̂ of P ζ with
centre ĉ is as follows:

(a) if F is not a blend with component {2} and c = o, then F̂ = Fζ with ĉ = o;
(b) if F is not a blend with component {2} and c �= o, then F̂ = Fζ # {2} with ĉ = o;
(c) if F = G# {2} is a blend with component {2} and c = o, then F̂ = Gζ with ĉ �= o;
(d) if F = G # {2} is a blend with component {2} and c �= o, then F̂ = Gζ # {2} with

ĉ �= o and 〈c, ĉ〉 = 0.

Proof Except for the last claim that 〈c, ĉ〉 = 0, for which see the picture following,
this is all fairly obvious. In the picture, G′ is a translate of the polytope G involved
in the blend, and edges of F go from a vertex of G to the corresponding adjacent
vertex of G′. As indicated, G′′ = −G′ = G′Z, and edges of F̂ similarly go from a
vertex of G to the corresponding adjacent vertex of G′′. Observe, by the way, that
this illustrates the pairing G ♦ {2} = Gζ # {2} which we discuss in Sect. 6. �
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As we have seen, blends with segments behave somewhat anomalously under ζ .
Otherwise, we have the following.

Theorem 5.4 If P and Q are finite regular polytopes, neither of which is a blend
with one component a segment, then (P # Q)ζ = P ζ # Qζ . In particular, if {p} is a
regular polygon with no component {2} or {∞}, then {p}ζ = {p′′}.

Proof Only the latter claim needs to be checked, and for this it is clear that, if {q}
is a (finite) planar regular polygon, then {q}ζ = {q ′′}. Recall that q ′′ is defined by
1/q + 1/q ′′ = 1/2. �

An operation closely related to ζ is defined as follows; it applies to apeirotopes
as well as polytopes. We now write Kj := Rj ∩ · · · ∩ Rn−1 (as the mirror of an
involution). Then we have

Lemma 5.5 The involution Kj commutes with all Ri except Rj−1.

Proof To see this, we may suppose that j ≥ 1 and note that Kj is the Wythoff space
of the (n − j + 1)-coface Q (say) of P . Since Rj−1 moves an initial vertex of Q in
Kj , it cannot commute with Kj . On the other hand, if F is the initial (j − 1)-face of
P and k ≥ j , then it is not hard to see that Rk fixes each x ∈ vertF , so that x ∈ Rk .
Hence vertF ⊆ Kj , and it follows that Kj must commute with each Ri for i ≤ j − 2.
Finally, if i ≥ j , then Kj ⊆ Ri , and so clearly Kj commutes with Ri . �

We let κij denote the operation of replacing Ri by RiKj . Observe that RiKj

will be an involution for i �= j − 1 but will not commute with Rj−1; thus the only
allowable cases are i = j − 2 or i = j . We shall rarely need the former case, and so
we usually write κj := κjj in the latter. Indeed, when P is a regular apeirotope, we
further write κ := κ1. If we suppose that o is the centre of its vertex-figure Q, and so
usually the initial vertex of P itself, we see that κ is the operation ζ applied to Q. We
then let P κ be the corresponding new apeirotope, if it exists. In view of Remark 5.1,
we initially assume that Q is not a blend of the form Q = Q′ # {2}; we shall see what
happens if it is in Sect. 9.

Some properties of κ follow easily from the definition, but for others, it is better
to wait until Sect. 9.

Theorem 5.6 Under the operation κ :
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(a) (P # Q)κ = P κ # Qκ for any regular apeirotopes P and Q;
(b) if the initial 2-face of P is {p}, then that of P κ is {p′′}.

There are many operations which apply to polyhedra (or apeirohedra), but nearly
all of them have no natural generalizations to the polytopes considered here. There
are two exceptions. The first is the Petrie operation π , given by

(R0, . . . ,Rn−1) �→ (R0, . . . ,Rn−4,Rn−3Rn−1,Rn−2,Rn−1) =: (S0, . . . , Sn−1);
observe that π = κn−3,n−1. However, in certain circumstances, π is an invalid oper-
ation. The first case here has often been employed by us in the past; the other two
(which are new) fail for much the same reason.

Theorem 5.7 Let P be a regular n-polytope of Schläfli type {p1, . . . , pn−1}. Then
the Petrie operation π fails to yield a regular polytope P π in at least the following
cases:

(a) if n ≥ 4 and q := pn−3 is odd;
(b) if n ≥ 5 and the size q of the hole of the (n − 5, n − 3)-section of P (of type

{pn−4,pn−3}) is odd;
(c) if n ≥ 5 and the size q of the Petrie polygon of the (n − 5, n − 3)-section of P is

odd.

Proof Note that these results actually hold on an abstract level. For (a), in the notation
above for the operation we have

Sn−1 = Rn−1 = (Rn−4Rn−3 · Rn−1)
q = (Sn−4Sn−3)

q ∈ 〈Sn−4, Sn−3〉,
violating the intersection property. For (b), we similarly have

Sn−1 = Rn−1 = (Rn−5Rn−4Rn−3Rn−4 · Rn−1)
q

= (Sn−5Sn−4Sn−3Sn−4)
q ∈ 〈Sn−5, Sn−4, Sn−3〉,

and for (c), we have

Sn−1 = Rn−1 = (Rn−5Rn−4Rn−3 ·Rn−1)
q = (Sn−5Sn−4Sn−3)

q ∈ 〈Sn−5, Sn−4, Sn−3〉,
both violating the intersection property. �

The second such operation is what we shall call halving, though the name is even
less appropriate than in the case of rank 3 where it originates. This applies to a poly-
tope P of Schläfli type {p1, . . . , pn−1} with pn−2 = 4 and is

η: (R0, . . . ,Rn−1) �→ (R0, . . . ,Rn−4,Rn−3Rn−2Rn−3,Rn−1,Rn−2)

=: (S0, . . . , Sn−1).

If a genuine polytope Q is obtained, then the Schläfli type of Q is, say, {q1, . . . , qn−1},
where qj = pj for j �= n − 2, while qn−2 is the type of the hole of the original
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(n − 4, n − 1)-section of type {pn−3,pn−2}. The new group is a proper subgroup of
the old one, except when the edge-graph of the (n−4, n−1)-section has odd circuits.

It is worth pointing out that η has been applied informally in earlier work to poly-
topes of higher rank than 3, for instance, [18], as well as in [24, Sect. 10E] (with a
different notation—we shall meet the example in Sect. 12).

6 Blends

If a finite regular polytope P of nearly full rank is a blend, then Theorem 3.6 implies
that one of its components must be a segment {2}; the other component is then a
regular polytope Q of full rank. The situation for a regular apeirotope P of nearly
full rank is very similar; one component is a segment {2} or apeirogon {∞}, while
the other is a regular apeirotope Q of full rank. Actually, at this stage what we are
claiming is not fully established, because in theory it is possible for the (necessarily
untrivial) pure component Q of full rank not to be polytopal. Thus one purpose of
the section is to prove the relevant Theorem 6.4 and 6.5 below. We consider the two
cases in turn.

Remark 6.1 The blend of a finite regular polytope of full rank n and an apeirogon is
an apeirotope of rank n and dimension n + 1, and is therefore not of nearly full rank.

We have already met one important feature of blends P = Q # {2} in the four-
dimensional case (in fact, it even applies to blends with Q a polygon). We have seen in
Sect. 5 that finite regular polytopes are paired by the operation ζ , which replaces the
initial generating reflexion S0 of (say) Q (with centre at o) by −S0 = S⊥

0 to give Qζ ,
but we observed in Remark 5.1 that ζ , when applied to blends with segments, lowers
the dimension. We can retrieve this situation by forming a blend in an alternative way.
If Q has codimension 1, then translate Q in a direction orthogonal to linQ and (in
effect) apply the same operation ζ ; the resulting polytope is denoted Q ♦ {2}. Then
blends are also paired by

Q ♦ {2} = Qζ # {2}. (6.1)

To be more specific, suppose that Q (in E
d ) has group generators (S0, . . . , Sd−1). In

E
d+1 = E

d × R, the respective generators (regarded as mirrors) are

(S0, S1 × R, . . . , Sd−1 × R) for Q # {2}, (6.2)

(S⊥
0 , S1 × R, . . . , Sd−1 × R) for Q ♦ {2}; (6.3)

the orthogonal complement in the second expression is taken in E
d , of course. We

shall usually find it more convenient to write Q ♦ {2} rather than Qζ # {2}.
Remark 6.2 In fact, the two polytopes Q # {2} and Q ♦ {2} are isomorphic. With Q

a d-polytope as before, we can take their vertices (in E
d+1, say) in the hyperplanes

ξd+1 = ε = ±1 in E
d+1 = E

d × R. With x ∈ E
d , the isomorphism is given by

(x, ε) �→ (εx, ε)

for each x ∈ vertQ.
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Remark 6.3 In the case of the d-simplex αd , we have the (combinatorial) isomor-
phism

αd # {2} ∼= αd ♦ {2} ∼= α
ζ
d ,

because the last polytope (with twice as many vertices as αd ) has even edge-circuits.
Similarly, for the cube γd , we have

γd # {2} ∼= γ
ζ
d # {2} ∼= γd,

and so on, in view of (6.1). Note that γ
ζ
d has the vertices of the half-cube hγd when

d is odd.

There is a further point. If Q is a classical regular 4-polytope of full rank 4, then
the Petrie operation π only works in one case:

{4,3,3}π = {{4, 4
1,2 | 4}, { 4

1,2 ,3 : 3}};
it fails in all the others, because their 2-faces are odd. It might be thought that, once
we blend with {2}, the Petrie operation will now be valid for these others, because the
2-faces of such blends are even polygons. However, these examples still fail, because
their degeneracy actually runs more deeply than the oddness of their faces.

It is appropriate to explain what is happening here, particularly since we passed
over these matters rather lightly in [16, 17]. We deal with the polyhedra of [17] first.
The relevant cases here are those with mirror vectors (3,2,3) or (1,2,3) (as defined
in Sect. 3), the latter being related to the former by ζ (denoted κ0 in earlier papers).
These are derived by twisting diagrams D1(p, q; r) of the form

The labels 0,1,2 on the diagram refer to the generators of the symmetry group of
the corresponding regular polyhedron (if it exists); thus R1 is a twist—an (inner or
outer) automorphism of the diagram. In the excluded cases, p is a fraction with an
even denominator.

Now, if we apply ζ1, changing the sign of the second generator R1 of the symmetry
group, then we replace p and q by their complements p′ and q ′, with

1

p
+ 1

p′ = 1,
1

q
+ 1

q ′ = 1.

For the previously excluded polyhedra, p′ now has odd denominator (included here
is the case when it is an integer). When q ′ is a fraction with even denominator, the
discussion of these cases in [17] shows that they are obtained from classical regular 4-
polytopes by the Petrie contraction operator � , which we shall consider in Sect. 10.
Forward reference to that section then exhibits the excluded cases as applications of
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ζ� to the 4-polytopes; the discussion following Proposition 10.3 shows that fewer
vertices are obtained than the theoretical quotient of the order of the whole group by
that of the vertex-figure. This is not surprising, because we know that vertices are
identified by the degeneracy of the faces (at least, with mirror vector (3,2,3)). We
then see that applying ζ cannot rescue this situation.

In the two remaining cases, with (p, q, r) = ( 5
3 ,2,5) or (5, 5

2 ,2), to which the pre-
vious considerations do not apply, direct calculations show that the 1800 = 14400/8
expected vertices coincide in threes with the 600 vertices of {5,3,3}. Thus applying
ζ will not produce a genuine polyhedron in either case.

For the 4-polytopes of [16] (with the exception of {4,3,3}), if we apply π , then we
obtain facets which are polyhedra of the type we have just excluded; in fact, we are
applying the operation (7.2) of [17] in the dual situation (see also [21]). Thus—even
apart from the degeneracy of the faces—the new facets degenerate, again in a way
that applying ζ will not remedy.

Returning to the main discussion, we conclude that no unexpected examples of
polytopal blends with segments arise in five-dimensional space. In yet higher dimen-
sions, even theoretically there is no way of constructing examples other than the ob-
vious ones. We can summarize the analysis so far (which confirms what we claimed
in the first paragraph) in

Theorem 6.4 There are 34 blended finite regular polytopes of nearly full rank in E
5,

and 6 in E
d for each d ≥ 6. Each is constructible in two ways, related by (6.1).

The count in Theorem 6.4 comes from the table of [16, p. 34], as does that in the
following Theorem 6.5.

The case of blended regular apeirotopes of nearly full rank can now be dealt with
quickly. Exactly the same considerations as in the finite case prevent applications of
the Petrie operation π , except where we already know that it is permitted for the pure
component of full rank. That is, as with blending with {2}, blending with {∞} cannot
undo degeneracies which arise from (mis)application of other operations. We thus
arrive at the following:

Theorem 6.5 There are 36 blended regular apeirotopes of nearly full rank in E
5,

and 16 in E
d for each d ≥ 6.

7 Vertex-figures

The vertex-figure Q of a regular n-polytope P of nearly full rank is a (finite) regular
(n−1)-polytope of full or nearly full rank; at this stage, we treat the finite and infinite
cases together. (If P is finite with centre o, then the vertices of Q—thought of as the
other vertices of the edges of P through its initial vertex v—lie on the intersection of
a sphere with centre o and one with centre v, and so on a hyperplane which does not
contain v.) Since it can be assumed that we have a list of regular (n− 1)-polytopes of
nearly full rank to hand, it is the case of full rank which we need to discuss further.

Let P be a regular polytope or apeirotope of nearly full rank. It is helpful to dis-
tinguish three classes of vertex-figure Q of P :
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• Q is of full rank;
• Q is blended;
• Q is pure.

We settle the first class in Theorem 7.1 immediately below, and the second in Sect. 10
(but see also the next Sect. 8). The third case ultimately relies on the first two, as
working back through successive vertex-figures easily shows; the key classification
is that of the finite regular polyhedra of nearly full rank, which was accomplished in
[17].

The basic result here is the following.

Theorem 7.1 If n ≥ 4, and P is an n-polytope of nearly full rank whose vertex-figure
Q is an (n − 1)-polytope of full rank, then P is a blend.

Proof The proof is just about the same as that of [18, Theorem 6.2] and, indeed,
is the same if we adopt the viewpoint of [16] and earlier discussions in this paper,
and regard the ambient space of a finite regular polytope as the sphere containing its
vertices.

So, suppose that P is a regular n-polytope in the n-dimensional ambient space E

(spherical or Euclidean as appropriate), whose vertex-figure Q is (n−1)-dimensional
in E, so that Q is of full rank. As usual, the group of P is G(P ) = 〈R0, . . . ,Rn−1〉,
with the Rj the canonical generating reflexions; we take v to be the initial vertex
of P and w that of Q (we emphasize that, in the present context, vertQ consists
of the mid-points of the edges of P through v, so that w is the mid-point of the
initial edge). Let H := spanQ (= span vertQ), so that H is a hyperplane. Let J be
the hyperplane through w perpendicular to the line M := span{v,w}; since reflexion
in R0 interchanges v and the other vertex of P on the initial edge, it is clear that
w ∈ R0 ⊆ J .

Further, write K := H ∩ J , L for the line in J through w perpendicular to K ,
and Sj := H ∩ Rj for j = 1, . . . , n − 1. Now w is the sole point in H fixed by
S1, . . . , Sn−1; we infer that the only possibilities for R0 are R0 = {w}, L, K or J .

In fact, there are two possibilities. If v coincides with the centre c of Q, then all
vertices of P lie in H , so that P is (n−1)-dimensional (and so of full rank), contrary
to the initial supposition. Thus, v �= c must lie on the line N through c perpendicular
to H . In this case, it follows that Rj = span(N ∪ Sj ) for each j ≥ 1. Moreover,
since L now meets N (in b, say), we see that vertP lies in a sphere with centre b.
Therefore, again, if R0 = L or J , then P turns out to be of full rank (and finite in case
E is Euclidean). We conclude that R0 = {w} or K , and it follows immediately that P

is actually a blend. �

Remark 7.2 It is worth looking into why this result fails for n = 3. In fact, where it
will go wrong is when R2 is the half-turn about the initial edge; then R0 can be any
line in J through w, and with no further restriction the argument does not carry over.

In [18, Sect. 6], we went on to discuss blended vertex-figures. We could do the
same thing here. However, it is preferable to postpone this discussion until later sec-
tions; the situation is somewhat more restrictive than in [18].
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8 The Gateway

It is unnecessary to point out that the symmetry group H = G(Q) of the vertex-figure
Q of a regular polytope (or apeirotope) P is a subgroup of the group G = G(P ) of P ,
whose index [G :H] is the number of vertices of P . However, for a polytope of nearly
full rank in E

d with d ≥ 5 which is not a blend (as we may assume henceforth), G will
be a subgroup of a hyperplane reflexion group, possibly with outer automorphisms;
this will even hold for polytopes whose groups consist of direct isometries only, as
we shall see in Sect. 14. This severely restricts what H can be. Moreover, because H
will (in effect) be a subgroup of G in only one way, it will immediately determine the
vertex-set of the polytope P ; in turn, since vertQ ⊆ vertP (in the obvious way), this
places further restrictions on Q.

This is particularly important for the finite polytopes in the ‘gateway’ dimension
d = 5, because here G must be a subgroup of [3,3,3,3] � C2 = [3,3,3,3] × C2
or [3,3,3,4]; we have already classified the regular polytopes and apeirotopes of
full or nearly full rank in lower dimensions. In this section, therefore, we treat these
‘gateway’ 4-polytopes in general terms, except that we leave the cases of those with
direct symmetries only to Sect. 14.

Remark 8.1 The term ‘gateway’ comes from genealogy. A ‘gateway’ ancestor is one
through whom many lines of descent are traced (from notable ancestors to notable
descendants); in English history, Edward III is often cited as an instance.

So, let us make the procedure explicit:

• for given H, identify those groups G for which H ≤ G ;
• from the fixed point of H in G , identify the vertex-set V of P ;
• check whether the vertex-set of Q is an appropriate subset of V .

We deal with blended vertex-figures first. Noting that the blends γ3 # {2} and γ3 ♦
{2} with a 3-cube γ3 actually have group [3,3]×C2, we see that this and [3,4]×C2 are
the only possible groups H. In effect, we can recover the symmetry giving the blend.
In the case of cubes, we pass to the Petrial first (and then return afterwards). If the
vertex-figure Q has group H = H(Q) = 〈R1,R2,R3〉, then (R1R2)

6 = I , and T :=
(R1R2)

3 is the blending element. Although, strictly speaking, they are isomorphic
groups, we find it convenient to distinguish [3,3] × C2 and [3,3] � C2. In the latter
case, we can have G = [3,3,3,3] � C2, with vertex-set that of Dα5 (the difference
body), whose vertices are those of the (Minkowski) sum of α5 and its reflexion −α5
in its centre. For the remaining cases, the vertices are the mid-points of the edges of
a regular 5-polytope; see Sect. 10.

For other than blends, we must therefore look at potential vertex-figures Q with
mirror vectors of types (r,2,3) for r = 1,2,3 or (2,3,2). Now we must exclude
groups which contain [r] × [r] with r ≥ 5, [3,4,3] or [3,3,5] from the outset, so
reference to [17] shows that the only groups which survive are subgroups of ([r] ×
[r]) � C2 (with r = 3,4), [3,3,3] � C2 and [3,3,4]. We consider these in turn.

The group H = ([3] × [3]) � C2 is a subgroup of G = [3,3,3,3] � C2, but not
of [3,3,3,4]. Moreover, the corresponding polytope P must have the vertices of the
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truncate 022 of the 5-simplex α5; these are the centres of the triangular 2-faces of α5.
Observe that the vertex-figure of 022 is the product {3} × {3}.

The group ([4] × [4]) � C2 is a subgroup of [3,3,3,4], actually in two distinct
ways. However, the putative polytope P would then have to have the vertices of the
5-cross-polytope β5. This immediately excludes the torus {4, 4

1,2 | 4} with 16 vertices

as a possible vertex-figure. It might seem to permit {4, 4
1,2 | 4}η = { 4

1,2 ,4 : 4
1,2 } with

the 8 vertices of the half-cube hγ4, which are the same as those of β4. However, the
induced symmetry R1 fixes the initial vertex in β5, which cannot be allowed; hence
this case does not occur.

The group H = [3,3,3] is a subgroup of both [3,3,3,3] and G = [3,3,3,4]. How-
ever, in the former case, a putative polytope P would have to have the vertices of α5,
possibly together with the copy −α5 of α5 obtained by reflexion in its centre; the
vertex-figure would then have to have the vertices of α4, which is not possible. There
remains the latter case. The vertices of P must then be a subset of those of the 5-cube
γ5, so that we should write G = [4,3,3,3]; consequently, the vertex-figure must then
have the vertices of the truncate 021 of α4 (again, α4 itself cannot occur), which are
the mid-points of the edges of α4. Also covered here is the case of the half-cube hγ5,
with G = [32,1,1].

Finally, though [3,3,3] � C2 is a subgroup of [3,3,3,3] � C2, we come back to
the first case in the previous paragraph, which we have already excluded.

Remark 8.2 Of course, the same kind of analysis applies in higher rank, but now we
will have an even more severely restricted list of (vertex-sets of) potential vertex-
figures.

9 Apeirotope Constructions

In this section we discuss two constructions which lead from finite regular polytopes
to regular apeirotopes, with one preserving rank deficit and the other increasing rank
deficit by 1. A connexion between them is shown in Sect. 10, using a third con-
struction. All these constructions have appeared before (in special cases), but the
relationship has not previously been recognized.

The first construction is that of the free abelian apeirotope. If Q is a (finite) ra-
tional regular polytope, meaning that its vertices all have rational coordinates with
respect to some coordinate system, and L is the subspace of points fixed by G(Q)

whose generating set is (S0, S1, . . .) (thus L ≤ Sk for each k), then P := apeirQ has
a point v ∈ L as initial vertex and generating set for G(P ) given by R0 := {w} where
w is the initial vertex of Q, and Rj := Sj−1 for j ≥ 1.

Though the construction appears to have a lot of latitude, in fact the only difference
is whether v ∈ affQ or not. If P is the apeirotope obtained when v ∈ affQ, then the
other case is P # {2}. In general, the two cases are isomorphic; they are not just when
P has odd edge-circuits, which (in practice) only happens in a few cases where Q

has a subset of vertices forming a diametral (planar regular) hexagon.

Remark 9.1 For the apeir construction to fail to yield a regular apeirotope, the fol-
lowing are necessary:
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• v ∈ affQ;
• apeirQ has odd edge-circuits;
• Q is not centrally symmetric or is handed (has a purely rotational symmetry

group—see Sect. 14).

We note that such examples occurred in [18].

In five or more dimensions, we can take for granted the fact that—except for
the blends involving the pentagonal regular polytopes of full rank in E

4—all reg-
ular polytopes Q under discussion are rational and hence permit apeirotopes apeirQ.
Only when such apeirotopes are related in a natural way to others, will they receive
specific mention. For the construction to yield an apeirotope apeirQ of nearly full
rank, we thus need one of the following:

• Q of nearly full rank and initial vertex v ∈ affQ,
• Q of full rank and v /∈ affQ.

Remark 9.2 We should note that, with Q of full rank, apeirQ # {2} ∼= apeirQ in
nearly all cases (eight in E

5 and six in E
d for each d ≥ 6). The exceptions are Q =

{3,4,3} or {3,4,3}ζ , with diametral hexagons of {3,4,3} forcing apeirQ to have
triangular edge-circuits.

For our other construction, we observe that what we have used as an operation in
Sect. 5 actually yields a construction if suitably generalized. Let Q be a finite regular
polytope whose group G(Q) is crystallographic, let (S0, S1, S2, . . .) be the generating
set of G(Q), and let w be the initial vertex of Q. The point-reflexion in w is then {w}
(regarded as a mirror—we mentioned this in Sect. 5); the construction is then given
by the new generating set

(S0, S1, S2, . . .) �−→ (
S0, {w}S1, S2, . . .

) =: (R0,R1,R2, . . .).

If Q were an apeirotope, then we would have designated the corresponding operation
by κ (and recall that we confined its usage to apeirotopes). In keeping with what we
did in [18], we use the same symbol κ for this construction. We therefore have

Theorem 9.3 If Q is a finite crystallographic regular polytope of full rank, then Qκ

is a putative discrete regular apeirotope of nearly full rank. Conversely, if P is a
regular apeirotope of nearly full rank whose vertex-figure is blended, then P κ is a
putative regular polytope of full rank.

Remark 9.4 We say “putative” here, because in some cases the construction fails
to yield an apeirotope or polytope (whose group satisfies the intersection property).
We shall see examples when we come to consider individual cases; there is one in
Sect. 12.

Remark 9.5 When the construction is applied to a regular d-polytope with d ≤ 4, it
may be possible further to apply the Petrie operation π . When d ≥ 5, however, this
can no longer happen; in no case is π applicable.
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The description of the faces of P = Qκ in terms of those of Q exactly follows
Sect. 5. However, it is worth our while to summarize the overall picture from the
view-point of the classical regular polytopes in the sense of Coxeter [4], whose sym-
metry groups are generated by hyperplane reflexions.

Theorem 9.6 If {P,Q} is a finite classical crystallographic regular polytope with
facet P and vertex-figure Q, then

(a) {P,Q}κ = {P κ,Qζ # {2}},
(b) {P,Q}ζκ = {P ζκ # {∞},Qζ # {2}}.

Proof All we need do is notice that {P,Q}ζ = {P ζ # {2},Q}; everything else follows
from the previous discussion. �

We therefore go through the individual cases, bearing in mind that, as shown in
[16], in E

d (with d ≥ 5) the only (finite) regular polytopes of full rank are the sim-
plex, cross-polytope and cube, and the results of applying ζ to them. In view of
Theorem 9.6, we need only discuss in detail the initial case of interest, which will be
that of rank 3.

In fact, we have the following.

{3,3}κ = {
6, 6

1,3 | 3
} ∼= {6,6 | 3},

{3,4}κ = {
6, 4

1,2 | 4
} ∼= {6,4 | 4},

{4,3}κ = {
4, 6

1,3 | 4
} ∼= {4,6 | 4},

{3,3}ζκ = { 3
0,1 , 6

1,3 : 4
1,2 , 4

1,2

} ∼= {∞,6 : 4,4},
{3,4}ζκ = { 3

0,1 , 4
1,2 : 6

1,3 , 4
1,2

} ∼= {∞,4 : 6,4},
{4,3}ζκ = { 4

0,1 , 6
1,3 : 6

1,3 ,3
} ∼= {∞,6 : 6,3}.

(Recall our use of heavy braces to denote abstract polytopes.) Of course, {3,4} and
{3,4}ζ will not play any part as faces in E

d for d ≥ 5. It is also worth noting that
{3d−2,4}ζ has the same vertices and edges as the original cross-polytope {3d−2,4}
and that

{
4,3d−2}ζ =

{ { 4
1,2 ,3d−2} ∼= {4,3d−2} if d is even,

{ 4
1,2 ,3d−2 : d

1,2,...,m
} ∼= {4,3d−2}/2 if d is odd;

here, m := (d − 1)/2, and {4,3d−2}/2 ∼= {4,3d−2 : d} is obtained by identifying op-
posite vertices of the original d-cube {4,3d−2}.
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10 Petrie Contraction

We now come to a further construction, which generalizes one introduced in [20] (see
also [17]). This uses the mixing operation

� : (S0, . . . , Sn) �→ (S1, S0S2, S3, . . . , Sn) =: (R0, . . . ,Rn−1), (10.1)

which (when it is valid) yields a regular n-polytope P := Q� of nearly full rank from
a regular (n + 1)-polytope Q of full rank. (Of course, we use ‘polytope’ generically
here; if Q is an apeirotope, then Q� is also.) We shall call P the Petrie contraction
of Q.

When Q is a classical regular polytope, part of the description of Q� in terms of
Q can be gleaned from the earlier papers [18, 20]:

• the vertices of Q� are the mid-points of the edges of Q,
• the 2-faces of Q� are central sections of the 3-faces of Q, whose edges join mid-

points of successive edges of their Petrie polygons,
• the vertex-figure of Q� is the blend G # {2}, where G is the edge-figure of Q.

If the Schläfli type of Q is {q1, . . . , qn} with q3 even, then Q� splits. However, since
we are working in E

d with d ≥ 5, we do not encounter such examples. With d ≥ 5,
the only finite examples of Q are the simplex, cube, cross-polytope and the results of
applying ζ to them, and (apart from the six free abelian apeirotopes, which we treat
next) the only apeirotopes are the cubic tiling and its transform under κ .

Remark 10.1 For k ≥ 3, the k-face of Q� is F� , where F is the (k + 1)-face of Q.
Note also that, when k = 3, the Petrie polygon of F� is of the same kind as that of
F , while the hole of F� is that of the vertex-figure of F .

Similar arguments to those of Sect. 7 show that Petrie contraction can be reversed
for a polytope whose vertex-figure is a blend with a simplex or cross-polytope; natu-
rally, this does not apply to a blend with a cube.

The connexion already mentioned in Sect. 9 is the following.

Theorem 10.2 If Q is a finite rational regular polytope of full rank, then
(apeirQ)� = Qκ is a regular apeirotope of nearly full rank.

Proof We use the notation in the definition of apeirQ. Bearing in mind that w is the
initial vertex of Q (and so of Qκ also), the generating set of the group of (apeirQ)�

is

(R0,R1,R2,R3, . . .) = ({w}, S0, S1, S2, . . .
) ��−→ (

S0, {w}S1, S2, . . .
)
,

which replaces S1 by its image under the point-reflexion in w ∈ S1. This just defines
Qκ , as claimed. �

In general terms, we also have the following.
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Proposition 10.3 Let Q be a finite regular d-polytope with d ≥ 5. Then Qζ� =
Q�ζ1 , if the polytope exists.

Proof Indeed, in the notation of (10.1), ζ changes the sign of S0, which in turn
changes the sign of R1; by definition, this is ζ1. �

Before we go on to discuss individual cases, we have a further general result about
this construction; this refines Proposition 10.3. Suppose that Q is a (finite) classical
regular d-polytope, with group G generated by hyperplane reflexions (S0, . . . , Sd−1).
Then P := Qζ� has group generators (S1,−S0S2, S3, . . . , Sd−1) (as usual, we take o

to be the centre of Q). The mirror of −S0S2 is (S0 ∩ S2)
⊥, so that the Wythoff space

of P (containing its initial vertex) is

(S0S2)
⊥ ∩ S3 ∩ · · · ∩ Sd−1 = (

S⊥
0 + S⊥

2

) ∩ S3 ∩ · · · ∩ Sd−1.

Now, if uj is a (unit) normal to Sj for j = 0,2, then

S⊥
0 + S⊥

2 = lin{u0, u2}.
Since u0 ∈ S3 ∩ · · · ∩ Sd−1 but u2 /∈ S3 ∩ · · · ∩ Sd−1, it follows that the Wythoff space
of P is actually lin{u0}. We have thus shown the following:

Theorem 10.4 If Q is a finite classical regular d-polytope with group G(Q) =
〈S0, . . .〉, and if u0 is the normal to the hyperplane S0, then u0 can be taken to be
the initial vertex of Qζ� , if this polytope is non-degenerate.

Remark 10.5 In fact, Theorem 10.4 gives an easy criterion for degeneracy, when too
few vertices would be provided by the images of u0 under G(Q) compared to the
index [G(Q) : 〈S3, . . . , Sd−1〉]. We shall see specific examples almost immediately.

We now look at each case separately.

10.1 Simplex

For the group Sd+1 = G(Q) of the regular simplex Q = αd (the symmetric group
of order (d + 1)!), as in earlier papers we work in the hyperplane H

d := {x =
(ξ0, . . . , ξd) | ξ0 + · · · + ξd = 0} in E

d+1. Thus we can take the generators G(Q)

to be transpositions of {0, . . . , d}, and so, with Sj := (j j + 1) for j = 0, . . . , d − 1,
we have

R0 = (1 2), R1 = (0 1)(2 3), Rj = (j + 1 j + 2) for j = 2, . . . , d − 1.

The 3-face of P = Q� is the polyhedron {4, 6
2,3 : 5

1,2 | 3} of [17, 18], while the

vertex-figure of P is {3d−3} # {2}. It is easy to check the geometry here; note that the
initial vertex of P can be taken to be (d − 1, d − 1, (−2)d−1).

If we replace Q by Qζ , then we change the sign of R1; that is, ζ� = �ζ1. In view
of Theorem 10.4, the initial vertex of P can be taken to be (1,−1,0d−1) (a normal
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vector to S0), making it easy to check the geometry. We thus see that the original 3-
face is replaced by its double cover {4, 6

1,3 | 3} ∼= {4,6 | 3}, one of the skew polyhedra

of Coxeter [3]. The vertex-figure is now of the form {3d−3} ♦ {2}, and the order of
the group of P is doubled to 2 · (d + 1)!.

Recalling that we have d ≥ 5 here, we see that π can only be applied to P (in
either case) when d = 5. In the first case, the vertex-figure of P can be written { 6

2,3 ,3 :
4

1,2 } ∼= {6,3}4. What then results is

{{4, 6
2,3 : 5

1,2 | 3}, { 6
2,3 ,3 : 4

1,2 }}π = {{4, 4
1,2 | 3}, { 4

1,2 ,3 : 6
2,3 } : 5

1,2

}
. (10.2)

We have left the signifier for the Petrie polygon of the vertex-figure as an indication of
its geometry (it is actually { 4

1,2 ,3 : 3}# {2}). In the other case, the resulting 4-polytope
is the double cover of the 4-polytope of (10.2); we obtain

{{4, 6
1,3 | 3}, { 6

1,3 ,3 : 4
1,2 }}π = {{4, 4

1,2 | 3}, { 4
1,2 ,3 : 6

1,3 }}.
This polytope is isomorphic to the universal {{4,4 | 3}, {4,3}}; we shall meet it again
in Sect. 12.

Remark 10.6 Since the appropriate entry in the Schläfli type of α�
6 is even (it is 6,

of course), it might be thought that π would be applicable here as well. However, a
little checking shows that the degeneracy of its putative edge-figure απ

4 is not rescued
by blending with {2}.

We can now apply ζ to all these polytopes. With α�
d and its Petrial in case d = 5

only, we obtain polytopes with twice as many vertices, and group of order 2 · (d +1)!.
In the other two cases, since the polytopes are already centrally symmetric, the group
order remains the same. The details are moderately uninteresting, and so we shall say
no more about them (although it might be worth the reader’s while to verify that no
nasty degeneracies occur).

10.2 Cross-polytope

Since the facet of the d-cross-polytope Q = βd is the (d − 1)-simplex, much of
what we have just said about the case of the simplex carries over directly. In view
of d ≥ 5, the 3-face of P = Q� is again {4, 6

2,3 : 5
1,2 | 3}, while its vertex-figure is

now {3d−4,4} # {2}. However, it helps in what we do next to write down the group
generators explicitly. In terms of x = (ξ1, . . . , ξd), we can express R0, . . . ,Rd−3 as
permutations of the coordinates, namely,

R0 = (2 3), R1 = (1 2)(3 4), Rj = (j + 2 j + 3) for j = 2, . . . , d − 3,

and

Rd−2:x �→ (ξ1, . . . , ξd−1,−ξd).

With initial vertex (1,1,0d−2), we see that the facet is {3d−2}� (as it must be); this
is just a scaled and translated copy of the previous polytope in case d − 1 instead of
d (and coordinate indices running from 1 to d instead of 0 to d − 1).
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Now ζ1 replaces R1 by −R1 (when Q is replaced by Qζ ), so that the new R1 is

x �→ −(ξ2, ξ1, ξ4, ξ3, ξ5, . . . , ξd).

As we should by now expect, the effect of ζ1 is to replace the old 3-face by {4, 6
1,3 |

3} ∼= {4,6 | 3}. The new vertex-figure is still of type {3d−3,4} # {2}. Note that the new
initial vertex is (1,−1,0d−2) (again, a normal to S0); this time, we actually have as
facet {3d−2}ζ� = {3d−2}�ζ1 with the right vertices.

Once more, the Petrie operation π is only permissible if d = 5 (it is invalid if
d = 6 for the same reason that it fails in the case of the simplex α6). However, we
encounter a pretty coincidence. The operations ζ1 and π only affect R1 and change it
into

R
ζ1
1 : x �→ (−ξ2,−ξ1,−ξ4,−ξ3,−ξ5),

Rπ
1 : x �→ (ξ2, ξ1, ξ4, ξ3,−ξ5),

respectively. We can easily see that (R0,R
ζ1
1 ,R2,R3) and (R0,R

π
1 ,R2,R3) are con-

jugate under the reflexion T : x �→ (ξ1,−ξ2, ξ3,−ξ4, ξ5), and so it follows that
β

ζ�
d = β

�ζ1
d = β�π

d T .
Naturally, we can apply ζ to both these polytopes (but again it is worth checking

that nothing goes wrong).

10.3 Cube

We can take the generators of the group of the d-cube γd to be

S0 : x �→ (−ξ1, ξ2, . . . , ξd),

with Sj the permutation (j j +1) of the coordinates of E
d for j = 1, . . . , d −1. Thus

the new generator R1 of the group of γ �
d is

R1 : x �→ (−ξ1, ξ3, ξ2, ξ4, . . . , ξd).

The initial vertex can be taken to be (0,1d−1), the 3-face is the polyhedron {6, 6
2,3 :

8
1,3 | 3} = γ �

4 (see Remark 10.1), and the vertex-figure is αd−2 # {2}.
The Schläfli type of this polytope is {6,6,3d−4}, and so we might expect the Petrie

operation π to be applicable if d = 5 or 6 (as usual, we exclude the case d = 4, which
was already treated in [17]). However, it fails in case d = 6 for the same reason as it
did for the simplex. For d = 5, we obtain the polytope

{{6, 4
1,2 | 3}, { 4

1,2 ,3 : 6
2,3 } : 8

1,3

}
.

The facet is indeed as claimed, and not its quotient {6, 4
1,2 : 5

1,2 | 3} of index 2; the
30 vertices of the initial facet are those of the whole polytope lying in the hyperplane
ξ1 + ξ2 − ξ3 − ξ4 + ξ5 = 0. There are 16 equivalent hyperplanes (orthogonal to diag-
onals of the 5-cube), in accord with the calculation 25 · 5!/2 · 5! = 16 for the number



684 Discrete Comput Geom (2011) 46:660–703

of facets. Note that the universal polytope of type {{6,4 | 3}, {4,3}} is infinite, as we
shall see in Sect. 12, and so the Petrie polygon relation in the notation is needed to
ensure finiteness.

Naturally, we can apply ζ to both these polytopes.
Last, we show that γ

ζ�
d = γ

�ζ1
d degenerates. To obtain this supposed polytope,

we change the sign of S0 above and hence the sign of R1. An appeal to Theorem 10.4
gives e1 = (1,0d−1) (a normal to S0) as the initial vertex; we thus obtain only 2d

vertices in all, rather than the 2d · d!/2 · 2d−2 · (d − 2)! = 2d(d − 1) expected from
the index of the group of the vertex-figure. To bolster this argument, we see that
the 2-face is a doubly covered triangle. Moreover, of course, the example cannot be
rescued by a further application of ζ (changing the sign of R0); one obtains 3-faces
which should be of type {6,6}, with 8 vertices and 4 hexagonal faces, an obvious
contradiction. Again as we would expect, we cannot obtain genuine polytopes by
applying π to these non-polytopes (when d = 5).

10.4 Cubic tiling

Apart from the free abelian apeirotopes, there are only two regular apeirotopes of full
rank in E

d for d ≥ 5, namely, the cubic tiling δd+1 = {4,3d−2,4} and the result of
applying κ to it (that is, applying ζ to its vertex-figure βd = {3d−2,4}). However,
there is a connexion to the apeirotopes apeirβd and apeirβζ

d . If the group of δd+1
has generators (S0, . . . , Sd) and E is the reflexion in the line containing the initial
edge, so that E = (S2 · · ·Sd)d−1, then (in the notation of Sect. 5—see also [16]) the
operation

κ02: (S0, . . . , Sd) �→ (S0E,S1, . . . , Sd) =: (T0, . . . , Td)

yields the group 〈T0, . . . , Td〉 of apeirβd .
For δ�

d+1, we can read off the information from what we have just done on the cube.
Thus, it has facet γ �

d and vertex-figure βd−1 # {2}. For δκ�
d+1, we need to mention

coordinates. The initial vertex of δ�
d+1 can be taken to be e1 = (1,0d−1), the mid-

point of the initial edge of the cubic tiling of side length 2; the corresponding first
two reflexions are

R0 : x �→ (ξ2, ξ1, ξ3, . . . , ξd),

R1 : x �→ (2 − ξ1, ξ3, ξ2, ξ4, . . . , ξd).

Applying κ before � changes the sign of R0, resulting in

R1 · (−R0) : x �→ (−ξ3, ξ1 − 2,−ξ2,−ξ4, . . . ,−ξd),

so that (
R1 · (−R0)

)3 : x �→ (ξ1 − 2, ξ2 − 2, ξ3 + 2,−ξ4, . . . ,−ξd).

With the same initial vertex e1 as before, this tells us that the new 2-face is a helical
apeirogon { 3

0,1 } (the changes of sign in the last d −3 coordinates do not affect it). The

case d = 4, in effect investigated in [18], shows that the 3-face is of type { 3
0,1 , 6

2,3 :
8

1,3 | 6
2,3 }.
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11 The First Gosset Class

This section is devoted to a description of a remarkable family of regular polytopes
and apeirotopes of nearly full rank, of which the basic examples are closely related
to the uniform Gosset–Elte polytopes. (Uniformity is a somewhat weak condition; it
only demands regular 2-faces, uniform facets and a symmetry group transitive on the
vertices. The polytopes r21 have regular facets—cross-polytopes r11 and simplices
r20—and so are often referred to as semi-regular.) In fact, the sole example of these
which is original to Elte [11] (that is, not found by Gosset [12]) is 142, which does not
contribute to our family (hence we drop reference to Elte from now on). We naturally
also include the apeirotopes in this family here; however, we postpone discussion of
some other extensions to Sect. 13.

The source of the family is the Petrie contraction Q := {3,3,3}� = {4, 6
2,3 : 5

1,2 |
3} ∼= {4,6 : 5 | 3} of the 4-simplex, a four-dimensional regular polyhedron that was
first described in [20]; it was briefly discussed in [17], but we did not specify its
group until [18]. (In [19], it is shown that a sufficient geometric description of this
polyhedron is {4, 6

2,3 | 3}. However, we shall keep to the earlier notation here, because
this also indicates the abstract type.) The group G(Q) of Q is [3,3,3] ∼= S5; this is
fairly clear from the construction, but we give a brief extra explanation in abstract
terms.

Because Q slots in at different places in polytopes of our family, initially we
adopt a neutral notation (S,T ,U) for the generators of G(Q). Because Q is ob-
tained by Petrie contraction from the 4-simplex, as described in Sect. 10, if we write
(X,S,Y,U) for the natural generators of [3,3,3], then T := XY yields G(Q). From
this, it is purely routine to verify that G(Q) = 〈S,T ,U〉 indeed satisfies the relations
implied by the notation {4,6 : 5 | 3}.

It is only slightly more difficult to establish the relationship in reverse; in principle,
this was shown in [17]. If we are given involutions S,T ,U satisfying

(ST )4 = (T U)6 = (ST U)5 = (ST UT )3 = I, S � U,

where the relation � means ‘commutes with’, then we define

X := (T U)3 = (UT )3, Y := T X.

Most of the relations for [3,3,3] are easily recovered; the trickiest is (SX)3 = I ,
for which we need to use (twice) (ST UT )3 = I (which implies that T UT ST UT =
ST UT S) and finally (SUT )5 = I . We suppress the rather uninteresting details.

We now move on to the general case. The preceding diagram is that of the finite or
discrete Euclidean Coxeter group [3r,s,1]; as usual, the nodes represent the involutory
generators (which are hyperplane reflexions), and two nodes are joined by a branch
or not according as the product of the corresponding pair of generators has period 3
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or 2. Recall that [3r,s,1] is a finite or Euclidean reflexion group just when

1

r + 1
+ 1

s + 1
≥ 1

2
⇔ (r − 1)(s − 1) ≤ 4,

with equality giving the Euclidean cases; see [5, p. 31] for a neat proof of this.
The infinite cases are depicted below; of course, the finite cases are obtained

by deleting nodes at the beginning or end of the horizontal string. The labelling
X,S,Y,U is as we have just discussed. We demand that r ≥ 1 (since the case r = 0
was treated in Sect. 10) and s ≥ 2. Thus R is always present; however, V may be
absent (as in the third diagram).

We first need to see how R and V interact with the new generator T = XY . Since
R � X,Y , we see that R � T , and it follows that 〈R,S,T 〉 ∼= [3,4] in the natural
way. Next, since V � X,Y , we see that V � T . However,

V UT = V UY · X ⇒ (V UT )4 = I,

and since (as we already know) T U has period 6, we see that 〈T ,U,V 〉 is the group
of a polyhedron of type {6,3 : 4}. In fact (comparing [17]), it is {3,3} # {2} = { 6

2,3 ,3 :
4

1,2 } ∼= {6,3 : 4}.
We are now in a position to describe the polytopes in this family.

Proposition 11.1 For each r ≥ 0 and s ≥ 2 with (r −1)(s −1) ≤ 4, there is a regular
polytope (or apeirotope) Grs of nearly full rank with the following properties:
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• it has rank r + s + 1,
• its group Grs is [3r,s,1],
• it has the same vertices as the Gosset polytope (or apeirotope) rs1,
• its (r + 2)-faces are (r + 2)-cross-polytopes βr+2,
• its (s + 1)-cofaces are Petrie contractions α�

s+2 of (s + 2)-simplices.

In term of the original diagram, the group generators are (. . . ,R,S,XY,U,V, . . .)

(with V omitted if s = 2). The faces and cofaces given by Theorem 11.1 define Grs

as an abstract regular polytope, when we bear in mind what the 3- and 4-faces of
α�

s+2 are. Thus Grs
∼= {3r ,4,6,3s−2}/〈〈J,K,L〉〉, with J,K,L the relators

J := (
r(r + 1)(r + 2)

)5
, K := (

r(r + 1)(r + 2)(r + 1)
)3

,

L := (
(r + 1)(r + 2)(r + 3)

)4;
the last relator is absent if s = 2.

Let us say a little more about the case s = 2. The Gosset polytope r21 has two
kinds of facet, namely, cross-polytopes and simplices (of dimension r + 3). These
meet two cross-polytopes and one simplex around each (r + 1)-face. We can think
of the facets of the cross-polytopes 2-coloured black and white and those of the sim-
plices coloured white, with two cross-polytopes abutting on black facets, and cross-
polytopes and simplices abutting on white ones. The facets of Gr2 are then the diame-
tral (r + 2)-cross-polytopes of these cross-polytopal facets of r21, and we see from
this description that they do indeed meet in pairs on each of the simplicial (r + 1)-
faces of r21.

We can now apply the operation ζ to all the finite polytopes in the family; the re-
sulting polytopes are not particularly interesting, and so we shall say no more about
them than that three (namely, G

ζ
42, G

ζ
15, G

ζ
23) are vertex-figures of apeirotopes—see

below. On the other hand, applications of π (where appropriate) lead to some inter-
esting polytopes. In fact, π can only apply to Grs when s = 2 or 3; see Remark 11.2.
Moreover, if s = 2, the only valid case is r = 0, so we have a polyhedron; we have
dealt with this in [17].

Remark 11.2 Observe that the Petrie operation π does not apply when s = 4, in
spite of the fact that the relevant entry 6 in the Schläfli symbol is even. Indeed, by
Theorem 5.7, the operation fails because of the hole {3} in the face G02.

Thus s = 3 is the only productive case in the present context. We first treat the sub-
case r = 0. Going back to the way we constructed the group from [30,3,1] (that is, in
the first diagram, with no left branch, and only V in the right branch), we see that the
new group has generators (S,T V,U,V ) = (S,XYV,U,V ). A little work shows that
the facet of the resulting polytope is {4, 4

1,2 | 3} ∼= {4,4 | 3}, while the vertex-figure is

{ 4
1,2 ,3 : 6

2,3 } ∼= {4,3}. However, this is not universal of type {{4,4 | 3}, {4,3}}, as we
shall shortly see. Indeed, if we anticipate a little, we find that we actually have

Gπ
03 = {{4, 4

1,2 | 3}, { 4
1,2 ,3 : 6

2,3 } : 5
1,2

} ∼= {4,4,3}/〈〈(0121)3, (0123)5〉〉.
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In turn, we can use these as successive vertex-figures, to construct Gπ
r3 for r =

1,2,3, the last being an apeirotope in E
7. The case r = 1 is worth describing in some

detail. Writing (R0, . . . ,R4) := (R,S,XYV,U,V ) with the notation of the original
diagram, in view of the way that Gπ

11 is derived we can take

R0 : x �→ (−ξ2,−ξ1, ξ3, ξ4, ξ5, ξ6),

R1 : x �→ (ξ1, ξ3, ξ2, ξ4, ξ5, ξ6),

R2 : x �→ (ξ2, ξ1, ξ4, ξ3, ξ6, ξ5),

R3 : x �→ (ξ1, ξ2, ξ3, ξ5, ξ4, ξ6),

R4 : x �→ (ξ1, ξ2, ξ3, ξ4, ξ6, ξ5).

The vertices are those of the half-cube hγ6, which we write as cjk... =
(ε1, ε2, ε3, ε4, ε5, ε6), with each εi = ±1, to indicate that εi = −1 precisely for
i = j, k, . . . (with c := c∅); thus, for example, c1246 = (−1,−1,1,−1,1,−1). The
initial vertex is c, which is joined to c12 by the initial edge; the initial 2-face then has
the additional vertex c13. A little work shows that the initial 3-face (which is an octa-
hedron) has opposite pairs of vertices c, c1234 : c12, c34 : c13, c24. Finally, the vertex-
figure of the initial facet consists of all cjk with j = 1,4,5 and k = 2,3,6, with
square faces given by two out of three of the choices for j and k. The facet itself is
centrally symmetric about the origin o. We thus see that the facet {{3,4}, {4, 4

1,2 | 3}}
is, in fact, the universal {{3,4}, {4,4 | 3}} with 20 vertices and 30 octahedral 3-faces.

However, the vertex-figure cannot be the dual of this, in spite of the apparent
symmetry of the diagram, because it only has 15 vertices and 10 toric 3-faces. Since
the Petrie polygon of {{4,4 | 3}, {4,3}} has period 10, while that of the vertex-figure
has period 5, we see that it is indeed obtained by imposing the extra relator (0123)5

on the group of the former. In other words, we conclude that

Gπ
13

∼= {3,4,4,3}/〈〈(1232)3, (1234)5〉〉,
when we bear in mind that we can recover the original group [31,3,1] by reversing the
various operations which led to Gπ

13.
Our polytope Gπ

13 has no dual, because its vertex-figure does not. However, if we
change the sign of R2, and so replace it by −R2 = R⊥

2 , and reverse the order of the
generators, namely,

(R0, . . . ,R4) �→ (R4,R3,−R2,R1,R0) =: (S0, . . . , S4),

then we have the group 〈S0, . . . , S4〉 of another copy of Gπ
13. Its vertices consist of

those of the ‘complementary’ copy of hγ6 in the 6-cube γ6; the initial vertex c145 (or
c236) corresponds in an obvious way to the initial facet of the original.

We shall say little about Gπ
r3 for r = 2 or 3. The former has group [32,3,1] and the

vertices of 231. The latter has group [33,3,1] and the vertices of the apeirotope 331;
perhaps one remarkable feature is that its facets are also apeirotopes, of the type A6
(with group [32,2,2] � C2) which we shall discuss in the next Sect. 12.

We have three apeirotopes G52, G25 and G33, as well as the Petrial Gπ
33 of the

last, to each of which the operation κ is applicable; note that all the vertex-figures
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are centrally symmetric, and none is blended. The 2-faces are hexagons {6}, and it
should not be a surprise that the facets are apeirotopes of rank deficit 2.

There are also polytopes or apeirotopes related to the Gosset polytopes r22, but
again we shall leave them until Sect. 13.

12 Twisting

In defining twisting in Sect. 5, we remarked that we would find it convenient to allow
inner automorphisms as twists. Let us begin by illustrating the latter point. Consider
the Petrie contraction {3d−1}� of the d-simplex αd = {3d−1}. In terms of the trans-
positions (j k) in the symmetric group Sd+1, the generators of its group are

R0: (1 2),

R1: (0 1)(2 3),

Rj : (j + 1 j + 2) for j = 2, . . . , d − 2.

In the spirit of [18], we can also represent the group by a diagram, acted upon by an
(inner) automorphism R1, as follows:

As usual, a number j against a node refers to the generator Rj ; we have similarly
indicated the twist R1 and two other relevant transpositions.

On the other hand, if we consider instead α
ζ�
d , we change the sign of the reflex-

ion R1 to obtain −R1 = −(0 1)(2 3) with an obvious meaning. Now −R1 twists the
same diagram, but with the mark 3

2 removed and a mark 2 placed in the triangle.
In all cases, our basic examples will be obtained by twisting diagrams. We distin-

guish four kinds of twist. First, a twist can be outer or inner, according as the induced
automorphism is outer or inner. Second, while a twist must permute the hyperplane
mirrors of the diagram reflexions, it need not permute the corresponding (unit) nor-
mal vectors to those mirrors—it may change some signs, while preserving others. If
the normals can be chosen to be permuted by the twist, then we it proper; otherwise
the twist is improper.

Referring to the examples just mentioned, R1 is a proper inner twist, while −R1

is an improper outer one.
We begin the systematic investigation with a crucial observation, bearing in mind

that we are concerned here with polytopes of nearly full rank. This is that, if we do
not allow redundant generators, then the only diagrams which can be twisted to yield
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unblended regular polytopes of nearly full rank at least 4 are those of the form

Branches may carry marks, and either vertical branch may be absent. The left and
right branches form strings, and either may be absent (including the nodes R or V ).
The twist is denoted by T . We shall not prove this claim formally, but we observe that
each twist contributes 1 to the rank, while each node dropped from the generating set
(and thus obtained by applying a twist to another node) lowers the rank by 1. With
two commuting twists we obtain a square sub-diagram (with diagonals—but here we
will be obliged to introduce redundant generators if we wish to preserve the symmetry
of the whole diagram), whereas two non-commuting twists (which must correspond
to adjacent generating reflexions) will act on a single circuit; in neither case can we
extend the diagram non-redundantly by further branches. With a single twist, we just
have the picture above.

Remark 12.1 Note that basic blends with the segment {2} can be obtained by twisting
diagrams beginning with the right triangle.

Remark 12.2 Cases with redundant generators will be discussed at the end of the
section.

We begin with an infinite family which is already known. In [16], we described
the facet of the regular apeirotope δκ

d+1, noting that it was full-dimensional and hence
(in our present terms) of nearly full rank. In fact, of course, this facet must be γ κ

d , as
briefly described in Sect. 9. It is derivable by an improper outer twist of the diagram

We have labelled the triangle rather than one of its edges; either of the two slanting
edges can carry the label 3

2 , but the twist changes which is so labelled.
This diagram may at first glance seem impossible, since the four leftmost nodes

already determine an infinite group. However, recalling the derivation of the apeiro-
tope from δd+1, it is easy to write down the generating reflexions and check that they
do indeed correspond to the diagram (with twist). Observe also that we can extend the
diagram to the right by a further branch labelled 4, to give a diagram corresponding
to δκ

d+1 itself.
At this point, it is appropriate to correct a mistake in [18, p. 256]. In the discussion

of the class A1(2,4,2,3), we have the case d = 4 of this apeirotope. In the (second)
diagram on that page, and in the line immediately following, {4, 6

1,3 | 3} occurs in-

stead of what should be {4, 6
1,3 | 4}; compare the list on p. 235 of applications of κ
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to the finite crystallographic polyhedra. In addition, the last sentence of the penulti-
mate paragraph on p. 257 is misplaced since it refers to {{4, 6

1,3 | 4}, { 6
1,3 ,3 : 4

1,2 }};
this is indeed the facet of the four-dimensional apeirotope of full rank designated
{4,6,3,4}(s) in the table of [16, p. 33].

There are further infinite families of diagrams which exhibit the same phenom-
enon, namely, having a proper subdiagram of an infinite group. We first have

with q = 3 or 4. In effect, we have two families here, of which the facets of the second
form the first. Once again, the corresponding apeirotopes are already known; they are
ακ

d or βκ
d , according as q = 3 or 4.

In the notation of [4, Table IV] or [24, Table 3B2], the groups are Pd+1 × C2 or
Sd+1. To obtain a presentation for the groups in terms of the given generators, we
need to consider the Petrial of the 4-face. We should not be surprised to find that it is
derived from the diagram of the unmarked pentagon with (now) a proper outer twist:

The Petrial is thus {{6, 4
1,2 | 3}, { 4

1,2 ,3 : 6
1,3 }} ∼= {{6,4 | 3}, {4,3}}, the universal poly-

tope. Reversing π (that is, applying it again) leads to the description of the original
4-face as {{6, 6

1,3 | 3}, { 6
1,3 ,3 : 4

1,2 }} ∼= {{6,6 | 3}, {6,3 : 4}}, which is also universal.
As we have seen earlier, the general notation concatenating the facet and vertex-figure
can get rather clumsy; it is so here also, which leads to our using the alternative nota-
tion

{
6,6,3d−3}/〈〈

(0121)3, (123)4〉〉, {
6,6,3d−4,4

}〈〈
(0121)3, (123)4〉〉,

respectively, for the two apeirotopes. It remains to remark that the respective vertex-
figures are αd−1 ♦ {2} with the vertices of the cross-polytope βd , and β

ζ
d−1.

Note that the Petrie operation does not apply to the 6-face, as an appeal to Theo-
rem 5.7 shows.

For the next four families, it is convenient to consider all cases together in order
not to have to repeat calculations with shifts of indices or changes of dimension, and
so we work with the diagram

We then truncate the first or last nodes (or both) to obtain the other three families.
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As in Sect. 10, we work in E
d+1 and its hyperplane

H := {
x = (ξ0, . . . , ξd) ∈ E

d+1 | ξ0 + · · · + ξd = 0
};

the generators of the whole group can be taken to be

R0: x �→ (1 + ξ1,−1 + ξ0, ξ2, . . . , ξd),

R1: (0 2),

R2: −(0 1)(2 3),

Rj : (j j + 1) for j = 3, . . . , d − 1,

Rd : x �→ (ξ0, . . . , ξd−1,−ξd).

As before, by −(0 1)(2 3) we mean the product of the transpositions composed with
changing all signs; this twist R2 is outer but improper. It is not hard to see that the
facet has vertex-set H ∩ Z

d+1, while that of the whole apeirotope is {(ν0, . . . , νd) ∈
Z

d+1 | ν0 + · · · + νd even}. Perhaps surprisingly, these are the same vertex-sets as
in the previous case with q = 4 (up to a change in rank and dimension); indeed, the
groups are the same as well.

Remark 12.3 In the case d = 4 (that is, in E
5), the mark 4 on the end branch transfers

to the slanting branches of the triangle (and the inner mark of the triangle changes to
(3), in the notation of [24, (9D8)]).

We obtain the presentations of the groups (in terms of the given generators) as
before. For the general case, we apply the Petrie operation to the 5-face, with the
initial hexagon as diagram. In view of the previous case, we should not be surprised
that the new diagram is an unmarked hexagon with a proper outer twist:

The corresponding apeirotope has facets {{3,4}, {4, 4
1,2 | 3}} and its dual vertex-

figures {{4, 4
1,2 | 3}, { 4

1,2 ,3 : 6
1,3 }} (we insert the mark 6

1,3 for the Petrie polygon

to emphasize that the corresponding polyhedron is {4,3} # {2} rather than { 4
1,2 ,3 :

3} # {2}). Once more, the standard notation concatenating facet and vertex-figure
is too clumsy; much better is merely to observe that it is isomorphic to the poly-
tope {3,4,4,3}/〈〈(1232)3〉〉 (we could perhaps write it as {{3,4}, {4, 4

1,2 | 3}, { 4
1,2 ,3}}

with little fear of confusion). As the notation suggests, this apeirotope is universal
with the given facet and vertex-figure. Reversing π shows the original 5-face to be
of type {3,4,6,3}/〈〈(1232)3, (234)4〉〉. Of course, with rank d > 5, the type is then
{3,4,6,3d−5, q}/〈〈(1232)3, (234)4〉〉, with q = 3 or 4 as appropriate.

Remark 12.4 We cannot extend this hexagonal diagram by an additional branch. The
normal vector to the hyperplane corresponding to the (next) new node is orthogonal
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to those of the disjoint five nodes of the hexagon, and therefore to the sixth also, a
contradiction.

Note that the Petrie operation does not apply to the 6-face; once again, we appeal
to Theorem 5.7.

The Petrial in the rank 4 special case of Remark 12.3 is a little different. We obtain
a proper but inner twist, on a diagram which may be written

The facet here is now finite, of type {{3,4}, {4, 6
2,3 : 5

1,2 | 3}}, while the edge-figure is

{ 6
2,3 ,4 : 6

1,3 } = {3,4} # {2}.
We have implicitly described the facet, vertex-figure and intermediate section

(facet of vertex-figure) above, and the cases to which the Petrie operation π applies.
There remains to discuss the effects of applying κ (or ζ to the vertex-figure). It was
seen in [18, Sect. 8] that {4, 6

1,3 | 3}ζ = { 4
1,2 , 6

1,3 : 5
1,2 } ∼= {4,6 : 5}. Moreover, we

noted in Sect. 9 that {3,4}κ = {6, 4
1,2 | 4}, a Petrie–Coxeter sponge. Thus the new ab-

stract description in the general case is {6,4,6,3d−5, q}/〈〈(0121)4, (123)5, (234)4〉〉,
with q = 3 allowed if d = 5. In the special case of Remark 12.3, we need to know
that {4, 6

2,3 : 5
1,2 | 3}ζ = { 4

1,2 , 6
2,3 : 10

1,3 | 6
1,3 }; everything else goes through with no

problems. Finally, κ also applies when the diagram is the unmarked hexagon; the
new 3-face is again {6, 4

1,2 | 4}, and the new vertex-figure is isomorphic (but not con-
gruent) to the old one.

In the spirit of [18] again, we can also derive the polytopes of Sects. 10 and 11
from diagrams, acted upon by a proper inner automorphism T . The crucial centre
part of the diagram is

We will have r ≥ 2 here, because we have already dealt with the cases r = 0 and
1 earlier in the section (as two of the set of four families considered together). The
notation carries over from that of Sect. 11.

In a similar way, the polytope Gπ
13 described in the previous section can be derived

by an improper inner twist from the diagram of a hexagon carrying a centre mark 2
(but otherwise unmarked). Note that the situation here is not the same as that in the
case � = 2 of [21, (39)], where an outer automorphism was applied to this hexagonal
diagram.

We have already observed that the polytopes Grs do not have (geometric) duals.
Nevertheless, we can remove the right branch from the diagram (beginning with the
node V ) and reverse it, to obtain the diagram below. The mark 2 on the circuit indi-
cates as before that one of the branches—but not the vertical one—is to be thought
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of as marked 3
2 .

The group specified by the diagram is, again as before, [3r,2,1], so that we must have
r ≤ 5, with r = 5 the infinite case. We can then, potentially at least, apply an improper
twist, to obtain a regular polytope Pn of rank n = r + 3.

However, something rather unexpected happens, in that we do not obtain the full
family as might be expected. For r = 1, we have the Petrial P4 = γ �π

5 of the Petrie
contraction of the 5-cube γ5, whose 80 vertices are the mid-points of the edges of
γ5. Its facets {6, 4

1,2 | 3} (with 30 vertices) lie in central sections of γ5, an important
implication of which is that Pn−1 must be a central section of Pn for n ≥ 5, if the
latter polytope exists. We immediately conclude—if for no other reason—that we
cannot actually have an apeirotope P8 derived from [35,2,1].

For r = 2, we obtain P5, whose 270 = 27 · 10 vertices are those of the difference
body DT = T − T (Minkowski sum) of the Gosset polytope T = 221; each vertex is
uniquely expressible as, say, a sum x + y of an x ∈ vert(−T ) and y ∈ vertFx , with
Fx the facet β5 of T corresponding to x. Indeed, these 270 vertices are those of a
central section of 321 half-way between two opposite vertices; the 756 vertices of P6

are all the mid-points of edges of 321. In ranks 4 and 5, the twist is outer, while in
rank 6 it is now inner; essentially, the twist involves the central inversion −I .

So far, there are no problems, but it is worth pointing out that, for rank 6, we
have an obvious vertex-figure γ5 ♦ {2}, with the vertices of hγ5 × α1. However, the
construction breaks down in rank 7. Calculations show that P7 would have the 2160
vertices of 241, and would share its group [34,2,1]. But now the vertex-figure would
have the whole symmetry group [34,1,1] of the half-cube hγ7, rather than that of
γ6 ♦ {2}. It follows that P7 degenerates; from the group order, it should actually have
192 · 10!/26 · 6! = 15120 vertices, so that the vertices collapse in sevens (correspond-
ing, of course, to the seven ways of inscribing γ6 ♦ {2} in hγ7).

We should point out that P7 was encountered in [16, Sect. 10] as the supposed
facet of the second non-existent regular polytope of full rank (its group coinciding,
as we have seen, with the whole group [34,2,1]). In fact, we now see that even this
‘facet’ was degenerate, let alone the whole ‘polytope’.

Of course, we can now apply ζ to each of these examples Pn for n ≤ 6.

13 The Second Gosset Class

There remains the Coxeter diagram of the group [3r,2,2] acted on by a proper outer
twist, namely,
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The case r = 0 is the group [34] ∼= S6 of the 5-simplex, which we have already en-
countered. Since the group is infinite for r = 2, the only relevant cases are r = 0,1,2.
The twist acts as indicated in the picture. The case r = 0 is the universal polytope

{{3,4}, {4, 4
1,2 | 3}} ∼= {{3,4}, {4,4 | 3}} = {4,4,3}/〈〈(1232)3〉〉.

In general, the facet is the cross-polytope βr+3, for r = 1,2, the vertex-figure is the
case r − 1, and the whole polytope (or apeirotope) Jr+4 (say – r + 4 is the rank) is
then universal with this facet and vertex-figure. Its vertex-set is the same as that of
the Gosset polytope or honeycomb r22, and each of these polytopes has a dual.

The case r = 2 is of some interest because it is a sponge in E
6, analogous to the

Petrie–Coxeter apeirohedra in E
3. The Gosset polytope T = 221 and its negative −T

tile E
6 by translates. On a simplicial facet α5, a translate of T meets another translate

of T (and similarly for −T ), while on a cross-polytope facet β5 it meets a translate of
−T . If we delete the copies of the simplices α5 and the tiles T and −T themselves,
then the cross-polytopes β5 are the facets of J6; they meet four around each 3-face
α3 and form a surface which splits E

6 into two congruent parts.
When r = 2, the dual is an apeirotope with blended vertex-figure. Hence, poten-

tially at least, we can apply the operation κ . However, this does not yield a genuine
regular 6-polytope of full rank; instead, we obtain the first of the two examples which
we had to exclude in [16, Sect. 10] as non-polytopes. Indeed, this viewpoint can be
made to provide an alternative explanation for its non-polytopality.

Theorem 5.7 prevents us from applying the Petrie operation π to the polytopes Jn,
but the halving operation η will work. In the present case, η is actually invertible (a
double application of η recovers the original polytope, with a change of generators).
When n = 4 (that is, r = 0), as in [24, Sect. 10E] we obtain the universal polytope

{{4, 4
1,2 | 3}, { 4

1,2 ,4 | 3}} ∼= {{4,4 | 3}, {4,4 | 3}};
it has the same 20 vertices as before (those of 022). Combinatorially, this polytope is
self-dual; however, geometrically it is not, the dual actually being

{{ 4
1,2 ,4 | 3}, {4, 4

1,2 | 3}}.
The symmetry between these two polytopes suggests that we may be able to apply

η to the latter. Indeed we can; perhaps it is not surprising that the result is
{{ 4

1,2 ,4 | 3}, {4, 4
1,2 | 3}}η = {{3, 4

1,2 }, { 4
1,2 ,4 | 3}},

isomorphic to J4, but geometrically distinct. In contrast to J4, this polytope does not
have a geometric dual, as its mirror vector (3,3,4,3) may indicate.

Remark 13.1 The symmetry group of {{4, 4
1,2 | 3}, { 4

1,2 ,4 | 3}} has generators

R0 = (2 3),

R1 = −(0 5)(1 3)(2 4),

R2 = (4 5),

R3 = −(0 5)(1 4)(2 3),
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working in the hyperplane H
5 ≤ E

6, with the same conventions as before. The mirror
vector here is (4,3,4,3), which explains why the geometric dual is different.

We may now apply π to both these (isomorphic) polytopes, to obtain

{{4, 4
1,2 | 3}, { 4

1,2 ,4 | 3}}π = {{4, 6
2,3 : 5

1,2 | 3}, { 6
2,3 ,4 : 4

1,2 | 3}},
{{ 4

1,2 ,4 | 3}, {4, 4
1,2 | 3}}π = {{ 4

1,2 , 6
1,3 : 5

1,2 | 3}, { 6
1,2 , 4

1,2 : 4 | 3}}.
These polytopes have no geometric duals. The facets of the Petrials are isomorphic
to {4,6 : 5 | 3}; their dimensions are 4 and 5, respectively.

The polytope {{4, 4
1,2 | 3}, { 4

1,2 ,4 | 3}} and its Petrial are distinguished (among fi-
nite 4-polytopes of dimension 5) in having vertex-figures with mirror vector (2,3,2).
As we have already pointed out, the only way to incorporate two automorphisms is
to have a diagram with a redundant generator; for the first polytope, we thus have

This looks like [24, Fig. 10C1] (which is unfortunately mislabelled), but the latter
represents the infinite group, where one of the hyperplane mirrors is displaced from
the origin o. Working clockwise around the hexagonal diagram from R0 = (2 3),
the remaining nodes correspond to (3 5), (4 5), (1 4), (0 1) and (0 2); any of these
generators can be taken to be the redundant one. After applying π , the new R1 is
(1 2)(3 4), which reflects the diagram in a vertical line.

In the cases r = 1,2, there are further operations, of which η is the first. Suppose
that P is an abstract regular n-polytope of type {3n−3,4, q} for some q , with group
G = 〈r0, . . . , rn−1〉. A simplex dissection result of Debrunner [7] can be interpreted
as a mixing operation μk: (r0, . . . , rn−1) �→ (s0, . . . , sn−1), where

sj :=
⎧⎨
⎩

rj for j = 0, . . . , k − 1,

rkrk+1 · · · rn−2rn−3 · · · rk for j = k,

rn+k−j for j = k + 1, . . . , n − 1.
(13.1)

The range is 0 ≤ k ≤ n − 2; formally, we can take μ−1 to be duality. Observe
that μn−2 is the identity, while μn−3 = η. We used the same operation (in a dual
form, with different indices) in [15]; see also [24, Sect. 14A]. The new group
Gk := 〈s0, . . . , sn−1〉 is a subgroup of Gn−2 := G of index a divisor of

(
n−1
k+1

)
,

and the operation μk leads (potentially, at least) to a new regular polytope of
type {3k−2,4, q, q,4,3n−k−3}. (It is routine to check that sk−1sk ∼ rn−3rn−2 and
sksk+1 ∼ rn−2rn−1.)

We now apply the μk to the Jn. With J4, the sequence is completed to

{3,4, 4
1,2 }, {4, 4

1,2 ,4}, { 4
1,2 ,4, 4

1,2 }, {4, 4
1,2 ,3};
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the first and last are geometric duals. For J5, we obtain the sequence

{3,3,4, 4
1,2 }, {3,4, 4

1,2 ,4}, {4, 4
1,2 ,4, 4

1,2 }, { 4
1,2 ,4, 4

1,2 ,3}, {4, 4
1,2 ,3,3},

the first two being J5 and J
η
5 . From J6 we obtain

{3,3,3,4, 4
1,2 }, {3,3,4, 4

1,2 ,4}, {3,4, 4
1,2 ,4, 4

1,2 }, {4, 4
1,2 ,4, 4

1,2 ,3}
{ 4

1,2 ,4, 4
1,2 ,3,3}, {4, 4

1,2 ,3,3,3};

the first two are J6 and J
η
6 . In all these sequences, we should interpret the sections

{4, 4
1,2 } or { 4

1,2 ,4} as {4, 4
1,2 | 3} or { 4

1,2 ,4 | 3}, respectively. In contrast to the case
of J4, polytopes (or apeirotopes) symmetric about the middle of the sequences are
geometric duals.

We can now apply η to those two polytopes with 4-coface {{ 4
1,2 ,4 | 3}, {4, 4

1,2 | 3}}.
We then obtain

{4, 4
1,2 ,4, 4

1,2 }η = {4,3, 4
1,2 ,4},

{3,4, 4
1,2 ,4, 4

1,2 }η = {3,4,3, 4
1,2 ,4}.

In these, {4,3, 4
1,2 } = {4,3, 4

1,2 | 3} ∼= {4,3,4}(3,0,0) is a torus; see [22] or [24,
Sect. 6D]. The facet of the second polytope (actually apeirotope) is isomorphic to
the universal locally toroidal polytope

T 5
(3,0,0) = {{3,4,3}, {4,3,4 | 3}}

of [22] or [24, Sect. 12B]; its facet is the 24-cell. Neither of these has a geometric
dual.

Finally, rather than being proper subgroups, all the symmetry groups in each case
are isomorphic. Indeed, except for the duals J δ

n of the original polytopes, all in each
family have the same vertices.

We cannot apply π to any of the polytopes in the sequences in the cases r = 1,2;
we fall foul of Theorem 5.7, because of sections or holes {3}. We can always apply ζ

to the polytopes in the J4 and J5 families, and κ to the apeirotopes in the J6 family.
However, as is frequently the case, we obtain nothing of any striking interest; note that
applying κ will result in infinite facets (or even infinite 2-faces { 4

0,1 } from original

faces { 4
1,2 }).

14 Rotational Symmetry Groups

In dimensions 3 and 4, there are many examples of regular polytopes (or apeirotopes)
of nearly full rank whose symmetry groups consist of direct (orientation preserving)
isometries only. We shall call such polytopes handed (suitable words of Greek or
Latin origin have been pre-empted for other purposes). To be more exact, in E

3 we
have three handed apeirotopes, while in E

4 we have a family of handed polytopes
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which we treated using quaternions, and some sporadic apeirotopes related to them.
(Note that a polytope of full rank n cannot be handed, since the last of its generating
reflexions Rn−1 must have a hyperplane mirror—see [16].)

It is natural to ask whether handed examples exist in E
d for d ≥ 5. In fact, there is

one solitary example of a (finite) handed regular 4-polytope in E
5, and while there is

a closely related polytope in E
5 (actually, a double cover), it is not handed. There are

no handed regular polytopes or apeirotopes of higher rank.
Before we describe our example, we make some remarks about the general situa-

tion.

Proposition 14.1 Let P be a regular polytope (or apeirotope) of nearly full rank,
whose vertex-figure Q is handed. If P is not itself handed, then the edge-circuits of
P are all even.

Proof This is clear. If P is not handed, then its symmetry R0 interchanging the two
vertices of the initial edge must be opposite; thus vertex-figures at adjacent vertices
have opposite handedness. An odd edge-circuit would then reverse the local orienta-
tion of the vertex-figure at the initial vertex, leading to a contradiction. �

Our investigation must begin with the (finite) regular 4-polytopes in E
5. The

potential vertex-figures Q here are the regular polyhedra in E
4 with mirror vector

(2,2,2); these fall into two classes. The first are those which can be derived by the
operation

ς : (S1, S2, S3) �→ (
S2, S1S3, (S1S2)

2) =: (R1,R2,R3)

on the group generators of some other regular polyhedron with square faces. (The
indices emphasize that we are thinking of Q as a vertex-figure.) For our purposes, it
is crucial to observe (see [23]—as applied to the dual polyhedron) that these are self-
Petrie and that the Petrie operation π is induced by conjugating by the hyperplane
reflexion S1. (In this class we also include two closely related handed polyhedra; see
the following discussion.) The second class consists of the remainder; we begin by
dismissing these.

Recall from [17, Sect. 10] the representation by quaternions of the symmetry
group of a regular polyhedron Q in E

4 with mirror vector (2,2,2) (for the gen-
eral background to quaternions, see [10]). A typical symmetry of Q is of the form
x �→ axb, where the a form the left group GL and the b form the right group GR, each
being a finite subgroup of the group Q of unit quaternions. Here, GL (GR) is the lifting
(double cover) of a subgroup GL (GR) of SO3 generated by half-turns; the resulting
permissible quaternion groups are the binary dihedral group Dn of order 4n (for some
even n), the binary octahedral group O of order 48, and the binary icosahedral group
I of order 120. (The underlying rotation groups of Dn for odd n and the binary tetra-
hedral group T are not generated by appropriate half-turns.) As point-sets in E

4, Dn

consists of two regular 2n-gons in orthogonal planes, O consists of the vertices of a
24-cell {3,4,3} and its dual, while I is the vertex-set of a 600-cell {3,3,5}.

In the second class of polyhedra, we can take GR to be O or I . More to the
point, because the only identifications between elements of GL and GR are (a,b) ↔
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(−a,−b), it follows that any initial point x �= o will give rise to at least one left coset
of O or I ; regarded as a point-set in E

4, such a coset violates the nearest points cri-
terion of Proposition 3.8. In other words, no such polyhedron can be a vertex-figure
of a regular 4-polytope in E

5.
For the first class, we can employ a trick. As we have observed, the Petrie opera-

tion π on one of these polyhedra Q is induced by conjugation by S1 in the group with
generators (S1, S2, S3) to which ς was applied. Indeed, this is nearly the case even
for the dodecahedron Q = { 5

1,2 ,3 : 10
1,3 } or its Petrial; here, there is an analogous hy-

perplane reflexion S1 which transforms Q into an enantiomorphic copy with the same
vertices. Thus, if we reintroduce S1 into the new group generators (R0,R1,R2,R3)

of our putative regular polytope P , then we obtain a group generated by hyperplane
reflexions which acts on the vertices and edges of P (and 2-faces as well, for all but
the dodecahedron or its Petrial). Our argument has thus led to the following:

Theorem 14.2 The group of a five-dimensional regular 4-polytope with a handed
vertex-figure is a subgroup of a hyperplane reflexion group, possibly with outer auto-
morphisms.

Our analysis now proceeds exactly as in Sect. 8, except that we can eliminate
the case ([3] × [3]) � C2 as well, because here the vertices of the corresponding
(handed) polyhedron are those of two triangles in orthogonal planes, and there is no
such configuration in the vertices of 022. We refer the reader to [17] for more details
of this polyhedron. (With group ([4] × [4]) � C2 we again have the vertices of β4 as
vertex-figure among the vertices of β5, with R1 fixing the initial vertex as before.)

We are thus left with [3,3,3] as the only candidate for the extended group of the
vertex-figure Q; moreover, Q must have the same vertices as the truncated 4-simplex
021. Thus Q can only be the self-Petrie hemi-dodecahedron { 5

1,2 ,3 : 5
1,2 } ∼= {5,3 : 5}.

Finally, the whole polytope P can now only have the vertices of the 5-cube γ5 or the
half-cube hγ5 = 121, and the extended reflexion group of P must be [3,3,3,4] or
[32,1,1].

The truncated 4-simplex 021 is the vertex-figure of the half-cube hγ5, and its ver-
tices are those of γ5 at distance (along edge-paths) 2 or 3 from an initial one. We
can take the initial vertex to be (1,1,1,1,1) and express G(Q) as permutations of
coordinates as in [18, Sect. 8]. Indeed, if we adopt the generators R1,R2,R3 of G(Q)

from [18], then the initial vertex of Q is ±(−1,−1,1,1,1).
There are two possible choices—within [3,3,3,4], of course—if R0 is to be a

direct isometry as well (according to Proposition 14.1); the first gives the generators
of G(P ) as

R0 : x �→ (−ξ1,−ξ2, ξ3, ξ4, ξ5),

R1 : x �→ (ξ5, ξ4, ξ3, ξ2, ξ1),
(14.1)

R2 : x �→ (ξ2, ξ1, ξ4, ξ3, ξ5),

R3 : x �→ (ξ2, ξ1, ξ3, ξ5, ξ4).
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Bear in mind that R0 must commute with R2 and R3. The vertices of P then
coincide with those of the half-cube hγ5. (The other choice for R0 is x �→
(ξ2, ξ1,−ξ3,−ξ4,−ξ5), which we shall exclude later.)

It is worth recalling from the discussion and [18] that the Petrie operation π on Q

(that is, π : R1 �→ R1R3, giving R1R3 : x �→ (ξ4, ξ5, ξ3, ξ1, ξ2)) is induced by conju-
gation under the hyperplane reflexion T : x �→ (ξ2, ξ1, ξ3, ξ4, ξ5); we have seen that
we were obliged to allow T to be incorporated into the appropriately enlarged group.

We suppress the details of the working, but it is routine to calculate that the (initial)
facet F has planar square faces {4}, Petrie polygons and 2-zigzags { 5

1,2 } (these are

not congruent) and holes { 4
1,2 }. It has 16 vertices—that is, all of those of hγ5, so that

P is flat—and 20 faces. Looking in the tables of [6] shows that we must have F =
{4, 5

1,2 : 5
1,2 } ∼= {4,5 : 5}, with symmetry group G(F ) of order 160. Either directly or

as a consequence, it then follows that G(P ) = [32,1,1]+, the rotation group of hγ5, of
order 16 · 5!/2 = 960; thus there are 6 = 960/160 facets in all.

Let us add a little to the description of F and P . A typical face of F is a diametral
square in a cross-polytope facet β4 = hγ4 of hγ5 (thus this facet really occurs as 111
rather than as {3,3,4}). With each diametral square in a given facet β4 is associated
another disjoint one determined by the remaining four vertices; the 20 faces of F fall
into ten pairs of such disjoint diametral squares. Two different copies of F (under
G(P )) then meet in the two pairs of disjoint squares in opposite facets of hγ5, and so
in four faces in all.

We finally remark that the self-Petriality of Q (induced, as we have said, under
conjugation by the hyperplane reflexion T ) yields an enantiomorphic copy of P with
the same vertices, edges and square faces.

It is natural to ask whether our polytope is universal with the given facet and
vertex-figure. In fact, it is, as an application of the computer algebra package GAP
shows (we thank Barry Monson for providing this information). We should be able
to see this by an application of the circuit criterion of [24, Theorem 2F4], but so far
this has proved elusive. The basic edge-circuits correspond to the triangular faces
of hγ5, and it is clear that any edge-circuit can be obtained by concatenating such
triangles. Thus it is enough to show that a typical triangle—whose group has genera-
tors (R0R3,R1R2R1)—can be obtained by concatenating edge-circuits arising from
copies of the facet {4, 5

1,2 : 5
1,2 }. Notwithstanding the lack of a direct proof of the

isomorphism and assuming the elimination of the other choice, we have shown the
following:

Theorem 14.3 There is a single handed five-dimensional 4-polytope, namely,
{{4, 5

1,2 : 5
1,2 }, { 5

1,2 ,3 : 5
1,2 }} ∼= {{4,5 : 5}, {5,3 : 5}}.

There is a closely related polytope in E
5. It is not hard to see that an application

of ζ to {{4, 5
1,2 : 5

1,2 }, { 5
1,2 ,3 : 5

1,2 }} yields a regular polytope with the 32 vertices of
the 5-cube γ5; this is no longer handed. It is again flat; the Petrie polygons and 2-
zigzags { 5

1,2 } of the original facet F are now expanded to decagons { 10
1,3 }. Though

its facets are of type { 4
1,2 , 5

1,2 | 4
1,2 } ∼= {4,5 | 4}, it is not isomorphic to the universal

{{4,5 | 4}, {5,3 : 5}}, as we soon see. Its group has order 32 · 60 = 1920, and, as with
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the handed polytope, it is self-Petrie. Again referring to the previous discussion, we
see that this is the only other regular polytope of nearly full rank with vertex-figure
{ 5

1,2 ,3 : 5
1,2 }.

We are grateful to Egon Schulte for the following observations about universality.
Consider the (abstract) polytope 2Q defined in [24, Sect. 8C], with Q = {5,3 : 5}.
Its facets are isomorphic to 2{5} = {4,5 | 4}; this latter polyhedron has group order
320 = 25 · 10 and doubly covers {4,5 : 5} (its Petrie polygons are of length 10).
Further, by [24, Theorem 8E6], the universal polytope {2{5}, Q} is simply 2Q, since
Q is weakly neighbourly (any two vertices of Q lie in a common facet of Q). Hence,
our polytope is a quotient of 2Q, whose group is C10

2 � A5 of order 210 · 60, by a
factor 25. We have not yet determined the extra relations which must be imposed on
the group of 2Q to yield the polytope; we do know that the group relation arising from
the lift of the triangle of P (namely, (R0R3 · R1R2R1)

6 = I ) is not needed, since it
already holds in 2Q.

Remark 14.4 It is worth noting that the facet { 4
1,2 , 5

1,2 | 4
1,2 } is not the standard (geo-

metric) 2{5}; this latter has planar faces and, indeed, is obtained from the generators of
the group of the 5-cube by the mixing operation (S0, . . . , S4) �→ (S0, S1S3, S2S4) =:
(R0,R1,R2).

To complete the list in E
5, note that both these polytopes P are vertex-figures

of apeirotopes apeirP ; since a point reflexion in E
5 is opposite, neither of these

apeirotopes is handed. Their symmetry groups G(P ) preclude their being vertex-
figures of any other regular apeirotopes; bear in mind our ability to adjoin suitable
hyperplane reflexions to these groups.

Proposition 14.1 tells us that (if we want a handed polytope) we cannot re-
place the reflexion R0 of (14.1) by the initial hyperplane reflexion R′

0 : x �→
(−ξ2,−ξ1, ξ3, ξ4, ξ5) of hγ5. However, it might be thought that S0 := −R′

0 could
suffice (with Sj := Rj for j = 1,2,3), yielding another, this time handed, regular 4-
polytope with the 32 vertices of γ5 and group [4,3,3,3]+, the rotation group of γ5;
this is the alternative choice mentioned earlier. In fact, this is not the case. The group
G = 〈S0, . . . , S3〉 is actually isomorphic to [32,1,1]; all we are doing is replacing each
opposite element G ∈ [32,1,1] by −G. In fact, just thinking about the putative initial
facet F , we are introducing an element −R for each reflexion R taking the initial
vertex of F into the five vertices of its vertex-figure. It is then not too hard to see that
we obtain enough such reflexions −R from F alone to generate the whole group G ;
the group of F thus contains S3, contrary to the intersection property.

We now move on to 5-polytopes in E
6 and ask whether Q = {{4, 5

1,2 : 5
1,2 }, { 5

1,2 ,3 :
5

1,2 }} could be the vertex-figure of such a regular polytope P . Once again, we in-
troduce the hyperplane reflexion which interchanges the vertex-figure of Q with
its Petrial, and conclude that the only possibility arises from the Gosset polytope
221, whose vertex-figure is hγ5. (The only other feasible subgroup relationship is
[32,1,1]+ < [33,1,1] < [3,3,3,3,4], which would place the vertices of P among
those of the 6-cross-polytope, an obvious impossibility.) Since we already know from
Sect. 11 that there is a regular 5-polytope with the same 27 vertices, we might hope
that our 4-polytope Q could be the vertex-figure of another regular 5-polytope with
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these vertices. However, this is not to be. Proposition 14.1 again shows that the initial
reflexion S0 switching the vertices of an initial edge E of 221 cannot be adjoined to
the group of the putative vertex-figure, because 221 has odd edge-circuits. Shifting
the previous indices by 1, it follows that the reflexion R0 would have to be the prod-
uct of S0 with a half-turn preserving E and commuting with R2,R3,R4; since there
is no such half-turn, this possibility must be excluded.

Once again, though, it could be thought feasible to replace S0 by R0 := −S0,
yielding a non-handed six-dimensional regular 5-polytope with the 54 vertices of 221
and its reflexion in o. However, exactly the same argument we deployed in E

5 shows
that, just from the initial facet, we would already obtain a group G ∼= [32,2,1], with
opposite elements G replaced by −G as before (note that they remain opposite).

Let us finally remark that the double cover of {{4, 5
1,2 : 5

1,2 }, { 5
1,2 ,3 : 5

1,2 }} of type

{{ 4
1,2 , 5

1,2 | 4
1,2 }, { 5

1,2 ,3 : 5
1,2 }} is even more obviously to be excluded as a possible

vertex-figure of a regular 5-polytope in E
6.

Recall that the focus of this section is handed regular polytopes, though we have
also treated related ones. The conclusion which we gain from the discussion is that
handedness—for polytopes of nearly full rank—is a phenomenon of low dimensions;
indeed, we have a solitary instance of rank 4 and dimension 5 to add to those in E

3

and E
4.

15 Final Remarks

At this point, we hope that we can claim that our enumeration is complete (we have
thought this at several times in the past, only subsequently to find new examples).
An important key to the enumeration is the elimination in Sect. 8 of most of the
candidates for vertex-figure in rank 4; in addition, even in the case in the previous
Sect. 14 of handed polytopes, we saw that the symmetry group of a regular polytope
or apeirotope of nearly full rank in five or more dimensions is closely related to
a Coxeter (reflexion) group. It is worth repeating that the restriction we noted in
Sect. 12 on the kind of diagram which permits a single twist leading to a polytope of
nearly full rank plays an important rôle in the classification.

It is natural to ask where one might go from here. In four dimensions, the currently
open problem is that of classifying the regular apeirohedra; the obvious analogue in
five dimensions concerns the finite regular polyhedra. We have previously indicated
that we thought that the former problem could be somewhat hard, and we have little
reason to suppose anything different about the latter. The difficulty lies in the increas-
ing freedom as the gap between rank and dimension grows, so that techniques that
we have applied hitherto become less and less effective. For instance, there need no
longer be any obvious association with Coxeter groups, which we found helpful in
this paper; thus the problems posed by the regular apeirohedra and 4-apeirotopes in
E

5 seem very daunting indeed.
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