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Abstract Given a complex polynomial p(z) with at least three distinct roots, we
first prove that no rational iteration function exists where the basin of attraction of
a root coincides with its Voronoi cell. In spite of this negative result, we prove that
the Voronoi diagram of the roots can be well approximated through a high order se-
quence of iteration functions, the Basic Family, Bm(z), m ≥ 2. Let θ be a simple
root of p(z), V (θ) its Voronoi cell, and Am(θ) its basin of attraction with respect
to Bm(z). We prove that given any closed subset C of V (θ), including any homo-
thetic copy of V (θ), there exists m0 such that for all m ≥ m0, C is also a subset
of Am(θ). This implies that when all roots of p(z) are simple, the basins of attrac-
tion of Bm(z) uniformly approximate the Voronoi diagram of the roots to within any
prescribed tolerance. Equivalently, the Julia set of Bm(z), and hence the chaotic be-
havior of its iterations, will uniformly lie to within prescribed strip neighborhood
of the boundary of the Voronoi diagram. In a sense, this is the strongest property a
rational iteration function can exhibit for polynomials. Next, we use the results to
define and prove an infinite layering within each Voronoi cell of a given set of points,
whether known implicitly as roots of a polynomial equation, or explicitly via their
coordinates. We discuss potential application of our layering in computational geom-
etry.
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1 Introduction

Consider a complex polynomial

p(z) = anz
n + · · · + a1z + a0

of degree n ≥ 1. Let the roots of p(z) be {θ1, . . . , θn}. The Voronoi cell of a particular
root θ , denoted by V (θ), is the set of all points in the complex plane that are closer
to θ than to any of the other roots. Each Voronoi cell is an open set with polygonal
boundary, possibly unbounded, see Fig. 1. Voronoi cells of distinct roots together
with their boundaries partition the plane into disjoint sets. The subject of Voronoi
diagram and their applications are well studied in the literature, see, e.g., [7, 16], and
the survey [2].

Newton’s method for solving the polynomial equation p(z) = 0 consists of the
fixed point iteration:

zk+1 = N(zk) = zk − p(zk)

p′(zk)
, k = 0,1, . . . ,

where z0 is a starting complex number. The sequence {zk}∞k=0 is called the orbit of
z0. The basin of attraction of a root θ is the set of all points whose orbits under the
iterations of Newton’s method converge to θ . We will denote this by A(θ). It is an
open set and a part of the so-called Fatou set of N(z) = z − p(z)/p′(z). The basin of
attraction of each root consists of the union of connected components, called Fatou
components. The immediate basin of attraction of a root is the connected component
that contains the root. From the local convergence behavior of Newton’s method, the
immediate basin of attraction of a root is well-defined. The boundary of the Fatou
components forms the Julia set, known to exhibit fractal behavior for general poly-
nomials. For precise definition of Fatou and Julia sets with respect to general rational
functions and their properties, see, e.g., [3, 10, 15].

Cayley in [4] studied the behavior of Newton’s method in the complex plane for
solving the equation zn − 1 = 0. In the case of the quadratic equation z2 − 1 = 0, it is
easy to prove that the basin of attraction of each root coincides with its Voronoi cell.
The connection between Voronoi cells and basins of attraction of roots of unity fails to
be valid for n ≥ 3. While this can formally be proved, even for n = 3, the visualization
of the shape of the basins of attraction of the roots under Newton’s had to wait for
many more years, in particular the advent of computers, before it was revealed to have
fractal boundary. Fractal images corresponding to Newton’s method applied to the
equation for cubic roots of unity are well-known and have been reproduced numerous
times. While either visually or analytically it is easy to conclude that the basins of
attraction of the roots of z3 − 1 under Newton’s method are not identical with their
Voronoi cells, the basins of attraction do, in fact, resemble a rough approximation to
Voronoi diagram of the roots. The same remarks apply to general polynomials, as well
as rational iteration functions other than Newton’s. However, in general, the quality of
this approximation depends on the underlying polynomial, the region through which
one may consider the Voronoi cell of a particular root, as well as other parameters,
including, of course, the underlying iteration function.
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Fig. 1 The Voronoi cell of a
root θ and its homothetic
shrinkage centered at θ

McMullen [14] has shown that there is no generally convergent rational iteration
function for polynomial root-finding and this, in particular, implies that given any
rational iteration function one can find polynomials for which the particular iteration
function would not converge to a root on a set of positive measure. Despite this, given
a particular root θ of a particular polynomial p(z) and a particular iteration function,
it is natural to ask how well the basin of attraction A(θ) may approximate the Voronoi
cell V (θ).

In this article, we prove two results which can be summarized as follows. First,
we prove that for a complex polynomial with three or more distinct roots, no rational
iteration function can enjoy the property that the basin of attraction of a root would
coincide with its Voronoi cell. Second, given an arbitrary polynomial, by making
use of a fundamental family of iteration functions, the Basic Family {Bm(z),m ≥ 2},
we prove that its members do asymptotically give a very good approximation of the
Voronoi cells to within any homothetic shrinkage of the Voronoi cells centered at the
roots. While the first result is a negative result, the second result, our main result,
establishes a strong connection between polynomial root-finding and Voronoi cells,
while proving a powerful and novel property of the Basic Family. For a study of many
properties of this family and their applications, see [10].

2 Impossibility of Rational Iterations with Voronoi Cell as Basin of Attraction

Here we prove a negative result in terms of the approximation of Voronoi cell of a
root via rational iteration functions defined next.

Definition 2.1 Given a complex polynomial p(z), a rational map

R(z) = P(z)

Q(z)
,

where P(z) and Q(z) are complex polynomials assumed to be relatively prime, is
said to be an iteration function for p(z) if each root θ of p(z) is an attractive fixed
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point of R(z), i.e.,

R(θ) = θ,
∣
∣R′(θ)

∣
∣ < 1.

For such an iteration function, the fixed point iteration

zk+1 = R(zk), k = 0,1, . . .

is locally convergent for each root of p(z), given an appropriate seed z0. Analogous
to the case of Newton’s function, the notion of an orbit, basin of attraction, Julia and
Fatou sets can be defined with respect to iterations of R(z), see, e.g., [3, 10, 15].

The degree of R(z) is the maximum of the degrees of P(z) and Q(z). It is well
known that a rational map has either 0, 1, 2, or infinitely many Fatou components
(see, e.g., [3], Theorem 5.6.2). If p(z) has at least three distinct roots, then there are
at least three Fatou components. It thus follows that no rational iteration function for
p(z) could result in Fatou components that would coincide with the Voronoi cells
of the roots of p(z). The following result, however, proves the impossibility of the
coincidence of even one Voronoi cell of a root θ , and its corresponding basin of
attraction.

Theorem 2.2 Let R(z) be a rational iteration function for a polynomial p(z) having
at least three distinct roots. Given a root θ of p(z), let A(θ) be the basin of attraction
of θ with respect to the fixed point iterations of R(z), and V (θ) the Voronoi cell of θ

with respect to the roots of p(z). Then A(θ) cannot coincide with V (θ).

Proof Assume V (θ) = A(θ). It is well known that the boundary of A(θ) coincides
with the Julia set of R, denoted as J (R). Furthermore, J (R) coincides with the basin
of attraction of any other root θ ′ of p(z), see, e.g., [3, 10, 15]. Thus to prove the
theorem, it suffices to show that the boundary of V (θ) does not coincide with the
boundary of other roots of p(z).

The boundary of V (θ) consists of line segments, or half-lines, or lines. Consider
a line segment on the boundary of V (θ), see Fig. 2. Take an arbitrary point u on
this line segment and consider the intersection of a small neighborhood of u and the
complement of V (θ), a semisphere. Since, by assumption, there are at least two other
roots θ ′ and θ ′′, this semisphere must necessarily contain points v and w belonging
to the basin of attraction of θ ′ and θ ′′. Consider the line segment connecting v and
w. By the least upper-bound property of the reals, this line segment must contain a
boundary point of the basins A(θ ′) and A(θ ′′). In particular, this implies that there is
a boundary point not belonging to the boundary of V (θ), a contradiction. �

Remark 2.3 It is likely that the theorem remains valid if instead of requiring the co-
incidence of V (θ) and the basin attraction of θ , we ask if V (θ) could be a Fatou
component of the basin attraction, i.e., only one of the components of the basin of at-
traction. Regardless of the validity of this, next we prove a strong connection between
the Voronoi diagram of polynomial roots and the basins of attraction of its roots via
the Basic Family.
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Fig. 2 A neighborhood of a
boundary point u of V (θ)

containing two points from the
basin of attraction of two other
roots

3 Basic Family of Iteration Functions

In this section, we describe the Basic Family of iteration functions for polynomial
root-finding and summarize their relevant properties. Let p(z) be a given complex
polynomial of degree n.

Set D0(z) = 1, and for each m ≥ 2 define the m × m matrix determinant

Dm(z) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p′(z) p′′(z)
2! . . .

p(m−1)(z)
(m−1)!

p(m)(z)
(m)!

p(z) p′(z) . . .
. . . p(m−1)(z)

(m−1)!
0 p(z)

. . .
. . .

...
...

...
. . .

. . . p′′(z)
2!

0 0 . . . p(z) p′(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.1)

The Basic Family then is the collection of iteration functions

Bm(z) = z − p(z)
Dm−2(z)

Dm−1(z)
, m = 2,3, . . . . (3.2)

Specific members, B2(z) and B3(z), are the Newton and Halley iteration func-
tions, respectively. These two by themselves posses a rich and interesting history, see
[18], also [10]. The Basic Family was studied by Schröder [17], see also [10, 18] for
several different but equivalent formulations, as well as many other properties.

The following theorem summarizes some of the main properties of the Basic Fam-
ily, those relevant to what is to be proved. The theorem can be viewed as a particular
case of a determinantal Taylor’s theorem.

Theorem 3.1 [8, 10] Let p(z) be a complex polynomial of degree n, and θ a root.
For each m ≥ 2, the following expansion is valid

Bm(z) = z − p(z)
Dm−2(z)

Dm−1(z)
= θ + (−1)m

m+n−2
∑

k=m

D̂m−1,k(z)

Dm−1(z)
(θ − z)k, (3.3)
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where for each m ≥ 1 and each k = m + 1, . . . ,m + n − 1,

D̂m,k(z) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p′′(z)
2!

p′′′(z)
3! . . .

p(m)(z)
(m)!

p(k)(z)
k!

p′(z) p′′(z)
2!

. . . p(m−1)(z)
(m−1)!

p(k−1)(z)
(k−1)!

p(z) p′(z) . . .
...

...
...

...
. . . p′′(z)

2!
p(k−m+2)(z)
(k−m+2)!

0 0 . . . p′(z) p(k−m+1)(z)
(k−m+1)!

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.4)

In particular, the expansion formula (3.3) implies that there exists a disk centered
at θ such that for any z0 in this disk the sequence of fixed point iteration

zk+1 = Bm(zk), k = 0,1, . . . ,

is well-defined, and it converges to θ . If θ is a simple root, the order of convergence
is m. More specifically,

lim
k→∞

(θ − zk+1)

(θ − zk)m
= (−1)m

D̂m−1,m(θ)

p′(θ)m−1
.

Definition 3.2 For a given complex number w, the Basic Sequence is defined as
{

Bm(w), m = 2,3, . . .
}

.

Theorem 3.3 [9, 10] For any root θ of p(z) and any w in the Voronoi cell V (θ),
the Basic Family is pointwise convergent to θ , i.e., the corresponding Basic Sequence
satisfies

lim
m→∞Bm(w) = θ.

Theorem 3.3 establishes the pointwise convergence of the Basic Family on each
Voronoi cell. In what follows, we will prove the uniform convergence of the Basic
Family, thus describing a more accurate and powerful description for this conver-
gence.

4 Persistent Neighborhood of a Root and Its Existence

We first give a definition.

Definition 4.1 Let θ be a root of p(z) and V (θ) its Voronoi cell. Given r > 0 we say
that the disk Nr(θ) = {z : |z − θ | < r} is a persistent neighborhood of θ if

Nr(θ) ⊆ V (θ),

and for all m ≥ 2 the Basic Family member Bm(z) is a contraction mapping on Nr(θ).
Equivalently, for all m ≥ 2 and for all z ∈ Nr(θ), |B ′

m(z)| < 1, i.e., the sequence of
moduli of the derivatives is uniformly and strictly bounded above by 1.
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Before proving the existence of a persistent neighborhood, note that differentiation
of Bm(z) gives

B ′
m(z) = 1 − p′(z)Dm−2(z)

Dm−1(z)
− p(z)

D′
m−2(z)Dm−1(z) − Dm−2(z)D

′
m−1(z)

Dm−1(z)2
.

From the definition of Dm(z) (see (3.1)), it easily follows that Dm(θ) = p′(θ)m.
Hence when θ is a simple root,

B ′
m(θ) = 1 − p(θ)

p′(θ)m−2

p′(θ)m−1
= 0.

This implies that for all m ≥ 2 the order of convergence of Bm(z) is at least quadratic,
also proving the existence of a local neighborhood of convergence for each m ≥ 2.
However, to prove persistence we must ensure that the neighborhoods will not shrink
to θ as m approaches infinity. Thus, proving the existence of a persistent neighbor-
hood is a more delicate matter than proving that |B ′

m(θ)| < 1 for all m.
The proof of the existence of a persistent neighborhood requires several auxiliary

lemmas.

Lemma 4.2 [10] Set

�m(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p′ √
p

p′′
2! . . .

√
pm−2 p(m−1)

(m−1)!
√

pm−1 p(m)

(m)!
√

p p′ . . .
. . .

√
pm−2 p(m−1)

(m−1)!
0

√
p

. . .
. . .

...

...
...

. . .
. . .

√
p

p′′
2!

0 0 . . .
√

p p′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.1)

where
√

p(z) is taken to be the principal value of the complex number p(z). Then

Dm(z) = det
(

�m(z)
)

.

Lemma 4.3 [10, 13] Let A be an m×m matrix with complex entries. Assume we are
given positive lower and upper bounds l and u such that if λ is an eigenvalue of A

then l ≤ |λ| ≤ u. Suppose
∣
∣trace(A)

∣
∣ ≥ m · l.

Then
∣
∣det(A)

∣
∣ ≥ lκum−κ ,

where

κ = m · u − |trace(A)|
u − l

.
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Lemma 4.4 Let θ be a simple root of p(z). There exist positive numbers r < 1, L,
and δ < 1 such that for all z in the neighborhood Nr(θ), and all m ≥ 2 we have

∣
∣Dm(z)

∣
∣ ≥ (√

1 − δ2L
)m

.

Proof Since θ is a simple root of p(z), there exists a neighborhood Nr ′(θ) and a
positive constant L such that for all z ∈ Nr(θ) we have

∣
∣p′(z)

∣
∣ ≥ L.

Set

δ(z) = 1

|p′(z)|

(
√

∣
∣p(z)

∣
∣ +

n
∑

i=2

|p(i)(z)|
i!

∣
∣p(z)

∣
∣

i−1
2

)

.

Since δ(θ) = 0, there exists a neighborhood Nr ′′(θ) and a positive constant δ such
that for all z ∈ Nr ′′(θ) we have

δ(z) ≤ δ < 1.

Let r = min{r ′, r ′′}. For each z ∈ Nr(θ), we have δ(z) < 1. This implies that the
matrix �m(z) is diagonally dominant. Then, from Gerschgorin’s theorem, any eigen-
value λ of �m(z) must satisfy the bounds

(

1 − δ(z)
)∣
∣p′(z)

∣
∣ ≤ λ ≤ (

1 + δ(z)
)∣
∣p′(z)

∣
∣.

Furthermore, we have

∣
∣trace

(

�m(z)
)∣
∣ = m

∣
∣p′(z)

∣
∣ ≥ m(1 − δ)

∣
∣p′(z)

∣
∣.

Thus Lemma 4.3 applies to �m(z), where

κ = m(1 + δ(z))|p′(z)| − m|p′(z)|
(1 + δ(z))|p′(z)| − (1 − δ(z))|p′(z)| = m

2
.

In particular,

∣
∣Dm(z)

∣
∣ ≥ ((

1 − δ(z)
)∣
∣p′(z)

∣
∣
)m

2 × ((

1 + δ(z)
)∣
∣p′(z)

∣
∣
)m

2

= (√

1 − δ2(z)
∣
∣p′(z)

∣
∣
)m ≥ (√

1 − δ2L
)m

.

Hence the proof. �

Lemma 4.5 Let Nr(θ) be as in Lemma 4.4. Let M be a number such that for all
z ∈ Nr(θ) we have

√
√
√
√

(
n

∑

i=0

|p(i)(z)|
i!

)2

≤ M.



Discrete Comput Geom (2011) 46: 187–203 195

Then for each z ∈ Nr(θ), each m ≥ 1, and each k = m + 1, . . . ,m + n − 1, we have

max
{∣
∣Dm(z)

∣
∣,

∣
∣D̂m,k(z)

∣
∣
} ≤ Mm.

Proof First, note that the quantity M bounds the norm of each column of the matrices
corresponding to the determinants Dm(z) and D̂m,k(z), see (3.1) and (3.4). From
Hadamard’s inequality, the modulus of the determinant of a matrix is bounded above
by the product of the norm of the columns. Hence the proof. �

Lemma 4.6 Let Nr(θ) and M be as in Lemma 4.5. Then for each z ∈ Nr(θ), and
each m ≥ 1, and each k = m + 1, . . . ,m + n − 1, we have

max
{∣
∣D′

m(z)
∣
∣,

∣
∣D̂′

m,k(z)
∣
∣
} ≤ nmMm.

Proof Given an m×m matrix A(z) = (aij (z)) with entries that are analytic functions
of z, the following formula is known, and easily provable via induction,

d

dz
det

(

A(z)
) =

m
∑

j=1

det

⎛

⎜
⎜
⎜
⎝

a11(z) . . . a′
1j (z) . . . a1m(z)

a21(z) . . . a′
2j (z) . . . a2m(z)

...
...

...
...

am1(z) . . . a′
mj (z) . . . amm(z)

⎞

⎟
⎟
⎟
⎠

.

Applying the above property, it follows that D′
m(z) is the sum of m determinants

each of which corresponds to a matrix where the norm of any column that is not
differentiated is bounded above by M . After differentiating Dm(z), a bound on the
norm of each column is given by

√
√
√
√

(
n

∑

i=1

|p(i)(z)|
(i − 1)!

)2

=
√
√
√
√

(
n

∑

i=1

i
|p(i)(z)|

i!

)2

≤
√
√
√
√n2

(
n

∑

i=0

|p(i)(z)|
i!

)2

≤ nM.

Thus from Hadamard’s inequality the modulus of the determinant of each of these
m matrices is bounded above by nMm. This proves the claimed bound on |D′

m(z)|.
Similar argument proves the bound for |D̂m,k(z)|. �

Theorem 4.7 Suppose θ is a simple root of p(z). Then there exists a persistent neigh-
borhood of θ . More specifically, let the neighborhood Nr(θ) and the constant M be
as in Lemma 4.5. Set

μ = M√
1 − δ2L

.

Then for all z ∈ Nr(θ), we have

∣
∣B ′

m(z)
∣
∣ ≤ n(2μ + 4μ2)

1 − r
|θ − z|m−1. (4.2)

In particular, if we choose r∗ < r also satisfying

r∗ <
1 − r

n(2μ + 4μ2)
,



196 Discrete Comput Geom (2011) 46: 187–203

then for all z ∈ Nr∗(θ)

∣
∣B ′

m(z)
∣
∣ ≤ rm−2∗ ,

so that Nr∗(θ) is a persistent neighborhood of θ . Moreover, on Nr∗(θ) the sequence
B ′

m(z) uniformly converges to zero.

Proof To prove (4.2), for each m ≥ 2 we differentiate the expansion formula for
Bm(z), see (3.3). Suppressing the variable z, we then get

B ′
m(z) = U(z) + V (z),

where

U(z) = (−1)m+1
m+n−2
∑

k=m

k
D̂m−1,k

Dm−1
(θ − z)k−1,

V (z) = (−1)m
m+n−2
∑

k=m

D̂′
m−1,kDm−1 − D̂m−1,kD

′
m−1

D2
m−1

(θ − z)k.

From Lemmas 4.4 and 4.5, we have

D̂m−1,k

Dm−1
≤

(
M√

1 − δ2L

)m−1

= μm−1.

Using the above bound, and since |θ − z| < r < 1 implies |θ − z|k ≤ |θ − z|k−1,
together with the fact that k ≤ (m + n − 2) ≤ n2m−1, we have

|U(z)| ≤ (m + n − 2)
(

μ|θ − z|)m−1
∞
∑

i=0

|θ − z|i

= (m + n − 2)
(

μ|θ − z|)m−1 1

1 − |θ − z|
≤ n

1 − r

(

2μ|θ − z|)m−1
.

Similarly, from Lemmas 4.4, 4.5, 4.6 and since (2m − 2) < 22m−2, we have

|D̂′
m−1,kDm−1 − D̂m−1,kD

′
m−1|

|D2
m−1|

≤ |D̂′
m−1,k||Dm−1| + |D̂m−1,k||D′

m−1|
|Dm−1|2

≤
(

2n(m − 1)M2m−2

(
√

1 − δ2L)2m−2

)

≤ n

(
2M√

1 − δ2L

)2m−2

= n(2μ)2m−2.
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Using the above bound and since |θ − z|m ≤ |θ − z|m−1, we get

|V (z)| ≤ n(2μ)2m−2|θ − z|m
∞
∑

i=0

|θ − z|i ≤ n

1 − r

(

4μ2|θ − z|)m−1
.

The proof of (4.2) follows from the derived bounds on |U(z)| and |V (z)|, and the
observation that

(2μ)m−1 + (

4μ2)m−1 ≤ (

2μ + 4μ2)m−1
.

From (4.2) the remaining claimed bounds are trivially derivable. �

Remark 4.8 Note that Theorem 4.7 establishes the uniform convergence of the se-
quence of B ′

m(z) to zero on a neighborhood of θ . This is a much stronger result than
proving the existence of a neighborhood of θ with |B ′

m(z)| < 1. While we have as-
sumed the simplicity of the root θ , the existence of persistent neighborhood can be
extended to the case where θ is a multiple root. Although Dm(θ) is zero at a multiple
root, the expansion in (3.3) remains valid and Bm(z) can be defined at such multiple
root. This is the case, for example, for B2(z) = z − p(z)/p′(z), namely Newton’s
iteration function. In such a case, B ′

m(θ) is nonzero, nevertheless |B ′
m(θ)| < 1 for

all m ≥ 2. More specifically, if θ is a root of multiplicity s, it can be shown that
B ′

m(θ) = (s − 1)/(s + m − 2), see [10], Theorem 6.1, or [12]. We avoid details.

5 Approximation of Voronoi Diagram

We are finally ready to prove our main theorem.

Theorem 5.1 Suppose that θ is a simple root of p(z) with at least three distinct
roots. Let C be any closed set contained in V (θ). Then there exists m0 such that for
all m ≥ m0, Am(θ), the basin of attraction of θ with respect to Bm(z), contains C.

Proof We consider two cases.
Case I. Assume V (θ) is a bounded set. Let Nr(θ) be a persistent neighborhood

of θ . From Theorem 3.3, for each w ∈ C there exists a natural number mw such that
for all m ≥ mw , Bmw(z) lies in Nr(θ). In particular,

Ow = B−1
mw

(

Nr(θ)
)

is an open set containing w. This implies the family {Ow : w ∈ C} is an open cover
for C. Since C is closed and bounded (as V (θ) is bounded), by compactness there
exists a finite subcover for C:

C ⊆
t

⋃

i=1

Owt .

Let m0 = max{mw1, . . . ,mwt }. It follows that for each z ∈ C and each m ≥ m0
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we have

Bm(z) ⊆ Am(θ).

This completes the proof for the case where V (θ) is bounded.
Case II. Assume V (θ) is unbounded. Consider the stereographic projection of the

complex plane into the Riemann sphere and the topology induced by the chordal
metric defined for two complex numbers z and w as

σ(z,w) = 2|z − w|
√

(1 + |z|2)(1 + |w|2) ,

see, e.g., [3].
Let θ̂ be the stereographic projection of θ , and V̂ (θ̂ ) the stereographic projec-

tion of V (θ). Let Ĉ be the stereographic projection of C. Note that Ĉ is closed and
bounded, hence compact. Under the stereographic projection, the persistent neigh-
borhood N(θ) gets mapped into a persistent neighborhood N̂r (θ̂ ) of θ̂ . For all m ≥ 2,

the point ∞ can be shown to be a repelling fixed point of Bm(z) (see [10], Theo-
rem 5.3) so that, under stereographic projection, ∞ gets mapped to a boundary point
of V̂ (θ̂ ′), for some root θ ′ of p(z).

Analogous to Case I, we use the boundedness of V̂ (θ̂ ), the persistence of N̂r (θ̂ ),
and the compactness of Ĉ, in order to draw the desired conclusion. �

Next we state a corollary of the above result according to which for each given
polynomial with simple roots, the Basic Family members uniformly approximate
Voronoi cells of its roots with their corresponding basins of attraction. In particu-
lar, the chaotic behavior of iterations of Bm(z) can be controlled to uniformly lie to
within a strip neighborhood of the boundary of the Voronoi diagram.

Corollary 5.2 Let p(z) be a complex polynomial with at least three distinct roots.
Assume all roots of p(z) are simple. Let G denote the graph consisting of the vertices
and edges of the Voronoi cell of the roots (e.g., the skeleton in Fig. 1). Given ε > 0,
let Gε correspond to an inflated G where each line in G is inflated to an open strip
of width ε. Let Vε be the complement of Gε . Then there exists mε such that for all
m ≥ mε , the basins of attraction of Bm(z) contains Vε . In particular, if Jm denotes
the Julia set of Bm(z), then for all m ≥ mε , Gε contains Jm.

It would be interesting and perhaps nontrivial to determine the dependence of mε

on ε and the coefficients of the given polynomial p(z).

6 Layering of Points in Voronoi Cells

In this section, we will make use of the Basic Sequence (see Definition 3.2) to define
a layering of the points within a given Voronoi cell. Before describing the approach,
we offer a motivation. Consider a given set of points in the Euclidean plane:

S = {

pi = (xi, yi), i = 1, . . . , n
}

,
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and assume that we have computed their Voronoi diagram
{

V (p1), . . . , V (pn)
}

,

where for each i = 1, . . . , n, V (pi) denotes the Voronoi cell of pi . To measure the
relative merit of points in a given Voronoi cell V (pj ), we need to define a meaningful
hierarchy. An intuitive hierarchy would be to measure their Euclidean distance to pj .
However, this completely ignores the relationship of the points inside the cell, to the
points outside of the cell and the way in which they have influenced the formation
of the cell to begin with. In what follows, we will introduce a notion of distance
on points in a given Voronoi cell. This notion uses the encoding of the points as a
polynomial equation.

Consider each point pj = (xj , yj ) as a complex number

θj = xj + iyj , i = √−1.

Set p(z) to be the polynomial having all θj ’s as its roots, and only these points:

p(z) =
n

∏

i=1

(z − θi) =
n

∑

i=0

aiz
i ,

for some set of complex coefficients ai, i = 0, . . . , n. If we assume that the input
to a Voronoi diagram algorithm is the set of coefficients, as opposed to the set of
coordinates, the problem of computing the Voronoi diagram now completely differs
from its ordinary version.

Our approach in this section is to consider the Voronoi diagram of a set of points in
the Euclidean plane using the fact that the points can be described via a polynomial
equation. This polynomial could be given explicitly in terms of its coefficients, or
explicitly in terms of the roots. We will explore the relation between Voronoi diagram
to polynomial root-finding via the Basic Family.

Definition 6.1 Let p(z) be a polynomial of degree n. Let θ be a root of p(z). Assume
that Nr(θ) is a neighborhood contained in V (θ). Given a point z ∈ V (θ), the layer of
z is denoted by lr (z) and defined as follows:

lr (z) =
{0, if z ∈ Nr(θ);

min{m − 1 : Bm(z) ∈ Nr(θ), m ≥ 2}, if z ∈ V (θ) − Nr(θ);
∞, if z �∈ V (θ).

From Theorem 3.3, the function lr (z) is well-defined for all complex numbers z,
whether or not θ is a simple root. This gives rise to a pseudometric d(·, ·) on points
u and v in the Euclidean plane

d(u, v) = |lr (u) − lr (v)|.
Definition 6.2 A layer of depth m with respect to θ , denoted by Lm, is the set of all
z that are at layer m, i.e.,

Lm = {

z : lr (z) = m
}

.
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Theorem 6.3 Let p(z) be a complex polynomial having at least three distinct roots.
Let θ be a root of p(z). Let r > 0 be such that Nr(θ) is a persistent neighborhood
of θ . Let lr (z) be the corresponding layering. Then V (θ) contains layers of all depths,
i.e., for all m ≥ 1, there exists z ∈ V (θ) such that lr (z) = m.

Proof If there are only finitely many layers, then there exists m0 ≥ 2 such that for all
z0 ∈ V (θ),

Bm0(z0) ∈ Nr(θ).

This together with the assumption that Nr(θ) is a persistent neighborhood of θ im-
plies that the orbit of z0 with respect to Bm0(z) converges to θ . Thus, V (θ) is con-
tained in Am0(θ), the basin of attraction of θ with respect to Bm0 . We may thus
conclude:

V (θ) ⊆ B−1
m0

(

Nr(θ)
)

.

We claim the above containment cannot be strict so that we must have

V (θ) = B−1
m0

(

Nr(θ)
)

.

Suppose this equality is not valid. Since B−1
m0

(Nr(θ)) is the inverse image of an
open set, under continuity of Bm0 it must be an open set itself. Therefore, there exists
z0 ∈ V (θ ′), where θ ′ is some other root of p(z). But, from Theorem 3.3, this implies
that the Basic Sequence {Bm(z0)}∞m=m0

converges to θ ′. This contradicts the fact that
Nr(θ) is contained in Am0(θ). Hence the proof of the claim. It follows that we must
have

V (θ) = Am0(θ).

But, by Theorem 2.2, this is a contradiction. Hence the proof. �

Next we prove a more general version of the above theorem where Nr(θ) is an
arbitrary neighborhood of θ contained in V (θ). This settles a question raised in our
earlier work [11].

Theorem 6.4 Let p(z) be a complex polynomial having at least three distinct roots.
Let θ be a simple root of p(z). Let Nr(θ) be any neighborhood of θ contained in
V (θ). Let lr (z) be a layering defined with respect to Nr(θ). Then, V (θ) contains
layers of all depths.

Proof Let C be the closure of Nr(θ). Then, from Theorem 5.1 for all m ≥ m0, Am(θ)

contains C. If Nr(θ) is not already a persistent neighborhood of θ , then from The-
orem 4.7 it follows that it must necessarily contain a persistent neighborhood, say
Nρ(θ) for some 0 < ρ < r . Then, from Theorem 6.4, there are layers of all depth
with respect to Nρ(θ). It follows that there are layers of all depth with respect to
Nr(θ). �

Remark 6.5 In the case where p(z) is a quadratic polynomial, the infinity of layers
is still valid. The proof, however, follows from a different argument. In this case for
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each m ≥ 2, the Julia set of Bm(z) is merely the boundary of the two Voronoi cells.
This special case is quite interesting in its own right, see Chap. 1 in [10].

Remark 6.6 Voronoi cell layering remains well-defined under multiplicity of the
roots. Suppose p(z) is a polynomial with roots θi repeated with multiplicity mi ,
i = 1, . . . , n. Clearly, the Voronoi cells remain unchanged, but the layering may differ
from the case of simple roots. In this case the underlying polynomial is

p(z) = (z − θ1)
m1 × · · · × (z − θn)

mn.

The corresponding Basic Sequence will still converge for points within each Voronoi
cell. However, the distance, d(u, v), would be dependent on the multiplicities.

6.1 Localization of Layering Using Adjacent Cells

The layering defined previously needs to make use of the entire set of points in S =
{p1, . . . , pn}, hence dealing with a polynomial of degree n which may be prohibitive
when n is large. In the remaining of the section, we describe a layering using local
information, hence more efficiently computable.

It is well known that the Voronoi cell of a point pj = (xj , yj ) is dependent only
on the neighboring Voronoi cells. Furthermore, the average number of neighboring
cells is 6, see, e.g., [2]. This suggests an efficient strategy for layering of Voronoi
cells of a set of points, when given explicitly through their coordinates. To define the
layering, we make use of a local polynomial based on identifying the point pj with
the complex number θj = xj + iyj . Letting Ij be the index set of neighboring points
to pj , we define the local Voronoi polynomial as

pj (z) = (z − θj ) ×
∏

i∈Ij

(z − θi).

All the stated results regarding layering of the Voronoi cell V (θj ) with respect to
p(z) are still valid when the layering of the Voronoi cell V (θj ) is done with respect
to the local polynomial pj (z). This has the advantage that the average degree of the
polynomial pj (z) equals 7. Given a set of n points through their coordinates, we can
associate a polynomial to their Voronoi diagram, we call this the Voronoi polynomial:

P(z) =
n

∏

j=1

pj (z).

Voronoi polynomial encodes the Voronoi diagram of the set of points. In future work,
we will investigate properties of Voronoi polynomial and the corresponding local
layerings. In particular, we will explore this in the context of large-scale polynomiog-
raphy, a field of study based on the visualization of the process of solving polynomial
equations, having potential applications in subject areas that include art, science and
education, see [10].
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Fig. 3 A layering of Voronoi
cell of points. The white
boundaries correspond to points
with layer numbers larger than a
certain threshold

Final Remarks We would like to mention a peculiar connection and a potential
novel application of our results. The notion of a zone diagram of a finite set of points
in the Euclidean plane is an interesting and rich variation of the classical Voronoi
diagram, introduced by Asano, Matoušek, Tokuyama [1]. Certain features in poly-
nomiographs, such as the one given in Fig. 3, resemble images derived from zone
diagrams. Indeed, in [5] we have defined a more inclusive notion of a maximal zone
diagram (subsequently changed with an improved terminology in [6] as mollified
zone diagram). Although the development of maximal zone diagram is independent
of our results on polynomial root-finding, the present article suggests as a possibility,
approximation of the zone diagram via approximate Voronoi cells based on the use
of the Basic Sequence (see Definition 3.2), followed by iterations toward a maximal
(mollified) zone diagram.

The proof of existence of maximal zone diagrams depends on less restrictive ini-
tial conditions and is thus conveniently established via Zorn’s lemma in contrast to
the use of fixed-point theory in proving the existence of a unique zone diagram.
A zone diagram is a particular maximal zone diagram satisfying a unique dominance
property. In [5], we give a characterization for maximal zone diagrams which al-
lows recognition of maximality of certain subsets, called subzone diagram (territory
diagram in [6]), as well as that of their iterative improvement toward maximality.
Maximal zone diagrams offer their own interesting theoretical and computational
challenges. In future work, we hope to explore possible connections between our the-
ory and algorithms for polynomial root-finding, and those of zone diagram, as well
as maximal zone diagrams.
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