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Abstract We study the problem of when the collection of the recession cones of a
polyhedral complex also forms a complex. We exhibit an example showing that this is
no always the case. We also show that if the support of the given polyhedral complex
satisfies a Minkowski–Weyl-type condition, then the answer is positive. As a conse-
quence, we obtain a classification theorem for proper toric schemes over a discrete
valuation ring in terms of complete strongly convex rational polyhedral complexes.
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1 Introduction

Toric schemes over a discrete valuation ring (DVR) were introduced and classified in
[3]. Let N � Z

n be a lattice on rank n and set NR = N ⊗ R for the associated real
vector space. In loc. cit., toric schemes over a DVR are described and classified in
terms of rational fans in NR × R≥0. The toric scheme associated to a fan is proper
if and only the support of the fan is the whole of NR × R≥0. In this case, we say
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that the fan is complete. In the literature, such toric schemes are also called toric
degenerations.

If we intersect a rational fan in NR × R≥0 with the hyperplane NR × {1}, we
obtain a strongly convex rational (SCR) polyhedral complex in NR. Thus, given a
SCR polyhedral complex in NR, it is natural to ask if it defines a rational fan in
NR × R≥0 and hence a toric scheme. One can also ask up to which extent these
complexes classify toric schemes over a DVR.

In [5, Lemma 3.2], Nishinou and Siebert claim that any complete SCR polyhedral
complex in NR gives rise to a rational fan in NR × R≥0, but their proof is incomplete
because they do not check that the intersection of any two of the obtained cones is
a common face. Moreover, in recent references, it is claimed without proof that any
SCR polyhedral complex (without further hypothesis) defines a rational fan; see, for
instance, [7, § 2.3].

This question is less innocent than it appears. Indeed, in Example 3.1 we exhibit an
SCR polyhedral complex that does not define a rational fan. Hence it is not possible
to associate a toric scheme to an arbitrary SCR polyhedral complex.

The main result of this note (Theorem 3.4) is that, if we assume that the support
of a complex is connected and satisfies the Minkowski–Weyl condition (see Defin-
ition 3.3 below), then its recession cones do form a complex. In particular, this is
true in the complete case, thus filling the gap in the proof of the Nishinou–Siebert
statement. As a consequence, we show that proper toric schemes over a DVR of
relative dimension n are classified by complete SCR polyhedral complexes in NR

(Theorem 4.3).
The connectedness and the Minkowski–Weyl hypothesis are sufficient but not nec-

essary. A wide class of examples whose recession cones form a complex but that may
not satisfy the above hypothesis is that of extendable complexes (Definition 3.13).
A consequence of our result is that any extendable SCR polyhedral complex defines
a toric scheme.

The question of when an SCR polyhedral complex defines a fan is also relevant
in tropical geometry: the definition of a tropical compactification of a subvariety of
the torus depends on the construction of a toric scheme from an SCR polyhedral
complex supported on the associated tropical variety. Since a tropical variety has a
natural structure of SCR polyhedral complex that is extendable, our theorem implies
the existence of such a toric scheme.

2 Preliminaries on Polyhedral Complexes

Let N � Z
n be a lattice on rank n. We write NR = N ⊗ R for the associated real

vector space and let MR = N∨
R

be its dual space. The pairing between x ∈ MR and
u ∈ NR will be denoted by 〈x,u〉. A polyhedron of NR is a convex set defined as the
intersection of a finite number of closed halfspaces. It is strongly convex if it contains
no line. It is rational if the closed halfspaces can be chosen to be defined by equations
with coefficients in Q. A polyhedral set is a finite union of polyhedra. A polytope is
the convex hull of a finite set of points. A convex polyhedral cone is the convex conic
set generated by a finite set of vectors of NR.

The following theorem is a basic tool in the study of polyhedra.
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Theorem 2.1 (Minkowski–Weyl) Let E be a subset of NR. Then E is a polyhedron
if and only if there exist a polytope Δ and a convex polyhedral cone σ such that

E = Δ + σ.

An immediate consequence of this result is that the notion of polytope coincides
with that of bounded polyhedron and the notion of convex polyhedral cone coincides
with that of conic polyhedron.

Let Λ be a polyhedron. The relative interior of Λ, denoted ri(Λ), is defined as the
interior of Λ relative to the minimal affine space that contains it. For x ∈ MR, we set

Λx = {u ∈ Λ | 〈x,u〉 ≤ 〈x, v〉, ∀v ∈ Λ}.
A nonempty subset F ⊂ Λ is called a face of Λ if it is of the form Λx for some
x ∈ MR. The polyhedron Λ is the disjoint union of the relative interior of its faces.

Let E ⊂ NR be a polyhedral subset. For each p ∈ E, the local recession cone of
E at p is defined as

recp(E) = {u ∈ NR | p + λu ∈ E, ∀λ ≥ 0}.
The recession cone of E is defined as

rec(E) =
⋂

p∈E

recp(E).

Observe that both the local and the global recession cones are conic subsets of NR. If
Λ is a polyhedron, we have the alternative characterization

rec(Λ) = {u ∈ NR | Λ + u ⊂ Λ}.
Hence, for polyhedra, the above definition agrees with the notion of recession cone
from convex analysis [6]. Moreover, rec(Λ) agrees with the cone σ in Theorem 3.4.
In particular, σ is determined by Λ, and rec(Λ) is a convex polyhedral cone. A further
consequence of the Minkowski–Weyl theorem is that, for polyhedra, local and global
recession cones agree. In other words, recp(Λ) = rec(Λ) for any p ∈ Λ. Observe
that, if Λ is rational or strongly convex, the same is true for rec(Λ).

To a polyhedral subset E ⊂ NR we can also associate the (not necessarily convex)
polyhedral cone of NR × R given by

c(E) = R>0(E × {1}) ⊂ NR × R≥0.

It is called the cone of E. If Λ is a polyhedron, then rec(Λ) = c(Λ) ∩ (NR × {0}).
This is not true for general polyhedral sets. Again, if Λ is rational or strongly convex,
the same is true for c(Λ).

Definition 2.2 A polyhedral complex in NR is a nonempty collection Π of polyhedra
of NR such that

(1) every face of an element of Π is also in Π ,
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(2) any two elements of Π are either disjoint or intersect in a common face.

A polyhedral complex Π is called rational (respectively strongly convex, conic) if all
of its elements are rational (respectively strongly convex, cones). A strongly convex
conic polyhedral complex is called a fan. For shorthand, strongly convex rational will
be abbreviated to SCR.

The support of Π is the polyhedral set

|Π | =
⋃

Λ∈Π

Λ.

For a subset E ⊂ NR, we say that Π is a polyhedral complex in E whenever |Π | ⊂ E.
We say that a complex in E is complete if |Π | = E.

3 Complexes and Fans

There are two natural processes for linearizing a polyhedral complex. Intuitively, the
first one is to look at the complex from far away, so that the unbounded polyhedra
became cones. In precise terms, the recession of Π is defined as the collection of
polyhedral cones of NR

rec(Π) = {rec(Λ) | Λ ∈ Π}.
The second process is analogous to the linearization of an affine space. The cone

of Π is defined as the collection of cones in NR × R

c(Π) = {c(Λ) | Λ ∈ Π} ∪ {σ × {0} | σ ∈ rec(Π)}.
It is a natural question to ask whether the recession or the cone of a given polyhe-

dral complex is a complex too. The following example shows that this is not always
the case.

Example 3.1 Let Π be the polyhedral complex in R
3 consisting in the set of faces of

the polyhedra

Λ1 := {(x1, x2,0)|x1, x2 ≥ 0}, Λ2 := {(x1, x2,1)|x1 + x2, x1 − x2 ≥ 0}.
We have that rec(Λ1) and rec(Λ2) are two cones in R

2 × {0} whose intersection
is the cone {(x1, x2,0)|x2, x1 − x2 ≥ 0}. This cone is neither a face of rec(Λ1) nor
of rec(Λ2). Hence rec(Π) is not a complex, and consequently, neither is c(Π). In
Fig. 1 we see the polyhedron Λ1 in light grey, the polyhedron Λ2 in darker grey, and
rec(Λ2) as dashed lines.

This example shows that we need to impose some condition on Π if we want to
ensure that rec(Π) and c(Π) are complexes. The precise hypothesis in Theorem 3.4
was suggested to us by Francisco Santos. The key observation is that it is enough to
assume that |Π | satisfies a version of the Minkowski–Weyl theorem.
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Fig. 1 A polyhedral complex
whose recession is not a fan

Lemma 3.2 Let E be a polyhedral set. The following conditions are equivalent.

(1) There is a decomposition E = Δ+ σ , where Δ is a finite union of polytopes, and
σ is a convex polyhedral cone.

(2) recp(E) = rec(E) for all p ∈ E.

Proof We first prove that (1) implies (2). Let E = Δ + σ be as in (1). Since σ is a
convex cone, it is a semigroup. This implies that σ ⊂ recp(E) for all p ∈ E. Since Δ

is compact and σ is closed, if v ∈ recp(E), the fact that the ray p+R≥0v is contained
in Δ + σ implies that v ∈ σ . Hence recp(E) = σ for all p, and so rec(E) = σ =
recp(E).

Conversely, write E = ⋃
i Λi . We set σ = rec(E) = recp(E) for any p ∈ E and

σi = rec(Λi) for each i. We have that σi ⊂ σ for all i. By the Minkowski–Weyl
theorem, for each i, there exists a polytope Δi ⊂ Λi such that Λi = Δi +σi . Consider
the finite union of polytopes Δ = ⋃

i Δi . It is clear that E ⊂ Δ + σ . Besides, Δ +
σ ⊂ E since Δ is contained in E. Hence E = Δ + σ , as stated. �

Definition 3.3 A polyhedral subset E of NR satisfies the Minkowski–Weyl condition
if it satisfies any of the equivalent conditions in Lemma 3.2.

Theorem 3.4 Let Π be a polyhedral complex in NR such that |Π | is a connected
polyhedral set satisfying the Minkowski–Weyl condition. Then

(1) rec(Π) is a conic polyhedral complex in NR, and | rec(Π)| = rec(|Π |).
(2) c(Π) is a conic polyhedral complex in NR × R≥0, and | c(Π)| = c(|Π |).
(3) If, in addition, Π is rational (respectively strongly convex), then both rec(Π) and

c(Π) are rational (respectively fans).

We need some lemmas before starting the proof of this result.

Lemma 3.5 Let Λ ⊂ NR be a polyhedron. Then the collection of the recession cones
of the form rec(F ) for some face F of Λ coincides with the set of faces of rec(Λ). In
particular, it is a complex.
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Proof By the Minkowski–Weyl theorem, there exist a polytope Δ and a cone σ such
that Λ = Δ + σ . It is easy to verify that, if x ∈ MR, then Λx = Δx + σx . Therefore,
rec(Λx) = σx , which implies the result. �

Lemma 3.6 Let Λ be a polyhedron, and v ∈ rec(Λ). Then there is a face F of Λ such
that v ∈ ri(rec(F )). Moreover, if F1 and F2 are two faces satisfying this condition,
then rec(F1) = rec(F2).

Proof This easily follows from Lemma 3.5. �

Lemma 3.7 [6, Theorem 18.1] Let C be a convex set, and F a face of C. If D ⊂ C

is a convex subset such that ri(D) ∩ F �= ∅, then D ⊂ F .

Proof of Theorem 3.4 We first prove (1). The sets rec(Λ) for Λ ∈ Π are polyhedra,
and, by Lemma 3.5, any face of an element of rec(Π) is in rec(Π). Thus, rec(Π)

satisfies the first condition in Definition 2.2, and we have to show that it also satisfies
the second one. That is, we have to show that given Λ1,Λ2 ∈ Π such that rec(Λ1) ∩
rec(Λ2) is nonempty, this intersection is a common face of rec(Λ1) and rec(Λ2).

Let v ∈ ri(rec(Λ1) ∩ rec(Λ2)). Let Fi , i = 1,2, be faces of Λi satisfying the
condition of Lemma 3.6. We claim that we can find a finite sequence of polyhedra
Γ1, . . . ,Γn+1 with the following properties:

(1) F1 is a face of Γ1, and F2 is a face of Γn+1.
(2) The vector v belongs to rec(Γi ∩ Γi+1) for i = 1, . . . , n.

To prove this claim, we choose points pi ∈ ri(Fi), i = 1,2. Since |Π | is a
connected polyhedral set, we can find a polygonal path γ : [0,1] → |Π | joining
p1 and p2. By construction, v ∈ recp1(|Π |). Since |Π | satisfies the Minkowski–
Weyl condition, v ∈ rec(|Π |). Therefore the map S : [0,1] × R≥0 → |Π |, given by
S(t, r) = γ (t) + rv, is well defined. This is the key step in this proof, and it fails
if the hypothesis are not fulfilled: if |Π | is not connected, then the polygonal path
γ may not exist, and if |Π | is connected but does not satisfy the Minkowski–Weyl
condition, then the map S may not exist.

Since S is a piecewise affine function, we can find a finite covering U of [0,1] ×
R≥0 by polyhedra such that, for each K ∈ U, there is a Λ ∈ Π with S(K) ⊂ Λ.
By the finiteness of U, we can find a number l ≥ 0 such that the restriction of the
covering U to [0,1] × [l,∞) consists of sets of the form Iα × [l,∞), where the
Iα are closed intervals that cover [0,1]. We choose I1, . . . , In+1 among them such
that 0 ∈ I0, 1 ∈ In+1, and Ii ∩ Ii+1 �= 0 for i = 1, . . . , n. For each i, we choose a
polyhedron Γi ∈ Π such that S(Ii × [l,∞)) is contained in Γi .

Since Γ0 contains the point p1 + lv and this point belongs to ri(F1), we have that
F1 is a face of Γ0. Analogously, F2 is a face of Γn+1. By construction, it is also clear
that v ∈ rec(Γi ∩ Γi+1). Thus the claim is proved.

For each i = 1, . . . , n, we choose a face Gi of Γi ∩Γi+1 that satisfies the condition
of Lemma 3.6. Applying Lemma 3.6 to the polyhedra Γi , we obtain

rec(F1) = rec(G1) = · · · = rec(Gn) = rec(F2).
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By Lemma 3.7, rec(Λ1) ∩ rec(Λ2) ⊂ rec(F1). Thus, we have the chain of inclusions

rec(Λ1) ∩ rec(Λ2) ⊂ rec(F1) ∩ rec(F2) ⊂ rec(Λ1) ∩ rec(Λ2).

Hence rec(Λ1) ∩ rec(Λ2) = rec(F1) = rec(F2) is a common face of rec(Λ1) and
rec(Λ2). We conclude that rec(Π) is a complex.

We now prove that | rec(Π)| = rec(|Π |). On the one hand, for any p ∈ |Π |, we
always have the chain of inclusions

rec(|Π |) ⊂ recp(|Π |) ⊂
⋃

Λ∈Π

rec(Λ) = | rec(Π)|.

On the other hand, if Λ ∈ Π and p ∈ Λ, we have rec(Λ) ⊂ recp(|Π |) = rec(|Π |),
where the second equality follows from the Weyl–Minkowski condition. Thus

| rec(Π)| =
⋃

Λ∈Π

rec(Λ) ⊂ rec(|Π |).

Hence the equality.
We next prove (2). For a polyhedron Λ, we denote c◦(Λ) = R>0(Λ × {1}). Ob-

serve that

c(Λ) = c◦(Λ) � (rec(Λ) × {0}). (3.8)

By Lemma 3.5, every face of rec(Λ) × {0} is of the form rec(F ) × {0} for some
face F of Λ. Moreover, a face of c(Λ) is either of the form c(F ) for a face F of Λ or
a face of rec(Λ) × {0}. Hence c(Π) satisfies the first condition in Definition 2.2.

It remains to prove that any two not disjoint elements of c(Π) intersect in a com-
mon face. By (1), the intersection of two cones of c(Π) contained in NR × {0} is a
common face. By (3.8), the same is true if we intersect a cone contained in NR × {0}
with a cone of the form c(Λ). If Λ1,Λ2 ∈ Π , one verifies using (3.8) that

c(Λ1) ∩ c(Λ2) =
{

c(Λ1 ∩ Λ2) if Λ1 ∩ Λ2 �= ∅,

(rec(Λ1) ∩ rec(Λ2)) × {0} otherwise.

In both cases, this is a common face of c(Λ1) and c(Λ2). Hence c(Π) is a complex.
Statement (3) follows easily from the previous ones. �

Example 3.9

(1) Let Π be the complex in R
3 consisting of the set of faces of the polyhedra

{(x1, x2,0)|x1, x2 ≥ 0}, {(x1, x2,1)|x1 ≥ x2 ≥ 0} and {(x1, x2,1)|x2 ≥ x1 ≥ 0}.
This polyhedral complex satisfies the Minkowski–Weyl condition, but |Π | is not
connected, and rec(Π) is not a complex. Therefore, the connectedness assump-
tion is necessary for the conclusion of Theorem 3.4.

(2) Let Π be the complex in R
3 consisting of the set of faces of the polyhedra

{(x1, x2,0)|x1 ≥ x2 ≥ 0} and {(x1, x2,1)|x2 ≥ x1 ≥ 0}. This polyhedral complex
does not satisfy the Minkowski–Weyl condition, rec(Π) is a fan, but rec(|Π |) �

| rec(Π)|.
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Any polyhedron satisfies the Minkowski–Weyl condition, and therefore we have:

Corollary 3.10 Let Π be a polyhedral complex in NR such that |Π | is convex. Then
rec(Π) and c(Π) are conic polyhedral complexes. If, in addition, Π is rational (re-
spectively strongly convex), then rec(Π) and c(Π) are rational (respectively fans).

Let Σ be a conic polyhedral complex in NR × R≥0. We denote by aff(Σ) the
complex in NR obtained by intersecting Σ with the hyperplane NR × {1}. Again, if
Σ is rational or strongly convex, the same is true for aff(Σ).

Corollary 3.11 The correspondence Π �→ c(Π) is a bijection between the set of
complete polyhedral complexes in NR and the set of complete conic polyhedral com-
plexes in NR × R≥0. Its inverse is the correspondence aff. These bijections preserve
rationality and strong convexity.

Proof By Theorem 3.4, if Π is a complete polyhedral complex in NR, then c(Π)

is also a complete conic polyhedral complex in NR × R≥0. Conversely, if Σ is a
complete conic polyhedral complex in NR ×R≥0, it is clear that aff(Σ) is a complete
polyhedral complex in NR.

If Π is a complete polyhedral complex in NR, then Π = aff(c(Π)). It remains to
verify that the other composition is the identity. Since we already know that c(aff(Σ))

is a complex in NR × R≥0, it is enough to show that Σ and c(aff(Σ)) have the same
cones of dimension n + 1. But this is obvious. Hence Σ = c(aff(Σ)).

The last statement is clear. �

Remark 3.12

(1) Example 3.1 shows that the map Π �→ c(Π) does not produce a conic polyhedral
complex from an arbitrary polyhedral complex. Thus the above corollary cannot
be extended to arbitrary complexes.

(2) Given a conic polyhedral complex Σ , the polyhedral complex aff(Σ) does not
need to satisfy the hypotheses of Theorem 3.4. Nevertheless, c(aff(Σ)) is the
conic complex Σ . Therefore the hypotheses of Theorem 3.4 are sufficient for the
recession being a complex, but they are not necessary. It would be interesting to
have a full characterization of the complexes that arise as the image of aff.

(3) If we restrict to polyhedral complexes with convex support, the correspondence
aff is not injective, and c is only a right inverse of aff. This is why in Corol-
lary 3.11, we restrict ourselves to complete complexes.

Let Π be a polyhedral complex. As we have seen in Remark 3.12 (2), the hy-
potheses of Theorem 3.4 are not necessary for rec(Π) being a complex. A class of
examples for which this is true is that of extendable complexes.

Definition 3.13 A polyhedral complex Π in R
n is called extendable if there exists a

complete polyhedral complex Π such that Π is a subcomplex of Π .

Corollary 3.14 Let Π be an extendable polyhedral complex. Then both rec(Π) and
c(Π) are complexes.
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Proof If σ ∈ rec(Π), then it is clear that all the faces of σ also belong to rec(Π). Let
Π be a complete polyhedral complex which contains Π . Let σ, τ ∈ rec(Π). Since
both belong to rec(Π), by Theorem 3.4, its intersection is a common face. Thus
rec(Π) is a complex, and the same is true for c(Π). �

In particular, the complex from Example 3.1 cannot be extended to a complete
polyhedral complex. By contrast, the complex from Example 3.9 (2) is extendable.
This last example shows that an extendable complex Π does not necessarily satisfy
that | rec(Π)| = rec(|Π |).

If one is willing to admit subdivisions, the issues raised by Example 3.1 disappear.

Proposition 3.15 Let Π be a polyhedral complex in R
n. Then there exists a subdivi-

sion Π ′ of Π that is extendable. In particular, rec(Π ′) and c(Π ′) are complexes.

Proof Let Λ1, . . . ,Λm be the polyhedra of Π . For each i, the complex defined by
the faces of Λi is extendable. Denote by Πi any such extension. Then

Π := {Γ1 ∩ · · · ∩ Γm | Γi ∈ Πi}
is a complete polyhedral complex that is a common subdivision of the Πi . Let Π ′
be the set of polyhedra of Π that are contained in |Π |. Then Π ′ is an extendable
subdivision of Π . The last statement follows from Corollary 3.14. �

4 Toric Schemes over a DVR and Tropical Varieties

Let K be a field provided with a nontrivial discrete valuation val : K× � Z. Let K◦
be its valuation ring, and S = Spec(K◦) its base scheme. Let TS � G

n
m,S be a split

torus over S, and let T = TS × Spec(K) be the corresponding split torus over K . Let
N = Hom(Gm,K,T) be the lattice of one-parameter subgroups of T.

Definition 4.1 A toric scheme over S of relative dimension n is a normal integral
separated S-scheme of finite type X equipped with an open embedding T ↪→ X ×
Spec(K) and an S-action of TS over X that extends the action of T on itself.

Toric schemes over a DVR were introduced and studied in [3]. In loc. cit., to each
rational fan Σ in NR × R≥0 it is associated a toric scheme XΣ over S. Moreover, the
following classification theorem is proved.

Theorem 4.2 ([3, § IV.3]) The correspondence Σ �→ XΣ is a bijection between the
set of rational fans in NR × R≥0 and the set of toric schemes over S of relative
dimension n. The scheme XΣ is proper if and only if Σ is complete.

We are interested in the question of when an SCR polyhedral complex in NR

defines a toric scheme over S and whether this assignment allows one to classify toric
schemes over S. Example 3.1 shows that an SCR polyhedral complex of NR does
not necessarily define a toric scheme over S. Theorem 3.4 shows that to each SCR
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polyhedral complex Π in NR such that |Π | is connected and satisfies the Minkowski–
Weyl condition we can associate a toric scheme Xc(Π). Remark 3.12 shows that this
assignment cannot give a classification in full generality. A direct consequence of
Theorem 4.2 and Corollary 3.11 is the following classification result.

Theorem 4.3 The correspondence Π �→ Xc(Π) is a bijection between the set of com-
plete SCR polyhedral complexes of NR and the set of proper toric schemes over S of
relative dimension n.

Polyhedral complexes play also an important role in tropical geometry. Observe
that the valuation of K induces a map T(K) → NR, which we also denote by val.

Definition 4.4 Let V ⊂ T be an algebraic set. The tropical variety associated to V ,
denoted trop(V ), is the closure in NR of the subset val(V (K)).

Tropical varieties are polyhedral sets that can be equipped with a standard struc-
ture of a polyhedral complex. Let GV denote the so-called Gröbner complex of V

[4, § 2], [2, Definition 5.5]. This is a complete rational polyhedral complex in NR. If
the stabilizer of V is trivial, then GV is strongly convex. The tropical variety trop(V )

is the union of a finite number of elements of GV , and so it inherits a structure of
a polyhedral complex. We denote by ΠV this extendable polyhedral complex. As a
consequence of Theorem 3.4 and Corollary 3.14, we deduce the following:

Proposition 4.5 Let V ⊂ T be an algebraic set, then c(ΠV ) is a rational conic poly-
hedral complex. Moreover, let G′

V be an SCR subdivision of GV , and let Π ′
V be the

subdivision of ΠV induced by G′
V . Then c(Π ′

V ) is a rational fan. In particular, if the
stabilizer of V is trivial, then c(ΠV ) is a rational fan.

Hence, if the stabilizer of V is trivial, we can associate to V the toric scheme
Xc(ΠV ). This kind of schemes are interesting because, by a theorem of J. Tevelev ex-
tended by D. Speyer, the closure V of V in X is proper over S [7, Proposition 2.4.1],
[1, Proposition 3.2]. The scheme V is called a tropical compactification of V .
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