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Abstract Simultaneously generalizing both neighborly and neighborly cubical poly-
topes, we introduce PSN polytopes: their k-skeleton is combinatorially equivalent to
that of a product of r simplices.

We construct PSN polytopes by three different methods, the most versatile of
which is an extension of Sanyal & Ziegler’s “projecting deformed products” con-
struction to products of arbitrary simple polytopes. For general r and k, the lowest
dimension we achieve is 2k + r + 1.

Using topological obstructions similar to those introduced by Sanyal to bound the
number of vertices of Minkowski sums, we show that this dimension is minimal if we
additionally require that the PSN polytope is obtained as a projection of a polytope
that is combinatorially equivalent to the product of r simplices, when the dimensions
of these simplices are all large compared to k.
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1 Introduction

1.1 Definitions

Let �n denote the n-dimensional simplex. For any tuple n := (n1, . . . , nr ) of integers,
we denote by �n the product of simplices �n1 × · · · × �nr . This is a polytope of
dimension

∑
ni , whose non-empty faces are obtained as products of non-empty faces

of the simplices �n1, . . . ,�nr . For example, Fig. 1 represents the graphs of �i ×�6,
for i ∈ {1,2,3}.

We are interested in polytopes with the same “initial” structure as these products.

Definition 1.1 Let k ≥ 0 and n := (n1, . . . , nr ), with r ≥ 1 and ni ≥ 1 for all i.
A convex polytope in some Euclidean space is (k, n)-prodsimplicial-neighborly—
or (k, n)-PSN for short—if its k-skeleton is combinatorially equivalent to that of
�n := �n1 × · · · × �nr .

We choose the term “prodsimplicial” to shorten “product simplicial”. This defini-
tion is essentially motivated by two particular classes of PSN polytopes:

(1) neighborly polytopes arise when r = 1
(2) neighborly cubical polytopes [3, 12] arise when n = (1,1, . . . ,1).

Remark 1.2 In the literature, a polytope is k-neighborly if any subset of at most k

of its vertices forms a face. Observe that such a polytope is (k − 1, n)-PSN with our
notation.

The product �n is a (k, n)-PSN polytope of dimension
∑

ni , for each k with
0 ≤ k ≤∑

ni . We are naturally interested in finding (k, n)-PSN polytopes of smaller
dimensions. For example, the cyclic polytope C2k+2(n + 1) is a (k, n)-PSN polytope
of dimension 2k + 2. We denote by δ(k,n) the smallest possible dimension of a
(k, n)-PSN polytope.

PSN polytopes can be obtained by projecting the product �n, or a combinatori-
ally equivalent polytope, onto a smaller subspace. For example, the cyclic polytope

Fig. 1 The graphs of the products �(i,6) = �i × �6, for i ∈ {1,2,3}
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C2k+2(n + 1) (just like any polytope with n + 1 vertices) can be seen as a projection
of the simplex �n to R

2k+2.

Definition 1.3 A (k, n)-PSN polytope is (k, n)-projected-prodsimplicial-neighbor-
ly—or (k, n)-PPSN for short—if it is a projection of a polytope that is combinatori-
ally equivalent to �n.

We denote by δpr(k, n) the smallest possible dimension of a (k, n)-PPSN poly-
tope.

1.2 Outline and Main Results

The present paper may be naturally divided into two parts. In the first part, we present
three methods for constructing low-dimensional PPSN polytopes:

(1) Reflections of cyclic polytopes.
(2) Minkowski sums of cyclic polytopes.
(3) Deformed Product constructions in the spirit of Sanyal & Ziegler [12, 14].

The second part derives topological obstructions for the existence of such objects,
using techniques developed by Sanyal in [11] (see also [10]) to bound the number of
vertices of Minkowski sums. In view of these obstructions, our constructions in the
first part turn out to be optimal for a wide range of parameters.

We devote the remainder of the introduction to highlighting our most relevant
results. To facilitate the navigation in the article, we label each result by the number
it actually receives later on.

Constructions Our first non-trivial example is a (k, (1, n))-PSN polytope in dimen-
sion 2k + 2, obtained by reflecting the cyclic polytope C2k+2(n + 1) through a well-
chosen hyperplane:

Proposition 2.3. For any k ≥ 0, n ≥ 2k + 2 and λ ∈ R sufficiently large, the polytope

P := conv
({(

ti , . . . , t
2k+2
i

)T ∣∣ i ∈ [n+1]}∪{(ti , . . . , t2k+1
i , λ− t2k+2

i

)T ∣∣ i ∈ [n+1]})

is a (k, (1, n))-PSN polytope of dimension 2k + 2.

For example, this provides us with a 4-dimensional polytope whose graph is the
Cartesian product K2 × Kn, for any n ≥ 3.

Next, forming a well-chosen Minkowski sum of cyclic polytopes yields explicit
coordinates for (k, n)-PPSN polytopes:

Theorem 2.6. Let k ≥ 0 and n := (n1, . . . , nr ) with r ≥ 1 and ni ≥ 1 for all i. There
exist index sets I1, . . . , Ir ⊂ R, with |Ii | = ni for all i, such that the polytope

P := conv
{
wa1,...,ar | (a1, . . . , ar ) ∈ I1 × · · · × Ir

}⊂ R
2k+r+1
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is (k, n)-PPSN, where wa1,...,ar := (a1, . . . , ar ,
∑

i∈[r] a2
i , . . . ,

∑
i∈[r] a

2k+2
i )T. Con-

sequently,

δ(k,n) ≤ δpr(k, n) ≤ 2k + r + 1.

For r = 1 we recover neighborly polytopes.

Finally, we extend Sanyal & Ziegler’s technique of “projecting deformed products
of polygons” [12, 14] to products of arbitrary simple polytopes: given a polytope P

that is combinatorially equivalent to a product of simple polytopes, we exhibit a suit-
able projection that preserves the complete k-skeleton of P . More concretely, we
describe how to use colorings of the graphs of the polar polytopes of the factors in
the product to raise the dimension of the preserved skeleton. The basic version of this
technique yields the following result:

Proposition 3.4. Let P1, . . . ,Pr be simple polytopes of respective dimension ni , and
with mi many facets. Let χi := χ(sk1P

�
i ) denote the chromatic number of the graph

of the polar polytope P
�
i . For a fixed integer d ≤ ∑r

i=1 ni , let t be maximal such
that

∑t
i=1 ni ≤ d . Then there exists a d-dimensional polytope whose k-skeleton is

combinatorially equivalent to that of the product P1 × · · · × Pr provided

0 ≤ k ≤
r∑

i=1

(ni − mi) +
t∑

i=1

(mi − χi) +
⌊

1

2

(

d − 1 +
t∑

i=1

(χi − ni)

)⌋

.

A family of polytopes that minimize the last summand are products of even poly-
topes (all 2-dimensional faces have an even number of vertices). See Example 3.5 for
the details, and the end of Sect. 3.1 for extensions of this technique.

Specializing the factors to simplices provides another construction of PPSN poly-
topes. When some of these simplices are small compared to k, this technique in fact
yields our best examples of PPSN polytopes:

Theorem 3.8. For any k ≥ 0 and n := (n1, . . . , nr ) with 1 = n1 = · · · = ns < ns+1 ≤
· · · ≤ nr ,

δpr(k, n) ≤

⎧
⎪⎨

⎪⎩

2(k + r) − s − t if 3s ≤ 2k + 2r,

2(k + r − s) + 1 if 3s = 2k + 2r + 1,

2(k + r − s + 1) if 3s ≥ 2k + 2r + 2,

where t ∈ {s, . . . , r} is maximal such that 3s +∑t
i=s+1(ni + 1) ≤ 2k + 2r .

If ni = 1 for all i, we recover the neighborly cubical polytopes of [12].

Obstructions In order to derive lower bounds on the minimal dimension δpr(k, n)

that a (k, n)-PPSN polytope can have, we apply and extend a method due to
Sanyal [11]. For any projection which preserves the k-skeleton of �n, we use Gale
duality to construct a simplicial complex that can be embedded in a certain dimen-
sion. The argument is then a topological obstruction based on Sarkaria’s criterion for
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the embeddability of a simplicial complex in terms of colorings of Kneser graphs [8].
We obtain the following result:

Corollary 4.13. Let n := (n1, . . . , nr ) with 1 = n1 = · · · = ns < ns+1 ≤ · · · ≤ nr .

(1) If

0 ≤ k ≤
r∑

i=s+1

⌊
ni − 2

2

⌋

+ max

{

0,

⌊
s − 1

2

⌋}

,

then δpr(k, n) ≥ 2k + r − s + 1.
(2) If k ≥ � 1

2

∑
i ni	 then δpr(k, n) ≥∑

i ni .

In particular, the upper and lower bounds provided by Theorem 2.6 and Corol-
lary 4.13 match over a wide range of parameters:

Theorem 1.4 Let n := (n1, . . . , nr) with r ≥ 1 and ni ≥ 2 for all i. For any k such
that 0 ≤ k ≤ ∑

i∈[r]�ni−2
2 	, the smallest (k, n)-PPSN polytope has dimension ex-

actly 2k + r + 1. In other words:

δpr(k, n) = 2k + r + 1.

Remark 1.5 During the final stages of completing this paper, we learned that Rörig
& Sanyal [10] also applied Sanyal’s topological obstruction method to derive lower
bounds on the target dimension of a projection preserving skeleta of different kind
of products (products of polygons, products of simplices, and wedge products of
polytopes). In particular, for a product �n × · · · × �n of r identical simplices, r ≥ 2,
they obtain our Theorem 4.9 and a result (their Theorem 4.5) that is only slightly
weaker than Theorem 4.12 in this setting (compare with Sects. 4.5 and 4.6).

2 Constructions from Cyclic Polytopes

Let t 
→ μd(t) := (t, t2, . . . , td)T be the moment curve in R
d , t1 < t2 < · · · < tn be

n distinct real numbers and Cd(n) := conv{μd(ti) | i ∈ [n]} denote the cyclic poly-
tope in its realization on the moment curve. We refer to [13, Theorem 0.7] and
[2, Corollary 6.1.9] for combinatorial properties of Cd(n), in particular Gale’s Even-
ness Criterion, which characterizes the index sets of upper and lower facets of Cd(n).

Cyclic polytopes yield our first examples of PSN polytopes:

Example 2.1 For any integers k ≥ 0 and n ≥ 2k+2, the cyclic polytope C2k+2(n + 1)

is (k, n)-PPSN.

Example 2.2 For any k ≥ 0 and n := (n1, . . . , nr ) with r ≥ 1 and ni ≥ 1 for all i,
define I := {i ∈ [r] |ni ≥ 2k + 3}. Then the product

∏

i∈I

C2k+2(ni + 1) ×
∏

i /∈I

�ni
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is a (k, n)-PPSN polytope of dimension (2k + 2)|I |+∑i /∈I ni (which is smaller than∑
ni when I is nonempty). Consequently,

δ(k,n) ≤ δpr(k, n) ≤ (2k + 2)|I | +
∑

i /∈I

ni .

2.1 Reflections of Cyclic Polytopes

Our next example deals with the special case of the product �1 × �n of a segment
with a simplex. Using products of cyclic polytopes as in Example 2.2, we can realize
the k-skeleton of this polytope in dimension 2k + 3. We can lower this dimension by
1 by reflecting the cyclic polytope C2k+2(n + 1) through a well-chosen hyperplane:

Proposition 2.3 For any k ≥ 0, n ≥ 2k + 2 and λ ∈ R sufficiently large, the polytope

P := conv
({(

ti , . . . , t
2k+2
i

)T ∣∣ i ∈ [n+1]}∪{(ti , . . . , t2k+1
i , λ− t2k+2

i

)T ∣∣ i ∈ [n+1]})

is a (k, (1, n))-PSN polytope of dimension 2k + 2.

Proof The polytope P is obtained as the convex hull of two copies of the cyclic
polytope C2k+2(n + 1). The first one Q := conv{μ2k+2(ti) | i ∈ [n + 1]} lies on the
moment curve μ2k+2, while the second one is obtained as a reflection of Q with
respect to a hyperplane that is orthogonal to the last coordinate vector u2k+2 and
sufficiently far away. During this process:

(1) We destroy all the faces of Q only contained in upper facets of Q.
(2) We create prisms over faces of Q that lie in at least one upper and one lower facet

of Q. In other words, we create prisms over the faces of Q strictly preserved
under the orthogonal projection π : R

2k+2 → R
2k+1 with kernel Ru2k+2.

The projected polytope π(Q) is nothing but the cyclic polytope C2k+1(n + 1).
Since this polytope is k-neighborly, any face F of dimension at most k − 1 in Q is
strictly preserved by π . Thus, we take the prism over all faces of Q of dimension at
most k − 1.

Thus, in order to complete the proof that the k-skeleton of P is that of �1 × �n,
it is enough to show that any k-face of Q remains in P . This is obviously the case if
this k-face is also a k-face of C2k+1(n + 1), and follows from the next combinatorial
lemma otherwise. �

Lemma 2.4 A k-face of C2k+2(n + 1) which is not a k-face of C2k+1(n + 1) is only
contained in lower facets of C2k+2(n + 1).

Proof Let F ⊂ [n+1] be a k-face of C2k+2(n+1). We assume that F is contained in
at least one upper facet G ⊂ [n+ 1] of C2k+2(n+ 1). Since the size of the final block
of an upper facet of a cyclic polytope is odd, G contains n + 1. If n + 1 ∈ G � F ,
then G � {n + 1} is a facet of C2k+1(n + 1) containing F . Otherwise, n + 1 ∈ F ,
and F ′ := F � {n + 1} has only k elements. Thus, F ′ is a face of C2k(n), and can be
completed to a facet of C2k(n). Adding the index n+ 1 back to this facet, we obtain a
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facet of C2k+1(n + 1) containing F . In both cases, we have shown that F is a k-face
of C2k+1(n + 1). �

2.2 Minkowski Sums of Cyclic Polytopes

Our next examples are Minkowski sums of cyclic polytopes. We first describe an easy
construction that avoids all technicalities, but only yields (k, n)-PPSN polytopes in
dimension 2k + 2r . After that, we show how to reduce the dimension to 2k + r + 1,
which according to Corollary 4.13 is best possible for large ni ’s.

Proposition 2.5 Let k ≥ 0 and n := (n1, . . . , nr ) with r ≥ 1 and ni ≥ 1 for all i. For
any pairwise disjoint index sets I1, . . . , Ir ⊂ R, with |Ii | = ni for all i, the polytope

P := conv
{
va1,...,ar | (a1, . . . , ar ) ∈ I1 × · · · × Ir

}⊂ R
2k+2r

is (k, n)-PPSN, where

va1,...,ar :=
(
∑

i∈[r]
ai,

∑

i∈[r]
a2
i , . . . ,

∑

i∈[r]
a2k+2r
i

)T

∈ R
2k+2r .

Proof The vertex set of �n is indexed by I1 × · · · × Ir . Let A := A1 × · · · × Ar ⊂
I1 × · · · × Ir define a k-face of �n. Consider the polynomial

f (t) :=
∏

i∈[r]

∏

a∈Ai

(t − a)2 =
2k+2r∑

j=0

cj t
j .

Since A indexes a k-face of �n, we know that
∑ |Ai | = k + r , so that the degree of

f (t) is indeed 2k+2r . Since f (t) ≥ 0, and equality holds if and only if t ∈⋃i∈[r] Ai ,
the inner product (c1, . . . , c2k+2r ) · va1,...,ar equals

(c1, . . . , c2k+2r )

⎛

⎜
⎝

∑
i∈[r] ai

...
∑

i∈[r] a
2k+2r
i

⎞

⎟
⎠=

∑

i∈[r]

2k+2r∑

j=1

cj a
j
i =

∑

i∈[r]

(
f (ai) − c0

)≥ −rc0,

with equality if and only if (a1, . . . , ar ) ∈ A. Thus, A indexes a face of P defined by
the linear inequality

∑
i∈[r] cixi ≥ −rc0.

We thus obtain that the k-skeleton of P completely contains the k-skeleton of �n.
Since P is furthermore a projection of �n, the faces of �n are the only candidates
to be faces of P . We conclude that the k-skeleton of P is actually combinatorially
equivalent to that of �n. �

To realize the k-skeleton of �n1 × · · · × �nr even in dimension 2k + r + 1, we
slightly modify this construction in the following way.
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Theorem 2.6 Let k ≥ 0 and n := (n1, . . . , nr ) with r ≥ 1 and ni ≥ 1 for all i. There
exist pairwise disjoint index sets I1, . . . , Ir ⊂ R, with |Ii | = ni for all i, such that the
polytope

P := conv
{
wa1,...,ar | (a1, . . . , ar ) ∈ I1 × · · · × Ir

}⊂ R
2k+r+1

is (k, n)-PPSN, where

wa1,...,ar :=
(

a1, . . . , ar ,
∑

i∈[r]
a2
i , . . . ,

∑

i∈[r]
a2k+2
i

)T

∈ R
2k+r+1.

Proof We will choose the index sets I1, . . . , Ir to be sufficiently separated in a sense
that will be made explicit later in the proof. For each k-face F of �n, indexed by
A1 × · · · × Ar ⊂ I1 × · · · × Ir , our choice of the Ii ’s will ensure the existence of a
monic polynomial

fF (t) :=
2k+2∑

j=0

cj t
j ,

which, for all i ∈ [r], can be decomposed as

fF (t) = Qi(t)
∏

a∈Ai

(t − a)2 + si t + ri,

where Qi(t) is an everywhere positive polynomial of degree 2k + 2 − 2|Ai |, and
ri , si ∈ R. Assuming the existence of such a decomposable polynomial fF , we built
from its coefficients the vector

nF := (s1 − c1, . . . , sr − c1,−c2,−c3, . . . ,−c2k+2) ∈ R
2k+r+1,

and prove that nF is normal to a supporting hyperplane for F . Indeed, for any r-tuple
(a1, . . . , ar ) ∈ I1 × · · · × Ir , the inner product nF · wa1,...,ar satisfies the following
inequality:

nF · wa1,...,ar =
∑

i∈[r]

(

siai −
2k+2∑

j=1

cj a
j
i

)

=
∑

i∈[r]

(
siai + c0 − fF (ai)

)

=
∑

i∈[r]

(

c0 − Qi(ai)
∏

a∈Ai

(ai − a)2 − ri

)

≤ rc0 −
∑

i∈[r]
ri .

Since the Qi ’s are everywhere positive, equality holds if and only if (a1, . . . , ar ) ∈
A1 ×· · ·×Ar . Given the existence of a decomposable polynomial fF , this proves that
A1 ×· · ·×Ar indexes all wa1,...,ar ’s that lie on a face F ′ in P , and they of course span
F ′ by definition of P . To prove that F ′ is combinatorially equivalent to F , it suffices
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to show that each wa1,...,ar ∈ F ′ is in fact a vertex of P , since P is a projection
of �n. This can be shown with the normal vector (2a1, . . . ,2ar ,−1,0, . . . ,0), using
the same calculation as before.

As in the proof of Proposition 2.5, this ensures that the k-skeleton of P completely
contains the k-skeleton of �n, and we argue that they actually coincide since P is
furthermore a projection of �n.

Before showing how to choose the index sets Ii that enable us to construct the
polynomials fF in general, we illustrate the proof on the smallest example. �

Example 2.7 Let k = 1 and n := (n1, n2). Choose the index sets I1, I2 ⊂ R with
|I1| = n1, |I2| = n2 and separated in the sense that the largest element of I1 be smaller
than the smallest element of I2. For any 1-dimensional face F of �n indexed by
{a, b} × {c} ⊂ I1 × I2, consider the polynomial fF of degree 2k + 2 = 4:

fF (t) := (t − a)2(t − b)2 = (
t2 + αt + β

)
(t − c)2 + s2t + r2,

where

α = 2(−a − b + c),

β = a2 + b2 + 3c2 + 4ab − 4ac − 4bc,

r2 = a2b2 − βc2,

s2 = −2a2b − 2ab2 − αc2 + 2βc.

Since the index sets I1, I2 are separated, the discriminant α2 −4β = −8(c−a)(c−b)

is negative, which implies that the polynomial Q2(t) = t2 + αt + β is positive for all
values of t . A symmetric formula holds for the 1-dimensional faces of �n whose
index sets are of the form {a} × {b, c} ⊂ I1 × I2.

Proof of Theorem 2.6 (continued) We still need to show how to choose the index sets
Ii that enable us to construct the polynomials fF in general. Once we have chosen
these index sets, finding fF is equivalent to the task of finding polynomials Qi(t)

such that

(i) Qi(t) is monic of degree 2k + 2 − 2|Ai |.
(ii) The r polynomials fi(t) := Qi(t)

∏
a∈Ai

(t −a)2 are equal, up to the coefficients

on t0 and t1.
(iii) Qi(t) > 0 for all t ∈ R.

The first two items form a linear system equations on the coefficients of the Qi(t)’s
which has the same number of equations as variables, namely 2k(r − 1). We show
that it has a unique solution if one chooses the correct index sets Ii , and we postpone
the discussion of requirement (iii) to the end of the proof. To do this, choose distinct
reals ā1, . . . , ār ∈ R and look at the similar equation system:

(i) Q̄i(t) are monic polynomials of degree 2k + 2 − 2|Ai |.
(ii) The r polynomials f̄i (t) := Q̄i(t)(t − āi )

2|Ai | are equal, up to the coefficients on
t0 and t1.
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The first equation system moves into the second when we deform the points of
the sets Ai continuously to āi , respectively. By continuity of the determinant, if the
second equation system has a unique solution then so has the first equation system as
long as we chose the sets Ii close enough to the āi ’s for all i. Observe that in the end,
we can fulfill all these closeness conditions required for all k-faces of �n since there
are only finitely many k-faces.

Note that a polynomial f̄i (t) of degree 2k + 2 has the form

Q̄i(t)(t − āi )
2|Ai | + si t + ri , (1)

for a monic polynomial Q̄i and some reals si and ri if and only if f̄ ′′
i (t) has the form

Ri(t)(t − āi )
2(|Ai |−1), (2)

for some polynomial Ri(t) with leading coefficient (2k + 2)(2k + 1). The backward
direction can be settled by assuming, without loss of generality, that āi = 0. Indeed,
otherwise make a change of variables (t − āi ) 
→ t and then integrate (2) twice (with
constants of integration equal to zero) to obtain (1).

Therefore the second equation system is equivalent to the following third one:

(i) Ri(t) are polynomials of degree 2k − 2(|Ai | − 1) with leading coefficient
(2k + 2)(2k + 1).

(ii) The r polynomials gi(t) := Ri(t)(t − āi )
2(|Ai |−1) all equal the same polynomial,

say g(t).

Since
∑

i 2(|Ai | − 1) = 2k, this system of equations has the unique solution

Ri(t) = (2k + 2)(2k + 1)
∏

j =i

(t − āj )
2(|Aj |−1),

with

g(t) = (2k + 2)(2k + 1)
∏

j∈[r]
(t − āj )

2(|Aj |−1).

Therefore, the first two systems of equations both have a unique solution (as long
as the Ii ’s are chosen sufficiently close to the ai ’s). It thus only remains to deal with
the positivity requirement (iii).

In the unique solution of the second equation system, the polynomial f̄i (t) is ob-
tained by integrating gi(t) twice with some specific integration constants. For a fixed
i, we can again assume āi = 0. Then both integration constants were chosen to be zero
for this i, hence f̄i (0) = f̄ ′

i (0) = 0. Since gi is non-negative and zero only at isolated
points, f̄i is strictly convex, hence non-negative and zero only at t = 0. Therefore
Q̄i(t) is positive for t = 0. Since we chose āi = 0, we can quickly compute the corre-
spondence between the coefficients of Q̄i(t) =∑

j q̄i,j t
j and of Ri(t) =∑

j ri,j t
j :

ri,j = (
2|Ai |

(
2|Ai | − 1

)+ 4j |Ai | + j (j − 1)
)
q̄i,j .
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In particular,

Q̄i(0) = q̄i,0 = ri,0

2|Ai |(2|Ai | − 1)
= Ri(0)

2|Ai |(2|Ai | − 1)
> 0,

therefore Q̄i(t) is everywhere positive. Since the solutions of linear equation systems
move continuously when one deforms the entries of the equation system by a homo-
topy, this ensures that Qi(t) is everywhere positive if Ii is chosen close enough to āi .
The positivity of Qi(t) finishes the proof. �

3 Projections of Deformed Products of Simple Polytopes

In the previous section, we saw an explicit construction of polytopes whose
k-skeleton is equivalent to that of a product of simplices. In this section, we provide
another construction of (k, n)-PPSN polytopes, using Sanyal & Ziegler’s technique
of “projecting deformed products of polygons” [12, 14] and generalizing it to prod-
ucts of arbitrary simple polytopes. This generalized technique consists in projecting
a suitable polytope that is combinatorially equivalent to a given product of simple
polytopes in such a way as to preserve its complete k-skeleton. The special case of
products of simplices then yields (k, n)-PPSN polytopes.

3.1 General Situation

We first discuss the general setting: given a product P := P1 × · · · × Pr of simple
polytopes, we construct a polytope P ∼ that is combinatorially equivalent to P and
whose k-skeleton is preserved under the projection onto the first d coordinates.

3.1.1 Deformed Products of Simple Polytopes

Let P1, . . . ,Pr be simple polytopes of respective dimensions n1, . . . , nr and facet
descriptions Pi = {x ∈ R

ni |Aix ≤ bi}. Here, each matrix Ai ∈ R
mi×ni has one row

for each of the mi facets of Pi , and bi ∈ R
mi . The product P : = P1 × · · · × Pr then

has dimension n :=∑
i∈[r] ni , and its facet description is given by the m :=∑

i∈[r] mi

inequalities
⎛

⎜
⎝

A1
. . .

Ar

⎞

⎟
⎠x ≤

⎛

⎜
⎝

b1
...

br

⎞

⎟
⎠ .

The left hand m × n matrix, whose blank entries are all zero, shall be denoted by A.
It is proved in [1] that for any matrix A∼ obtained from A by arbitrarily changing the
zero entries above the diagonal blocks, there exists a right-hand side b∼ such that the
deformed polytope P ∼ defined by the inequality system A∼x ≤ b∼ is combinatori-
ally equivalent to P . The equivalence is the obvious one: it maps the facet defined
by the ith row of A to the one given by the ith row of A∼, for all i. Following [12],
we will use this “deformed product” construction in such a way that the projection
of P ∼ to the first d coordinates preserves its k-skeleton in the following sense.
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Fig. 2 a Projection of a tetrahedron onto R
2: the edge pq is strictly preserved, while neither the edge qr ,

nor the face qrs, nor the edge qs are (because of conditions (i), (ii) and (iii) respectively). b Projection of
a tetrahedron to R: only the vertex p is strictly preserved

3.1.2 Preserved Faces and the Projection Lemma

For integers n > d , let π : R
n → R

d denote the orthogonal projection to the first d co-
ordinates, and τ : R

n → R
n−d denote the dual orthogonal projection to the last n − d

coordinates. Let P be a full-dimensional simple polytope in R
n, with 0 in its interior.

The following notion of preserved faces—see Fig. 2—will be used extensively at the
end of this paper:

Definition 3.1 ([14]) A proper face F of a polytope P is strictly preserved under the
projection π if

(i) π(F) is a face of π(P ),
(ii) F and π(F) are combinatorially isomorphic, and

(iii) π−1(π(F )) equals F .

The characterization of strictly preserved faces of P uses the normal vectors of
the facets of P . Let F1, . . . ,Fm denote the facets of P . For all i ∈ [m], let fi denote
the normal vector to Fi , and let gi := τ(fi). For any face F of P , let ϕ(F ) denote the
set of indices of the facets of P containing F , i.e., such that F =⋂

i∈ϕ(F ) Fi .

Lemma 3.2 (Projection Lemma [1, 14]) A face F of the polytope P is strictly pre-
served under the projection π if and only if {gi | i ∈ ϕ(F )} is positively spanning.

3.1.3 A First Construction

Let t ∈ {0,1, . . . , r} be maximal such that the matrices A1, . . . ,At are entirely con-
tained in the first d columns of A. Let m :=∑t

i=1 mi and n :=∑t
i=1 ni . By changing

bases appropriately, we can assume that the bottom ni ×ni block of Ai is the identity
matrix for each i ≥ t + 1. In order to simplify the exposition, we also assume first
that n = d , i.e., that the projection on the first d coordinates separates the first t block
matrices from the last r − t . See Fig. 3a.
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Fig. 3 The deformed matrix
A∼ a when the projection does
not slice any block (n = d), and
b when the block At+1 is sliced
(n < d). Horizontal hatched
boxes denote bad row vectors.
The top right solid block is
formed by the vectors
g1, . . . , gm

Let {g1, . . . , gm} ⊂ R
n−d be a set of vectors such that G := {e1, . . . , en−d} ∪

{g1, . . . , gm} is the Gale transform of a full-dimensional simplicial neighborly poly-
tope Q—see [7, 13] for definition and properties of Gale duality. By elementary prop-
erties of the Gale transform, Q has m + n − d vertices, and dimQ = (m + n − d) −
(n − d) − 1 = m − 1. In particular, every subset of �m−1

2 	 vertices spans a face of Q,
so every subset of m + n − d − �m−1

2 	 =: α elements of G is positively spanning.
We deform the matrix A into the matrix A∼ of Fig. 3a, using the vectors g1, . . . , gm

to deform the top m rows. We denote by P ∼ the corresponding deformed product.
We say that a facet of P ∼ is “good” if the right part of the corresponding row of A∼
is covered by a vector of G, and “bad” otherwise. Bad facets are hatched in Fig. 3a.
Observe that there are β := m − m − n + d bad facets in total.

Let F be a k-face of P ∼. Since P ∼ is a simple n-dimensional polytope, F is the
intersection of n − k facets, among which at least γ := n − k − β are good facets. If
the corresponding elements of G are positively spanning, then F is strictly preserved
under projection onto the first d coordinates. Since we have seen that any subset of
α vectors of G is positively spanning, F will surely be preserved if α ≤ γ , which is
equivalent to

k ≤ n − m +
⌊

m − 1

2

⌋

.

Thus, under this assumption, we obtain a d-dimensional polytope whose k-skeleton
is combinatorially equivalent to that of P := P1 × · · · × Pr .

3.1.4 When the Projection Slices a Block

We now discuss the case when n < d , for which the method is very similar. We
consider vectors g1, . . . , gm+d−n such that G := {e1, . . . , en−d} ∪ {g1, . . . , gm+d−n}
is the Gale dual of a neighborly polytope. We deform the matrix A into the matrix A∼
shown in Fig. 3b, using again the vectors g1, . . . , gm to deform the top m rows and the
vectors gm+1, . . . , gm+d−n to deform the top d − n rows of the nt+1 × nt+1 bottom
identity submatrix of At+1. This is indeed a valid deformation since we can prescribe
the nt+1 × nt+1 bottom submatrix of At+1 to be any upper triangular matrix, up to
changing the basis appropriately. For the same reasons as before,
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(1) any subset of at least α := m + n − n − �m+d−n−1
2 	 elements of G is positively

spanning
(2) the number of bad facets is β := m − m − n + n, and thus any k-face of P ∼ is

contained in at least γ := n − k − β good facets.

Thus, the condition α ≤ γ translates to

k ≤ n − m +
⌊

m + d − n − 1

2

⌋

,

and we obtain the following proposition.

Proposition 3.3 Let P1, . . . ,Pr be simple polytopes of respective dimension ni , and
with mi many facets. For a fixed integer d ≤ ∑r

i=1 ni , let t be maximal such that∑t
i=1 ni ≤ d . Then there exists a d-dimensional polytope whose k-skeleton is combi-

natorially equivalent to that of the product P1 × · · · × Pr , provided

0 ≤ k ≤
r∑

i=1

(ni − mi) +
⌊

1

2

(

d − 1 +
t∑

i=1

(mi − ni)

)⌋

.

In the next two paragraphs, we present two improvements on the bound of this
proposition. Both use colorings of the graphs of the polar polytopes P

�
i , in order to

weaken the condition α ≤ γ , in two different directions:

(i) The first improvement decreases the number of required vectors in the Gale trans-
form G, which, in turn, decreases the value of α.

(ii) The second one decreases the number of bad facets, and thus increases the value
of γ .

3.1.5 Multiple Vectors

In order to raise our bound on k, we can save vectors of G by repeating some of
them several times. Namely, any two facets that have no k-face in common can share
the same vector gj . Since any two facets of a simple polytope containing a common
k-face share a ridge, this condition can be expressed in terms of incidences in the
graph of the polar polytope: facets not connected by an edge in this graph can use
the same vector gj . We denote the chromatic number of a graph H by χ(H). Then,

each Pi with i ≤ t only contributes χi := χ(sk1P
�
i ) different vectors in G, instead

of mi of them. Thus, we only need in total χ :=∑t
i=1 χi different vectors gj . This

improvement replaces m by χ in the formula of α, while β and γ do not change, and
the condition α ≤ γ is equivalent to

k ≤ n − m + m − χ +
⌊

χ − d − n − 1

2

⌋

.

Thus, we obtain the following improved proposition:
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Proposition 3.4 Let P1, . . . ,Pr be simple polytopes of respective dimension ni , and
with mi many facets. Let χi := χ(sk1P

�
i ) denote the chromatic number of the graph

of the polar polytope P
�
i . For a fixed integer d ≤ ∑r

i=1 ni , let t be maximal such
that

∑t
i=1 ni ≤ d . Then there exists a d-dimensional polytope whose k-skeleton is

combinatorially equivalent to that of the product P1 × · · · × Pr , provided

0 ≤ k ≤
r∑

i=1

(ni − mi) +
t∑

i=1

(mi − χi) +
⌊

1

2

(

d − 1 +
t∑

i=1

(χi − ni)

)⌋

.

Example 3.5 Since polars of simple polytopes are simplicial, χi ≥ ni is an obvious
lower bound for the chromatic number of the dual graph of Pi . Polytopes that at-
tain this lower bound with equality are characterized by the property that all their
2-dimensional faces have an even number of vertices, and are called even polytopes.

If all Pi are even polytopes, then n = χ , and we obtain a d-dimensional polytope
with the same k-skeleton as P1 × · · · × Pr provided

k ≤ n − m + m − n +
⌊

d − 1

2

⌋

.

In order to maximize k, we should maximize m − n, subject to the condition n ≤ d .
For example, if all ni are equal, this amounts to ordering the Pi by decreasing number
of facets.

3.1.6 Scaling Blocks

We can also apply colorings to the blocks Ai with i ≥ t + 1, by filling in the area
below G and above the diagonal blocks. To explain this, assume for the moment that
χi ≤ ni+1 for a certain fixed i ≥ t + 2. Assume that the rows of Ai are colored with
χi colors using a valid coloring c : [mi] → [χi] of the graph of the polar polytope P

�
i .

Let � be the incidence matrix of c, defined by �j,k = 1 if c(j) = k, and �j,k = 0
otherwise. Thus, � is a matrix of size mi × χi . We put this matrix to the right of Ai

and above Ai+1 as in Fig. 4b, so that we append the same unit vector to each row
of Ai in the same color class. Moreover, we scale all entries of the block Ai by a
sufficiently small constant ε > 0.

In this setting, the situation is slightly different:

(1) In the Gale dual G, we do not need the ni basis vectors of R
n−d hatched

in Fig. 4b. Let a :=∑
j<i nj denote the index of the last column vector of Ai−1

and b := 1 +∑
j≤i nj denote the index of the first column vector of Ai+1. We

define G := {e1, . . . , ea−d , eb−d , . . . , en−d} ∪ {g1, . . . , gm} to be the Gale trans-
form of a simplicial neighborly polytope Q of dimension m − 1 − ni . As before,
any subset of α := m + n − n − ni − �m+d−n−ni−1

2 	 vectors of G positively
spans R

n−d .
(2) “Bad” facets are defined as before, except that the top mi − ni rows of Ai are

not bad anymore, but all of the first mi+1 − ni+1 + χi rows of Ai+1 are now bad.
Thus, the net change in the number of bad rows is χi −mi +ni , so that any k-face
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Fig. 4 How to raise the dimension of the preserved skeleton by inserting the incidence matrix � of a

coloring of the graph of the polar polytope P
�
i

. Part a shows the situation before the insertion of �, and
part b the changes that have occurred. Bad row vectors and unnecessary columns are hatched. The entries
in the matrix to the left of � must be rescaled to retain a valid inequality description of P

is contained in at least γ := 2n−k −m+m−n+mi −ni −χi good rows. Up to
ε-entry elements, the last n− d coordinates of these rows correspond to pairwise
distinct elements of G.

Applying the same reasoning as above, the k-skeleton of P ∼ is strictly preserved
under projection to the first d coordinates as soon as α ≤ γ , which is equivalent to

k ≤ n − m + mi − χi +
⌊

m + d − n − ni − 1

2

⌋

.

Thus, we improve our bound on k provided

 := mi − χi +
⌊

m + d − n − ni − 1

2

⌋

−
⌊

m + d − n − 1

2

⌋

> 0.

For example, this difference  is big for polytopes whose polars have many vertices
but a small chromatic number.

Finally, observe that one can apply this “scaling” improvement even if χi > ni+1
(except that it will perturb more than the two blocks Ai and Ai+1) and to more than
one matrix Ai . Please see the example in Fig. 5. In this picture, the � blocks are
incidence matrices of colorings of the graphs of the polar polytopes. Call “diagonal
entries” all entries on the diagonal of the ni × ni bottom submatrix of a factor Ai .
A column is unnecessary (hatched in the picture) if its diagonal entry has a � block
on the right and no � block above. Good rows are those covered by a vector gj or a
� block, together with the basis vectors whose diagonal entry has no � block above
(bad rows are hatched in the picture).

Example 3.6

(1) If Pi is a segment, then ni = 1, mi = 2 and χi = 1, so that  = 1 if m is even
and 0 otherwise. Iterating this, if Pi is an s-dimensional cube, then  � s

2 . This
yields neighborly cubical polytopes—see [3, 4].
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Fig. 5 How to reduce the
number of vectors in the Gale
transform using various coloring
matrices of polar polytopes.
Situations where χi > ni+1 can
be accommodated for as
illustrated by the matrix �2 in
the picture

(2) If Pi is an even cycle, then ni = 2, mi = 2p and χi = 2, so that  = 2p − 3. This
yields projected products of polygons—see [12, 14].

In general, it is difficult to give the explicit ordering of the factors and choice of
deformation that will yield the largest possible value of k attainable by a concrete
product P1 × · · · × Pr of simple polytopes, and consequently to summarize this im-
provement by a precise proposition as we did for our first improvement. However,
this best value can clearly be found by optimizing over the finite set of all possible
orderings and types of deformation. Furthermore, we can be much more explicit for
products of simplices, as we detail in the next section.

3.2 Projection of Deformed Product of Simplices

We are now ready to apply this general construction to the particular case of prod-
ucts of simplices. For this, we represent the simplex �ni

by the inequality system
Aix ≤ bi , where

Ai :=

⎛

⎜
⎜
⎜
⎝

−1 . . . −1
1

. . .

1

⎞

⎟
⎟
⎟
⎠

and bi is a suitable right-hand side. We express the results of the construction with
a case distinction according to the number s := |{i ∈ [r] |ni = 1}| of segments in the
product �n.
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Fig. 6 How to obtain PPSN
polytopes from a deformed
product construction, when the
number s of segment factors
exceeds the target dimension d

of the projection

Proposition 3.7 Let n := (n1, . . . , nr) with 1 = n1 = · · · = ns < ns+1 ≤ · · · ≤ nr .
Then

(1) For any 0 ≤ d ≤ s − 1, there exists a d-dimensional (k, n)-PPSN polytope pro-
vided

k ≤
⌊

d

2

⌋

− r + s − 1.

(2) For any s ≤ d ≤ n, there exists a d-dimensional (k, n)-PPSN polytope provided

k ≤
⌊

d + t − s

2

⌋

− r + s,

where t ∈ {s, . . . , r} denotes the maximal integer such that
∑t

i=1 ni ≤ d .

Proof of (1) This is a special case of the results obtainable with the methods
of Sect. 3.1. The best construction is obtained using the matrix in Fig. 6, from which
we read off that

(1) any subset of at least α := n − � d
2 	 vectors in G is positively spanning; and

(2) the number of bad facets is β := r − s + 1, and therefore any k-face of P ∼ is
contained in at least γ := n − k − r + s − 1 good facets.

From this, the claim follows. �

Proof of (2) Consider the deformed product of Fig. 7a. Using similar calculations as
before, we deduce that

(1) any subset of at least α := t − s + n − � d+t−s−1
2 	 vectors in G is positively

spanning; and
(2) the number of bad facets is β := r − t , and therefore any k-face of P ∼ is con-

tained in at least γ := n − k − r + t good facets.
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Fig. 7 Obtaining PPSN
polytopes from a deformed
product construction, when few
of the factors are segments.
Part a shows the technique used
so far, and part b an additional
optimization that exchanges a
bad facet for a new vector in the
Gale transform

This yields a bound of

k ≤
⌊

d + t − s − 1

2

⌋

− r + s.

We optimize the final ‘−1’ away by suitably deforming the matrix At+1 as
in Fig. 7b. This amounts to adding one more vector g� to the Gale diagram, so that
the first row of At+1 ceases to be a bad facet. This deformation is valid because:

(1) The matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 . . . −1 � . . . �

M

.. .

M

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

still defines a simplex, as long as the ‘�’ entries are negative and M � 0 is chosen
to be sufficiently large.

(2) We can in fact choose the new vector g� to have only negative entries, by
imposing an additional restriction on the Gale diagram G = {e1, . . . , en−d ,
g1, . . . , gd+t , g�} of Q. Namely, we require that the vertices of the (d +
t)-dimensional simplicial polytope Q that correspond to the Gale vectors
g1, . . . , gd+t lie on a facet. This forces the remaining vectors e1, . . . , en−d , g�

to be positively spanning, so that g� has only negative entries. �

Finally, we reformulate Proposition 3.7 to express what dimensions a (k, n)-PPSN
polytope can have in terms of k and n := (n1, . . . , nr ). This yields upper bounds on
δpr(k, n).
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Theorem 3.8 For any k ≥ 0 and n := (n1, . . . , nr) with 1 = n1 = · · · = ns < ns+1 ≤
· · · ≤ nr ,

δpr(k, n) ≤

⎧
⎪⎨

⎪⎩

2(k + r) − s − t if 3s ≤ 2k + 2r,

2(k + r − s) + 1 if 3s = 2k + 2r + 1,

2(k + r − s + 1) if 3s ≥ 2k + 2r + 2,

where t ∈ {s, . . . , r} is maximal such that

3s +
t∑

i=s+1

(ni + 1) ≤ 2k + 2r.

Proof Apply part (1) of Proposition 3.7 when 3s ≥ 2k + 2r + 2 and part (2) other-
wise. �

Remark 3.9 When all the ni ’s are large compared to k, the dimension of the
(k, n)-PPSN polytope provided by this theorem is bigger than the dimension
2k + r + 1 of the (k, n)-PPSN polytope obtained by the Minkowski sum of cyclic
polytopes of Theorem 2.6. However, if we have many segments (neighborly cubical
polytopes), or more generally if many ni ’s are small compared to k, this construction
provides our best examples of PPSN polytopes.

4 Topological Obstructions

In this section, we give lower bounds on the minimal dimension δpr(k, n) of a
(k, n)-PPSN polytope, applying and extending a method developed by Sanyal [11]
to bound the number of vertices of Minkowski sums of polytopes. This method pro-
vides lower bounds on the target dimension of any linear projection that preserves a
given set of faces of a polytope. It uses Gale duality to associate a certain simplicial
complex K to the set of faces that are preserved under the projection. Then lower
bounds on the embeddability dimension of K transfer to lower bounds on the target
dimension of the projection. In turn, the embeddability dimension is bounded via col-
orings of the Kneser graph of the system of minimal non-faces of K, using Sarkaria’s
Embeddability Theorem.

For the convenience of the reader, we first quickly recall this embeddability cri-
terion. We then provide a brief overview of Sanyal’s method before applying it to
obtain lower bounds on the dimension of (k, n)-PPSN polytopes. As mentioned in
the introduction, these bounds match the upper bounds obtained from our different
constructions for a wide range of parameters, and thus give the exact value of the
minimal dimension of a PPSN polytope.

4.1 Sarkaria’s Embeddability Criterion

4.1.1 Kneser Graphs

Recall that a k-coloring of a graph G = (V ,E) is a map c : V → [k] such that
c(u) = c(v) for (u, v) ∈ E. As usual, let χ(G) denote the chromatic number of G
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(i.e., the minimal k such that G admits a k-coloring). We are interested in the chro-
matic number of so-called Kneser graphs.

Let Z be a subset of the power set 2[n] of [n]. The Kneser graph on Z , denoted
KG(Z), is the graph with vertex set Z , where X,Y ∈ Z are adjacent if and only if
X ∩ Y = ∅:

KG(Z) := (
Z,
{
(X,Y ) ∈ Z 2 |X ∩ Y = ∅}).

Let KGk
n := KG(

([n]
k

)
) denote the Kneser graph on the set of subsets of [n] of size k.

For example, the graph KG1
n is the complete graph Kn (of chromatic number n) and

the graph KG2
5 is the Petersen graph (of chromatic number 3).

Remark 4.1

(1) If n ≤ 2k − 1, then any two k-subsets of [n] intersect and the Kneser graph KGk
n

is independent (i.e., it has no edge). Thus its chromatic number is χ(KGk
n) = 1.

(2) If n ≥ 2k−1, then χ(KGk
n) ≤ n−2k+2. Indeed, the map c : ([n]

k

)→ [n−2k+2]
defined by c(F ) := min(F ∪ {n − 2k + 2}) is a (n − 2k + 2)-coloring of KGk

n.

In fact, it turns out that this upper bound is the exact chromatic number of
the Kneser graph: χ(KGk

n) = max{1, n − 2k + 2}. This result was conjectured by
Kneser [5] in 1955, and proved by Lovász [6] in 1978 applying the Borsuk–Ulam
Theorem—see [8] for more details. However, we will only need the upper bound for
the topological obstruction.

4.1.2 Sarkaria’s Theorem

Our lower bounds on the dimension of (k, n)-PPSN polytopes rely on lower bounds
for the dimension in which certain simplicial complexes can be embedded. Among
other possible methods [8], we use Sarkaria’s Coloring and Embedding Theorem.

We associate to any simplicial complex K the set system Z of minimal non-
faces of K, that is, the inclusion-minimal sets of 2V (K)

� K. For example, the com-
plex of minimal non-faces of the k-skeleton of the n-dimensional simplex is

([n+1]
k+2

)
.

Sarkaria’s Theorem provides a lower bound on the dimension into which K can be
embedded, in terms of the chromatic number of the Kneser graph of Z .

Theorem 4.2 (Sarkaria’s Theorem) Let K be a simplicial complex embeddable
in R

d , Z be the system of minimal non-faces of K, and KG(Z) be the Kneser graph
on Z . Then

d ≥ ∣
∣V (K)

∣
∣− χ

(
KG(Z)

)− 1.

In other words, we get large lower bounds on the possible embedding dimension
of K when the Kneser graph of minimal non-faces of K has small chromatic number.
We refer to the excellent treatment in [8] for further details.
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Fig. 8 a Projection of a
triangular prism and b its
associated projection
polytope Q. The six faces of Q

corresponding to the six edges
of P preserved under projection
(bold) make up the entire
boundary complex of Q

4.2 Sanyal’s Topological Obstruction Method

For given integers n > d , we consider the orthogonal projection π : R
n → R

d to the
first d coordinates, and its dual projection τ : R

n → R
n−d to the last n − d coordi-

nates. Let P be a full-dimensional simple polytope in R
n, with 0 in its interior, and

assume that its vertices are strictly preserved under π . Let F1, . . . ,Fm denote the
facets of P . For all i ∈ [m], let fi denote the normal vector to Fi , and let gi := τ(fi).
For any face F of P , let ϕ(F ) denote the set of indices of the facets of P containing
F , i.e., such that F =⋂

i∈ϕ(F ) Fi .

Lemma 4.3 (Sanyal [11]) The vector configuration G := {gi | i ∈ [m]} ⊂ R
n−d is

the Gale transform of the vertex set {ai | i ∈ [m]} of a (full-dimensional) polytope Q

of R
m−n+d−1. Up to a slight perturbation of the facets of P , we can even assume Q

to be simplicial.

We will refer to the polytope Q as Sanyal’s projection polytope. The faces of this
polytope capture the key notion of strictly preserved faces of P —remember Defini-
tion 3.1. Indeed, the Projection Lemma 3.2 ensures that for any face F of P that is
strictly preserved by the projection π , the set {gi | i ∈ ϕ(F )} is positively spanning.
By Gale duality, this implies that the set of vertices {ai | i ∈ [m]�ϕ(F )} forms a face
of Q.

Example 4.4 Let P be a triangular prism in 3-space that projects to a hexagon as in
Fig. 8a, so that n = 3, d = 2 and m = 5. The vector configuration G ⊂ R

1 obtained by
projecting P ’s normal vectors consists of three vectors pointing up and two pointing
down, so that Sanyal’s projection polytope Q is a bipyramid over a triangle. An edge
Fi ∩ Fj of P that is preserved under projection corresponds to the face [5] � {i, j}
of Q. Notice that the six faces of Q corresponding to the six edges of P that are
preserved under projection (in bold in Fig. 8a) make up the entire boundary complex
of the bipyramid Q.

Let F be a collection of faces of P that are strictly preserved under π . Define K
to be the simplicial complex induced by {[m] � ϕ(F ) |F ∈ F }.

Remark 4.5 Notice that not all non-empty faces of K correspond to non-empty faces
in F : in Example 4.4, if F consists of all strictly preserved edges, then K is the
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entire boundary complex of Sanyal’s projection polytope Q, so that it contains the
edge {2,3}. But then the complementary intersection of facets, F1 ∩ F4 ∩ F5, does
not correspond to any non-empty face of P .

Since the set of vertices {ai | i ∈ [m]�ϕ(F )} forms a face of Q for any face F ∈ F ,
and since Q is simplicial, K is a subcomplex of the face complex of Q ⊂ R

m−n+d−1.
In particular, when K is not the entire boundary complex of Q, it embeds into
R

m−n+d−2 by stereographic projection (otherwise, it only embeds into R
m−n+d−1,

as happens in Example 4.4).
Thus, given the simple polytope P ⊂ R

n and a set F of faces of P that we want
to preserve under projection, the study of the embeddability of the corresponding
abstract simplicial complex K provides lower bounds on the dimension d in which
we can project P . We proceed in the following way:

(1) We first choose our subset F of strictly preserved faces to be simple enough to
understand and large enough to provide an obstruction.

(2) We then understand the system Z of minimal non-faces of the simplicial com-
plex K.

(3) Finally, we find a suitable coloring of the Kneser graph on Z and apply Sarkaria’s
Theorem 4.2 to bound the dimension in which K can be embedded: a t-coloring
of KG(Z) ensures that K is not embeddable into |V (K)| − t − 2 = m − t − 2,
which by the previous paragraph bounds the dimension d from below as follows:

Theorem 4.6 (Sanyal [11]) Let P be a simple polytope in R
n whose facets are in

general position, and let π : R
n → R

d be a projection. Let F be a subset of the set
of all strictly preserved faces of P under π , let K be the simplicial complex induced
by {[m] � ϕ(F ) |F ∈ F }, and let Z be its system of minimal non-faces. If the Kneser
graph KG(Z) is t-colorable, then

(1) if K is not the entire boundary complex of the Sanyal polytope Q, then
d ≥ n − t + 1

(2) otherwise, d ≥ n − t .

In the remainder of this section, we apply Sanyal’s topological obstruction to our
problem. The hope was initially to extend it to bound the target dimension of a projec-
tion preserving the k-skeleton of an arbitrary product of simple polytopes. However,
the combinatorics involved to deal with this general question turn out to be too com-
plicated, and so we restrict our attention to products of simplices. This yields bounds
on the minimal dimension δpr(k, n) of a (k, n)-PPSN polytope.

4.3 Preserving the k-skeleton of a Product of Simplices

In this section, we understand the abstract simplicial complex K corresponding to our
problem, and describe its system of minimal non-faces.

The facets of �n are exactly the products

ψi,j := �n1 × · · · × �ni−1 × (�ni
� {j})× �ni+1 × · · · × �nr ,
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for i ∈ [r] and j ∈ [ni + 1]. We identify the facet ψi,j with the element j ∈ [ni + 1]
of the disjoint union [n1 + 1] � [n2 + 1] � · · · � [nr + 1].

Let F := F1 × · · · × Fr be a k-face of �n. Then F is contained in a facet ψi,j of
�n if and only if j /∈ Fi . Thus, the set of facets of �n that do not contain F is exactly
F1 � · · · � Fr . Consequently, if we want to preserve the k-skeleton of �n, then the
abstract simplicial complex K we are interested in is induced by
{

F1 � · · · � Fr | ∅ = Fi ⊂ [ni + 1] for all i ∈ [r], and
∑

i∈[r]

(|Fi | − 1
)= k

}

. (3)

Remark 4.7 In contrast to the general case, when we want to preserve the complete
k-skeleton of a product of simplices, the complex K cannot be the entire boundary
complex of the Sanyal polytope Q. As a consequence, the better lower bound from
part (1) of Sanyal’s Theorem 4.6 always holds, and we always use it from now on
without further notice.

To prove that K cannot cover the entire boundary complex of Q, observe that

dimQ = m − n + d − 1 =
∑

(ni + 1) −
∑

ni + d − 1 = r + d − 1,

while dim K = r +k−1 by (3). A necessary condition for K to be the entire boundary
complex of Q is that dim K = dimQ−1, which translates to d = k+1. Now suppose
that the entire k-skeleton of �n is preserved under projection to dimension k + 1.
Then the projections of those k-faces are facets of π(�n). Since any ridge of the
projected polytope is contained in exactly two facets, and the entire k-skeleton of �n

is preserved, we know that any (k − 1)-face of �n is also contained in exactly two
k-faces. But this can only happen if k = n − 1, which means n = d .

Recall from Example 4.4 that K can be the entire boundary complex of Q if we
do not preserve all k-faces of �n.

The following lemma gives a description of the minimal non-faces of K:

Lemma 4.8 The system of minimal non-faces of K is

Z :=
{

G1 � · · · � Gr | |Gi | = 1 for all i ∈ [r], and
∑

i |Gi =∅

(|Gi | − 1
)= k + 1

}

.

Proof A subset G := G1 � · · · � Gr of [n1 + 1] � [n2 + 1] � · · · � [nr + 1] is a face
of K when it can be extended to a subset F1 � · · · � Fr with

∑
(|Fi | − 1) = k and

∅ = Fi ⊂ [ni + 1] for all i ∈ [r], that is, when

k ≥ ∣
∣
{
i ∈ [r] |Gi = ∅}∣∣+

∑

i∈[r]

(|Gi | − 1
)=

∑

i |Gi =∅

(|Gi | − 1
)
.

Thus, G is a non-face if and only if
∑

i |Gi =∅

(|Gi | − 1
)≥ k + 1.
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If
∑

i |Gi =∅(|Gi | − 1) > k + 1, then removing any element provides a smaller
non-face. If there is an i such that |Gi | = 1, then removing the unique ele-
ment of Gi provides a smaller non-face. Thus, if G is a minimal non-face, then∑

i |Gi =∅(|Gi | − 1) = k + 1, and |Gi | = 1 for all i ∈ [r].
Reciprocally, if G is a non-minimal non-face, then it is possible to remove one

element keeping a non-face. Let i ∈ [r] be such that we can remove one element
from Gi , keeping a non-face. Then, either |Gi | = 1, or

∑

j |Gj =∅

(|Gj | − 1
)≥ 1 + (|Gi | − 2

)+
∑

j =i |Gj =∅

(|Gj | − 1
)≥ k + 2,

since we keep a non-face. �

4.4 Colorings of KG(Z)

Our next goal is to provide a suitable coloring of the Kneser graph on the system Z
of minimal non-faces of K. Let S := {i ∈ [r] |ni = 1} denote the set of indices corre-
sponding to the segments, and R := {i ∈ [r] |ni ≥ 2} the set of indices corresponding
to the non-segments in the product �n. We first provide a coloring for two extremal
situations.

Theorem 4.9 (Topological obstruction for low-dimensional skeleta) If
k ≤∑

i∈R�ni−2
2 	, then the dimension of any (k, n)-PPSN polytope cannot be smaller

than 2k + |R| + 1:

δpr(k, n) ≥ 2k + |R| + 1.

Proof Let k1, . . . , kr ∈ N be such that

∑

i∈[r]
ki = k and

{
ki = 0 for i ∈ S;
0 ≤ ki ≤ ni−2

2 for i ∈ R.

Observe that

(1) such a tuple exists since k ≤∑
i∈R�ni−2

2 	, and
(2) for any minimal non-face G := G1 � · · · � Gr of Z , there exists i ∈ [r] such that

|Gi | ≥ ki + 2. Indeed, if |Gi | ≤ ki + 1 for all i ∈ [r], then

k + 1 =
∑

i |Gi =∅

(|Gi | − 1
)≤

∑

i |Gi =∅
ki ≤

∑

i∈[r]
ki = k,

which is impossible.

For all i ∈ [r], we fix a proper coloring γi : ([ni+1]
[ki+2]

)→ [χi] of the Kneser graph

KGki+2
ni+1, with χi = 1 if i ∈ S and χi = ni − 2ki − 1 if i ∈ R—see Sect. 4.1.1. We

define a coloring γ : Z → [χ1] � · · · � [χr ] of the Kneser graph on Z as follows.
Let G := G1 � · · · � Gr be a given minimal non-face of Z . We arbitrarily choose an
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i ∈ [r] such that |Gi | ≥ ki +2, and a subset g of Gi with ki +2 elements. We color G

with the color of g in KGki+2
ni+1, that is, we define γ (G) := γi(g).

The coloring γ is a proper coloring of the Kneser graph KG(Z). Indeed, let
G := G1 � · · · � Gr and H := H1 � · · · � Hr be two minimal non-faces of Z related
by an edge in KG(Z), which means that they do not intersect. Let i ∈ [r] and g ⊂ Gi

be such that we have colored G with γi(g), and similarly j ∈ [r] and h ⊂ Gj be such
that we have colored H with γj (h). Since the color sets of γ1, . . . , γr are disjoint,
the non-faces G and H can receive the same color γi(G) = γj (H) only if i = j and

g and h are not related by an edge in KGki+2
ni+1, which implies that g ∩ h = ∅. But this

cannot happen, because g ∩ h ⊂ Gi ∩ Hi , which is empty by assumption. Thus, G

and H get different colors.
This provides a proper coloring of KG(Z) with

∑
χi colors. By Theorem 4.6 and

Remark 4.7, we know that the dimension d of the projection is at least
∑

i∈[r]
ni −

∑

i∈[r]
χi + 1 = 2k + |R| + 1.

�

Theorem 4.10 (Topological obstruction for high-dimensional skeleta) If
k ≥ � 1

2

∑
i ni	, then any (k, n)-PPSN polytope is combinatorially equivalent to �n:

δpr(k, n) ≥
∑

ni.

Proof Let G := G1 � · · · � Gr and H := H1 � · · · � Hr be two minimal non-faces of
Z . Let A := {i ∈ [r] |Gi = ∅ or Hi = ∅}. Then

∑

i∈A

(|Gi | + |Hi |
) ≥

∑

Gi =∅

(|Gi | − 1
)+

∑

Hi =∅

(|Hi | − 1
)+ |A|

= 2k + 2 + |A| >
∑

i∈[r]
ni + |A| ≥

∑

i∈A

(ni + 1).

Thus, there exists i ∈ A such that |Gi | + |Hi | > ni + 1, which implies that
Gi ∩ Hi = ∅, and proves that G ∩ H = ∅.

Consequently, the Kneser graph KG(Z) is independent (and we can color it with
only one color). We obtain that the dimension d of the projection is at least

∑
ni .

In other words, in this extremal case, there is no better (k, n)-PSN polytope than the
product �n itself. �

Remark 4.11 Theorem 4.10 can sometimes be strengthened a little: If k = 1
2

∑
ni − 1,

and k + 1 is not representable as a sum of a subset of {n1, . . . , nr}, then
δpr(k, n) =∑

ni .

Proof As in the previous theorem, we prove that the Kneser graph KG(Z) is inde-
pendent. Indeed, assume that G := G1 � · · · � Gr and H := H1 � · · · � Hr are two
minimal non-faces of Z related by an edge in KG(Z). Then, G ∩ H is empty, which
implies that for all i ∈ [r],

|Gi | + |Hi | ≤ ni + 1. (4)
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Let U := {i |Gi = ∅} and V := {i |Hi = ∅}. Then,
∑

i∈U∪V

(|Gi | + |Hi |
) =

∑

i∈U

(|Gi | − 1
)+

∑

i∈V

(|Hi | − 1
)+ |U | + |V |

= 2k + 2 + |U | + |V |
=
∑

i∈[r]
ni + |U | + |V | (�)≥

∑

i∈U∪V

ni + |U ∪ V | =
∑

i∈U∪V

(ni + 1).

Summing (4) over i ∈ U ∪ V implies that both the inequality (�) and (4) for
i ∈ U ∪ V are in fact equalities. The tightness of (�) implies furthermore that
|U | + |V | = |U ∪ V |, so that U ∩V = ∅; in other words, Hi is empty whenever Gi is
not. The equality in (4) then asserts that |Gi | = ni + 1 for all i ∈ U , and therefore

k + 1 =
∑

i∈U

(|Gi | − 1
)=

∑

i∈U

ni

is representable as a sum of a subset of the ni , which contradicts the assumption. �

Finally, to fill the gap in the ranges of k covered by Theorems 4.9 and 4.10, we
merge both coloring ideas as follows.

We partition [r] = A � B and choose ki ≥ 0 for all i ∈ A and kB ≥ 0 such that
(
∑

i∈A

ki

)

+ kB ≤ k. (5)

We will determine the best choices for A, B , kB and the ki ’s later. Let nB :=∑
i∈B ni .

Color the Kneser graphs KGki+2
ni+1 for i ∈ A and KGkB+1

nB
with pairwise disjoint color

sets with

χi :=
{

ni − 2ki − 1 if 2ki ≤ ni − 2,

1 if 2ki ≥ ni − 2,

and

χB :=

⎧
⎪⎨

⎪⎩

0 if nB = 0,

nB − 2kB if 2kB ≤ nB − 1,

1 if 2kB ≥ nB − 1,

colors respectively.
Observe now that for all minimal non-faces G := G1 � · · · � Gr , either there is an

i ∈ A such that |Gi | ≥ ki + 2, or
∑

i∈B |Gi =∅(|Gi | − 1) ≥ kB + 1. Indeed, otherwise

k + 1 =
∑

i |Gi =∅

(|Gi | − 1
)≤

(
∑

i∈A

ki

)

+ kB ≤ k.

This allows us to define a coloring of KG(Z) in the following way. For each minimal
non-face G := G1 � · · · � Gr , we arbitrarily choose one of the following strategies:
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(1) If we can find an i ∈ A such that |Gi | ≥ ki + 2, we choose an arbitrary subset g

of Gi with ki + 2 elements, and color G with the color of g in KGki+2
ni+1.

(2) Otherwise,
∑

i∈B |Gi =∅(|Gi | − 1) ≥ kB + 1, and we choose an arbitrary subset
g of

⊎

i∈B

(
Gi � {ni + 1})⊂

⊎

i∈B

[ni]

with kB + 1 elements and color G with the color of g in KGkB+1
nB

.

By exactly the same argument as in the proof of Theorem 4.9, one can verify that this
provides a valid coloring of the Kneser graph KG(Z) with

χ := χ(A,B, ki, kB) :=
∑

i∈A

χi + χB

many colors. Therefore Sanyal’s Theorem 4.6 and Remark 4.7 yield the following
lower bound on the dimension d of any (k, n)-PPSN polytope:

d ≥ dk := dk(A,B, ki, kB) :=
∑

i

ni + 1 − χ ≥ δpr(k, n).

It remains to choose parameters A, B , and {ki | i ∈ A} and kB that maximize this
bound. We proceed algorithmically, by first fixing A and B , and choosing the ki ’s and
kB to maximize the bound on the dimension dk . For this, we first start with ki = 0
for all i and kB = 0, and observe the variation of dk as we increase individual ki ’s
or kB . By (5), we are only allowed a total of k such increases. During this process, we
will always maintain the conditions 2ki ≤ ni − 1 for all i ∈ Ai and 2kB ≤ nB (which
makes sense by the formulas for χi and χB ).

We start with ki = 0 for all i and kB = 0. Then

χ(A,B,0,0) =
∑

i∈A

(ni − 1) + |S ∩ A| + nB

=
∑

i∈A

ni − |A| + |S ∩ A| +
∑

i∈B

ni =
∑

i∈[r]
ni − r + |B ∪ S|,

and

dk(A,B,0,0) = 1 + r − |B ∪ S|,
where S := {i ∈ [r] |ni = 1} denotes the set of segments.

We now study the variation of dk as we increase each of the ki ’s and kB by one.
For i ∈ A, increasing ki by one decreases χi by

⎧
⎪⎨

⎪⎩

2, if 2ki ≤ ni − 4,

1, if 2ki = ni − 3,

0, if 2ki ≥ ni − 2,

and hence increases dk by the same amount. Observe in particular that dk remains
invariant if we increase ki for some segment i ∈ S (because ni = 1 for segments).



128 Discrete Comput Geom (2011) 46: 100–131

Thus, it makes sense to choose B to contain all segments. Similarly, increasing kB by
one decreases χB by

⎧
⎪⎨

⎪⎩

2, if 2kB ≤ nB − 3,

1, if 2kB = nB − 2,

0, if 2kB ≥ nB − 1,

and increases dk by the same amount.
Recall that we are allowed at most k increases of ki ’s or kB by (5). Heuristically, it

seems reasonable to first increase the ki ’s or kB that increase dk by two, and then these
that increase dk by one. Hence we get a case distinction on k, which also depends on
A and B:

Theorem 4.12 (Topological obstruction, general case) Let k ≥ 0 and
n := (n1, . . . , nr) with r ≥ 1 and ni ≥ 1 for all i. Let [r] = A � B be a partition
of [r] with B ⊃ S := {i ∈ [r] |ni = 1}. Define

K1 := K1(A,B) :=
∑

i∈A

⌊
ni − 2

2

⌋

+ max

{

0,

⌊
nB − 1

2

⌋}

,

K2 := K2(A,B) := ∣
∣{i ∈ A |ni is odd}∣∣+

{
1 if nB is even and non-zero,

0 otherwise.

Then the following lower bounds hold for the dimension of a (k, n)-PPSN polytope:

(1) If 0 ≤ k ≤ K1, then δpr(k, n) ≥ r + 1 − |B| + 2k.
(2) If K1 ≤ k ≤ K1 + K2, then δpr(k, n) ≥ r + 1 − |B| + K1 + k.
(3) If K1 + K2 ≤ k, then δpr(k, n) ≥ r + 1 − |B| + 2K1 + K2.

This theorem enables us to recover Theorems 4.9 and 4.10:

Corollary 4.13 Let k ≥ 0 and n := (n1, . . . , nr ) with r ≥ 1 and ni ≥ 1 for all i, and
define S := {i ∈ [r] |ni = 1} and R := {i ∈ [r] |ni ≥ 2}.
(1) If

0 ≤ k ≤
∑

i∈R

⌊
ni − 2

2

⌋

+ max

{

0,

⌊ |S| − 1

2

⌋}

,

then δpr(k, n) ≥ 2k + |R| + 1.
(2) If k ≥ � 1

2

∑
ni	 then δpr(k, n) ≥∑

i ni .

Proof Take A = R and B = S for (1), and A = ∅ and B = [r] for (2). �

4.5 Explicit Lower Bounds

There is an algorithm to explicitly choose the partitions [r] = A � B which yield the
best bounds in Theorem 4.12. Since this algorithm is quite technical, we just present
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Fig. 9 Four different situations for the lower bound

the best results we obtain with this topological obstruction. We refer to [9] for further
details.

We fix K1 = K1(R,S) and define d0 = r + 1 − |S| and n =∑
i∈[r] ni . The best

lower bound dk that we obtain with this coloring can be summarized explicitly by the
following case distinction—see Fig. 9:

A. When |S| is even and non-zero: The bound dk increases by two for 0 ≤ k ≤ K1.
Then for each odd ni ≥ 3 we get a block with a first increment by one and a
second increment by two. Then all increments are one until we reach the trivial
bound dk = n =∑

i∈[r] ni .
B. When |S| is odd: As in case A, except that the first block corresponding to an odd

ni ≥ 3 consists only of one increment by one.
C. When |S| = 0 and there is an odd ni : As in the cases A and B, except that the first

two blocks corresponding to odd ni ’s consists only of one increment. If there is
only one odd ni then all increments from K1 on are one until we reach the trivial
bound.
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D. When all ni are even: The bound dk increases by two for 0 ≤ k ≤ K1. The next
increment is zero, and all further increments are one until we reach the trivial
bound dk = n =∑

i∈[r] ni .

Remark 4.14 Remark 4.11 still provides a better bound for certain cases, as for ex-
ample when k = 2 and n = (4,2).

4.6 Comparison with Rörig and Sanyal’s Results

In [10], Rörig and Sanyal address the special case n1 = · · · = nr =: n and r ≥ 2. In
their Theorem 4.5, they obtained the following bound:

δpr

(
k, (n, . . . , n)

)≥

⎧
⎪⎪⎨

⎪⎪⎩

2k + r + 1, if 0 ≤ k ≤ r�n−2
2 	,

k + 1
2 r(n − 1) + 1, if r�n−2

2 	 < k ≤ r�n−1
2 	,

α + r(n − 1) + 1, if r�n−1
2 	 < k ≤ rn,

where α := ⌊ k−r� n−1
2 	

� n+2
2 	

⌋
. We compare this with the graphs C (if n is odd) and D (if n

is even) of Fig. 9. Their first case matches exactly with the bounds of this paper, since
K1 = r�n−2

2 	. Plugging in k = K1 into their first two cases yields the same bound if
n is odd, but a different one if n is even. If n is even then the difference is � r

2	. The
bound in their second case has slope one, that is, it increases by one if k increases by
one, and the bound in their third case has a much smaller slope. Hence the bounds of
Sect. 4.5 are stronger, especially around k ≈ rn

2 . In the case r = 1 both bounds are
equal, because at k = K1 we already reach the best possible bound rn.
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