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Abstract We introduce an algorithm that embeds a given 3-connected planar graph
as a convex 3-polytope with integer coordinates. The size of the coordinates is
bounded by O(27.55n) = O(188n). If the graph contains a triangle we can bound
the integer coordinates by O(24.82n). If the graph contains a quadrilateral we can
bound the integer coordinates by O(25.46n). The crucial part of the algorithm is to
find a convex plane embedding whose edges can be weighted such that the sum of
the weighted edges, seen as vectors, cancel at every point. It is well known that this
can be guaranteed for the interior vertices by applying a technique of Tutte. We show
how to extend Tutte’s ideas to construct a plane embedding where the weighted vector
sums cancel also on the vertices of the boundary face.
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1 Introduction

Problem Setting The graph of a polytope is an abstraction from its geometric real-
ization. For a 3-polytope, the graph determines the complete combinatorial structure.
The graphs of 3-polytopes are characterized by Steinitz’ seminal theorem [31], which
asserts that they are exactly the planar 3-connected graphs.

A natural question is to ask for a geometric realization of a 3-polytope when its
combinatorial structure is given. One might be interested in a realization that fulfills
additionally certain optimality criteria. For example a good resolution is desirable to
obtain aesthetic drawings [6, 30]. We address a different problem and ask for an em-
bedding whose vertices can be placed on a small integer grid. The vertex coordinates
of such an embedding can be stored efficiently.

Related Work Suppose we are given the combinatorial structure of a 3-polytope by
a graph G with n vertices. The original proof of Steinitz’ theorem transforms the
3-connected planar graph G into the graph of the tetrahedron by a sequence of el-
ementary operations. The transformation preserves the realizability as a 3-polytope.
Since all operations can be carried out in the rationals, the proof gives a method to
construct a realization of a 3-polytope with integer coordinates. However, it is not
easy to keep track of the size and the denominators of the coordinates, which makes
it difficult to apply this approach for our problem. An alternative proof of Steinitz’
theorem goes back to the Koebe–Andreev–Thurston Circle Packing Theorem (see for
example Schramm [28]). This approach relies on non-linear methods, which make the
(grid) size of the embedding intractable. A third proof of Steinitz’ theorem relies on
the “liftability” of planar barycentric embeddings. Since this barycentric approach is
based on linear methods, its construction favors computational aspects of the embed-
ding. This led to a series of embedding algorithms: Hopcroft and Kahn [14], Onn and
Sturmfels [20], Eades and Garvan [12], Richter-Gebert [24], Chrobak et al. [6]. Our
work also follows this paradigm.

As a first quantitative analysis of Steinitz’ theorem, Onn and Sturmfels [20]
showed that integer coordinates smaller than n169n3

suffice to realize a 3-polytope.
Richter-Gebert improved this bound to O(218n2

). A more careful analysis of Richter-
Gebert’s approach shows that the size of the integer coordinates can be bounded by
212n2

[21].
Integer realizations with at most exponentially large coordinates in terms of n

were previously known for polytopes whose graph contains a triangle (Richter-Gebert
[24]). We describe this method in Sect. 3.1 (p. 74) as Case 1 of our embedding algo-
rithm. In Richter-Gebert’s approach (and already in Onn and Sturmfels [20]), graphs
without triangles are embedded by first embedding the polar polytope, whose graph
in this case has to contain a triangle. Based on the polar, an embedding of the original
polytope is constructed. However, this operation yields coordinates with a quadratic
term in the exponent.

For triangulated 3-polytopes, Das and Goodrich [10] showed that they can be em-
bedded with coordinates of size 2O(n), using an incremental method which can be
carried out in O(n) arithmetic operations. Triangulated 3-polytopes are easier to re-
alize on the grid than general polytopes, since each vertex can be perturbed within
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some small neighborhood while maintaining the combinatorial structure of the poly-
tope. An explicit bound on the coordinates has not been worked out by the authors.
For stacked polytopes a better upper bound exists [38], but it is still exponential.

Lower Bounds Little is known about the lower bound of a grid embedding of a
3-polytope. An integral convex embedding of an n-gon in the plane needs an area of
Ω(n3) [1, 2, 32, 35]. Therefore, realizing a 3-polytope with an (n − 1)-gonal face
requires at least one dimension of size Ω(n3/2).

Two Dimensions In the plane, planar 3-connected graphs can be embedded on a
very small grid. For a crossing-free straight-line embedding an O(n) × O(n) grid is
sufficient [11, 27]. This is also true if the embedding has to be convex [4]. A strictly
convex drawing can be realized on an O(n2) × O(n2) grid [3].

Higher Dimensions Already in dimension 4, there are polytopes that cannot be re-
alized with rational coordinates, and a 4-polytope that can be realized on the grid
might require coordinates that are doubly exponential in the number of its vertices.
Moreover, it is NP-hard to even decide if a lattice is a face lattice of a 4-polytope [24,
25].

Results In this article we develop an algorithm that realizes G as a 3-polytope
with integer coordinates not greater than O(187.13n) = O(27.55n). This implies
that for any 3-polytope a combinatorially equivalent polytope can be stored with
O(n) bits per vertex. For the case that G contains a triangle we show that G ad-
mits an integer realization with no coordinate larger than O(28.4̄n) = O(24.82n),
if G contains a quadrilateral face, the size of the coordinates can be bounded by
O(43.99n) = O(25.46n). The most difficult part of the algorithm is to locate the
boundary face of the plane embedding such that a lifting into R

3 exists. This prob-
lem can be reduced to a non-linear system which is most complex when G contains
neither a triangle nor a quadrilateral face.

Partial results containing the essential ideas for graphs with quadrilateral faces
(Case 2 of Sect. 3.1) were presented by the second author at the workshop The Future
of Discrete Mathematics at Štiřín Castle, Czech Republic, in May 1997. The results
of this paper were presented in a different form at the 23rd Annual Symposium on
Computational Geometry in Gyeongju, Korea, in June 2007 [22]. Since then, we were
able to simplify the computation of the explicit bounds with help of Lemma 3.10. The
simplification yields slightly different bounds. By improving the bound of Lemma 9
in [22] by a polynomial factor (now Lemma 3.9) we obtain better bounds in the end.
However, our analysis could be further improved with help of the more complicated
construction of [22]. Since the improvement would only result in a constant factor we
decided to present the simpler and more elegant analysis.

A follow-up work [30] extends the techniques of this article and studies more
general barycentric embeddings. With help of these modifications, a grid embedding
with x-coordinates smaller than 2n can be constructed. The small x-coordinates are
realized at the expense of the size of the y and z-coordinates, which are bounded by
2O(n2 logn).
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Remark Most recently, Buchin and Schulz [5] improved the upper bound for the
maximum number of spanning trees contained in a planar graph. This has a direct
consequence for our results, since we obtain the bound for the necessary grid size in
terms of this quantity. In particular, the new bounds of [5] yield that our algorithm re-
quires a grid of size O(147.71n) = O(27.21n) (general case), O(39.87n) = O(25.32n)

(G contains a quadrilateral face), and O(27.94n) = O(24.81n) (G contains a triangu-
lar face).

2 Lifting Planar Graphs

Let G = (V ,E) be a 3-connected planar graph with vertex set V = {v1, . . . , vn} em-
bedded in the plane with straight edges and no crossings. The coordinates of a vertex
vi in the (plane) embedding are called pi := (xi, yi)

T , the whole embedding is de-
noted as G(p). Let h : V → R be a height assignment for the vertices in G. We write
zi for h(vi). If the vertices (xi, yi, zi) of every face of G lie on a common plane, we
call the height assignment h a lifting of G(p).

Definition 1 (Equilibrium, stress) An assignment ω : E → R of scalars (denoted as
ω(i, j) = ωij = ωji ) to the edges of G is called a stress.

1. A vertex vi is in equilibrium in G(p), if

∑

j :(i,j)∈E

ωij (pi − pj ) = 0. (1)

2. The embedding G(p) is in equilibrium if all vertices are in equilibrium.
3. If G(p) is in equilibrium for the stress ω, then ω is called an equilibrium stress for

G(p).

It is well known that equilibrium stresses and liftings are related. Maxwell observed in
the 19th century that there is a correspondence between embeddings with equilibrium
stress and projections of 3-dimensional polytopes [19]. There are different versions
of Maxwell’s theorem. For the scope of this article the following formulation is the
most suitable.

Theorem 2.1 (Maxwell, Whiteley) Let G be a planar 3-connected graph with em-
bedding G(p) and designated face f1. There exists a correspondence between

(A) Equilibrium stresses ω on G(p)

(B) Liftings of G(p) in R
3, where face f1 lies in the xy-plane

The proof that A induces B (which is the important direction for our purpose) is due to
Whiteley [36]. The Maxwell-Cremona correspondence finds interesting applications
in different areas (see for example Hopcroft and Kahn [14], and Connelly et al. [7]).

To describe a lifting, we have to specify for each face fi of the graph the plane
Hi on which it lies. We define Hi by the two parameters ai and di . The plane Hi
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is characterized by the function that assigns to every point p in the plane a third
coordinate by

Hi : p �→ 〈p,ai〉 + di. (2)

Here, 〈·, ·〉 denotes the dot product. The correspondence between liftings and stresses
comes from the observation that the “slope difference” al − ar between two adjacent
faces fl and fr is perpendicular to the edge pi − pj that separates them:

al − ar = ωij (pi − pj )
⊥, (3)

for some scalar ωij ∈ R. Here, p⊥ := (−y
x

)
denotes the vector p = (

x
y

)
rotated by 90

degrees. It is not hard to show that these numbers ωij form an equilibrium stress.
The other direction, the computation of the lifting of G(p) induced by ω is

straightforward, see Crapo and Whiteley [9]. We follow the presentation of Connelly,
Demaine and Rote [7] for the computation of the lifting.

The parameters ai and di can be computed by the following iterative method: we
pick f1 as the face that lies in the xy-plane, and set a1 = (0

0

)
and d0 = 0. Then we

lift the remaining faces one by one. This is achieved by selecting a face fl that is
incident to an already lifted face fr . Let (i, j) be the common edge of fl and fr .
Assume that in G(p) the face fl lies left of the directed edge ij , and fr lies right of
it. The parameters of Hl can be computed by

al = ωij (pi − pj )
⊥ + ar , (4)

dl = ωij

〈
pi ,p⊥

j

〉 + dr . (5)

Equation (4) comes directly from (3), and (5) comes from the fact that the two planes
must intersect above pi and pj .

The sign of the stresses allows us to say something about the curvature of the lifted
graph. According to (3) and (4), the sign of ωij that separates fl and fr tells us if the
lifted face fl lies below or above Hr . As a consequence we obtain the following:

Proposition 1 Let G(p) be a straight-line embedding of a planar 3-connected graph
G with equilibrium stress. If the stresses on the boundary edges are negative and all
other stresses positive then the lifting induced by such equilibrium stress results in a
convex 3-polytope.

Lemma 2.1 If G(p) has integer coordinates only and the equilibrium stress is in-
tegral on all interior edges, then the z-coordinates of the lifted embedding are also
integers.

Proof We select an interior face as face f1. The gradient a1 = (0,0)T and the scalar
d1 = 0 are clearly integral. For all other interior faces fi the parameters ai , di of the
planes Hi can be computed with help of (4) and (5). By an inductive argument these
parameters are integral as well. Computing the z-coordinate of some point pi by (2)
boils down to the multiplication and addition of integers. �
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3 The Grid Embedding Algorithm

3.1 The Plane Embedding

The embedding of G as a 3-polytope uses the following high level approach. First we
embed G in the plane, such that it is liftable (see Sect. 2), then we lift the embedding
to R

3, finally we scale to obtain integer coordinates as described in Sect. 3.2. The
analysis of the algorithm in Sect. 3.3 gives the new upper bound. The most challeng-
ing part is to construct a liftable 2d embedding.

An embedding is called barycentric if every vertex that is not on the outer face is
in the barycenter of its neighbors. Tutte showed that for planar 3-connected graphs
the barycentric embedding for a fixed convex outer face is unique [33, 34]. More-
over, if embedded with straight lines, no two edges cross, and all faces are re-
alized as convex polygons. In the barycentric embedding all vertices that are not
on the outer face are in equilibrium according to the stress ω ≡ 1. Our embed-
ding algorithm uses this special stress only, although we state the lemmas as gen-
eral as possible. Since our techniques might find applications in other settings we
develop our main tools for arbitrary stresses. (Note that Tutte’s approach works
with arbitrary stresses that are positive on interior edges, see for example Gortler
et al. [13].)

We describe now how to compute the barycentric embedding of G. Let f0 be a
face of G that we picked as the outer face, and let k be the number of vertices in f0.
For simplicity we want k as small as possible. Euler’s formula implies that every
planar and 3-connected graph has a face f0 with k ≤ 5 edges. We assume that the
vertices in G are labeled such that the first k vertices belong to f0 in cyclic order. Let
B := {1, . . . , k} be the index set of the boundary vertices and let I := {k + 1, . . . , n}
denote the index set of the interior vertices. The edges of f0 are called boundary
edges, all other edges interior edges. The stresses on the exterior edges will be defined
later, but since they don’t matter for the barycentric embedding we set them to zero
for now.

We denote with L = (lij ) the Laplacian matrix of G (in short Laplacian), which
is defined as follows

lij :=

⎧
⎪⎨

⎪⎩

−ωij if (i, j) ∈ E and i 
= j,∑
(i,j)∈E ωi,j if i = j,

0 otherwise.

For the special “weights” ω ≡ 1 the Laplacian equals the negative adjacency matrix
of G.with vertex degrees on the diagonal. We subdivide L into block matrices indexed
by the sets I and B , and obtain LIB , LBI , LBB , and LII . The matrix LII is called
the reduced Laplacian matrix of G. For convenience we write L̄ instead of LII .
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Fig. 1 A small example graph

Example Consider the graph of Fig. 1, with B = {1,2,3} and I = {4,5,6,7}. We
have

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0
... −1 −1 0 0

0 2 0
... 0 −1 0 −1

0 0 2
... 0 0 −1 −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 0 0

... 3 −1 −1 0
−1 −1 0

... −1 4 0 −1
0 0 −1

... −1 0 3 −1
0 −1 −1

... 0 −1 −1 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

LBB LBI

LIB LII

)
, with

L̄ = LII =

⎛

⎜⎜⎝

3 −1 −1 0
−1 4 0 −1
−1 0 3 −1
0 −1 −1 4

⎞

⎟⎟⎠ .

In the example the presence of the boundary edges (1,2), (1,3), and (2,3) is not
reflected in the Laplacian, because the stress is set to zero on the boundary.

The location of the boundary vertices is given by the vectors xB = (x1, . . . , xk)
T

and yB = (y1, . . . , yk)
T . Since every vertex should lie at the (weighted) barycenter

of its neighbors, the coordinates of the interior vertices xI = (xk+1, . . . , xn)
T and

yI = (yk+1, . . . , yn)
T have to satisfy the equilibrium condition (1) for the stress ω.

In particular, the equations L̄xI + LIBxB = 0 and L̄yI + LIByB = 0 have to hold.
Thus, we can express the interior coordinates as

xI = −L̄−1LIBxB,

yI = −L̄−1LIByB.
(6)

For non-zero weights ω the matrix LII is irreducible (that is, the underlying graph
is connected, see Lemma 3.2) and diagonally dominant. As a consequence LII is
invertible and (6) has a unique solution [15, p. 363].

The barycentric embedding assures that the interior vertices are in equilibrium.
However, to make G(p) liftable we have to guarantee the equilibrium also for the
vertices on f0. We define the vectors F := F1, . . . ,Fk as the non-resolving “forces”,
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which arise at the boundary vertices and cannot be canceled by the interior stresses:

∀i ∈ B
∑

(i,j)∈E

ωij (pi − pj ) =: Fi . (7)

Our goal is to define the yet unassigned stresses on the boundary edges such that they
cancel the forces in F . However, this is not always possible, depending on the shape
of the outer face. In order to pick a good embedding of f0, we have to know how
changing the coordinates of the outer face changes the forces in F . The following
lemma helps to express this dependence.

Lemma 3.1 (Substitution lemma) There are weights ω̃ij = ω̃ji , for i, j ∈ B , inde-
pendent of the location of the boundary vertices, such that

Fi =
∑

j∈B:j 
=i

ω̃ij (pi − pj ).

The weights ω̃ij are the off-diagonal entries of LBI L̄
−1LIB − LBB . If ω is integral,

each ω̃ is a multiple of 1/det L̄.

Proof Let Fx denote the vector (F x
1 , . . . ,F x

k )T , where Fx
i is the x-component of the

vector Fi . We rephrase (7) as Fx = LBBxB + LBI xI . With help of (6) we eliminate
xI and obtain

Fx = LBBxB − LBI L̄
−1LIBxB =: L̃xB.

(The matrix L̃ = LBB − LBI L̄
−1LIB is the Schur complement of L̄ in L.) For the

y-coordinates, we obtain a similar formula with the same matrix L̃. We define ω̃ij as
the off-diagonal entries −l̃ij of L̃. Since LBI = (LIB)T , the matrix L̃ is symmetric
and therefore ω̃ij = ω̃ji holds.

To show that the expression Fx = L̃xB has the form stated in the lemma we have
to check that all row sums in L̃ equal 0. Let 1 denote the vector where all entries
are 1, equivalently 0 denotes the vector that contains only zeros as entries. Since
each of the last n − k rows of L sums up to 0 we have L̄1 + LIB1 = 0; and hence
−L̄−1LIB1 = 1. Plugging this expression into L̃1 = LBB1 − LBI L̄

−1LIB1 gives
us L̃1 = LBB1 + LBI 1, which equals 0. The matrix L̃ can be written as a rational
expression whose denominator is the determinant of L̄, and thus the weights ω̃ are
multiples of 1/det L̄. �

In linear algebra terms, the lemma can be rephrased as saying that the Schur com-
plement of a submatrix of a weighted Laplacian, if it exists, has again the form of a
weighted Laplacian.

The proof assumes that L̄ is invertible. This is the case whenever the graph G has
no connected component that is a subset of I . If such components exist, they can
simply be omitted, since they are completely disconnected from B and hence have
no effect on the forces in F . Hence, the lemma holds for arbitrary graphs, without
any connectivity assumptions.
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Example For the example of Fig. 1, we obtain the following substitution stresses.

−L̃ =
⎛

⎝
−ω̃12 − ω̃13 ω̃12 ω̃13

ω̃12 −ω̃12 − ω̃23 ω̃23
ω̃13 ω̃23 −ω̃13 − ω̃23

⎞

⎠

=
⎛

⎝
−96/95 3/5 39/95

3/5 −6/5 3/5
39/95 3/5 −96/95

⎞

⎠ .

We emphasize that the ω̃ values are independent of the location of xB and yB :
they only depend on the combinatorial structure of G. In other words, the stresses ω̃ij

contain all the necessary information about the combinatorial structure of G. Thus,
we have a compact description (of size

(
k
2

)
) of the structure of G that is responsible

for the forces in F . We call the stresses ω̃ substitution stresses to emphasize that they
are used as a substitution for the combinatorial structure of G.

For the later analysis of the grid size it is necessary to bound the size of the sub-
stitution stresses. We first state a technical lemma.

Lemma 3.2 Removing all vertices and edges of a face f0 from a 3-connected planar
graph G leaves a connected graph.

Proof After realizing G as a polytope, the claim becomes a special case of the well-
known statement that a graph of a polytope in any dimension remains connected if the
vertices of some face are removed. This statement can be proved by defining a linear
objective function that realizes the minimum entirely on the removed vertices. Every
remaining vertex is connected to the maximum vertex by a monotone increasing path.
The objective function can be perturbed such that there is a unique maximum. �

Lemma 3.3

1. Let ω be a stress that is positive on every interior edge. Any induced substitution
stress ω̃ij is positive.

2. Let ω be the stress that is 1 on every interior edge. Any induced substitution stress
ω̃ij is smaller than n − k.

Proof The substitution stresses are independent of the location of f0. Therefore, we
can choose the positions for the boundary vertices freely. We place vertex vi at posi-
tion (0,0)T and all other boundary vertices at (1,0)T . All vertices lie on the segment
between (0,0)T and (1,0)T , which is the convex hull of the boundary vertices.

We now show that all interior vertices lie in the interior of this segment. If an
interior vertex lies at (1,0)T then all its neighbors have to lie at (1,0)T as well.
Otherwise the vertex cannot be in equilibrium. But since due to Lemma 3.2 all interior
vertices are connected by interior edges this would imply that all interior vertices
must lie at (1,0)T . This is a contradiction, since vi is also the neighbor of an interior
vertex. By the same arguments one can show that no interior vertex can lie at (0,0)T .
Therefore, all interior vertices have a positive x-coordinate strictly smaller than 1.
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In our special embedding the force Fj (j 
= i) can be expressed as Fj = (ω̃ij ,0)T .
By (7) we have ω̃ij = ∑

k∈I ωjk(xj − xk). Due to the results of the previous para-
graph, this sum consists of at most |I | summands, which are positive, and in the case
ω ≡ 1 smaller than 1. Both statements of the lemma follow. �

We are now ready to introduce the embedding algorithm. As a first step we con-
struct a 2d embedding in equilibrium with respect to a stress ω with ω ≡ 1 on the
interior edges. In order to get equilibrium on the boundary vertices as well, we have
to choose their locations and the stresses on the boundary edges appropriately. This
leads to a non-linear system in the 2k unknowns xB and yB and the k unknown bound-
ary stresses ω12,ω23, . . . ,ωk1. Let L0 be the Laplacian of the graph that consists of
the outer face f0 only, with unknown stresses ω12,ω23, . . . ,ωk1 for the boundary
edges. The 2k equations of the system are given by

L0xB + L̃xB = 0, L0yB + L̃yB = 0. (8)

Since these equations are dependent, the system is under-constrained. To solve it,
we fix as many boundary coordinates as necessary to obtain a unique solution. We
also have to ensure that the solution defines a convex face. We continue with a case
distinction on k.

Case 1: G Contains a Triangular Face The triangular case is easy: we can position
the boundary vertices at any convenient position (see for example [14]). We choose:

p1 =
(

0
0

)
, p2 =

(
1
0

)
, p3 =

(
0
1

)
. (9)

Lemma 3.4 If G contains a triangle and we place the boundary vertices as stated in
(9) then the boundary forces can be resolved.

Proof We embed G using the barycentric embedding with ω ≡ 1 and calculate the
substitution stresses. After setting ω12 = −ω̃12,ω23 = −ω̃23,ω13 = −ω̃13 all points
are in equilibrium. �

Case 2: G Contains a Quadrilateral but no Triangular Face If f0 is a quadrilateral
we have to fix some coordinates of the boundary vertices such that it is possible
to cancel the forces in F . We used computer algebra software to experiment with
various possibilities to constrain the coordinates and solve the non-linear system (8).
A unique solution can be obtained by setting

p1 =
(

0
0

)
, p2 =

(
1
0

)
, p3 =

(
2
y3

)
, p4 =

(
0
1

)
, (10)

with

y3 = ω̃24

2ω̃13 − ω̃24
. (11)
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The solution of the equation system (8) provides also the stresses on the boundary
edges. These stresses are not necessary for our further computations; we mention
them here for completeness only.

ω12 = −2ω̃13 − ω̃12,

ω23 = ω̃24 − 2ω̃13 − ω̃23,

ω34 = − ω̃24

2
− ω̃34,

ω14 = ω̃24ω̃13

ω̃24 − 2ω̃13
− ω̃14.

(12)

We assume that ω̃13 ≥ ω̃24. (Otherwise we cyclically relabel the vertices on f0.) Since
ω ≡ 1 on the interior edges the substitution stresses are positive by Lemma 3.3. Under
this assumption we can deduce that 0 < y3 ≤ 1. Hence, f0 forms a convex face.

Note that the substitution stresses ω̃ij between adjacent vertices (on the bound-
ary) are irrelevant. The forces resulting by the boundary stresses ω̃ij can be directly
canceled by the corresponding stresses ωij . This can also be observed by looking at
the solution of the corresponding equation system: boundary stresses do not appear
in the solution for y3. (Furthermore the sum ω̃ij + ωij for boundary edges (i, j) does
not depend on any other boundary stress either.)

Lemma 3.5 If G contains a quadrilateral and we place the boundary vertices as
stated in (10) and (11), then f0 forms a convex quadrilateral and the boundary
stresses (12) cancel the forces F .

Case 3: G Contains no Triangular and no Quadrilateral Face The case if the
smallest face of G is a pentagon is more complicated. We have

(5
2

) = 10 sub-
stitution stresses ω̃ij , but the adjacent ones do not count (by the same reasons
given in the previous case). So we are left with five “diagonal” substitution stresses
ω̃13, ω̃14, ω̃24, ω̃25, and ω̃35.

Like in the previous cases we determine a unique solution of the equation system
by fixing some of the coordinates of the outer face. However, we have to make more
effort to guarantee the convexity of f0. We first observe:

Lemma 3.6 We can relabel the boundary points for any stress (ω̃ij )1≤i,j≤5 such that

ω̃35 ≥ ω̃24 and ω̃25 ≥ ω̃13.

Proof Without loss of generality we assume that the largest stress on an interior edge
is ω̃35. If ω̃25 ≥ ω̃13 we are done. Otherwise we relabel the vertices by exchanging
p3 ↔ p5 and p1 ↔ p2. �

For the rest of this section we label the vertices such that Lemma 3.6 holds. The way
we embed f0 depends on the substitution stresses ω̃ij .
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Fig. 2 Placement of the boundary vertices

Case 3A:
We assume that

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 > ω̃35ω̃25. (13)

In this case we assign

p1 =
(

0
0

)
, p2 =

(
1
0

)
, p3 =

(
1
1

)
, p4 =

(
0
1

)
, p5 =

(
x5
y5

)
.

Figure 2(a) illustrates the location of the points. Together with (8) we obtain as
solution for p5:

x5 = (ω̃13 − ω̃25 − ω̃24)(ω̃35 + ω̃13 − ω̃24)

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25
,

y5 = ω̃35 + ω̃13 − ω̃24

ω̃35 + ω̃25
.

The boundary stresses ωij are complicated expressions that are not necessary for
further computations. We list them here for completeness only

ω12 = ω̃13(ω̃
2
25 + ω̃24ω̃35 + 2ω̃24ω̃25 − ω̃13ω̃25) + ω̃14(ω̃

2
25 + ω̃25ω̃35 + ω̃24ω̃25 + ω̃35ω̃24)

ω̃35ω̃25 − ω̃14ω̃25 − ω̃25ω̃24 − ω̃13ω̃35 − ω̃35ω̃14
−ω̃12,

ω34 = ω̃14(ω̃
2
35 + ω̃35ω̃13 + ω̃25ω̃35 + ω̃13ω̃25) + ω̃24(ω̃

2
35 + ω̃13ω̃25 + 2ω̃13ω̃35 − ω̃35ω̃24)

ω̃35ω̃25 − ω̃14ω̃25 − ω̃25ω̃24 − ω̃13ω̃35 − ω̃35ω̃14
−ω̃34,

ω23 = ω̃13ω̃25 + ω̃25ω̃35 + ω̃24ω̃25

−ω̃25 − ω̃35
− ω̃23,

ω45 = ω̃24ω̃25 + ω̃25ω̃14 + ω̃14ω̃35 + ω̃24ω̃35

ω̃13 − ω̃24 − ω̃25
− ω̃45,

ω15 = ω̃13ω̃25 + ω̃35ω̃13 + ω̃14ω̃25 + ω̃14ω̃35

ω̃24 − ω̃35 − ω̃13
− ω̃15.

We have to check that f0 forms a convex polygon. Clearly, y5 > 0, since the ω̃ij ’s
are greater than zero and ω̃35 ≥ ω̃24. Moreover y5 < 1, because ω̃25 ≥ ω̃13. The nu-
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merator of x5 is negative and due to (13) the denominator of x5 is positive. Therefore,
x5 < 0 and f0 forms a convex polygon.

Case 3B:
We assume the opposite of (13), namely

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 ≤ ω̃35ω̃25. (14)

The coordinates for the boundary vertices are chosen as

p1 =
(

0
−1

)
, p2 =

(
1
y2

)
, p3 =

(
1
y3

)
, p4 =

(
0
1

)
, p5 =

(−1
0

)
.

See Fig. 2(b) for an illustration. This leads to the solution

y2 = −2 · ω̃24ω̃13 + ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35 − ω̃2
13 − 2ω̃13ω̃35 − ω̃35ω̃14

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
,

y3 = 2 · ω̃24ω̃13 + ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35 − ω̃2
24 − 2ω̃24ω̃25 − ω̃14ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
.

The boundary stresses ωij are once more not necessary for further computations and
listed for completeness only

ω12 = −ω̃24 − 2ω̃25 − ω̃12,

ω23 = −ω̃25(ω̃2
13 + 2ω̃13ω̃35 + 2ω̃24ω̃35) − ω̃35(ω̃2

24 + ω̃25ω̃14)

2ω̃35(ω̃24 + ω̃25 − ω̃13 − 1
2 ω̃14) + 2ω̃25(ω̃13 + ω̃35 − ω̃24 − 1

2 ω̃14) − (ω̃13 − ω̃24)2

− ω̃23,

ω34 = −ω̃14 − 2ω̃15 − ω̃34,

ω45 = ω̃24 − 2ω̃35 − ω̃13 − ω̃45,

ω15 = ω̃13 − 2ω̃25 − ω̃24 − ω̃15.

The outer face is convex if −2 < y2 < y3 < 2. The inequalities −2 < y2 and
y3 < 2 are equivalent to

−ω̃2
13 − ω̃35ω̃14 + ω̃13(ω̃24 − 2ω̃35) < 0 and

−ω̃2
24 − ω̃14ω̃25 + ω̃24(ω̃13 − 2ω̃25) < 0.

Both inequalities hold, because we add only negative summands on the left side. It
remains to check if y2 − y3 < 0. First we get rid of the denominator and bring all
negative summands on the right side. This leads to the equivalent inequality

ω̃2
13 + ω̃2

24 + 2ω̃13ω̃35 + 2ω̃24ω̃25 + ω̃25ω̃14 + ω̃35ω̃14

< 2ω̃24ω̃35 + 2ω̃25ω̃13 + 4ω̃25ω̃35 + 2ω̃24ω̃13. (15)
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We observe that ω̃2
13 ≤ ω̃25ω̃13 and ω̃2

24 ≤ ω̃24ω̃35. Because of the assumption (14) we
have 4ω̃35ω̃25 > 2ω̃13ω̃35 + 2ω̃24ω̃25 + ω̃25ω̃14 + ω̃35ω̃14. Therefore, the right side
of (15) is greater than its left side, which shows that y2 < y3 and f0 forms a convex
pentagon. This completes the case distinction and we conclude with the following
lemma.

Lemma 3.7 If we place the boundary vertices as discussed above, then the outer face
will be embedded as a convex pentagon and the computed boundary stresses cancel
the forces in F .

We have defined four different ways to embed G. The selected embedding depends
on the combinatorial structure G. If G contains a triangular face we say it is of type 3.
If it contains a quadrilateral but no triangular face G is of type 4. Otherwise the em-
bedding depends on the substitution stresses induced by the combinatorial structure
of G. If (13) holds (Case 3A) G is of type 5A, otherwise (Case 3B) we say G is of
type 5B.

3.2 Lifting the Plane Embedding and Scaling to Integrality

We continue with lifting the plane embedding of G to R
3. With help of the observa-

tions made in Sect. 2 the incremental computation of the 3d embedding is straight-
forward. It suffices to compute for every face fi the corresponding plane Hi .

Since the embedding of f0 is convex, the boundary stresses must necessarily be
negative, since otherwise the boundary vertices could not be in equilibrium with all
interior stresses being positive. Thus we do not need to explicitly check the sign of
the boundary stresses. The sign pattern of the stress implies that the lifting of the
plane embedding gives a convex polytope (see Proposition 1).

As described in Sect. 2, we begin the lifting by fixing the plane H1 for some
interior face f1 as the x–y-plane. We set a1 = (0,0)T , d1 = 0, and compute the
remaining planes face by face using (4) and (5). It is not necessary to compute the
parameters of H0 since we can determine the heights of p1, . . . ,pk by some plane Hi

of an interior face. Hence, the lifting can be computed using only stresses on interior
edges. This simplifies the later analysis because all interior stresses are 1, whereas
the boundary stresses are complicated expressions.

It can be observed that the computed lifting has rational coordinates. This is
true because the barycentric embedding gives rational coordinates and the lifting
process is based on multiplication and addition of the 2d coordinates. Hence, the
z-coordinates are also rational. We analyze the common denominator of the coordi-
nates to obtain scaling factors for the integral embedding. We use different scaling
factors Sx for the x-coordinates and Sy for the y-coordinates.

As a consequence of Lemma 2.1 it is sufficient to scale to integer x and y-
coordinates. Furthermore we observe:

Lemma 3.8 If the boundary points are integral, the barycentric embedding yields
coordinates that are multiples of 1/det L̄.
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Proof The interior plane coordinates are a result of (6). By Cramer’s rule every co-
ordinate can be expressed as

xi = det L̄(i)/det L̄,

where det L̄(i) is obtained from L̄ by replacing the ith column of L̄ by LIBxB . Since
det L̄(i) is integral, det L̄ is the denominator of xi . The same holds for yi . �

Our first goal is to scale the plane embedding such that the boundary vertices
get integer coordinates. Let SB

x be the integral scaling factor that gives integer
boundary x-coordinates and SB

y be the integral scaling factor that gives integer

boundary y-coordinates. Due to Lemma 3.8 the scaling factors Sx := SB
x det L̄ and

Sy := SB
y det L̄ make all vertices integral. Since we choose integral scaling factors SB

x

and SB
y no integer coordinate is scaled to a non-integer.

Let us now compute the factors that are necessary to scale to integer boundary
coordinates. Clearly the scaling factors depend on the type of G. If G is of type 3
then we need not scale, since all boundary coordinates are either 0 or 1. If G is of
type 4 we have to scale the y-coordinates only (see 11). We multiply y3 with SB

y :=
(2ω̃13 − ω̃24)det L̄, which gives SB

y y3 = ω̃24 det L̄, which due to the Substitution
Lemma is an integer.

If G is of type 5A we have to scale such that x5 and y5 become integral. We pick

SB
x = (ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25)(det L̄)2,

SB
y = (ω̃35 + ω̃25)det L̄.

It can be easily checked that these factors as well as SB
x x5 and SB

y y5 are integral.
When G is of type 5B , the only non-integer boundary coordinates are y2 and y3,

we need to scale in y-direction only. We choose

SB
y = (ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)2.

Again, due to the Substitution Lemma, SB
y , SB

y y2, and SB
y y3 are all integral.

For every type of G there is a pair of scaling factors Sx,Sy , such that the scaled
boundary points are integral. Table 1 summarizes the discussion and lists the final
scaling factors depending on the type of G.

Table 1 The scaling factors Sx and Sy for the different types of G

Type of G Scaling factors

3 Sx = Sy = det L̄

Sx = det L̄

4 Sy = (2ω̃13 − ω̃24)(det L̄)2

Sx = (ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25)(det L̄)3

5A Sy = (ω̃35 + ω̃25)(det L̄)2

Sx = det L̄

5B Sy = (ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)3
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3.3 Analysis of the Grid Size

To bound the size of the coordinates of the integer embedding it is crucial to obtain
a good bound for det L̄. Recall that we assume unit stresses ω ≡ 1 on the interior
edges, throughout. There exists a connection between the number of spanning trees
in G and det L̄. Let us first define:

Definition 2 Let B be a subset of vertices of G. A subgraph of G is called spanning
B-forest if

• It consists of |B| vertex disjoint trees covering all vertices of G.
• Each tree contains a unique vertex from B.

In the following we use the set of boundary vertices for B. Let FB(G) denote the
number of spanning B-forests of G and T (G) the number of spanning trees of G.
A generalization of the Matrix-Tree Theorem [16] (see also [21]) states that the num-
ber of spanning B-forests of G is det L̄. In our case, we can directly bound FB(G)

by T (G).

Lemma 3.9 Let G be a planar graph with a distinguished face and let B be the set of
vertices of this face. The number of spanning B-forests of G is bounded from above
by

FB(G) < T (G).

Proof Every spanning B-forest can be turned into a spanning tree by adding all
boundary edges except (1,2). No two distinct spanning B-forests are associated with
the same spanning tree. Therefore, the number of spanning trees exceeds the number
of spanning B-forests. Since there is a spanning tree that contains the edge (1,2) the
inequality is strict. �

It is easy to give an exponential upper bound for T (G):

Proposition 2 (Ribó Mor [21])

1. The number of spanning trees in a graph is bounded by the product of all vertex
degrees:

T (G) <
∏

i

deg(vi).

2. For a planar graph, we have T (G) <
∏

i deg(vi) < 6n.

Proof (1) Consider all directed graphs that are obtained by choosing an outgoing
edge in G out of every vertex except vn. The number of these directed graphs is given
by

∏n−1
i=1 deg(vi). By ignoring the edge orientations, one obtains all spanning trees

(and many graphs that are not spanning trees). Alternatively, the bound can be proved
by applying a variant of Hadamard’s inequality for positive semidefinite matrices [37,
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p. 176] to the (positive semidefinite) matrix L′ that is obtained by removing from the
Laplacian L the row and column corresponding to the vertex vn:

T (G) = det L̄ ≤
n−1∏

i=1

lii =
n−1∏

i=1

deg(vi).

(2) This follows from the arithmetic-geometric-mean inequality and the fact that∑
i deg(vi) < 6n, which is a consequence of Euler’s formula. �

Sharper bounds for T (G) have been given by Ribó Mor et al. [23], see also [21,
26]. These bounds take into account whether G contains triangular or quadrilateral
faces:

If G is of type 3: FB(G) < T (G) ≤ 5.3̄n,

If G is of type 4: FB(G) < T (G) ≤ 3.529988n,

If G is of type 5A/5B: FB(G) < T (G) ≤ 2.847263n.

Since we know upper bounds for the ω̃ values (by Lemma 3.3) and det L̄ (by the
previous discussion) we can bound the size of the integer coordinates of the embed-
ding of G. We start with bounding the x and y-coordinates. Let Δx denote an upper
bound for the difference between the largest and the smallest x-coordinate. Δy is
defined in the same way for the y-coordinates.

Again we have to discuss the 4 cases separately. If G is of type 3 then clearly
Δx = Δy = det L̄. If G is of type 4 the largest x-coordinate is 2Sx and the smallest
zero. Thus we have Δx = 2 det L̄. The largest y-coordinate is obtained at y4 = 1
(remember y3 ≤ 1), therefore Δy = Sy = (2ω̃13 − ω̃24)(det L̄)2. Let us now assume
G is of type 5A. The value of Δx is given by x2 − x5. Evaluating this expression
leads to

Δx = (
ω̃25(ω̃13 + ω̃14) + ω̃35(ω̃14 + ω̃25) − (ω̃13 − ω̃24)

2)(det L̄)3.

Since the smallest y-coordinate is zero we have Δy = y3, which equals (ω̃35 +
ω̃25)(det L̄)2. It remains to discuss the case when G is of type 5B . Before the scal-
ing the coordinates fulfill −1 ≤ x ≤ 1 and −2 < y < 2. Combining these inequal-
ities with the scaling factors yields Δx = 2 det L̄ and Δy = 4(ω̃24ω̃35 + ω̃25ω̃13 +
2ω̃25ω̃35)(det L̄)3. We sum up the results for Δx and Δy in Tables 2 and 3. With help
of Lemma 3.3 we can eliminate the ω̃ values that appear in the bounds of Δx and
Δy. The resulting upper bounds, which we use in the further analysis, are listed in
Table 4.

We finish the analysis of the necessary grid size by calculating the size of the
z-coordinates.

Lemma 3.10 Let G(p) be an integral 2d embedding of a graph with n vertices with
equilibrium stress ω and let the stress on all interior edges be 1. The difference be-
tween two x-coordinates is at most Δx and the difference between two y-coordinates
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Table 2 The values Δx depending on the type of G

Type of G Δx

3 det L̄

4 2 det L̄

5A (ω̃25(ω̃13 + ω̃14) + ω̃35(ω̃14 + ω̃25) − (ω̃13 − ω̃24)2)(det L̄)3

5B 2 det L̄

Table 3 The values Δy

depending on the type of G Type of G Δy

3 det L̄

4 (2ω̃13 − ω̃24)(det L̄)2

5A (ω̃35 + ω̃25)(det L̄)2

5B 4(ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)3

Table 4 Upper bounds for Δx

and Δy depending on the type
of G

Type of G Upper bound for Δx Upper bound for Δy

3 det L̄ det L̄

4 2 det L̄ 2n(det L̄)2

5A 4n2(det L̄)3 2n(det L̄)2

5B 2 det L̄ 16n2(det L̄)3

is at most Δy. Then we have an integral lifting with

0 ≤ zi < 2nΔxΔy

for all z-coordinates zi .

Proof Due to Lemma 2.1 we know that there exists an integral lifting for the setting
described in the lemma. We place an interior face f1 in the xy-plane and compute
the lifting by using the stresses on the interior edges. Notice that all z-coordinates
are non-positive in this lifting. Thus it suffices to compute the smallest z-coordinate.
The claimed lifting is then obtained by translating the polytope such that the smallest
z-coordinate becomes 0.

We choose as face f1 a face that shares an edge with the outer face f0. Furthermore
we assume that the boundary point farthest away from the line that contains f1 ∩ f0

is located in the origin (let this point be p1). This is no restriction since a translation
of the embedding does not interfere with the lifting. The lifted polytope lies below
the xy-plane H1 and above H0. We notice that the smallest z-coordinate of H0 (and
hence the smallest z-coordinate of the embedding) is realized at p1.

Let fk be an interior face that contains p1. The z-coordinate of p1 is given as

z1 = 〈ak,p1〉 + dk = dk.
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The variable dk can be computed with help of (5). Let C be a set of interior edges
that are crossed by “walking” from f1 to fk . Due to Euler’s formula G has at most
2n − 4 faces. No face is entered twice and thus every face contributes at most one
edge (the edge where the “walk” leaves the face) to the set C . This implies that C
includes at most 2n − 3 edges. We ignore the orientation of the edges at this place
since it does not matter for bounding dk . We deduce

−dk ≤
∑

(i,j)∈C

∣∣〈pi ,p⊥
j

〉∣∣ < 2nmax
{∣∣〈pi ,p⊥

j

〉∣∣ : 1 ≤ i, j ≤ n
}
.

For two points pi ,pj we have

〈
pi ,p⊥

j

〉 = xiyj − xjyi .

Thus, 〈pi ,p⊥
j 〉 equals two times the negative area of the triangle spanned by pi , pj ,

and the origin (which coincides with p1). This triangle is contained inside the embed-
ded outer face f0 and also inside a rectangle with edge lengths Δx and Δy. A rec-
tangle has at least twice the area of an inscribed triangle. To see this, observe that
an inscribed triangle with the largest area must have one of the rectangle edges as
base and the other as height. Thus |〈pi ,p⊥

j 〉| ≤ ΔxΔy and the smallest z-coordinate
is larger than −2nΔxΔy. �

By applying Lemma 3.10, we compute the bounds for the z-coordinates, using the
values of Δx and Δy listed in Table 4. We conclude with the main theorems.

Theorem 3.1 Every 3-polytope with n vertices whose graph contains at least a tri-
angle can be realized on an integer grid with

0 ≤ xi, yi < 5.3̄n,

0 ≤ zi < 2n · 28.4̄n.

Theorem 3.2 Every 3-polytope with n vertices whose graph contains at least one
quadrilateral face can be realized on an integer grid with

0 ≤ xi < 2 · 3.530n,

0 ≤ yi < 2n · 12.461n,

0 ≤ zi < 8n2 · 43.987n.

For the most general theorem we have to combine the analysis for the cases
5A and 5B . We rotate the embedding if G is of type 5B by exchanging its x

and y-coordinates to obtain a better bound. The largest z-coordinate is given by
max{16×n4 ·187.128n,64n3 ·65.722n} = 16n4 ·187.128n, since n > 4 if G contains
a pentagon. Thus the largest bound on the z-coordinate arises from case 5A.

Theorem 3.3 Every 3-polytope with n vertices can be realized on an integer grid
with
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0 ≤ xi < 16n2 · 23.083n,

0 ≤ yi < 2n · 8.107n,

0 ≤ zi < 16n4 · 187.128n.

We can improve the constant factor of the z-coordinate by a more careful analysis.
This can be achieved by placing the face f0 in the xy-plane and then compute the
lifting using the interior edges but also one boundary edge. As mentioned before the
structure of the stresses on the boundary edges is more complicated. Since the im-
provement would only be a constant factor we decided to present the easier analysis
with help of Lemma 3.10. The more complicated analysis can be found in [22].

We see that exponentially large coordinates suffice to embed G as a 3-polytope.
The exponential growth of the size of the coordinates is determined by (det L̄)5.

Corollary 3.1 Every 3-polytope with n vertices can be realized with integer coordi-
nates of size O(27.55n).

Let us add some remarks on the running time of the embedding algorithm. If we
know the substitution stresses the computation of the location of the outer face can
be done in constant time. The same is true for the scaling factors. Once we computed
the plane embedding, the lifting can be computed face by face, which needs in total
O(n) steps. The computation of the substitution stresses and of the interior vertices
can be done by solving a linear system. Since its underlying structure is planar, we
can use nested dissections based on the planar separator theorem to solve it [17, 18].
This implies that a solution can be computed in O(M(

√
n)) time, where M(n) is

the upper bound for multiplying two n × n matrices. The current record for M(n) is
O(n2.325) which is due to Coppersmith and Winograd [8]. Thus the overall running
time is given by O(n1.163) arithmetic operations.

4 An Example: The Dodecahedron

The regular dodecahedron is one of the five Platonic solids. It has 20 vertices, 30
edges and 12 faces, which are regular pentagons. Figure 3 shows the graph and
a 3-dimensional realization of it. It is the smallest polytope without triangles and
quadrilateral faces, and thus we have to apply the more involved cases. Since the do-
decahedron is symmetric it makes no difference which face we choose as the outer
face. We start the computation with calculating the ω̃ values. Remember, these val-
ues are the off-diagonal entries of the matrix −(LBB − LBI L̄

−1LIB). We obtain for
all the stresses ω̃13, ω̃14, ω̃24, ω̃25 and ω̃35 the value 36/449. The fact that all these
stresses have the same value is again due to the symmetry of the dodecahedron. Since
the outer face is a 5-gon, G is of type 5A or 5B . Evaluating (13) shows that the graph
is of type 5A. With help of the substitution stresses we compute the coordinates of
the boundary vertices. We obtain

p1 =
(

0

0

)
, p2 =

(
1

0

)
, p3 =

(
1

1

)
, p4 =

(
0

1

)
, p5 =

(−1/3

1/2

)
.
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Fig. 3 (a) The graph of the dodecahedron and (b, c) two realizations as 3-polytope

Fig. 4 The barycentric (plane)
embedding of the dodecahedron

We apply Tutte’s method to compute the coordinates of the interior points. The result
is depicted in Fig. 4. Next, we scale the 2d-embedding as described in Sect. 3.2. We
obtain det L̄ = 403 202. This yields the scaling factors

S̄x = 1 264 158 727 403 904, S̄y = 26 069 428 512.

We continue with the lifting of the plane embedding to R
3. The faces are lifted in-

crementally as described in Sect. 2. The numeric data of the lifting are listed in [29].
Figure 5 shows the computed embedding. We have scaled down the z-coordinates to
obtain an illustrative picture. The highest absolute coordinate is

|z3| = 11 083 163 098 782 678 334 820 352 ≈ 283.19,

which is smaller than the bound 2151 from Corollary 3.1.
The computed embedding allows a smaller integer realization. Due to the fact

that the greatest common divisor of the x-coordinates is 938 499 426 432 = 4493 ×
10 365 and the greatest common divisor of the y-coordinates is 29 030 544 = 4492 ×
144, scaling down by these factors yields a smaller integer embedding. We obtain
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Fig. 5 Two views of the dodecahedron embedded with our algorithm, with scaled z-axis. The right picture
includes also the equilibrium-stressed plane embedding

an integral plane embedding on the grid [−27,1347] × [0,898]. The corresponding
z-coordinates range between 0 and 406 497. This reduction is due to the fact that all
substitution stresses ω̃ are equal. Thus one might have replaced them by ω̃ ≡ 1 in the
subsequent calculations.

A much smaller grid embedding of the dodecahedron was constructed by hand
by Francisco Santos. It is centrally symmetric and fits inside a 6 × 4 × 8 box, see
Fig. 3(b). It is hard to believe that a smaller realization would be possible. Another,
more symmetric, realization of the dodecahedron is the pyritohedron (one of the pos-
sible crystal shapes of the mineral pyrite), as pointed out to us by Gábor Gévay. It fits
in a 12 × 12 × 12 box, see Fig. 3(c). It has eight vertices of the form (±4,±4,±4),
plus 12 vertices, which are the four vertices of the form (0,±3,±6) and their cyclic
rotations of the coordinates. The normals of the 12 faces are the vectors (0,±2,±1)

and their cyclic rotations.

Acknowledgements We thank a referee for a very thorough reading of the manuscript.
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