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Abstract We show that if a line � is an isolated line transversal to a finite family
F of (possibly intersecting) balls in R

3 and no two balls are externally tangent on
�, then there is a subfamily G ⊆ F of size at most 12 such that � is an isolated line
transversal to G. We generalize this result to families of semialgebraic ovaloids.

Keywords Geometric transversals · Helly-type theorems · Line geometry · Ovaloids

1 Introduction

A straight line that intersects every member of a family F of convex compact subsets
of R

d is called a line transversal to F . A line transversal to a family F that cannot
be moved without missing some member of F is said to be pinned by F (we also
say that F is a pinning of that line). In other words, a line is pinned by F if it is an
isolated point of the space of line transversals to F .

A central question in geometric transversal theory is the study of sufficient con-
ditions for the existence of a line transversal, and in particular of conditions that can
be stated in the elegant form of a Helly-type theorem. One of the earliest examples is
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the following theorem proven by Danzer [8] in 1957: If every 5 members in a finite
family of disjoint unit disks have a line transversal, then the whole family has a line
transversal. Danzer conjectured that this statement generalizes to families of disjoint
unit balls in arbitrary dimension. This conjecture was recently settled in the positive
by Cheong et al. [7], and one of the main ingredients in their proof is the following
pinning theorem [7, Proposition 13]: If a finite family F of disjoint unit balls in R

d

pins a line �, then some subset of F of size at most 2d − 1 pins �. This pinning theo-
rem can be understood as a Helly-type theorem for the existence of a line transversal
locally near a pinned line: if no other line than the pinned line exists locally, this can
be witnessed by 2d − 1 of the balls.

Pinning theorems seem more “robust” than Helly-type theorems for the existence
of a line transversal. For instance, Danzer’s theorem is best possible in the sense that it
becomes false if the disks are allowed to intersect or have arbitrary radii, whereas the
pinning theorem remains valid for disjoint balls of arbitrary radii in R

d [5]. Similarly,
polytopes in three dimensions have a pinning theorem under certain conditions [3] but
admit no global Helly-type theorem [15].

In this paper, we show that the pinning theorem for disjoint balls also extends, in
the three-dimensional case, to families of intersecting balls, provided no two balls are
externally tangent on the line. More precisely, we prove the following.

Theorem 1 Let F be a finite family of balls in R
3 that pin a line �. If no two balls

are externally tangent in a point of �, then a subset of F of size at most 12 pins �.

While disjointedness of the objects is crucial for global Helly-type theorems, its
relevance for the existence of a pinning theorem is not clear. On the one hand, whether
disjointedness alone guarantees the existence of a pinning theorem for convex sets is
a natural question, and we do not know of any minimal pinning of a line by more than
6 pairwise disjoint convex sets in R

3 (see [7, Sect. 6]). On the other hand, Theorem 1
suggests that disjointedness may be relevant for pinning only insofar as it prevents
certain singularities from occurring (a line tangent to two balls at their external tan-
gency point is a singular point of the space of their line transversals, cf. the remark at
the end of Sect. 3) and, in the polyhedral setting, such singularities can indeed lead
to arbitrarily large minimal families of (intersecting) convex polytopes pinning a line
[3, Theorem 3].

The proof of the pinning theorem for disjoint balls is based on properties of what
are called cones of directions, which have been studied since Vincensini’s original pa-
per [18], that initiated geometric transversal theory. The cone of directions of a family
of objects is the set of directions of its line transversals. The proof of the pinning the-
orem of Cheong et al. [7] is based on the observation that, for families of disjoint
balls, this set is surprisingly well behaved [2, 5, 7, 14]: its connected components are
strictly convex and are in one-to-one correspondence with the orders in which a line
can intersect the family (the geometric permutations of the family). Interestingly, this
approach fails to extend to situations where the balls intersect outside of the immedi-
ate vicinity of the pinned line: the cone of directions of a family of intersecting balls
can be locally nonconvex at directions of transversals meeting the balls in distinct
points (see, e.g., Fig. 2d in Borcea et al. [5]). In some sense, the fact that the cone
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of directions be convex locally near a particular direction somehow requires that the
balls be globally disjoint.

Our proof of Theorem 1, on the other hand, uses essentially local arguments
and extends to solids bounded by ovaloids, a class of “locally sphere-like” surfaces
(cf. Theorem 12). Let us sketch our proof briefly. It is well known that a family F
pins a line � if and only if the direction of � is an isolated point of the cone of di-
rections of F and that the cone of directions of F is the intersection of the cones
of directions of the triples of balls in F (Lemma 3). We first prove that the cone of
directions of three balls is “nice” in the sense that it is a manifold with boundary,
and that this boundary is smooth except in directions of lines tangent to the three
balls and passing through a point of tangency of two of the balls (Proposition 7). This
allows us to recast the intersection of the

(
n
3

)
cones of triples as a sandwich region

defined by semialgebraic functions in the plane, and Theorem 1 follows. We then
give a geometric interpretation of the “first-order approximation” of the cone of di-
rections at a smooth point (Lemma 10). A consequence of that interpretation is that
our smoothness condition extends to ovaloids: the cone of directions of three ovaloids
is smooth, except possibly at (points representing) directions of lines tangent to the
three ovaloids and passing through a point of tangency of two of them (Lemma 11).
The same argument on sandwich regions then yields a pinning theorem for ovaloids
of “bounded description complexity” (Theorem 12).

The main idea leading to our interpretation of the “first-order approximation” of
the cone of directions to three balls is to associate to a configuration of a ball and a line
tangent to that ball a particular halfplane, which we call a screen; this construction
was previously introduced by Cheong et al. [6] to analyze the stability of pinning
configurations.

For a more general discussion of geometric transversal theory, we refer to the clas-
sic survey of Danzer et al. [9] and to the more recent ones of Eckhoff [10], Goodman
et al. [12], and Wenger [19]. More specific discussions of recent progress on line
transversals can be found in the survey of Holmsen [13] for the case of families of
translated ovals in the plane and that of Goaoc [11] for the case of families of disjoint
balls in arbitrary dimension.

Preliminaries and notation In what follows the space of directions in R
3 is the

sphere S
2, and we assume that the lines are oriented. Given a direction u, we denote

by u⊥ the set of directions orthogonal to u. In some cases it will be more convenient
to identify opposite directions, and work in the real projective space P

2 = P
2(R) in

view of the identification P
2 = S

2/Z2.
Recall that a set is strictly convex if any supporting hyperplane intersects it in a

single point and that a convex set is smooth if through any boundary point there is a
unique supporting hyperplane. We say that two smooth surfaces are internally tangent
(resp. externally tangent) at a point p if they are tangent at p and locally lie on the
same side (resp. on opposite sides) of their common tangent plane.

Throughout the paper, we only consider closed balls with positive radius. We use
the term family to denote a finite unordered set; in particular, in a family of balls we
assume that the balls are pairwise distinct. We let

(F
k

)
denote the set of all subsets of

F of size k.
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2 Cones of Directions

Let F be a family of convex sets in R
3. The directions of line transversals to F make

up a subset K(F ) ⊆ S
2 called the cone of directions of F . Here we extend properties

of the cone of directions previously known for disjoint balls [2, 5, 7, 14]1 to arbitrary
balls.

2.1 Arbitrary Families of Balls

We now assume we are given an arbitrary family of balls F . The cone of directions
of F can be seen as the image of the set of line transversals to F under the projection
that maps a line to its direction. It is clear that the image of a connected component
of transversals in this projection is connected. We can prove a stronger result.

Lemma 2 If F is a family of balls in R
d , then there is a one-to-one correspondence

between the connected components of line transversals to F and the connected com-
ponents of K(F ).

Proof Let φ be the function mapping a line to its direction. Let u ∈ K(F ), let Π be a
hyperplane of R

d with normal u, and let I denote the intersection of the orthogonal
projections of the members of F on Π . Since each member of F is convex, I is also
convex and therefore connected. Since the line transversals to F with direction u are
exactly the lines with direction u that intersect I , we get that φ−1(u) is connected.
Now, let T1, . . . , Tk denote the connected components of line transversals to F . Since
φ is continuous, each φ(Ti) is connected. Since φ−1(u) is connected for any u ∈
K(F ), the φ(Ti) are pairwise disjoint. Since each of them is closed, it implies that
each φ(Ti) is a connected component of K(F ), and that each connected component
of K(F ) is the image of a single connected component of line transversals to F . �

We now describe various properties of the boundary of K(F ). In what follows,
a line is said to intersect a ball transversally if it intersects its interior. A line is an
inner special bitangent if it is tangent to two elements of F and lies in a common
tangent plane that separates them. In particular, two balls with intersecting interiors
have no inner special bitangent, and the inner special bitangents to two externally
tangent balls are the tangents through the point of tangency. A line is a tritangent if
it is tangent to three elements of F ; a tritangent is called strict if it is not at the same
time an inner special bitangent.

Lemma 3 Let F be a family of balls in R
3. We have:

(i) K(F ) = ⋂
X∈(F

3 )
K(X).

(ii) u ∈ ∂K(F ) only if the projections of the members of F on a plane orthogonal
to u intersect with empty interior.

1Note that in these papers, which deal with disjoint objects, K(F ) stands for the directions of lines piercing
the sets of F in a specific order ≺.
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(iii) The boundary of K(F ) consists of directions of tritangents and inner special
bitangents.

(iv) F pins a line � if and only if the direction of � is an isolated point of K(F ).

Proof Let u be a direction and let Fu denote the family of the orthogonal projections
of the elements of F on a plane orthogonal to a direction u.

Helly’s theorem in the plane yields that Fu has nonempty intersection if and
only if every triple has nonempty intersection. Thus, u ∈ K(F ) if and only if
u ∈ ⋂

X∈(F
3 )

K(X), which proves statement (i).

If the intersection of the elements in Fu has nonempty interior, then there exists
a line that intersects every member of F transversally. Since any sufficiently small
perturbation of that line remains a line transversal to F , u is in the interior of K(F ).
This proves assertion (ii).

Let u ∈ ∂K(F ). Then there exists a triple X ∈ (F
3

)
such that u ∈ ∂K(X). By (ii),

this implies that the orthogonal projections of the members of X on a plane orthog-
onal to u intersect in a single point. This point is either on the boundary of the three
projections or an external tangency point of two of them. In the former case u is the
direction of a tritangent and in the latter the direction of an inner special bitangent.
This implies statement (iii).

Assume that u is the only point of K(F ) in some open set R ⊆ P
2. Property (ii)

implies that F has a unique line transversal � with direction u. Thus, � is the only
line transversal to F with direction in R. Since the set of all lines with direction in R

forms a neighborhood of �, it follows that F pins �. The reverse implication follows
from Lemma 2. �

Remark 1 The proofs of Lemmata 2 and 3 hold for general closed convex sets, with
the understanding that (a) a line is “tangent” to a convex set if it intersects the set and
lies in some supporting plane, and (b) a line intersects a convex set transversally if it
intersects its relative interior but is not included in a plane containing the object. As
we shall see in the next section, there are cases where the necessary condition (ii) of
Lemma 3 is not sufficient.

2.2 Arbitrary Triple of Balls

Let us now turn our attention to a triple T = {B0,B1,B2} of possibly intersecting
balls in R

3. The main result of this section is Proposition 7, which shows that K(T )

has a “nice” structure. The proof is split across several lemmata:

• Lemma 4 characterizes what it means for a direction to be on the boundary of
K(T );

• Lemma 5 describes the topology of K(T );
• and Lemma 6 shows that ∂K(T ) is “almost always” smooth.

We first characterize the directions of transversals of T appearing on the boundary
of K(T ) (extending [7, Lemma 9]) and those, among the directions of tritangents,
that appear on the boundary of the cone of directions (extending [5, Proposition 3]).
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Lemma 4 The direction of a line transversal � to T belongs to ∂K(T ) if and only if

(i) the three balls have no point in common,
(ii) � is not tangent to two externally tangent balls at their tangency point while

meeting the third ball in its interior, and
(iii) there is no other line transversal to T parallel to �.

If � is a (strict) tritangent, then condition (iii) can be replaced in the above equiva-
lence by:

(iv) � intersects the (interior of the) triangle formed by the balls’ centers.

Proof Let u denote the direction of �. If the three balls have a point in common,
then K(T ) = S

2 has no boundary, so condition (i) is necessary. If � is tangent to two
externally tangent balls at their point p of tangency and meets the interior of the third
ball, then any line through p with direction sufficiently close to u is a transversal to T ,
and u ∈ Ko(T ), where Ko(T ) denotes the interior of K(T ); condition (ii) is therefore
necessary. If T has another line transversal parallel to �, then the projections of the
balls of T along u intersect with nonempty interior, and Lemma 3(ii) ensures that
u ∈ Ko(T ); condition (iii) is thus also necessary.

Before we show that the conditions are sufficient, let us first remark that for v
close enough to u, T has a line transversal with direction v if and only if T has a line
transversal with direction v close to �. Indeed, let Πv denote the plane through the
origin with normal v. The set of transversals to T with direction v are precisely those
that meet Πv in a point of the intersection of the orthogonal projections of the balls
on Πv. Since the orthogonal projection of a fixed ball on Πv depends continuously
on v, it follows that for v close enough to u, T has a line transversal with direction v
if and only if T has a line transversal with direction v close to �.

Now, assume that (i), (ii), and (iii) hold. First consider the case where � is not
tritangent to T . Then, by Lemma 3(iii) � is an inner special bitangent to two of the
balls and condition (ii) implies that these balls meet � in distinct points, and are thus
disjoint. The perturbation argument used in [7, Lemma 9] guarantees that there are
directions v arbitrarily close to u such that these two balls, and therefore T , have no
line transversal and therefore that u ∈ ∂K(T ). In the case where � is not tritangent,
(i), (ii), and (iii) are thus sufficient.

Consider now the case where � is tritangent to T . If the balls meet � in distinct
points, then, again, the same perturbation argument [7, Lemma 9] guarantees that
u ∈ ∂K(T ). Condition (i) requires that at least two tangency points be distinct, so
it remains to consider the case where two balls, say B0 and B1, are tangent to � at
the same point and the third ball is tangent at a different point. If B0 and B1 are
externally tangent, then there is a direction v in the plane of tangency of B0 and
B1 and arbitrarily close to u such that the line with direction v passing through the
point of tangency of B0 and B1 misses B2; clearly, T has no transversal with such a
direction v, and u ∈ ∂K(T ). If B0 and B1 intersect properly, their bounding spheres
intersect in a circle Λ. Observe that � is tangent to Λ in its plane and that there
is a direction v in this plane arbitrarily close to u such that the tangent to Λ with
direction v close to � misses B2; clearly, T has no transversal with such a direction v,
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Fig. 1 Possible topologies of the cone of directions of three balls: (left) contractible connected compo-
nents, possibly reduced to a point; (right) a strip containing the S

1 of directions in the plane of centers in
its interior. Note that, in all cases, the figure is symmetric with respect to the S

1 of directions in the plane
of centers

Fig. 2 Retracting K(T ) onto
K(T ′)

and u ∈ ∂K(T ). This proves that in the case where � is tritangent, conditions (i), (ii),
and (iii) are also sufficient.

Property (iv) was observed for tritangents to triples of disjoint balls by Borcea
et al. [5, Proposition 3]. Their proof easily extends to intersecting balls. �

Next, we describe the topology of the cone of directions (cf. Fig. 1), extending [5,
Proposition 4].

Lemma 5 Let C be a connected component of K(T ). The following holds:

(i) C is a single point if and only if there is a line with that direction that is pinned
by T .

(ii) C is all of S
2 if and only if the three balls have a point in common.

(iii) C is a strip that contains the S
1 of directions of the plane of centers in its interior

if and only if the balls in T intersect pairwise but not triplewise. In that case, C

is the only connected component of K(T ).
(iv) In all other cases, C is contractible and is the closure of its interior.

Proof Let Π denote the plane containing the centers of the balls in T (or any such
plane, if the centers are aligned). Statement (i) follows from Lemma 3(iv). If there
is a point common to the three balls in T , then K(T ) = S

2. If the intersection of the
three balls is empty, then T has no line transversal with direction orthogonal to Π ,
and K(T ) �= S

2. This proves statement (ii).
All the lines between a line transversal � to T and its mirror image with respect

to Π are also line transversals to T , as observed by Borcea et al. [5, Proposition 4]
(see Fig. 2). When the three balls have no point in common, T has no line transversal
orthogonal to Π , and the set of line transversals to T can be retracted onto the set of
line transversals to T contained in Π . This induces a retraction from K(T ) onto the
cone of directions of the disks T ′ = {Bi ∩ Π | i = 0, . . . ,2}.
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Now on to statement (iii). Observe that K(T ′) = S
1 if and only if the disks, and

hence the balls, intersect pairwise. One direction follows from Helly’s theorem in one
dimension, the other from the observation that if two disks are disjoint, then T ′ has
no transversal in the direction orthogonal to the vector joining their centers.

We now show that, assuming every two balls in T intersect but the three balls have
empty intersection, K(T ) is a strip containing K(T ′) = S

1 in its interior. Observe first
that under those assumptions no direction of ∂K(T ) is parallel to Π . Indeed, assume
for a contradiction that u is such a direction and let � be the (unique by Lemma 4) line
transversal to T with direction u. If � is an inner special bitangent to two balls, these
balls must be tangent and � must meet them in their point of tangency; the interior
of the third ball must intersect � (otherwise, as � is in the plane of centers, the third
ball would not intersect one of the first two), and u /∈ ∂K(T ) by Lemma 4. If � is not
an inner special bitangent to any pair in T , then it is tangent to all three balls; in the
plane Π , the three disks must be on the same side of �, and u is therefore clearly not
on ∂K(T ).

Now, if every pair in T intersects with the three balls having empty intersection,
then we can retract K(T ) onto the S

1 of directions parallel to Π , and no direction
from this S

1 lies in ∂K(T ); K(T ) is thus a strip that contains the S
1 of directions

of the plane of centers in its interior. Conversely, if K(T ) has this geometry, then the
cone of directions of T ′ is an S

1 (since the projection of any line transversal to T onto
Π gives a line transversal to T ′). It follows that the disks in T ′ intersect pairwise but
not triplewise, and so do the balls in T , proving (iii).

Finally, in all other cases a connected component of K(T ′) is an interval, and (iv)
follows. �

The cone of directions of a triple of disjoint balls is strictly convex, but this prop-
erty fails for intersecting balls [5]. However, we can still show that the boundary of
the cone is “almost always” smooth.

Lemma 6 A direction u is a singular point of ∂K(T ) if and only if the intersection
of the three balls is empty and there exists a line with direction u that is:

(i) pinned by the three balls, or
(ii) tangent to all three balls, meeting two of them in the same point in which they

are externally tangent.

Proof Let u be a point of ∂K(T ). By Lemma 3(ii) there exists a unique line transver-
sal, say �, to the three balls having direction u. We argue that if u is a singular point,
then � must satisfy condition (i) or (ii).

By Lemma 3(iii), the boundary of K(T ) consists of two types of arcs, arcs of di-
rections of inner special bitangents to some pair {Bi,Bj } and arcs of directions of
tritangents to {B0,B1,B2}. The directions of inner special bitangents to two distinct
balls is either empty or a smooth conic (cf. [5]). Note that Lemma 3(ii) implies that,
for directions on the boundary of K(T ), two such arcs meet in a tritangent direc-
tion. Therefore, if u is a singularity of ∂K(T ), it must be the direction of a tritan-
gent.
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Fig. 3 (Color online) Two triples of balls (represented by their trace on their plane of centers) and a planar
depiction of their cone of directions. The direction-sextic is drawn in red, conics of directions of inner
special bitangents are drawn in blue and green; the orange region is the cone of directions (a connected
set in this example), and the horizontal axis corresponds to directions in the plane of the balls’ centers.
Observe that when the balls intersect properly (left), the cone of directions is smooth as when the balls are
disjoint; whereas, when some of the balls are tangent (right), the cone of directions exhibits a singularity

Let ci and si denote, respectively, the center and squared radius of Bi . The
directions of tritangents to {B0,B1,B2} make up an algebraic curve of degree 6
in P

2, the direction-sextic σB0B1B2(u) of these three balls. Letting eij = cj − ci and
δij = 〈eij , eij 〉 and writing, for a given direction u ∈ P

2,

q = q(u) = 〈u,u〉 and tij = tj i = 〈eij × u, eij × u〉 = δij q − 〈eij ,u〉2,

the direction-sextic of B0,B1,B2 rewrites as a Cayley determinant [5, Proposition 2]:

σB0B1B2(u) = det

⎛

⎜⎜⎜⎜
⎝

0 1 1 1 1
1 0 qs0 qs1 qs2
1 qs0 0 t01 t02
1 qs1 t01 0 t12
1 qs2 t02 t12 0

⎞

⎟⎟⎟⎟
⎠

= 0. (1)

Figure 3 illustrates typical situations.
We now assume that u lies on the boundary of K(T ) and is a singular point of the

direction-sextic, i.e., that the gradient of σB0B1B2 in u vanishes. To analyze the gradi-
ent of the direction-sextic in a direction on ∂K(T ), we proceed as in Borcea et al. [5].
Consider the projection along a direction u of the three balls and a tritangent � with
that direction; by Lemma 4, u is on the boundary of the cone of directions if and only
if the projection of � lies in the projection Δ of the triangle of centers. We equip R

3

with a coordinate frame with axes x, y, z such that this projected triangle lies in the
plane z = 0 (i.e., we consider tritangent lines having e3 = (0,0,1) as direction) and
has its vertices at c̃0 = (0,0,0), c̃1 = (a,0,0), c̃2 = (b, c,0), with the understanding
that there is a point p inside,

p =
∑

pi c̃i , with p0,p1,p2 ≥ 0,
∑

pi = 1.

Note that the squared distance from p to vertex c̃i is the squared radius of Bi , i.e.,
si = 〈p − c̃i ,p − c̃i〉. Then, we use three real parameters x0, x1, x2 to describe the
possible positions of the three centers of B0, B1, B2:

c0 = c̃0 + x0e3, c1 = c̃1 + x1e3, c2 = c̃2 + x2e3,
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where we assume w.l.o.g. that x2 ≥ x1 ≥ x0. Substituting in (1) we can express
the direction-sextic σB0B1B2 and its derivatives in the direction e3 = (0,0,1) as a
function of x0, x1, x2 depending on the parameters a, b, c, p0, p1, p2. Denoting
u = (u0, u1, u2), the computation gives:

(
∂σ

∂u0

)
(0,0,1) = 16a2c2[ap1(x1p0 − x0p0 − x2p2 + x1p2)

− bp2(−x2p0 − x2p1 + x0p0 + x1p1)
]
,

(
∂σ

∂u1

)
(0,0,1) = −16a2c3p2

[
p0(x0 − x2) + p1(x1 − x2)

]
,

(
∂σ

∂u2

)
(0,0,1) = 0.

Note that the partial derivatives all vanish if a = 0 or c = 0. If a = 0 then the
centers of two balls coincide and these balls must have equal radii to allow for a
common tangent, a situation our assumptions rule out. If c = 0 then the three centers
are aligned; by symmetry of revolution around the line of the centers, the cone of
directions is a circle, and therefore smooth. We can also rule this case out, and assume
from now on that ac �= 0.

First assume Δ is degenerate, i.e., it collapses to a segment s. Then � is a tritangent
line contained in a plane tangent to all three balls and is also contained in the plane
of centers P . Since � hits s by Lemma 5(iv), those centers must lie on both sides of
� in P , say ci on one side and cj , ck on the other. Since there are no strict tritangent
directions, either u is isolated in K(T ), in which case the three balls pin � and we are
in case (i); or u is not isolated, in which case � is the intersection of the sets of inner
special bitangents to {Bi,Bj } and {Bi,Bk}. These two sets correspond, in the space
of directions, to two conics, one being internally tangent to the other at u. In other
words, K(T ) is not singular at u.

Now assume Δ is nondegenerate. Suppose u is a strict tritangent direction, i.e., it is
a singular point of σ and point p is strictly inside Δ by Lemma 5(iv). This implies that
the three derivatives above vanish and pi > 0, i = 0,1,2. From ( ∂σ

∂u1
)(0,0,1) = 0 we

conclude that x0 = x1 = x2. Geometrically, this means that the three balls intersect in
a common point and every line through this point is a transversal to the three balls.
Therefore, K(T ) = P

2 which has no singular point, a contradiction.
Thus, u must also be a direction of inner special bitangent and exactly one pi is

zero (if two of them vanish, p is a vertex of Δ, i.e., � goes through the center of one
ball, implying that this ball has radius 0, which we rule out). Let j and k denote the
other two indices; notice then that � is an inner special bitangent to Bj and Bk . We
then obtain from the vanishing of the partial derivatives above that xj = xk . Thus, Bj

and Bk meet � in the same point, and are externally tangent at that point; we are then
in case (ii).

Altogether, we have that if u is a singularity, then � satisfies condition (i) or (ii).
Conversely, if � satisfies (i), then K(T ) is, locally around u, reduced to a point and
u is a singularity. If � satisfies (ii), then the gradient of σ in u vanishes and u is
therefore a singularity. �
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As a consequence, we obtain that the cone of directions of three balls has a nice
structure.

Proposition 7 If T is a triple of balls, no two externally tangent, then every con-
nected component of K(T ) is either a single point, S

2 or a semialgebraic 2-manifold
with a smooth boundary.

Proof As observed in [1], the set of line transversals to a family of semialgebraic
objects of “bounded description complexity” (i.e., semialgebraic sets defined using
a bounded number of polynomial equalities and inequalities of bounded degrees),
seen as a 4-dimensional subset of line space, is a semialgebraic set. For T a triple
of balls, the set of transversals to T is therefore a semialgebraic set, and so is its
projection K(T ) onto the space of directions. The fact that each connected component
is a single point or a 2-manifold with boundary (except when K(T ) = S

2) follows
from Lemma 5. The fact that the boundary is smooth when K(T ) is not reduced to a
single point and no two balls are externally tangent follows from Lemma 6. �

3 Pinning Theorem for Intersecting Balls

We can now prove Theorem 1, which states that if n balls in R
3 pin a line and no two

balls are externally tangent on the line, then a subset of at most 12 of these balls pins
that line.

Proof of Theorem 1 Let F be a finite family of balls in R
3 that pins a line �, no

two balls being externally tangent on �. Assume no triple of balls of F already pins
�, as otherwise the statement is trivially true. Let u denote the direction of �. By
Lemma 3(iv), u is an isolated point of K(F ), and it suffices to find a subfamily Y ⊆ F
of size at most 12 such that u is an isolated point of K(Y ) to prove the statement.

By Lemma 3(i), K(F ) is the intersection of the cones K(T ) for all triples T ⊂ F
and dropping any triple T such that u ∈ Ko(T ) keeps u isolated in the intersection.
Thus, if we denote by N the set of triples T ⊂ F such that u is on the boundary of
K(T ), we have that u is an isolated point of

⋂
T ∈N K(T ).

By Proposition 7, for every T ∈ N there exists an arbitrarily small neighborhood
UT of u such that K(T ) ∩ U is homeomorphic to a halfplane. Let U denote a neigh-
borhood of u such that U ∩ K(T ) is homeomorphic to a halfplane for all T ∈ N . Let
ηT denote the normal to ∂K(T ) in u that points outward of K(T ), and consider an
orthogonal coordinate system (u, x, y) in U such that 〈ηT , y〉 �= 0 for all T ∈ N . We
split N into two subsets:

N + = {
T ∈ N | 〈ηT , y〉 > 0

}
and N − = {

T ∈ N | 〈ηT , y〉 < 0
}
.

By the semialgebraic implicit function theorem [4, p. 97], for U small enough ∂K(T )

can be written in the form y = fT (x), where fT is a semialgebraic function. Since
K(T ) ∩ U is homeomorphic to a halfplane, it follows that in U , K(T ) can be written
as {(x, y) | y ≤ fT (x)} if T ∈ N + and as {(x, y) | y ≥ fT (x)} if T ∈ N −.
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Now, observe that in U ,
⋂

T ∈N K(T ) is exactly the set of points that are below all
curves in {fT | T ∈ N +} and above all curves in {fT | T ∈ N −}. Since the functions
fT are semialgebraic, near u they either coincide or there is a neighborhood of u in
which they only meet in u. It follows that there exists ε > 0 and four subsets A,B ∈
N + and C,D ∈ N − such that on the interval [−ε,0], all functions in {fT | T ∈ N +}
are above fA and all functions in {fT | T ∈ N −} are below fC , and similarly on [0, ε]
all functions in {fT | T ∈ N +} are above fB and all functions in {fT | T ∈ N −} are
below fD . As a consequence,

K(A) ∩ K(B) ∩ K(C) ∩ K(D) ∩ U = {u}
and A ∪ B ∪ C ∪ D is a subset of F of size at most 12 that pins �. �

Remark 2 It is not clear to us whether the condition that no two balls be externally
tangent on the line is really needed for the pinning theorem to hold. However, we
do note that these configurations are indeed particular, in the sense that the space
of oriented line transversals to two externally tangent balls is singular at any line
through their tangency point. Indeed, the set of lines through the tangency point is
2 dimensional, and removing that set from the set of lines intersecting the two balls
creates two connected components, each being 4 dimensional.

Remark 3 Extending the proof of Theorem 1 to pinnings in higher dimension seems
difficult. First, generalizing Lemma 3(i), one would have to work with cones of direc-
tions of d balls in R

d , and identifying the singularities of such cones may not be an
easy task. Second, and more importantly, our proof exploits the fact that, in the plane,
a lower/upper envelope of semialgebraic functions is defined, near one of its vertices,
by a constant number of the functions (2 in this case). Already in dimension 3 this is
not true for general semialgebraic sets (consider the lower envelope of several copies
of the paraboloid z = x2 + 2y2, rotated around the z axis, in the neighborhood of
(0,0,0)), and it is not clear why it would be true for cones of directions.

4 Extension to Ovaloids

An ovaloid is a smooth closed surface in R
3 with strictly positive Gauss curvature

everywhere. According to a classical theorem of Hadamard (1857), ovaloids are topo-
logically spheres (cf. [16, Chaps. 4 & 6]). More precisely, Hadamard’s theorem as-
serts that an ovaloid is the boundary of a bounded open strictly convex set. By abuse
of language, we use the term ovaloid both for the surface and for the bounded solid it
encloses.

In this section, we extend our pinning theorems to families of ovaloids of bounded
description complexity. A key idea is to represent a first-order approximation of the
cone of directions of three balls in a given direction as the cone of directions of three
well-chosen parallel halfplanes. Our proof is split across several lemmata:

• Lemma 8 extends our characterization of the boundary of the cone of directions
from triples of balls to triples of ovaloids;
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• Lemma 9 describes the cone of directions of three parallel halfplanes;
• Lemma 10 shows that the first-order approximation of the cone of directions of

three balls in a neighborhood of a given boundary direction can be represented by
the cone of directions of three well-chosen halfplanes;

• Lemma 11 then extends our sufficient condition for the smoothness of the cone
of directions to triples of ovaloids, and our pinning theorem for ovaloids (Theo-
rem 12) follows.

4.1 Boundary of the Cone of Directions of Three Ovaloids

An ovaloid has positive Gauss curvature everywhere. Its second fundamental form
relative to the inward normal is positive definite at every point. It follows that its
principal curvatures κ1 and κ2 are strictly positive everywhere. Assume κ1 is the
largest of the two principal curvatures. As is well known, any ball internally tangent
to a smooth convex surface at p of radius less than the principal radius of curva-
ture 1/κ1(p) is inside the surface locally around p. Actually, picking a radius “small
enough” will ensure that the ball is not just locally but globally inside the ovaloid.2

Similarly, any ball internally tangent at p of radius more than the principal radius
of curvature 1/κ2(p) is outside the surface locally around p, and picking a radius
large enough will ensure that the ovaloid is globally inside the ball. One can there-
fore “sandwich” an ovaloid at any of its points between two balls. Note that this is not
true for all smooth strictly convex sets: for instance, the set defined by f ≤ 0 where
f = x4 + y4 + z4 − 1 is smooth strictly convex, but the two principal curvatures of
the zero-set of f at all extreme points along the x, y, and z axes vanish.

This “sandwich” property allows us to extend the characterization of the boundary
of the cone of directions of Lemma 4 to ovaloids.

Lemma 8 Let T be a triple of ovaloids. The direction of a line transversal � to T

belongs to ∂K(T ) if and only if

(i) the three ovaloids have no point in common,
(ii) � is not tangent to two externally tangent ovaloids at their tangency point while

meeting the third ovaloid in its interior, and
(iii) there is no other line transversal to T parallel to �.

Proof The three conditions are clearly necessary, so we prove the converse. Let u
denote the direction of �. By (iii), the orthogonal projections of the ovaloids on a plane
orthogonal to u intersect in a single point, so � is either an inner special bitangent
or a tritangent. In the former case, the same argument as in Lemma 4 shows that
u ∈ ∂K(T ) if (i) and (iii) hold. In the latter case, let T + denote a triple of balls, where
each ball is tangent to an ovaloid of T at its tangency point with � and contains that
ovaloid. Now, observe that u ∈ ∂K(T +) by Lemma 4 and that K(T ) ⊆ K(T +). It
follows that u is in the boundary of K(T ), and the statement follows. �

2We do not need to be more precise here, but note that, by Blaschke’s Rolling Theorem (cf. [17]), any ball
of radius less than the infimum of 1/κ1(p) can roll along the surface of the ovaloid while always staying
inside.
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4.2 Screens

We associate to a pair (�,B) of a line � intersecting a ball B an object, which we
call a screen, as follows. If � meets the interior of B , then the screen of (�,B) is the
plane orthogonal to � that passes through the center of B . If � is tangent to B , we let t
denote that tangency point and v the outward normal to B at t, and define the screen
of (�,B) as the (closed) halfplane

{
x | 〈tx,u〉 = 0 and 〈tx,v〉 ≤ 0

}
,

that is, the intersection of the plane perpendicular to � through t with the (closed)
halfspace “tangent” to B at t and containing B . When a screen is a halfplane, we call
its boundary line in its affine hull its boundary.

To simplify the presentation, we assume here that a line parallel to a halfplane
intersects it at infinity (and thus u⊥ is in the cone of directions of any triple of screens
lying in planes orthogonal to u). Note that this convention has no effect on pinning
problems.

Lemma 9 Let T be a triple of balls, � a line transversal to T with direction u, and S

the triple of screens defined by � and the balls of T . Let Γ denote the great circle of
directions of transversals to the boundaries of the screens in S. The following holds:

(i) If T pins �, then K(S) = Γ .
(ii) If u ∈ ∂K(T ) and T does not pin �, then K(S) is the union of A ∩ B and its

symmetric, where A and B are closed hemispheres bounded by Γ and u⊥ re-
spectively.

(iii) If u ∈ Ko(T ), then K(S) = S
2.

Proof If T pins �, then T consists of three balls tangent to � with a common tangent
plane Π and whose positions with respect to Π alternate. Thus, the screens of S are
bounded by lines contained in Π and their positions with respect to Π also alternate.
Since the set of directions contained in Π is exactly Γ , statement (i) follows.

We now assume that T does not pin � and that u ∈ ∂K(T ). By Lemma 3(iii), � is
an inner special bitangent to two of the balls or is tangent to all three balls in T . Let
S1, S2, and S3 be the three screens in S.

We first consider the case where � is an inner special bitangent to the first two balls.
Then, the boundaries of S1 and S2 are parallel and span a plane Π that contains �.
Moreover, Π separates S1 and S2. Since T does not pin �, S3 is a plane, a halfplane
whose boundary intersects Π in a single point, or a halfplane whose boundary is
contained in Π and that lies on the same side as S2 with respect to Π . In each of
these cases, it can easily be checked that K(S) = K({S1, S2}). Consider a direction v.
If a direction v is orthogonal to u, then by our convention v is in K(S). If v makes a
positive dot product with u, then v ∈ K({S1, S2}) if and only if v is parallel to Π or
crosses it from the side of S1 to that of S2. If v makes a negative dot product with u,
then we are in the symmetric case, and the result follows. The case where � is an
inner special bitangent to another pair is handled similarly.

Now, assume that � is tangent to all three balls in T but is not an inner special
bitangent to any two of them. In particular, this implies that no two screens in S have
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parallel boundaries. The orthogonal projections of the Si ’s on a plane orthogonal to
u intersect in a single point. Now, if we consider a direction v moving on Γ starting
in u, the orthogonal projections of the Si ’s on a plane orthogonal to v change con-
tinuously, and the boundaries of these three halfplanes keep intersecting in a point.
The intersection thus remains a single point unless two of the projected halfplanes
become equal or opposite; this cannot happen, as it requires the boundaries of the
corresponding screens to be parallel. Thus, the intersection of the projections of the
screens in S along any direction of Γ is a single point. Conversely, the intersection of
the projections of the screens in S along any direction not in Γ ∪ u⊥ is either empty
or has nonempty interior. Thus, the boundary of K(S) consists of Γ ∪ u⊥. A per-
turbation argument similar to [7, Lemma 9] shows that K(S) is, locally, on one side
of Γ , and statement (ii) follows.

If u ∈ Ko(T ), then for any direction v the projections of the screens in S along v
intersect with nonempty interior. Statement (iii) follows. �

4.3 First-order Approximation of Cones of Directions

The tangential cone Tp(X) of a closed nonempty set X ⊂ R
d at a point p of its bound-

ary is the set of all directions d such that d = limk→∞ λk(pk − p), where λk > 0,
pk ∈ X for each k and pk → p. From the above definition, it is clear that d belongs to
the tangential cone if there is a sequence (pk)k∈N of points in X converging to p such
that the direction of the chords pk − p converges to d. In particular, if ∂X is smooth
at p, then Tp(X) is a closed halfspace whose outward normal is the outward normal
of X at p.

The next lemma gives a simple local geometric interpretation of the tangential cone
of a cone of directions of three balls as a cone of directions of at most three attached
screens. Since cones of directions live in S

2, where defining the tangential cone is
awkward, we first pull these objects back to R

3 by defining K̃(F ) as the solid cone
in R

3 formed by all rays originating from the origin 0 and with directions in K(F ).
Notice that a direction u is on the boundary of K(F ) if and only if the ray 0 + R

+u
is on the boundary of K̃(F ), and that K(F ) is smooth at u if and only if K̃(F ) is
smooth at any point of the ray 0 + R

+u, except the origin.

Lemma 10 Let T be a triple of balls in R
3, u a smooth point of ∂K(T ), and � the

line transversal to T with direction u. Let S be the set of screens defined by � and the
balls of T . Let p be any point in 0 + R

+u other than 0. Then locally near p, K̃(S)

coincides with Tp K̃(T ), the tangential cone of K̃(T ) at p.
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Proof Since u is on the boundary of K(T ), Lemma 3(ii) implies that T has a unique
line transversal with direction u, which we denote by �. We equip R

3 with a frame
such that � is the z axis and let L denote the set of lines not orthogonal to �. The map
ψ that associates to x = (x1, x2, x3, x4) ∈ R

4 the line through the points (x1, x2,0)

and (x3, x4,1) is a homeomorphism from R
4 to L, that is, it defines a proper parame-

terization of L and ψ(0, . . . ,0) = �.
Let s be a screen defined by �. If s is a plane, then any line in L intersects it.

Otherwise, let δ denote the boundary of s. Let p and p′ be two points on δ. The
condition that a line �̃(x) = ψ(x1, x2, x3, x4) intersects s amounts to evaluating the
orientation of a tetrahedron formed by two points from �̃(x) and two points from δ.
Since δ is orthogonal to the z axis, the z coordinates of p and p′ are equal, and this
orientation test recasts as a sign condition on the 4 × 4 determinant

∣∣∣∣∣∣∣

xp′ − xp xp x1 x3
yp′ − yp yp x2 x4

0 zp 0 1
0 1 1 1

∣∣∣∣∣∣∣

which is linear in x1, . . . , x4. Thus, if L is the set of lines in L that intersect a screen
defined by �, ψ−1(L) is thus a halfspace in R

4 or all of R
4. In other words, ψ−1 maps

the set of line transversals to any screen defined by � to R
4 or one of its halfspaces.

Now, let p be a point in 0 + R
+u other than 0. Let S denote the set of screens

defined by (�,B) where B is a ball of T tangent to �. By Lemma 3(iii), |S| ≤ 3. Since
u ∈ ∂K(T ), Lemma 9(ii) implies that K(S) is, near u, bounded by a great circle. It
follows that K̃(S) coincides with a halfspace near p. Since ∂K(T ) is smooth at u, the
tangential cone to K̃(T ) at p is also a halfspace. To prove the statement, it suffices to
show that in a neighborhood of p, the interior of K̃(S) is contained in Tp K̃(T ).

Let v be a direction in the interior of K(S). By Lemma 9(ii), the relative interiors
of the screens of S have a line transversal γ . Consider the family of lines �̄(t) =
ψ(tψ−1(γ )) that interpolates linearly (in our parameterization of lines) between �

and γ . Let s be a screen in S, b the corresponding ball in T , and let Π denote the
plane perpendicular to � that contains s. We note that the trace of �̄(t) on Π forms a
line passing through b ∩ �. Since Π intersects B in a disk tangent to the halfplane s

in b ∩ �, it follows that there exists εs > 0 such that for any t ∈ [0, εs] the line �̄(t)

intersects b. If b is a ball in T to which � is not tangent, the same holds trivially. Thus,
there exists ε > 0 such that if 0 ≤ t < ε, then �̄(t) is a line transversal to T . The set
of directions of the lines {�̄(t) | t ≥ 0} forms, in S

2, a great circle arc with endpoints
u and v. It follows that 0 + R

+v belongs to the tangential cone of K̃(T ) at p. �

4.4 Pinning Theorem for Ovaloids

The proof of Theorem 1 uses one property of cones of triples of balls that may not
hold, in general, for cones of triples of ovaloids: that if the boundaries of two such
cones of directions intersect in a direction u, there is a neighborhood of u in which
the curves either coincide or intersect only at u. In other words, we use the property
that the lower (or upper) envelope of boundaries of cones of directions near one of its
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vertices is defined by at most 2 curves.3 To ensure that a similar property holds here,
we now deal with semialgebraic ovaloids with bounded description complexity.

We first extend the smoothness condition of Lemma 6 to cones of directions of
ovaloids, in view of Lemma 10.

Lemma 11 Let T be a triple of semialgebraic ovaloids in R
3. A direction u is a

singular point of ∂K(T ) only if the intersection of the three solid ovaloids is empty
and there exists a line with direction u that is

(i) pinned by T , or
(ii) tangent to all three ovaloids, meeting two of them in the same point in which they

are externally tangent.

Proof We prove the statement by contraposition. Let u be a direction of ∂K(T ), �

the line transversal to T with direction u, and let p be a point distinct from 0 on
the ray 0 + R

+u. For each ovaloid C ∈ T we consider a ball B−(C) contained in
(resp. B+(C) containing) C such that if � is tangent to C, then C and B−(C) (resp.
B+(C)) are internally tangent at C ∩ �, and if � intersects the interior of C, then �

also intersects the interior of B−(C) (resp. B+(C)). We let T − = {B−(C) | C ∈ T }
and T + = {B+(C) | C ∈ T }. Observe that � and T − define the same triple of screens
as � and T +; we call S that triple of screens.

We now make two observations. First, note that u belongs to ∂K(T −) and
∂K(T +), and thus p belongs to ∂K̃(T −) and ∂K̃(T +). Second, the inclusions
B−(C) ⊆ C ⊆ B+(C) imply that K(T −) ⊆ K(T ) ⊆ K(T +), and similarly K̃(T −) ⊆
K̃(T ) ⊆ K̃(T +). As a consequence, Tp K̃(T −) ⊆ Tp K̃(T ) ⊆ Tp K̃(T +).

Now, by Lemma 10, we have that near p the tangential cones Tp K̃(T −) and
Tp K̃(T +) both agree with K̃(S). By Lemma 9, we have that near p the cone K̃(S) is
a halfspace.

Altogether, we get that near p, the tangential cone Tp K̃(T ) is a halfspace. Since
K(T ) (and therefore K̃(T )) is semialgebraic, this implies that p is a smooth point of
∂K̃(T ). Therefore, u is a smooth point of ∂K(T ). �

We are now ready to prove our extension of Theorem 1 to semialgebraic ovaloids.

Theorem 12 Let F be a finite family of semialgebraic ovaloids in R
3 that pin a

line �. If no two members of F are externally tangent on �, then there is a subfamily
of F of size at most 12 that pins �.

Proof Assume that no triple of F pins �, as otherwise the statement is trivially true.
Let u denote the direction of �. As noted in Sect. 2.2, Lemma 2 and Lemma 3(ii)
immediately extend to ovaloids. It follows that a family F of ovaloids pins a line � if
and only if the direction of � is an isolated point of K(F ) = ⋂

T ∈(F
3 )

K(T ). Now, for

every triple T ⊂ F such that u is on the boundary of K(F ), Lemma 11 ensures that
∂K(T ) is smooth at u. We can then, as in the proof of Theorem 1, recast K(F ) near

3The constant 2 is not crucial: any constant bound k would imply a pinning theorem with constant 6k.
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u as the region above the lower envelope and below the upper envelope of a family
of semialgebraic functions. Locally, these upper and lower envelopes are defined by
two curves each, and the statement follows. �
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