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Abstract Let F be a family of compact convex sets in R
d . We say that F has a

topological ρ-transversal of index (m, k) (ρ < m, 0 < k ≤ d − m) if there are, homo-
logically, as many transversal m-planes to F as m-planes containing a fixed ρ-plane
in R

m+k .
Clearly, if F has a ρ-transversal plane, then F has a topological ρ-transversal of

index (m,k), for ρ < m and k ≤ d − m. The converse is not true in general.
We prove that for a family F of ρ + k + 1 compact convex sets in R

d a topo-
logical ρ-transversal of index (m, k) implies an ordinary ρ-transversal. We use this
result, together with the multiplication formulas for Schubert cocycles, the Lusternik–
Schnirelmann category of the Grassmannian, and different versions of the colorful
Helly theorem by Bárány and Lovász, to obtain some geometric consequences.

Keywords Common transversal · The Helly theorem · The Schubert calculus

1 Introduction

Let us make some definitions. By M(d,m) we denote the space of m-planes (by
plane we mean an affine plane) in R

d . It can be considered as an open subset of the
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Grassmannian G(d + 1,m + 1) (see the details in Sect. 3), and is retractible to the
Grassmannian G(d,m) of m-dimensional linear subspaces of R

d .

Definition 1 Let F be a family of compact convex sets in R
d . For 0 < m < d denote

by Tm(F ) the subspace of M(d,m) consisting of all m-planes transversal to F , i.e.
intersecting every member of F . A member of Tm(F ) is called an m-transversal
to F .

Informally, we shall say that F has a topological ρ-transversal of index (m, k) for
ρ < m, 0 < k ≤ d −m, if there are, homologically, as many transversal m-planes to F
as m-planes containing a fixed ρ-plane in Rm+k . The formal definition is as follows.

Definition 2 For ρ < m, 0 < k ≤ d −m the family F has a topological ρ-transversal
of index (m, k) if the Schubert cocycle [0, . . . ,0

︸ ︷︷ ︸

ρ+1

, k, . . . , k] is not zero on Tm(F ) (see

Sects. 2 and 3 for explanations).

Clearly, if F has a ρ-transversal plane, then F has a topological ρ-transversal of
index (m, k), if ρ < m and k ≤ d − m. The converse is not true in general.

Still, if the family F has limited size, we claim the following.

Theorem 1 Let F be a family of ρ + k + 1 compact convex sets in R
d . If F has a

topological ρ-transversal of index (m, k), then it has an ordinary ρ-transversal.

In the case k = 1 the following stronger version of Theorem 1 is true.

Theorem 2 Let 0 ≤ ρ < m ≤ d − 1. Let

F = {A1, . . . ,Aρ+2}

be a family of ρ + 2 convex sets in R
d , and let

αi ∈ Ai i = 1, . . . , ρ + 2

be some points. Suppose there is not a ρ-transversal to F . Then the inclusion

Tm

({α1, . . . , αρ+2}
) ⊂ Tm(F )

is a homotopy equivalence. In particular, Tm(F ) has the homotopy type of
G(d − ρ − 1,m − ρ − 1), and in the case m = ρ + 1 the set Tm(F ) is contractible.

We use these theorems, together with the multiplication formulas for Schubert
cocycles, the Lusternik–Schnirelmann category of the Grassmannian, and different
versions of the colorful Helly theorem by Bárány and Lovász, to obtain some geo-
metric consequences in Sects. 7, 8, 9, 10.
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Note that a simple fact on the cohomology of Grassmannians, in the Schubert
notation

[1, . . . ,1
︸ ︷︷ ︸

m

]d−m = [d − m, . . . , d − m
︸ ︷︷ ︸

m

] ∈ H ∗(G(d,m),Z2
)

,

has already given useful geometric applications to transversal planes in [8, 16, 17].
Several results on transversals, similar to the results of this paper, can be found in [1,
4, 5, 11]. In [13] Theorem 1 was conjectured and verified in some low-dimensional
cases.

2 Schubert Cycles and Cocycles

In this paper we use Čech homology and cohomology groups with Z2 coefficients,
and we omit the coefficients in the notation.

Let G(d,m) be the Grassmannian m(d −m)-manifold of all m-planes through the
origin in R

d . Our main technical tool in this paper is the Schubert calculus. Although
we summarize in this section what we need, good references for the homology and
cohomology of Grassmannian manifolds are [7, 12, 14].

From now on let λ1, . . . , λm be a sequence of integers such that

0 ≤ λ1 ≤ · · · ≤ λm ≤ d − m.

Definition 3 Denote the following subset of G(d,m):

{λ1, . . . , λm} = {

H ∈ G(d,m) : ∀j = 1, . . . ,m, dim
(

H ∩ R
λj +j

) ≥ j
}

.

For example
{

H ∈ G(d,m) : R
s ⊂ H ⊂ R

m+t
}

,

which is homeomorphic to G(m+ t − s, t − s), is also denoted by {0, . . . ,0
︸ ︷︷ ︸

s

, t, . . . , t}.

Another example is

{t, . . . , t
︸ ︷︷ ︸

s

, d − m. . . , d − m
︸ ︷︷ ︸

m−s

} = {

H ∈ G(d,m) : dim(H ∩ R
t+s) ≥ s

}

.

It is known that {λ1, . . . , λm} is a compact subset of G(d,m) of dimension λ =
λ1 + · · · + λm, which is a closed connected λ-manifold except possibly for a closed
connected subset of codimension at least three. Thus

Hλ
({λ1, . . . , λm}) = Z2 = Hλ

({λ1, . . . , λm}).
In fact, G(d,m) has a CW-complex structure in which the open λ-cells are the fol-
lowing subsets:

{

H ∈ G(d,m) : dim
(

H ∩ R
λj +j

) = j,dim
(

H ∩ R
λj +j−1) = j − 1

}

.
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Thus {λ1, . . . , λm} is a subcomplex of G(d,m) and if 0 ≤ ξ1 ≤ · · · ≤ ξm ≤ d −m and
{ξ1, . . . , ξm} ≤ {λ1, . . . , λm} (componentwise) then {ξ1, . . . , ξm} is a subcomplex of
{λ1, . . . , λm}.

Definition 4 Let

(λ1, . . . , λm) ∈ Hλ

(

G(d,m)
)

be the λ-cycle, which is induced by the inclusion {λ1, . . . , λm} ⊂ G(d,m). These
cycles are called Schubert cycles.

A canonical basis for Hλ(G(d,m)) consists of all Schubert cycles (ξ1, . . . , ξm)

such that 0 ≤ ξ1 ≤ · · · ≤ ξm ≤ d − m and λ = ξ1 + · · · + ξm.

Definition 5 Let us denote by

[λ1, . . . , λm] ∈ Hλ
(

G(d,m)
)

the λ-cocycle whose value is one for (λ1, . . . , λm) and zero for any other Schubert
cycle of dimension λ. This is a Schubert cocycle.

Thus, a canonical basis for Hλ(G(d,m)) consists of all Schubert cocycles
[ξ1, . . . , ξm] such that 0 ≤ ξ1 ≤ · · · ≤ ξm ≤ d − m and λ = ξ1 + · · · + ξm. If

j : {λ1, . . . , λm} → G(d,m)

is the natural inclusion, then j∗([ξ1, . . . , ξm]) is not zero if and only if

[ξ1, . . . , ξm] ≤ [λ1, . . . , λm],
i.e. ξi ≤ λi for all i = 1, . . . ,m. The cohomology classes

wi = [0, . . . ,0
︸ ︷︷ ︸

m−i

,1, . . . ,1
︸ ︷︷ ︸

i

]

are the classical Stiefel–Whitney characteristic classes of the standard vector bundle
over G(d,m). Similarly, the classes

w̄i = [0, . . . ,0
︸ ︷︷ ︸

m−1

, i]

are called the dual Stiefel–Whitney characteristic classes.
The isomorphism

D : Hλ

(

G(d,m)
) → Hm(d−m)−λ

(

G(d,m)
)

given by

D
(

(λ1, . . . , λm)
) = [d − m − λm, . . . , d − m − λ1]
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is the classical Poincaré duality isomorphism.
By the above, if X ⊂ G(d,m) is such that X ∩ {λ1, . . . , λm} = ∅ and iX : X →

G(d,m) is the inclusion, then

i∗X
(

D
(

(λ1, . . . , λm)
)) = i∗X

([d − m − λm, . . . , d − m − λ1]
) = 0.

3 The Spaces of Planes and Transversals

We need to make precise definitions on the space of plane transversals.
Let M(d,m) be the set of all (affine) m-planes in R

d , in particular, G(d,m) ⊂
M(d,m). We regard M(d,m) as an open subset of G(d + 1,m + 1), making the
following identifications.

Let z0 ∈ R
d+1 − R

d be some point and, without loss of generality, let G(d +
1,m + 1) be the space of all (m + 1)-planes in R

d+1 through z0. Let us identify
H ∈ M(d,m) with the unique (m + 1)-plane H ′ ∈ G(d + 1,m + 1) which contains
H and passes through z0. Thus we have

G(d,m) ⊂ M(d,m) ⊂ G(d + 1,m + 1),

where M(d,m) is an open subset of G(d +1,m+1) and G(d,m) ⊂ G(d +1,m+1)

may be regarded as {0, d − m, . . . , d − m}, the set of all (m + 1)-planes in R
d+1

that contain R
1. In other words, if j : G(d,m) → G(d + 1,m + 1) is the natural

inclusion, then j ({λ1, . . . , λm}) = {0, λ1, . . . , λm}. For example, if 0 ≤ k ≤ d − m,
then {0, k, . . . , k} as a subset of M(d,m) is the set of all m-planes H through the
origin in R

d with the property that H ⊂ R
m+k .

Definition 6 Let A be a subset of a topological space X, i : A → X be the inclu-
sion, and let γ ∈ H ∗(X). We say that γ is zero or not zero on A, provided i∗(γ ) is
zero or not zero, respectively, in H ∗(A). We write in this case γ |A = 0 or γ |A �= 0
respectively.

Let us give the details of the definition of a topological transversal. If ρ < m and
0 < k ≤ d − m, we say that [0, . . . ,0

︸ ︷︷ ︸

ρ+1

, k, . . . , k] is not zero on Tm(F ) if

i∗
([0, . . . ,0

︸ ︷︷ ︸

ρ+1

, k, . . . , k]) ∈ H(m−ρ)k
(

Tm(F )
)

is not zero, where

i∗ : H(m−ρ)k
(

G(m + 1, d + 1)
) → H(m−ρ)k

(

Tm(F )
)

is the cohomology homomorphism induced by the inclusion Tm(F ) ⊂ M(d,m) ⊂
G(d + 1,m + 1). From the definition of the Schubert cycles it is clear that, infor-
mally, [0, . . . ,0

︸ ︷︷ ︸

ρ+1

, k, . . . , k] is not zero on Tm(F ) iff there are homologically as many

transversal m-planes to F as m-planes through a fixed ρ-plane in R
m+k .
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From the Poincaré duality it follows that the topological ρ-transversal of index
(m, k) implies the following purely geometrical condition: for any affine plane A of
dimension d − k − ρ − 1 (possibly at infinity) there exists an m-transversal L to F ,
such that dimL ∩ A ≥ m − ρ − 1.

4 Proof of Theorem 1

First, let us define a certain characteristic class of a vector bundle. Consider a vec-
tor bundle η : E(η) → M of dimension n over a compact smooth manifold without
boundary. Let us define a characteristic class (in mod 2 cohomology) of η by the
following construction. Let s1, . . . , sl be some sections of η, denote

zl,r = {

x ∈ M : dim
〈

s1(x), . . . , sl(x)
〉 ≤ r

}

,

here 〈. . .〉 denotes the linear span of vectors. It can be easily seen that the n × l ma-
trices of rank ≤ r form a submanifold (possibly, with singularities) of the space of all
matrices. It follows from the Thom transversality theorem that zl,r is a submanifold
(possibly, with singularities) of M for generic sections s1, . . . , sl . Let us define the
characteristic class cl,r (η) as the Poincaré dual to zl,r . The definition is correct, be-
cause the singularities have ≥ 2 codimension and do not affect the mod 2 homology
and cohomology. The subspaces of rank ≤ r matrices are widely used in studying
the singularities of smooth maps, such matrices correspond to the Porteous–Thom
singularities [15].

Note that the class cl,r (η) is functorial. In order to express it in terms of the Schu-
bert cocycles, let us take M to be the Grassmannian G(N,n) and η to be its tauto-
logical bundle. Let the sections si be given by projections of the respective vectors
vi ∈ R

N to the n-subspace L ⊂ R
N . If the vectors vi are chosen to be linearly inde-

pendent, the set zl,r is described as follows:

zl,r = {

L ∈ G(N,n) : dimL⊥ ∩ V ≥ l − r
}

,

where V is the linear hull of v1, . . . , vl , or equivalently

zl,r = {

L ∈ G(N,n) : dimL ∩ V ⊥ ≥ n − r
}

.

Therefore

{zl,r } = {N − n − l + r, . . . ,N − n − l + r
︸ ︷︷ ︸

n−r

,N − n, . . . ,N − n
︸ ︷︷ ︸

r

}

by definition of the Schubert cycle, which is Poincaré dual to the Schubert cocycle
[0, . . . ,0
︸ ︷︷ ︸

r

, l − r, . . . , l − r
︸ ︷︷ ︸

n−r

].

In fact all the above reasonings are standard in the singularity theory and can
be restated as follows. We consider continuous fiberwise maps f : εl → η over M ,
where ε is the trivial one-dimensional bundle. We define the class of singularities
for such maps f , which is defined by the condition that the rank of the fiber map
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is ≤ r . Then we find the characteristic class of these singularities using the standard
construction over the Grassmannian.

Now we are ready to prove the theorem. Denote Tm the set of m-transversals to
the family

F = {C1, . . . ,Cρ+k+1},
it is a subset of G(d + 1,m + 1), as defined above. Consider the tautological m + 1-
dimensional bundle γ : E(γ ) → G(d + 1,m + 1), and take l = ρ + k + 1 sections
si of this bundle over Tm by selecting continuously a point si(L) ∈ L ∩ Ci (L is an
m + 1-dimensional linear space in Tm ⊆ G(d + 1,m + 1)). The continuous selection
is possible if all Ci ’s are strictly convex and have nonempty interior (in this case the
intersection L ∩ C depends continuously on L in the Hausdorff metric), the other
cases are reduced to this by ε-approximating Ci ’s by “good” sets, going to the limit
ε → 0, and using the compactness.

Now it suffices to find an element L ∈ Tm such that the vectors si(L) span a linear
subspace of L of dimension ≤ r = ρ + 1. As it was shown in the beginning of the
proof, this is guaranteed by the class

cl,r (γ |Tm
) = [0, . . . ,0

︸ ︷︷ ︸

r

, l − r, . . . , l − r
︸ ︷︷ ︸

m−ρ

]|Tm
= [0, . . . ,0

︸ ︷︷ ︸

ρ+1

, k, . . . , k
︸ ︷︷ ︸

m−ρ

]|Tm
,

which is nonzero by the definition of the topological ρ-transversal of index (m, k).

5 Proof of Theorem 2

Consider

T̂m(F ) = {

(H,a1, . . . , aρ+2) : H ∈ Tm(F ), ai ∈ H ∩ Ai

}

,

with the two natural projections

T̂m(F )

π1 ↙ ↘ π2
Tm(F ) A1 × · · · × Aρ+2.

Observe that π1 is a homotopy equivalence because the fiber

π−1
1 (H) =

ρ+2
∏

i=1

(H ∩ Ai)

is contractible for every H ∈ Tm(F ).
Suppose there is no ρ-transversal to F . Then each collection of points

(a1, . . . , aρ+2) with ai ∈ Ai determines a unique (ρ + 1)-plane L in R
d . Then

π−1
2 (a1, . . . , aρ+2) consists of the m-planes in R

d that contain L, which is home-
omorphic to G(d − ρ − 1,m − ρ − 1). Moreover, it is easy to see that π2 is a fiber
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bundle with fiber G(d −ρ −1,m−ρ −1). Since its base is contractible, then T̂m(F ),
and hence Tm(F ) has the homotopy type of G(d − ρ − 1,m − ρ − 1).

The inclusion

{

(H,α1, . . . , αρ+2) : H ∈ Tm(F ), αi ∈ H
} ⊂ T̂m(F )

is a homotopy equivalence. Therefore the inclusion

Tm

({α1, . . . , αρ+2}
) = π1

{

(H,α1, . . . , αρ+2) : H ∈ Tm(F ), αi ∈ H
} ⊂ Tm(F )

is also a homotopy equivalence.

6 Multiplication in the Cohomology of G(d,m)

In order to apply Theorems 1 and 2 in geometric situations, we need to remind some
useful facts on the multiplication in the cohomology of the Grassmannian. The fol-
lowing is the Pieri formula for the multiplication by a dual Stiefel–Whitney class in
the cohomology of the Grassmannian [7, 9]:

[λ1, . . . , λm][0, . . . ,0, k] =
∑

[ξ1, . . . , ξm],

where the summation extends over all combinations ξ1, . . . , ξm such that

(1) 0 ≤ ξ1 ≤ · · · ≤ ξm.
(2) λj ≤ ξj ≤ λj+1 for all j , where we put λm+1 = d − m.
(3)

∑m
j=1 ξj = k + ∑m

j=1 λj .

This formula can be applied to the powers wn
1 = [0, . . . ,0

︸ ︷︷ ︸

m−1

,1]n of the first Stiefel–

Whitney class, to give the following result from [9, 10].

Theorem 3 Let 2m ≤ d (if it is not, we consider G(d,d −m) ∼ G(d,m) instead and
exchange m and d − m), and let 2s be the minimal power of two, satisfying 2s ≥ d .
Denote w1 the first Stiefel–Whitney class of the Grassmannian G(d,m).

(1) If m = 1, then wd−1
1 �= 0 and wd

1 = 0.

(2) If m = 2, then w2s−2
1 �= 0 and w2s−1

1 = 0.

(3) If m > 2, then in the case d = 2m = 2s we have w2s−1

1 �= 0; and w2s−2
1 �= 0 in

other cases.

In all cases wd−m
1 �= 0, and wd−m+1

1 may be zero only for m = 1, or m = 2 and
d = 2s .

Using this theorem, the Lusternik–Schnirelmann category of G(d,m) can be esti-
mated from below by the standard cohomology product length reasoning (maximum
nonzero product length in the reduced cohomology). Let us state the explicit result.
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Theorem 4 Let 2m ≤ d (if it is not, we consider G(d,d − m) ∼ G(d,m) instead
and exchange m and d − m), and let wn

1 �= 0 ∈ H ∗(G(d,m)). Then the Lusternik–
Schnirelmann category is estimated as follows:

catG(d,m) ≥ min
{

n + 2,m(d − m) + 1
}

.

In particular, catG(d,m) ≥ min{d − m + 2,m(d − m) + 1}, and catG(d,m) ≥
min{d − m + 3,m(d − m) + 1} if m �= 1, and either m �= 2 or d �= 2s . Also, the
inequality

catG(d,m) ≥ min
{

d − m + 2,m(d − m) + 1
}

holds without the restriction 2m ≤ d .

Proof Consider two cases: n = m(d −m) and n < m(d −m). In the second case find
ξ ∈ H ∗(G(d,m)) such that

dim ξ = m(d − m) − n, dim ξ > 0, wn
1ξ �= 0,

such ξ exists by the Poincaré duality, because n < m(d − m).
Then we apply the following well-known lemma (which we are also going to use

in further proofs) to the nonzero product wn
1 or wn

1ξ .

Lemma 1 Let X be a topological space, A1, . . . ,Al be its subspaces such that

l
⋃

i=1

Al = X.

Let α1, . . . , αl be some cohomology classes such that

α1 · · · · · αl �= 0 ∈ H ∗(X).

Then for some i the class αi is nonzero on Ai .

This lemma shows that we need at least n + 1 null-homotopic subsets to cover
G(d,m) in the first case, and at least n + 2 null-homotopic subsets in the second
case. �

7 Transversal Analogues of the Colorful Helly Theorem

In order to state some geometric results we need to make some definitions and remind
some known facts.

Definition 7 A family F is called intersecting, if its intersection is nonempty.

Recall the colorful Helly theorem of Bárány and Lovász [3], see also [2].
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Theorem (The colorful Helly theorem) Let F1, . . . , Fd+1 be families of convex com-
pact sets in R

d . Suppose that for any system of representatives {Xi ∈ Fi}d+1
i=1 the

intersection
⋂d+1

i=1 Xi is nonempty. Then for some i the family Fi is intersecting.

In the sequel we call the partition F = ⋃d+1
i=1 Fi a painting with d + 1 colors.

Subfamilies of F that have at most one set of each color are called heterochromatic.
It is natural to ask, what happens if the number of colors is less than d + 1. Some
results of this kind were already established in [11, Theorems 21, 22, 23]. We are
going to prove more results in this direction.

Theorem 5 Let F be a family of (d − m + 1)(ρ + k + 1) compact convex sets in R
d

painted with d − m + 1 colors with ρ + k + 1 convex sets of each color. Suppose that
every heterochromatic subset of F is intersecting. Suppose also that the class

[0, . . . ,0
︸ ︷︷ ︸

ρ

, k, . . . , k
︸ ︷︷ ︸

m−ρ

]d−m+1

is nonzero on G(d,m).
Then there exists a color and a ρ-transversal plane to all convex sets of F painted

with this color.

The condition of the nonzero power in the cohomology can be simplified in the
following cases:

• ρ = m − 1. In this case the Pieri formula (see Sect. 6) shows that the condition
holds if m ≥ d − m + 1, and in some other cases.

• k = 1. In this case the transposed (in the sense G(d,m) ∼ G(d,d − m)) Pieri
formula shows that the condition may hold if (m−ρ)(d −m+ 1) ≤ m(d −m) de-
pending on the coefficients, arising from applying the Pieri formula several times.

• ρ = m − 1 and k = 1. In this case by Theorem 3 we have two cases:

(a) 2m ≤ d . If m > 2, or m = 2 and d is not a power of two, then theorem holds.
It also holds in some of the other cases.

(b) 2m > d . Hence d − m < m and the theorem holds in this case without other
restrictions.

Let us give a particular example (d = 4,m = 3, k = 1, ρ = 2) of this theorem: If
F is a family of 4 compact, convex, red sets and 4 compact, convex, blue sets in R

4,
such that every red set intersects every blue set, then there is a color and a 2-plane
transversal to all convex sets of F painted with this color.

Proof of Theorem 5 For any color i denote Fi the subfamily of F consisting of all
its sets of color i.

Consider a linear m-subspace L ⊆ R
d , and its orthogonal complement L⊥. The

projections of F to L⊥ satisfy the colorful Helly theorem of dimension d −m. Hence
for some color i there is a point x ∈ L⊥ such that for every set of Fi its projec-
tion contains x. It means that L + x is an m-transversal to Fi . Let us paint L with



Discrete Comput Geom (2011) 46:283–300 293

color i in this case. Thus the Grassmannian G(d,m) is covered by d − m + 1 colors
X1, . . . ,Xd−m+1.

From Lemma 1 it follows that the class [0, . . . ,0
︸ ︷︷ ︸

ρ

, k, . . . , k
︸ ︷︷ ︸

m−ρ

] is nonzero on some Xi ,

and therefore on the corresponding Tm(Fi ) for some i. The last claim is true because
the natural projection Tm(Fi ) → Xi has convex preimages of points and therefore
induces an isomorphism of Čech cohomology. Then we apply Theorem 1 and obtain
a ρ-transversal to Fi . �

Theorem 5 may be generalized (modulo some cohomology computations) to the
case when the transversal dimension ρ and the number k are chosen independently
for every color.

Theorem 6 Let F be a family of compact convex sets in R
d , painted with d − m + 1

colors so that color i has ρi + ki + 1 sets. Suppose that every heterochromatic subset
of F is intersecting. Suppose also that the product

d−m+1
∏

i=1

[0, . . . ,0
︸ ︷︷ ︸

ρi

, ki, . . . , ki
︸ ︷︷ ︸

m−ρi

]

is nonzero on G(d,m).
Then there exists a color i and a ρi -transversal plane to all convex sets of F

painted with this color.

Generally, Theorem 6 needs some explicit computations with Schubert cocycles.
We give a particular case of Theorem 6, where the computations are replaced by a
simple inequality.

Corollary 7 Let F be a family of compact convex sets in R
d , painted with k + 1

colors so that color i has ρi + k + 1 sets. Suppose that every heterochromatic subset
of F is intersecting. Suppose also that

k+1
∑

i=1

ρi ≥ k(d − k),

or equivalently

|F | ≥ kd + 2k + 1.

Then there exists a color i and a ρi -transversal plane to all convex sets of F
painted with this color.

Proof Denote m = d − k. The Pieri formula in H ∗(G(d,m)) implies

[0, . . . ,0
︸ ︷︷ ︸

ρi

, k, . . . , k
︸ ︷︷ ︸

m−ρi

] = [0, . . . ,0, k]m−ρi ,
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and

k+1
∏

i=1

[0, . . . ,0
︸ ︷︷ ︸

ρi

, k, . . . , k
︸ ︷︷ ︸

m−ρi

] = [0, . . . ,0, k, . . . , k
︸ ︷︷ ︸

∑k+1
i=1 (m−ρi)

],

which is nonzero iff
∑k+1

i=1 (m − ρi) ≤ m. The last condition is obviously equivalent
to the condition of the theorem. �

We also deduce the following result from Theorems 2 and 4.

Theorem 8 Let F be a family of n(ρ + 2) compact (ρ ≥ 1, n ≥ 2), convex sets
in R

n+ρ , painted with n colors, in which we have ρ + 2 convex sets of each color.
Suppose that every heterochromatic subset of F is intersecting. Then there is a color
and a ρ-transversal plane to all convex sets of F , painted with this color.

A particular example of this theorem (n = 3, ρ = 1) is as follows: If F is a family
of 3 compact, convex, red sets; 3 compact convex, blue sets; and 3 compact, convex,
green sets in R

4 such that every heterochromatic triple is intersecting, then there is a
color and a line transversal to all convex sets of F painted with this color. Note that
Theorem 5 fails to resolve this case.

Proof of Theorem 8 Put d = n + ρ.
The proof proceeds as the proof of Theorem 5. We assume the contrary, but in-

stead of obtaining a zero cohomology product in H ∗(G(d,ρ + 1)), we simply note
that the sets Xi cannot cover the Grassmannian G(d,ρ + 1) by the definition of the
Lusternik–Schnirelmann category. Indeed, they are null-homotopic by Theorem 2,
the inequalities ρ ≥ 1, n ≥ 2 imply

n ≤ (ρ + 1)(n − 1) = dimG(d,ρ + 1),

and

n = d − ρ < catG(d,ρ + 1)

by Theorem 4. �

In fact, all the above theorems and theorems in Sect. 9 can be generalized to fam-
ilies, where each color contains arbitrary number (not necessarily ρi + ki + 1) sets.

Definition 8 Let F be a family of subsets of R
d . We say that F has property T n

m, if
every subfamily G ⊆ F of size ≤ n has an m-transversal.

Evidently, every family has property T m+1
m , and T d+1

0 implies T ∞
0 (the Helly the-

orem). There are no Helly-type theorems, where T n
m implies T ∞

m for m > 0 without
additional assumptions, see [6]. Now we give an example, where Theorem 6 is gen-
eralized.
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Theorem 9 Let F be a family of compact convex sets in R
d , painted with d − m + 1

colors, so that every color is used at least once. Suppose that every heterochromatic
subset of F is intersecting. Suppose also that the product

d−m+1
∏

i=1

[0, . . . ,0
︸ ︷︷ ︸

ρi

, ki, . . . , ki
︸ ︷︷ ︸

m−ρi

]

is nonzero on G(d,m).
Then there exists a color i such that Fi has T

ρi+ki+1
ρi

property.

Proof Similar to the above proofs, we conclude that there exists i such that

[0, . . . ,0
︸ ︷︷ ︸

ρi

, ki, . . . , ki
︸ ︷︷ ︸

m−ρi

]|Tm(Fi ) �= 0.

Consider G ⊆ Fi such that |G| ≤ ρi + ki + 1. If |G| < ρi + ki + 1, we repeat some
element of G several times, and assume that |G| = ρi + ki + 1. Now we see that

Tm(Fi ) ⊆ Tm(G),

and

[0, . . . ,0
︸ ︷︷ ︸

ρi

, ki, . . . , ki
︸ ︷︷ ︸

m−ρi

]|Tm(G) �= 0.

Hence G has ρi -transversal by Theorem 1. �

Note that Theorem 9 does not follow from Theorem 6 directly. Theorem 8 is gen-
eralized in the same manner, the only change in the proof is the following. By the
Lusternik–Schnirelmann reasoning we find i such that the inclusion

Tm(Fi ) ⊆ M(d,m)

is not null-homotopic. Then the inclusion

Tm(G) ⊆ M(d,m)

is not null-homotopic, because the composition of inclusions

Tm(Fi ) ⊆ Tm(G) ⊆ M(d,m)

is not null-homotopic. Hence G has a ρ-transversal.

8 Linear Maps of Simplicial Complexes

The transversal results of Sect. 7 can be restated as existence of plane transversals to
certain sets of faces for linear images of simplicial complexes in R

d . Let us define
such a complex. Denote [n] = {1,2, . . . , n}
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Definition 9 Let η = (n1, . . . , nl) be a vector of positive integers greater or equal
to l. Let Lη be the simplicial complex with vertices [n1]×· · ·×[nl], and the maximal
simplices of the form

[n1] × · · · × [ni−1] × {j} × [ni+1] × · · · × [nl],
for every i ∈ [l] and j ∈ [ni].

Theorem 10 For any linear map f : Lη → R
d there exist i ∈ [l] and a transversal

plane of dimension ni − l to the images of the simplices

[n1] × · · · × [ni−1] × {j} × [ni+1] × · · · × [nl], j ∈ [ni],
under f , provided

l
∑

i=1

ni ≥ (l − 1)(d + 2) + 1.

Proof Denote by Fi the images of simplices

[n1] × · · · × [ni−1] × {j} × [ni+1] × · · · × [nl], j ∈ [ni].
Note that the conditions of Theorem 7 for F = ⋃l

i=1 Fi are satisfied, if we put
k = l − 1, ρi = ni − l = ni − k − 1. The heterochromatic intersection condition is
satisfied, because any heterochromatic intersection already contains a vertex of Lη

by definition. �

9 A Generalization of the Colorful Helly Theorem and Its Transversal
Analogues

We are going to generalize Theorem 6 to the case, when the heterochromatic inter-
section condition is replaced by a weaker condition.

Definition 10 A family F of sets with |F | = k, is semi-intersecting if all except
possibly one of its subsets of size k − 1 are intersecting.

For example, a family of three sets is semi-intersecting if one of them intersects the
other two. We shall use the following generalization of the colorful Helly theorem,
which is interesting itself.

Lemma 2 Let F be a family of compact convex sets in R
d painted with d + 2 colors.

Suppose that every heterochromatic subfamily of F of size d + 2 is semi-intersecting.
Then there is a color and a point in common to all members of F with this color.

Proof First of all, it is clear that every heterochromatic subset of F of size d

is intersecting. Furthermore, if every heterochromatic subset of F of size d + 1
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is intersecting, we are done by the colorful Helly theorem. Thus, there must be
{A0, . . . ,Ad} ⊂ F , which is a heterochromatic non-intersecting subfamily with the
property that for every i = 0, . . . , d,

⋂

j �=i

Aj �= ∅.

It follows from the Leray theorem on Čech cohomology that
⋃d

j=0 Aj has the homol-

ogy of the sphere Sd−1. Hence, by the Alexander duality, R
d \ ⋃d

j=0 Aj has exactly
two components, one of them being bounded.

Let v0 be any point of the bounded component of R
d \ ⋃d

j=0 Aj . Remember that
there is a color not used in {A0, . . . ,Ad} so we shall prove that v0 lies in every convex
set X ∈ F with this color. For every i = 0, . . . , d take

ai ∈
⋂

j �=i

Aj ∩ X.

Note that {a0, . . . , ad} ⊂ R
d is in a general position, otherwise by Radon’s theorem,

⋂d
j=0 Aj �= ∅. Let the simplex � be the convex hull of {a0, . . . , ad} and note that

∂� ⊂
d

⋃

j=0

Aj .

For every i = 0, . . . , d, let Ci = Ai ∩ �. Hence, for every i = 1, . . . , d,

⋂

j �=i

Cj �= ∅ but
d

⋂

j=0

Cj = ∅.

Similarly to the case of Ai ’s,
⋃d

j=0 Cj ⊂ R
d has the homology of Sd−1, and therefore

R
d \ ⋃d

j=0 Cj has exactly two components. Thus, the bounded component of R
d \

⋃d
j=0 Aj is � \ ⋃d

j=0 Aj = � \ ⋃d
j=0 Cj , and it is contained in the interior of the

simplex �. In particular, v0 ∈ X. �

The following theorem is deduced from Lemma 2 in the same way, as Theorem 6
is deduced from the colorful Helly theorem.

Theorem 11 Let F be a family of compact convex sets in R
d painted with d −m+ 2

colors so that color i has ρi + ki +1 convex sets. Suppose that every heterochromatic
subset of F of size d − m + 2 is semi-intersecting. Suppose also that the product

d−m+2
∏

i=1

[0, . . . ,0
︸ ︷︷ ︸

ρi

, ki, . . . , ki
︸ ︷︷ ︸

m−ρi

]

is nonzero on G(d,m).
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Then there is a color i and a ρi -transversal plane to all convex sets of F painted
with this color.

The condition of the nonzero product in the cohomology can be simplified, e.g. in
the case ρi = m− 1, ki = 1, using Theorem 3. A particular case of this theorem is the
following claim: if F is a family of 4 compact, convex, red sets; 4 compact, convex,
blue sets; and 4 compact, convex, green sets in R

4, such that every heterochromatic
triple is semi-intersecting, then there is a color and a 2-plane transversal to all convex
sets of this color. Here d = 4,m = 3, ρi = 2, ki = 1 and we use the equality

[0,0,1]3 = [1,1,1] �= 0 ∈ H ∗(G(4,3)).

Similar to Corollary 7, we deduce the following corollary from Theorem 11 and
the Pieri formula:

[0, . . . ,0
︸ ︷︷ ︸

ρ

, d − m, . . . , d − m
︸ ︷︷ ︸

m−ρ

] = [0, . . . ,0, d − m]m−ρ

in H ∗(G(d,m)).

Corollary 12 Let F be a family of compact convex sets in R
d painted with k + 2

colors so that color i has ρi + k + 1 convex sets. Suppose that every heterochromatic
subset of F of size k + 2 is semi-intersecting. Suppose also that

k+2
∑

i=1

ρi ≥ (d − k)(k + 1),

or equivalently

|F | ≥ (d + 2)(k + 1)

Then there is a color i and a ρi -transversal plane to all convex sets of F painted with
this color.

The following theorem is an analogue of Theorem 8 for semi-intersecting families.

Theorem 13 Let F be a family of n(ρ + 2) compact, convex sets in R
n+ρ−1 painted

with n colors, in which we have ρ +2 convex sets of each color, ρ ≥ 2, n ≥ 3. Suppose
that every heterochromatic subset of F of size n is semi-intersecting. Then there is a
color and a ρ-transversal plane to all convex sets of F painted with this color.

A particular case of this theorem is (n = 3, ρ = 2): If F is a family of 4 compact,
convex, red sets; 4 compact, convex, blue sets, and 4 compact, convex, green sets in
R

4 such that every heterochromatic triple is semi-intersecting, then there is a color
and a 2-plane transversal to all convex sets of this color.

Proof of Theorem 13 The proof of is essentially the proof of Theorem 8, but using
Theorem 2 instead of the colorful Helly theorem.
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We consider the Grassmannian G(n + ρ − 1, ρ + 1) and cover it with the sets Xi ,
corresponding to existence of ρ + 1-transversals in given direction for Fi . If there is
no ρ-transversal for any Fi , then all the sets Xi are null-homotopic by Theorem 2.
The inequalities ρ ≥ 2, n ≥ 3 imply

n ≤ (ρ + 1)(n − 2) = dimG(n + ρ − 1, ρ + 1).

If n − 2 < ρ + 1 (equivalently n < ρ + 3), then Theorem 4 gives

catG(n + ρ − 1, ρ + 1) ≥ ρ + 3

and n < catG(n + ρ − 1, ρ + 1), which is a contradiction. If n − 2 ≥ ρ + 1, then
Theorem 4 (its case 3 ≤ m ≤ d

2 , where m = ρ + 1) gives

catG(n + ρ − 1, ρ + 1) ≥ n + 1,

which is a contradiction too. �

10 The Case of C
d

Most of the previous results remain the same if we replace R
d by C

d , and consider
the complex Grassmannian CG(d,m), spaces CM(d,m), CTm(F ), defined in the
corresponding manner. The Schubert calculus is valid too, but with integer coeffi-
cients (Z), so we assume integer coefficients in the cohomology in this section.

The important thing is that the Pieri formula also holds in the complex case, all the
coefficients being positive. This fact guarantees a nonzero product much frequently,
compared to the R

d case. Let us state the corresponding colorful-Helly-type result.

Theorem 14 Let F be a family of compact convex sets in C
d , painted with 2d −2m+

1 colors so that color i has ρi +ki +1 sets. Suppose that every heterochromatic subset
of F is intersecting. Suppose also that the product

2d−2m+1
∏

i=1

[0, . . . ,0
︸ ︷︷ ︸

ρi

, ki, . . . , ki
︸ ︷︷ ︸

m−ρi

]

is nonzero on CG(d,m).
Then there exists a color i and a complex ρi -transversal plane to all convex sets

of F painted with this color.

From the Pieri formula it follows that in the case, when for all i either ki = 1, or
ki = d − m, or ρi = m − 1, or ρi = 0, the cohomology product is nonzero iff its total
dimension is ≤ m(d − m), or equivalently

2d−2m+1
∑

i=1

ki(m − ρi) ≤ m(d − m).
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