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Abstract We give a constructive method that can decrease the number of prototiles
needed to tile a space. We achieve this by exchanging edge-to-edge matching rules
for a small atlas of permitted patches. This method is illustrated with Wang tiles, and
we apply our method to present via these rules a single prototile that can only tile R

3

aperiodically, and a pair of square tiles that can only tile R
2 aperiodically.

Keywords Tiling · Matching rules · Atlas · Prototile

1 Introduction

The field of aperiodic tilings was created by Berger’s discovery [2] of a set of 20,426
square tiles which could only tile the plane in a non-repeating global structure. Un-
surprisingly there has been some interest on how far this number could be decreased.
The number of tiles was reduced over time, to 6 square tiles by Robinson [13] in
1971, and, relaxing to non-square tiles, to 2 tiles by Penrose [12] two years later.
This led naturally to serious consideration about the possible existence of a single
aperiodic tile (a monotile).

While a simple example has not been forthcoming, by relaxing requirements on
the monotile (such as being defined by shape alone, or connectedness) develop-
ment has occurred. In [15] Socolar studied a more general problem, ‘k-isohedral’
monotiles, which would have an aperiodic monotile as a limiting case. Relaxing con-
ditions on edge-colouring or non-connected tiles provided partial positive results.
Myers has produced many examples of monotiles with high isohedral numbers, such
as 10-isohedral polyhexagons and 6-isohedral polyominoes [11]. In 1996 Gummelt
[9] considered tiles that are allowed to overlap, and produced a decorated tile which
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could force aperiodicity. Most recently in early 2010, Socolar and Taylor [16] pro-
duced a disconnected tile that could force aperiodicity.

This paper extends work by Goodman-Strauss on ‘atlas matching rules’. In an
aside in [7], Goodman-Strauss describes how by requiring a tiling be covered by a
suitable finite atlas of permitted bounded configurations, a domino can serve as a
monotile. The aside only produced a weak upper bound on the size of the atlas, but
Goodman-Strauss postulated the bound could be reduced considerably.

In Sect. 2 we define our uses of the terms prototile, tiling and (strong) aperiodicity,
and formalise the concepts of matching rules based on colours (including an general-
isation) or atlases. We then describe a method of altering coloured matching rules to
atlas matching rules with very small patches. If two or more of the tiles have the same
shape, the number of prototiles needed is decreased. This method can be applied to
tilings in general, not just aperiodic ones. We will restrict ourselves to connected pro-
totiles in this paper for clarity, but the general method can be applied to disconnected
prototiles as well.

In Sect. 3 we use our method to construct a pair of square tiles which can only tile
R

2 aperiodically, and a single cubic tile that can only tile R
3 in a (strongly) aperiodic

manner. Further improvements to the method are described in Sect. 4.

2 The Atlas Matching Rule Construction

We shall describe the basic definitions we will be using in this paper. For more details
on this field we suggest Sadun’s book [14]. For clarity we will be limiting the spaces
we are tiling to R

n for some n ∈ N. With minor alterations the method will work in
any homogeneous space (for example hyperbolic space H

n).
Let P be a finite set of compact subsets of R

n, each the closure of its interior.
Denote these subsets as prototiles. In this paper we require that prototiles have a cell
complex as their boundary, and are connected. Thus there are vertices (or 0-facets).
Similarly on the boundary of the prototile there are edges (or 1-facets), faces and so
on, up to (n − 1)-facets.

Let G be a group of isometries of R
n, which includes all translations of R

n. The
groups we will be using most in this paper are the group of translations GTr and
the group of all isometries GI . We will be using these groups to define allowable
isometries from prototiles to tiles.

Define g(U) for some U ⊆ R
n and g ∈ G as the set of points p ∈ R

n such that
g−1(p) ∈ U . For a given set of prototiles P and a group of isometries G, define a tile
t as the image g(P ), for some g ∈ G, P ∈ P . A tile inherits the vertices, edges and
other facets from its prototile. A patch for P is a set of tiles with pairwise disjoint
interiors and the support of a patch is the union of its tiles. A tiling T with prototiles P
is a patch with support R

n. We shall refer to the support of a prototile P as supp(P ).
There are a number of distinct uses in the field of aperiodic tilings of the term

aperiodic. We shall use the following definitions, originating from [10] and in the
format of [7];

Definition 1 A tiling T ⊂ R
n is weakly periodic if there exists an infinite cyclic sub-

group H of isometries of R
n such that HT = T (i.e. for all h ∈ H , hT = T ). A tiling
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Fig. 1 A tile t , and its 1-corona

that is not weakly periodic is said to be strongly non-periodic. A set of prototiles P
which can only construct strongly non-periodic tilings, is said to be strongly aperi-
odic.

A tiling T of R
n is strongly periodic if there exists a discrete subgroup H of

isometries of R
n with R

n/H compact and HT = T . A tiling that is not strongly
periodic is weakly non-periodic. A set of prototiles is weakly aperiodic if it can only
construct weakly non-periodic tilings.

Note that in two dimensions the two definitions of aperiodicity are equivalent (see
Theorem 3.7.1 in [8] for proof). Thus we refer to ‘aperiodicity’ in two dimensions,
and ‘strong aperiodicity’ in three or higher.

In this paper, we require that tiles meet in whole facets and that tiles are connected.
Similar ideas can be applied to tiles which are disconnected.

We will be using patches defined by the ‘1-corona’ about a tile t .

Definition 2 The ‘1-corona’ of a tile t is the set of tiles with non-empty intersection
with t (see [7]).

As an example, see Fig. 1. This picture shows a tile t , and its 1-corona (all marked
tiles, including t itself).

We now want to introduce the notion of ‘colouring’ a prototile’s boundary, and
hence all tiles produced from it. In this paper we only care about the highest dimen-
sional parts of a boundary. Thus for 2 dimensional tiles we only care about edges
of a tile, not vertices. For 3 dimensional tiles we only care about faces, not edges or
vertices, and so on. Thus for an n dimensional tile, we will assign to each (n − 1)-
dimensional facet of the boundary of the tile an element of a given set, as follows.

Let P be prototiles in R
n. Construct a function λ : {(n − 1)-facets of P ∈ P } → C

where C is a non-empty set. A facet x of the prototile P is c-coloured if λ(x) = c.
Extend λ to facets of any given tile t = g(P ) by λt (x) = λg−1(x) for each (n−1)-

facet x of t .
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Definition 3 A coloured tiling (T ,λ) of R
n satisfies the identical facet (matching)

rule if for all tiles t1, t2 λt1(x) = λt2(x) for each (n − 1)-facet x that t1 and t2 share.

This covers cases where two tiles ‘match’ if they have the same colour on the
interior of their shared boundary (for example Wang tiles, which match when they
share edges of a common colour).

We will be using a slightly more general version of this rule in the rest of this
paper, which allows tiles to match under wider conditions, as follows.

Definition 4 A facet (matching) rule is a function on pairs of colours r : C × C �→
{0,1} such that r(x, y) = r(y, x) and r(0,0) = 1. A coloured tiling (T ,λ) satisfies
the facet (matching) rule r if for all tiles t1, t2 (where t1 �= t2),

r
(
λt1(x), λt2(x)

) = 1

for all facets x of t1 ∩ t2.

The obvious question is when do these facet matching rules coincide with match-
ing rules defined only in terms of shape of tile boundary. As stated at the start of the
section, we are only using connected tiles which match facet-to-facet.

Let us consider the matrix corresponding to the facet matching rule r , where aij =
r(ci, cj ) for some fixed enumeration of the colours which can be associated to the
tiles’ edges. Note that the matrix must be symmetric, since r(x, y) = r(y, x).

We will assume colours have been made ‘distinct’ in the sense that for all x, ci ,
cj ∈ C, r(ci, x) = r(cj , x) implies i = j . This condition is equivalent to having two
different colours which match in precisely the same way (and can thus be identified
together). In this matrix this corresponds to ensuring no row is a copy of another row,
by removing rows until this is not the case. Similarly we will ignore colours which
cannot match any colour, including themselves, because any tile with such a colour
on its boundary cannot occur in a tiling satisfying that facet matching rule.

Then a matching rule r can be expressed in terms of shape of tile boundary if and
only if there is only one 1 entry in every row and column of its matrix.

We shall illustrate why this is true, starting with the two dimensional case. If you
have two tiles with a common edge meeting at vertices u,v then for a given curved
edge on one tile, there exists precisely one curved edge which meets it at every point.
Similarly in R

n, for any (n − 1)-facet on the boundary of a tile, there exists precisely
one (n − 1)-facet which can meet it. Thus for any coloured boundary facet, there is
only one other colour of facet that can meet it. Thus any row or column of the matrix
must have only one non-zero entry.

Let us consider some examples.

Example 1 Consider the facet rule matrix in the following figure.
This matrix has only one entry with the value 1 in each row, thus it can be ex-

pressed in terms of curved edges. One way of doing this would be to set c1 as a
straight edge, c2 as a edge with a protrusion out from it, and c3 as the unique edge
that can fit to it.
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Example 2 Let the set of colours on a tiling be the set of cards in a normal 52 playing
card deck.

Let r(ci , cj ) = 1 iff ci and cj are from the same suit, or have the same face
value. Every colour matches to a unique subset of colours, thus we do not need to
remove rows or columns from the matrix. Furthermore, each colour matches to 16
other colours (the 13 in the same suit, and 3 other cards with the same face value).

Thus this matching rule cannot be expressed in terms of curved edges.

We describe below a way of translating from a facet matching rule to a matching
rule of the following type.

Definition 5 A tiling T satisfies an atlas (matching) rule U if there exists a finite
atlas of compact patches U ∈ U such that for every tile t ∈ T , there exists a patch
Ut about t (with t being in the strict interior of Ut ) such that Ut = g(U) for some
g ∈ GTr and U ∈ U .

A 1-corona atlas rule is an atlas rule where every patch U ∈ U is the 1-corona of
some tile t .

Definition 6 A tiling T is a (P ,G,λ, r)-tiling if it has a prototile set P with allow-
able isometries G and colouring λ, and satisfies the facet rule r .

A tiling T is a (X ,G, U )-tiling if it has a prototile set X with allowable isome-
tries G, and satisfies the atlas matching rule U .

A tiling A is locally derivable from a tiling B if there exists a length R such that,
if z1, z2 ∈ R

d and A − z1 agrees with A − z2 on a ball of radius R around the origin,
then B − z1 agrees with B − z2 on a ball of radius 1 around the origin. Thus the tile at
a point z in B depends only on a finite patch around z in A. If B is locally derivable
from A and A is locally derivable from B , then A and B are said to be mutually
locally derivable (MLD) tilings. (The definition of MLD originates in [1], but we are
using the equivalent variation found in [3].)

Theorem 1 A (P ,GTr, λ, r)-tiling T is MLD to a (X ,GI , U )-tiling for some 1-
corona atlas rule U and a prototile set X with |X | ≤ |P |.
Construction 1 Take P and partition it into a set of equivalence classes P = ∐

Ps ,
s ∈ {1, . . . ,m} where Pi ∼ Pj iff supp(Pi) = supp(Pj ) up to the action of an element
of GTr. For each Ps , let Ψs be the group of automorphisms of any of the prototiles
P ∈ Ps .

Enumerate the elements of Ps as P s
1 , . . . ,P s

r ∈ Ps .
Choose the smallest k you can so as to construct an injective function es : Ps →

{(P s
i ,ψj )|1 ≤ i ≤ k,ψj ∈ Ψs}. Define Xs = {P s

1 , . . . ,P s
k }.
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We now have a construction taking prototiles P s
i ∈ Ps to ordered pairs of a pro-

totile from Xs and an automorphism of that prototile. Observe that Xs is a subset
of Ps .

Proof of Theorem 1 Define a new prototile set X = X1 ∪· · ·∪ Xm, where Xs is as just
defined. Let the set of allowable functions from the prototiles into R

n be GI , instead
of GTr. Take the set of allowable 1-coronas in the (P ,GTr, λ, r)-tiling T , and replace
every tile originating from a translation of a prototile P s

a ∈ Ps with ψj (P
s
i ), with

ψj and P s
i originating from es(P

s
a ) = (P s

i ,ψj ). This will give you a set of 1-corona
patches of X . Use this set as the atlas rule U for X .

T has facet rules, which are intrinsic to the set of allowable first coronas (since the
set of allowable first coronas list what boundaries are allowed to meet each other).
Since our definition of X and its atlas correspond to the first coronas of tiles in T , with
P s

a replaced by gj (P
s
i ), any tiling by X is MLD to a tiling from P . Since |Xs | ≤ |Ps |

we have |X | ≤ |P |. �

For reasons of clarity, we will give a concrete example of how to move from a
given prototile P̂ in P to its image gj (P̂

s
i ). Consider Fig. 2. At the top of the picture

we have a set of 13 prototiles, P . The first step is to group the prototiles into sets (the
Ps of the construction). A set must contain prototiles which have the same support up
to translation, but cannot have more prototiles than there are automorphisms of that
support. For example, with the rectangular tiles, there are four automorphisms which
will send a rectangle onto itself. Thus the sets containing rectangles cannot contain
more than four rectangles. (Note that the two F shapes must be placed in different Ps

sets, since they do not have the same support up to translation. In the final section we
will describe a construction which can place them in the same Ps set.)

The second step is to take one of the new collections of tiles with the same support.
In the figure we have taken one of the sets of rectangles. Then replace one of the tiles
with a new prototile Pi . For each other prototile, take Pi and apply a different auto-
morphisms of the support of Pi to associate an automorphism of Pi to that prototile.
Then substitute the new prototiles you have produced into the allowable 1-coronas of
P to produce a tiling with less prototiles needed.

Corollary Take a prototile set P and partition it into a set of equivalence classes
P = ∐

Ps , s ∈ {1, . . . ,m} as in the previous construction. If there exists Ps such that
|Xs | < |Ps |, there exists a prototile set (with atlas rules) which tiles R

n with less
prototiles than P .

Proof We know that |Xs | < |Ps |, thus |X | < |P |. �

Remark This method of construction produces a prototile set with cardinality∑m
s=1� |Ps |

|Ψs | .

Remark P is (strongly) aperiodic iff X is (strongly) aperiodic. This is because every
tiling in X is MLD to a tiling in P , and strong aperiodicity is preserved under MLD
equivalency.
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Fig. 2 Applying the construction to a set of prototiles

3 Motivating Examples and Aperiodicity

Example 3 For a simple illustration of the method, let us consider a tiling of the
plane by 13 Wang prototiles (unit squares with matching rules defined by matching
coloured edges) as given in [4, 5, 17]. Label the Wang prototiles as {Q1, . . . ,Q13}.
We can apply the above construction to get a function from {Qj }13

j=1 to {(Pi, r)|1 ≤
i ≤ 2, r ∈ D4}, where D4 is the group of symmetries of the square.

For example, enumerate the symmetries of the square as {r1, r2, . . . , r8}. Then such
a function could send {Qj |1 ≤ j ≤ 8} to (P1, rj ), and the remaining tiles {Qj |9 ≤
j ≤ 13} to (P2, rj−8). The result is shown in Fig. 3, for a small patch of the tiling.

As is common with Wang tiles, the colouring of {Qj }13
j=1 is represented as actual

colours superimposed onto the tile. For the diagram we represent the change of pro-
totile set from {Qj }13

j=1 to {P1,P2} by adding a label to P1 and P2, which looks like
their alphabetical symbols. This label will be visually affected by the automorphisms



Discrete Comput Geom (2011) 46:394–403 401

Fig. 3 Top picture shows a
tiling with prototiles
Q1, . . . ,Q13 with facet
matching rules, and translation
as an isometry group. The
bottom picture uses a two
element prototile set, with
rotations, reflections and
translations as a isometry group

of P1 and P2. This is solely for the diagram, and is intended to assist the reader in
distinguishing between the various automorphisms of P1 and P2.

Next we will consider a 3 dimensional example. As mentioned before, aperiodicity
in higher dimensions is more complicated and we have to worry about weak and
strong aperiodicity. We will solve this problem by extending a known example of a
prototile set which only tiles in a strongly aperiodic manner.

Example 4 Consider Kari’s Wang cube prototiles, W [6]. This is a set of 21 unit
cube prototiles with facet matching rules, where every tiling of R

3 by W is strongly
aperiodic.
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Choose a unit cube prototile A.
Since the set of isometries of the cube (and thus A) is of cardinality 48, we can

choose 21 unique isometries of A, ik , 1 ≤ i ≤ 21. We use the method in Construction
1 to replace Pk ∈ W with ik(A).

Thus we have an aperiodic protoset with one prototile which is MLD to Kari’s
Wang Cubes. Note that we have lost the property of matching rules being determined
on faces, and replaced them with a set of legal one corona patches (which cannot
be rotated or reflected, of course). We have also had to broaden the set of allowable
mappings of the prototiles into the tiled space, from translations to translations and
rotation/reflections.

4 Further Improvements

Remark The construction can be further improved, by partitioning P into equiva-
lence classes based on what prototiles have the same support up to isometry, not just
translation.

Let T be a (P ,GTr, λ, r)-tiling as in Construction 1. If there is a prototile Pi ∈ P
whose support is a non-trivial isometry of another prototile Pj (where i �= j ), then
the resulting (X ,GI , U )-tiling may have less prototiles than one originating from
Construction 1. An example of this is in Fig. 2, where the two F -shape tiles have
equivalent support up to rotation.

Construction 2 Partition P = ∐
P s , s = {1, . . . , p} where Pi ∼ Pj iff supp(Pi) =

supp(Pj ) up to the action of an element of GI .
Further partition P s = ∐

P s
t , t = {1, . . . , q} where P s

a ∼ P s
b iff supp(P s

a ) =
supp(P s

b ) up to the action of an element of GTr.
This two-stage partitioning gives us a collection of equivalence classes (

∐
s,t P s

t )
as per the first construction. Additionally we know that there exist isometries in GI

from elements of P s
i to elements of P s

j . Take the P s
t with the largest cardinality

and denote it P s
T . From the definition of P s there exists an isometry αPiPj

such that
αPiPj

(supp(Pi)) = supp(Pj ). Furthermore we know that an given isometry can only
take elements from one set P s

i to P s
T (by definition of equivalence class). Thus we

can replace any prototile in P s
t with a unique isometry of a prototile in P s

T , since
|P s

t | ≤ |P s
T |.

By applying the previous construction to P s
T , we can get a minimal uncoloured

prototile set X s that can be used to translate prototiles in P s
T , and hence P s , to atlas

rules.

Example 5 Take a prototile set T of equilateral triangles, as shown in Fig. 4. The
prototiles have two different orientations, and three (could be up to six) colours.

We partition T into T = T1, since all prototiles in T have the same support, up to
isometry. We then further partition T1 = T 1

1 � T 2
1 , where T 1

1 is the set of prototiles
with point upwards, and T 2

1 is the set of prototiles with point downwards. Denote
the first prototile of T 1

1 as t1. Applying the first construction to T 1
1 gives you f (Pi ∈

P 1
1 ) = di(t1), for di ∈ D3, and f (Pi ∈ P 2

1 ) = rot π
3
(di(t1)). While this is sufficient
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Fig. 4 New and old prototile set

to define the tiling, it has the problem that any picture of the tiling needs to include
information about the isometries used for each tile. Thus we replace t1 with a tile
x with an uncoloured boundary, but with a coloured interior which is not preserved
under any non-identity element of D3.
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