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Abstract We revisit some maximization problems for geometric networks design
under the non-crossing constraint, first studied by Alon, Rajagopalan and Suri (ACM
Symposium on Computational Geometry, 1995). Given a set of n points in the plane
in general position (no three points collinear), compute a longest non-crossing config-
uration composed of straight line segments that is: (a) a matching, (b) a Hamiltonian
path, and (c) a spanning tree. We obtain some new results for (b) and (c), as well as
for the Hamiltonian cycle problem.

(i) For the longest non-crossing Hamiltonian path problem, we give an approxi-
mation algorithm with ratio 2

π+1 ≈ 0.4829. The previous best ratio, due to Alon et

al., was 1
π

≈ 0.3183. The ratio of our algorithm is close to 2
π

≈ 0.6366 on a rela-
tively broad class of instances: for point sets whose perimeter (or diameter) is much
shorter than the maximum length matching. For instance “random” point sets meet
the condition with high probability. The algorithm runs in O(n7/3 logn) time.

(ii) For the longest non-crossing spanning tree problem, we give an approximation
algorithm with ratio 0.502 which runs in O(n logn) time. The previous ratio, 1/2, due
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to Alon et al., was achieved by a quadratic time algorithm. Along the way, we first
re-derive the result of Alon et al. with a faster algorithm and a very simple analysis.

(iii) For the longest non-crossing Hamiltonian cycle problem, we give an approxi-
mation algorithm whose ratio is close to 2/π on a relatively broad class of instances:
for point sets where the product 〈diameter × convex hull size〉 is much smaller than
the maximum length matching. Again “random” point sets meet the condition with
high probability. However, this algorithm does not come with a constant approx-
imation guarantee for all instances. The algorithm runs in O(n7/3 logn) time. No
previous approximation results were known for this problem.

1 Introduction

Crossing edges in geometric graphs are undesirable in most cases. Many structures
studied in computational geometry, in particular those of minimum Euclidean length,
are automatically crossing-free. Such examples include minimum spanning trees,
minimum length matchings, minimum traveling salesman tours, Voronoi diagrams,
and others. The non-crossing property usually follows from the triangle inequality.

Alon et al. [3] have considered the problems of computing (i) the longest non-
crossing matching, (ii) the longest non-crossing Hamiltonian path and (iii) the longest
non-crossing spanning tree, given n points in the plane. Although they were unable
to prove it, they suspected that all these problems are NP-hard. The survey articles
by Eppstein [10, pp. 439] and Mitchell [17, pp. 680] list these as open problems in
the area of geometric network optimization. The problem of approximating the max-
imum non-crossing Hamiltonian cycle is also of interest and wide open [5, pp. 338].

Without the non-crossing condition explicitly enforced, the problems of minimiz-
ing or maximizing the length of a spanning tree, Hamiltonian cycle or path, perfect
matching, triangulation, etc. has a rich history. For minimization problems, the non-
crossing property comes usually for free via the triangle inequality. For maximiza-
tion problems, however, the non-crossing property conflicts directly with the length
maximizing objective. Not surprisingly, much less is known about the crossing-free
maximization problems.

Related Work The existence of non-crossing Hamiltonian paths and cycles in geo-
metric graphs has been studied in [2, 6]. Various Ramsey-type results for non-
crossing spanning trees, paths and cycles have been obtained in [14] and [15]. The
Euclidean MAX TSP, the problem of computing a longest straight-line tour of a set
of points, has been proven NP-hard in dimensions three or higher [12], while its
complexity in the Euclidean plane remains open [17]. In contrast, the shortest non-
crossing matching and the shortest non-crossing spanning tree are both computable in
polynomial time [10, 17], as they coincide with the shortest matching and the shortest
spanning tree respectively.

Given a set of n points in general position1 in the plane, the results of Alon
et al. are as follows: (i) A non-crossing matching whose total length is at least

1Throughout this paper, a set S of points in the plane is said to be in general position if no three points are
collinear.
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2/π of the longest (possibly crossing) matching can be computed in O(n7/3 logn)

time. (ii) A non-crossing Hamiltonian path whose total length is at least 1/π of the
longest (possibly crossing) Hamiltonian path can be computed in O(n7/3 logn) time.
(iii) A non-crossing spanning tree whose total length is at least n/(2n − 2) ≥ 1/2 of
the longest (possibly crossing) spanning tree can be computed in O(n2) time. Their
original results mention somewhat higher running times for (i) and (ii), which were
based on the best upper bound at that time on the number of halving lines of a set
of n points. The running times have been adjusted to reflect the current best upper
bound of O(n4/3) on the number of halving lines as established by Dey [7]. Alon et
al. mention that their techniques can be applied to achieve constant factor approxi-
mations for the longest triangulation, and the longest bounded-degree spanning tree
on n points in the plane, although they do not provide explicit bounds.

Definitions and Notations A geometric graph G is a pair (V ,E) where V is a finite
set of points in general position in the plane, and E is a set of segments (edges)
connecting points in V . The length of G, denoted L(G), is the sum of the Euclidean
lengths of all edges in G. The graph G is said to be non-crossing if its edges have
pairwise disjoint interiors (collinear triples of points are forbidden in order to avoid
overlapping collinear edges).

For a point set S, let conv(S) be the convex hull of S, and let P = P(S) denote the
perimeter of conv(S). Denote by D = D(S) the diameter of S and write n = |S|. Let
MOPT be a maximum (possibly crossing) matching of S, and let M∗

OPT be a longest
non-crossing matching of S; observe that for odd n, MOPT is a nearly perfect match-
ing, with (n − 1)/2 edges. Let HOPT be a maximum (possibly crossing) Hamiltonian
path of S, and let H ∗

OPT be a longest non-crossing Hamiltonian path of S. Let TOPT
be a maximum (possibly crossing) spanning tree of S, and let T ∗

OPT be a longest non-
crossing spanning tree of S. Finally, let QOPT be a maximum (possibly crossing)
Hamiltonian cycle of S, and let Q∗

OPT be a longest non-crossing Hamiltonian cycle
of S. The following inequalities are obvious: L(MOPT) ≤ L(HOPT) ≤ L(TOPT).

Let S be a set of n points in general position in the plane. We represent the direc-
tion of a line with the angle α ∈ [0,π) it makes with the x-axis. A supporting line �

of two points of S is called a halving line if there are 	(n − 2)/2
 and �(n − 2)/2�
points, respectively, in the two open halfplanes bounded by � [16]. A bisecting line �

of S is any line that partitions the point set evenly, i.e., neither of the two open half-
planes defined by � contains more than n/2 points of S [8]. Observe that any halving
line of S is also a bisecting line of S. Any bisecting line of S yields (perhaps non-
uniquely) a bipartition S = R ∪B , with R ∩B = ∅, ||R|− |B|| ≤ 1, with R contained
in one of the closed halfplanes determined by �, and B contained in the other. We call
S = R∪B a linearly separable bipartition, or balanced partition of S. Observe that for
any direction α ∈ [0,π), there is a bisecting line of direction α (c.f. [8, Lemma 4.4]).
Two bisecting lines are called equivalent if they can yield the same balanced partition
of S. It is well known that the number of non-equivalent bisecting lines of a set is of
the same order as the number of halving lines of the set, and any balanced bipartition
can be obtained from a halving line [8, pp. 67].

For a polygon P , let V (P ) denote the set of vertices of P . For a geometric graph
G = (V ,E) and a point q /∈ V such that V ∪ {q} is in general position, we say that q
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sees a vertex v ∈ V if the segment qv does not intersect any edge of G. We also say
that q sees an edge e ∈ E, if the triangle formed by v and e does not intersect any
other edge of G.

Our Results In this paper we further refine the results of Alon et al. regarding non-
crossing Hamiltonian paths and spanning trees, and obtain a new result for Hamil-
tonian cycles. Our results are summarized in the following three theorems.

Theorem 1 For a set S of n points in general position in the plane:

(i) One can compute a non-crossing Hamiltonian path H of length L(H) ≥
2

π+1L(HOPT) in O(n7/3 logn) time if n ≥ 31. In particular, this yields an ap-

proximation algorithm with ratio 2
π+1 ≈ 0.4829 for the longest non-crossing

Hamiltonian path problem.
(ii) One can compute a non-crossing Hamiltonian path H of length L(H) ≥

2
π
L(HOPT) − P

π
in O(n7/3 logn) time. In particular, if the point set satisfies the

condition P
π

≤ δL(HOPT) for some small δ > 0, then L(H) ≥ ( 2
π

− δ)L(HOPT).
(iii) Alternatively, one can compute a non-crossing Hamiltonian path H of length

L(H) ≥ (1 − ε) 2
π
L(HOPT) − P

π
in O(n logn/

√
ε) time.

Theorem 2 For a set S of n points in general position in the plane: One can compute
a non-crossing spanning tree T of length L(T ) ≥ 0.502 ·L(TOPT) in O(n logn) time.
In particular, this yields an approximation algorithm with ratio 0.502 for the longest
non-crossing spanning tree problem.

Although our improvement in the approximation ratio for spanning trees is very
small, it shows that the “barrier” of 1/2 can be broken. Also, while from a practi-
cal standpoint the improvement in the running time is the most significant aspect,
from a theoretical perspective the improvement in the approximation ratio is the most
challenging part of our result.

Theorem 3 For a set S of n points in general position in the plane, with | conv(S)| =
h:

(i) One can compute a non-crossing Hamiltonian cycle Q of length L(Q) ≥
2
π
L(QOPT) − (2h − 1)P

π
in O(n7/3 logn) time. In particular, if the point set

satisfies the condition (2h − 1)P
π

≤ δL(QOPT) for some small δ > 0, then

L(Q) ≥ ( 2
π

− δ)L(QOPT).
(ii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q of length

L(Q) ≥ 2
π
L(QOPT) − (h + 1)P

π
in O(n3 logn) time.

(iii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q of length
L(Q) ≥ (1 − ε) 2

π
L(QOPT) − (2h − 1)P

π
in O(n logn/

√
ε) time.

In the formulation of Theorem 1, it may be convenient to replace the condition
P
π

≤ δL(HOPT) by the condition P
π

≤ δL(MOPT), as the latter can be tested in polyno-
mial time. Similarly, in the formulation of Theorem 3, it may be convenient to replace
the condition (2h − 1)P

π
≤ δL(QOPT) by the condition (2h − 1)P

π
≤ δL(MOPT).
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Fig. 1 A non-crossing
alternating spanning path

2 The Hamiltonian Path

In this section we prove Theorem 1. Let S = {p1, . . . , pn}. We follow an approach
similar to that of Alon et al. using projections and an averaging argument, in con-
junction with a result on bipartite embeddings of spanning paths in the plane. Abel-
lanas et al. [1, Theorem 3.1] showed that every linearly separable balanced bipartition
S = R ∪ B with ||R| − |B|| ≤ 1, admits an alternating non-crossing spanning path
such that the edges cross a separating line � at points ordered monotonically along �,
as in Fig. 1. Such a Hamiltonian path can be computed in O(n logn) time. The alter-
nating path depends only on the bipartition rather than the separating line.

We now recall the algorithm of Abellanas et al. [1]; see Fig. 1 for an example. Let
S = R ∪ B with ||R| − |B|| ≤ 1 be the red-blue bipartition given by a vertical line �:
R on the left, B on the right. Their algorithm constructs an alternating path A in the
following way: Let rb be the top red-blue edge of the convex hull conv(S), called the
top bridge. If |R| > |B|, set A := {r}, if |R| < |B|, set A := {b}, else set A to {r} or
{b} arbitrarily. At every step, recompute the top bridge rb of S \ A, and add r to A if
the last point in A was blue, or add b to A if the last point in A was red. As pointed
out by the authors, the resulting path A is non-crossing because A is disjoint from the
convex hull of S \ A at each step. Note that the constructed path A is not necessarily
the longest non-crossing alternating path across �.

We improve the lower bound of Alon et al. by computing two long paths, and
returning the longest of the two. More technical details on this algorithm, A1, will be
provided later.

1. Compute a Hamiltonian path, say H1, of length at least the perimeter of conv(S).
2. For each linearly separable bipartition of S (given by a line �), compute a non-

crossing alternating Hamiltonian path using [1]. Let H2 be the longest Hamil-
tonian path found in this way.

3. Return the longest of the two paths, H1 and H2.

Step 2 uses the algorithm of Abellanas et al. [1], but any algorithm that gener-
ates a non-crossing alternating path (across the separating line) could be used. The
following lemma justifies the first step in our algorithm.

Lemma 1 Given a point set S with |S| = n ≥ 31, a non-crossing Hamiltonian path
H1 of length at least P(S) can be computed in O(n logn) time. The bound on the
length is best possible.
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Fig. 2 Constructing a Hamiltonian path of length at least P(S), Case 1. Left: we obtain a Hamiltonian
path from conv(S) by deleting ab and de, and adding be. Right: replacing be with the path (bs, se)

Proof We distinguish two cases based on the number of points in the interior of
conv(S).

Case 1: There is at most one point in the interior of conv(S). We first construct a
Hamiltonian path on the convex hull vertices, and if there is one point in the interior
of conv(S), then we later expand it to a Hamiltonian path of S. For the hull vertices,
we construct a Hamiltonian path from the convex hull (which is a Hamiltonian cycle)
by deleting two edges and adding a diagonal (Fig. 2, left).

Since S contains at least 31 points, there are at least 30 points on the convex
hull conv(S). The sum of (interior) angles of conv(S) is at least (30 − 2)π , hence
by averaging, there exist five consecutive hull vertices, whose interior angles sum
to at least (5 − 1

3 )π . Let fi , 0 ≤ i ≤ 5, be the six hull edges incident to these five
consecutive vertices in clockwise order. We may assume, by applying a reflection
is necessary, that a shortest edge among these six edges is one of f0, f1, f2. Let
ab ∈ {f0, f1, f2} denote a shortest edge, and let bc, cd , and de be the next three
edges in clockwise order. For further reference, we have chosen four consecutive
edges, ab, bc, cd , and de, such that

|ab| ≤ min
(|bc|, |cd|, |de|) and ∠bcd + ∠cde ≥

(
2 − 1

3

)
π. (1)

We construct a Hamiltonian path for the hull vertices by deleting edges ab and de

from conv(S), and adding the diagonal be (Fig. 2, left). If there is one point s ∈ S

in the interior of conv(S), then it sees be, and we expand this path to a Hamiltonian
path of S by replacing be with the path (bs, se) (Fig. 2, right).

Since L(conv(S)) = P(S), in order to show that we have constructed a Hamil-
tonian path of length at least P(S), it is enough to show that |be| ≥ |ab| + |de|.
Assume that points b and e are fixed, and we vary points a, c, and d to maxi-
mize |ab| + |de| subject to the constraints (1). Refer to Fig. 3. Let p be the in-
tersection point of lines bc and de. It follows from (1) that ∠pcd + ∠pdc ≤ π

3 ,
hence ∠bpe ≥ 2π

3 , so p lies within the circular segment bounded by the circle
C = {z ∈ R

2 : ∠bze = 2
3π} (Fig. 3, left). If |ab|+|de| is maximal, then p ∈ C (Fig. 3,

middle). Since |ab| ≤ min(|bc|, |cd|), for any fixed p ∈ C, the sum |ab| + |de| is
maximal if |ab| = |bc| = |cd|. For a fixed p ∈ C, the sum |ab| + |de| is maximal if
p = d and c is the midpoint of bp (Fig. 3, right). We apply the cosine law for the tri-
angle �bpe with ∠bpe = 2

3π : Letting |be| = 1, x = |de| and y = |ab| = |bc| = |cd|,
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Fig. 3 Left: points b, c, d and e, within a circular segment bounded by C. Middle: point p is on the
circular arc C. Right: |bc| = |cd| and p = d

Fig. 4 Constructing a path of length at least P(S), Case 2. (i) Points a, b, c, and d . (ii) The subdivision of
the interior of conv(S). (iii) Extending the Hamiltonian path to other points. (iv) Sweeping triangle �pqr

about vertex q

we obtain

|bp|2 + |ep|2 − 2|bp| · |ep| cos
2π

3
= x2 + 2xy + 4y2 = 1.

Equivalently, (x +y)2 +3y2 = 1, hence |ab|+ |de| = x +y ≤ 1 = |be|, with equality
for y = 0.

Case 2: There are at least two points in the interior of conv(S). In this case, we
construct a Hamiltonian path that contains all but one of the edges of conv(S). Let
a, b ∈ S be two points in the interior of conv(S). We first construct a Hamiltonian path
for all hull vertices and for a, b; and then expand it to pass through any other point
in the interior of conv(S). Let cd be a hull edge crossed by the ray

−→
ab (Fig. 4(i));

observe that b ∈ �acd . We construct a non-crossing Hamiltonian path for the hull
vertices and a, b by deleting cd from the convex hull and replacing it either with ac

and bd or with ad and bc. The triangle inequality implies |cd| < |ac| + |ad| and
|cd| < |bc| + |bd|, and so |cd| < max(|ac| + |bd|, |ad| + |bc|). That is, with one of
the two possible choices, we obtain a Hamiltonian path of length at least P(S).

Suppose that more than two points in S are in the interior of conv(S). Let e denote
the intersection point of segment cd and ray

−→
ab. Assume without loss of general-

ity that we have added the edges ac and bd . Subdivide the interior of conv(S) into
triangles as follows: Connect every hull vertex to a, and subdivide �acd into two tri-
angles, �ace and �ade (Fig. 4(ii)). Assign the hull edges of the Hamiltonian path to
the adjacent triangle (with one vertex at a), assign edge ac to �ace, and assign edge
bd to �ade. We expand each edge of the current path to a path that passes through
all vertices lying in the triangle assigned to that edge (Fig. 4(iii)).

Each triangle �pqr in the subdivision is assigned to an edge ps0 connecting a
vertex p to a point s0 ∈ qr on the opposite side (Fig. 4(iv)), where ps0 may be pr .



734 Discrete Comput Geom (2010) 44: 727–752

Order the points lying in �pqr by a radial sweep about vertex q , sweeping from −→
qs0

to −→
qp. Denoting the points in the interior of �pqr by s1, s2, . . . , st , for some t ≥ 0,

in this order, we can replace edge s0p by the path (s0, s1, . . . , st , p). This path is
non-crossing, it lies entirely in �pqr , and its length is at least that of ps0.

Lower bound construction. To see that the bound is best possible, consider a point
configuration with a diameter pair a, b, where |ab| = 1, and all the other n− 2 points
placed in a small ε-neighborhood of the midpoint of ab. Both, the length of the
maximum Hamiltonian path (even with crossings allowed), and the perimeter of the
convex hull are arbitrarily close to 2, if n ≥ 4 and ε > 0 is sufficiently small. �

We make use of the fact that if n is even then the two endpoints of an alternating
path are on opposite sides of the separating line �. If n is odd, we first construct
an alternating path for a specific subset of n − 1 points, and then augment it to a
Hamiltonian path on all n points using the following lemma.

Lemma 2 Let S = R ∪ B with ||R| − |B|| ≤ 1, be a linearly separable bipartition
given by line �. Let q ∈ S, and A be a non-crossing alternating path on S \ {q} such
that its (consecutive) edges cross � at points ordered monotonically along �. Then q

sees one edge of A. Hence A can be extended to a Hamiltonian path H on S, with
L(A) < L(H). The path H can be computed in O(n) time.

Proof Compute the visibility polygon of q , the boundary of all points visible from
q if the path A is opaque. Let V be the set of edges of path A that appear on the
boundary of the visibility polygon, that is, the edges that are (partially) visible from
q . Consider the directed graph G = (V ,E), where (e, f ) ∈ E if e blocks the total
visibility of f from q , that is, there is a point r ∈ f such that an endpoint of e lies
in the relative interior of qr . The visibility polygon of q and the graph G can be
computed in O(n) time [4, pp. 844], [18, pp. 650]. If G is acyclic, then there is a
node of in-degree 0, that is, an edge e of A partially visible from q and not blocked
by any other edge of A. Hence, the edge e is entirely visible from q . In the rest of the
proof, we show that G is acyclic.

Suppose to the contrary that G has a directed cycle (e1, e2, . . . , em) where ei

blocks the total visibility of ei+1. Refer to Fig. 5. Each edge has a counterclock-
wise first and second endpoint as viewed from q . Since each edge in the cycle blocks
another edge, exactly one endpoint of each ei is visible to q . If the first (resp., second)
endpoint of ei is not visible to q , then the same holds for ei+1, for i = 1,2, . . . ,m.
Assume, by applying a reflection if necessary, that q sees the first endpoint of each
ei , but not the second one.

Consider a coordinate system in which the bisecting line � is vertical. Assume, by
applying a central symmetry about q if necessary, that q lies in the closed halfplane
left of �. Let p denote the point of A visible from q directly above q . Assume without
loss of generality that p ∈ e1. The counterclockwise first endpoint of e1 is its right
endpoint. Hence, the portion of e1 between its right endpoint and p is visible from q .
Since � crosses e1 to the right of q , the intersection point a = � ∩ e1 is also visible
from q . Let segment ab be a maximal continuous portion of � visible from q (that is,
ab is a component of the intersection of � with the visibility polygon of q). Since the
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Fig. 5 Point q partially sees
edges e1, . . . , e5 that cyclically
block one another. The visibility
polygon of q is shaded gray.
The point visible from q and
lying directly above q is p ∈ e1.
The bisecting line � crosses e1
at a. One component of the
intersection of � and the
visibility polygon of q is
segment ab, with b ∈ ek

visibility of q is bounded by edges of the cycle in any direction, we have b ∈ ek for
some 1 < k ≤ m. The path A cannot intersect � between a = � ∩ e1 and b = � ∩ ek ,
and so e1 and ek are consecutive edges of A, that is, e1 and ek are adjacent.

Note that the lower side of e1 and the upper side of ek are visible from q . The
edge of A incident to the counterclockwise first (i.e., right) endpoint of e1 must cross
� above a. Similarly, the counterclockwise first endpoint of ek is its left endpoint
and the edge of A incident to it must cross � below b. Hence the common endpoint
of e1 and ek can only be the left endpoint of e1 and the right endpoint of ek . These
endpoints, however, are different: they are on opposite sides of �. We have reached a
contradiction, so we conclude that G is acyclic. �

Fix a Cartesian coordinate system Γ . By relabeling the points if necessary, assume
that the optimal path is HOPT = (p1,p2, . . . , pn). For two points pi,pj ∈ S, let βi,j

be the angle in [0,π) formed by the line through pipj and the x-axis. If n is odd,
then a bisecting line of direction α (for any α) must be incident to at least one point
of S, and we denote an arbitrary such point by qα .

Algorithm A1 STEP 1. Compute a non-crossing Hamiltonian path H1 of length at
least P(S), by Lemma 1.

STEP 2. If n is even, then for all non-equivalent bisections of S (i.e., for all bal-
anced bipartitions of S), compute a non-crossing alternating path using the algorithm
of Abellanas et al. [1], and let the longest such path be H2. If n is odd, then for all
non-equivalent bisections of S, compute a non-crossing alternating path of the even
point set S \ {qα} using the algorithm of [1] and let the longest such path be A. Aug-
ment A with vertex qα by Lemma 2 to a Hamiltonian path H2.

STEP 3. Output the longest of the two paths H1 and H2.

By Lemma 1, the running time of STEP 1 is O(n logn). Since the number of
halving lines of an n-element point set is O(n4/3) and all can be generated within this
time [7], the running time of STEP 2 is O(n7/3 logn), consequently the total running
time of A1 is also O(n7/3 logn). We proceed with the analysis of the approximation
ratio.
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Fig. 6 The rotated coordinate
system Γα and a non-crossing
alternating spanning path
Hα = (p1,p3,p4,p2). Notice
that L(Hα) ≥ |xσ(1)| +
2|xσ(2)| + 2|xσ(3)| + |xσ(4)| =
|x1| + 2|x3| + 2|x4| + |x2|.
A longest spanning path is
HOPT = (p1,p2,p3,p4)

Assume first that n is even. For each α ∈ [0,π), let Γα be a (rotated) coordinate
system, obtained from Γ via a counterclockwise rotation by α, and with the y-axis
dividing evenly the point set S. Let xi = xi(α) be the x-coordinate of point pi with
respect to Γα . Let Hα be a non-crossing alternating path with respect to a balanced
bipartition induced by the y-axis of Γα , as computed by the algorithm. See Fig. 6 for
a small example.

There are O(1) balanced bipartitions given by any halving line of S. Recall that
Hα does not depend continuously on α; it depends only on the discrete bipartition.
Assume that Hα = (pσ(1), pσ(2), . . . , pσ(n)), where σ is a permutation of [n]; here σ

depends on the bipartition (hence also on α). Let Wα denote the width of S in direc-
tion α, that is, the width of the smallest parallel strip of direction α that contains S.
Since Hα alternates between the two sides of the y-axis of Γα , by projecting on the
x-axis of Γα , we get

L(Hα) ≥ |xσ(1)| + 2|xσ(2)| + · · · + 2|xσ(n−1)| + |xσ(n)|

= 2
n∑

i=1

|xi | − |xσ(1)| − |xσ(n)|

=
n−1∑

j=1

(|xj | + |xj+1|
) + |x1| + |xn| − |xσ(1)| − |xσ(n)|

≥
n−1∑

j=1

(|xj | + |xj+1|
) − Wα

≥
n−1∑

j=1

|pjpj+1|
∣∣cos(βj,j+1 − α)

∣∣ − Wα. (2)

In the 4th line of the above chain of inequalities, we use the fact that pσ(1) and pσ(n)

lie on opposite sides of the y-axis of Γα since n is even. Hence |xσ(1)| + |xσ(n)| ≤
|pσ(1)pσ(n)| ≤ Wα . In the 5th line, we make use of the following inequality, which
is the key property in the approach used by Alon et al. in their approximation al-
gorithm for finding large non-crossing matchings: For any two points pi,pj ∈ S,
|pipj || cos(βi,j − α)| ≤ |xi | + |xj |, with equality if and only if the two points lie on
opposite sides of the y-axis of Γα .
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Assume now that n is odd. The coordinate system Γα is defined in the same way.
For a given α, let H ′

α be a non-crossing alternating path with respect to a balanced bi-
partition of S \ {qα}, as computed by the algorithm. Let σ be the permutation of [n],
such that H ′

α = (pσ(1), pσ(2), . . . , pσ(n−1)) and pσ(n) = qα . Let Hα be the Hamil-
tonian path obtained from H ′

α by augmenting it with pσ(n). Here xσ(n) = 0 since
pσ(n) = qα is incident to the bisecting line.

L(Hα) > L(H ′
α) ≥ |xσ(1)| + 2|xσ(2)| + · · · + 2|xσ(n−2)| + |xσ(n−1)|

= 2
n−1∑

i=1

|xσ(i)| − |xσ(1)| − |xσ(n−1)|

= 2
n∑

i=1

|xi | − |xσ(1)| − |xσ(n−1)|

≥
n−1∑

j=1

(|xj | + |xj+1|
) − Wα

≥
n−1∑

j=1

|pjpj+1|
∣
∣cos(βj,j+1 − α)

∣
∣ − Wα. (3)

We again have |xσ(1)|+ |xσ(n−1)| ≤ Wα because n−1 is even, thus pσ(1) and pσ(n−1)

lie on opposite sides of the bisecting line.
Thus in both cases, L(Hα) ≥ ∑n−1

j=1 |pjpj+1|| cos(βj,j+1 − α)| − Wα . Recall: for
even n, H2 is the longest of the O(k) Hamiltonian non-crossing paths Hαi

over all
O(k) balanced bipartitions of S. (A given angle αi yields O(1) balanced partitions,
and corresponding alternating paths denoted here Hαi

.) The situation is similar for
odd n. We thus also have for each α ∈ [0,π):

L(H2) ≥
n−1∑

j=1

|pjpj+1|
∣∣cos(βj,j+1 − α)

∣∣ − Wα.

Note that
∫ π

0

∣∣cos(βj,j+1 − α)
∣∣dα =

∫ π

0
| cosα|dα = 2,

and according to Cauchy’s surface area formula [21], we have
∫ π

0 Wα dα = P(S). By
integrating both sides of the previous inequality over the α-interval [0,π], we obtain

πL(H2) ≥ 2
n−1∑

j=1

|pjpj+1| − P(S) = 2L(HOPT) − P(S),

L(H2) ≥ 2

π
L(HOPT) − P(S)

π
. (4)
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We now improve the old approximation ratio of 1
π

≈ 0.3183 to 2
π+1 ≈ 0.4829, by

balancing the lengths of the two paths computed in STEP 1 and STEP 2. Set c = π+1
2 .

Case 1: L(HOPT) ≤ cP (S). By considering the path computed in STEP 1, we get
a ratio of at least

L(H1)

L(HOPT)
≥ P(S)

L(HOPT)
≥ P(S)

cP (S)
= 2

π + 1
.

Case 2: L(HOPT) ≥ cP (S). By considering the path computed in STEP 2 (inequal-
ity (4)), we get a ratio of at least

L(H2)

L(HOPT)
≥

2
π
L(HOPT) − 1

π
P (S)

L(HOPT)
≥ 2

π
− 1

cπ
= 2

π

(
1 − 1

π + 1

)
= 2

π + 1
.

Observe that if the point set satisfies the condition P(S)
π

≤ δL(HOPT), then by (4),
we have

L(H) ≥ 2

π
L(HOPT) − δL(HOPT) =

(
2

π
− δ

)
L(HOPT).

This concludes the proofs of parts (i) and (ii) of Theorem 1.
(iii) With the same approach as in [3], a Hamiltonian path of length at least (1 −

ε) 2
π
L(HOPT) − P(S)

π
can be found by considering only b/

√
ε angles θi = iπ

√
ε

b
, for

i = 0,1, . . . , 	b/
√

ε
, where b is a suitable absolute constant. The resulting running
time is O(n logn/

√
ε). This concludes the proof of Theorem 1.

For an example illustrating part (ii), consider a set of n random points uni-
formly selected in a convex region, say of unit diameter. Then with high proba-
bility L(MOPT) = Ω(n), thus also L(HOPT) = Ω(n). Since P(S) ≤ π , we have
P(S)

π
≤ δL(HOPT) with high probability, for a very small δ = 
(1/n). Thus accord-

ing to inequality (4), the path returned by A1 is a (2/π − o(1)) approximation of the
optimal path for random point instances.

Remark Lemma 1 applies for n ≥ 31 only. In the range 7 ≤ n ≤ 30, one can use
a slightly different balancing argument showing that there is a non-crossing Hamil-
tonian path of length at least 2D, where D = D(S) is the diameter of the point set S.
Then in inequalities (2) and (3), we can use the diameter D instead of the width Wα

of S in direction α. This approach, however, leads to a smaller approximation ratio,
4

3π
≈ 0.4244.

3 The Spanning Tree

In this section we prove Theorem 2. Let S = {p1, . . . , pn}, where pi = (xi, yi). Given
a point p ∈ S, the star centered at p, denoted Sp , is the spanning tree on S whose
edges join p to all the other points. Since S is in general position, Sp is non-crossing
for any p ∈ S. An extended star centered at p is a spanning tree of S consisting of
paths of length 1 or 2 (edges) connecting p to all the other points. See Fig. 7. While
the star centered at a point is unique, there may be many extended stars centered at
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Fig. 7 A star (left) and a
non-crossing extended star
(right) on a same point set, both
centered at the same point p

the same point, and some of them may be self-crossing. In particular Sp is also an
extended star.

The algorithm of Alon et al. computes the n stars centered at each of the points, and
then outputs the maximum one. The algorithm takes quadratic time, and the analysis
shows a ratio of n

2n−2 (which tends to 1/2 in the limit). Their algorithm works in any
metric space. As pointed out by Alon et al., the ratio 1/2 is best possible (in the limit)
for this specific algorithm. We first re-establish the 1/2 approximation ratio using a
faster algorithm, and also with a simpler analysis. Our algorithm works also in any
metric space (however in this general setting, the running time remains quadratic).

Algorithm A2 Compute a diameter of the point set, and output the maximum of the
two stars centered at one of its endpoints.

Obviously the algorithm runs in O(n logn) time, with bottleneck being the diame-
ter computation [19]. Let ab be a diameter pair, and assume without loss of generality
that |ab| = 1. The ratio 1/2 (or even n

2n−2 ) follows from the next lemma in conjunc-
tion with the obvious upper bound L(TOPT) ≤ n (or L(TOPT) ≤ n − 1).

Lemma 3 Let Sa and Sb be the stars centered at the points a and b, respectively.
Then L(Sa) + L(Sb) ≥ n.

Proof Assume that a = p1, b = p2. For each i = 3, . . . , n, the triangle inequality for
the triple a, b,pi gives

|api | + |bpi | ≥ |ab| = 1.

By summing up we have

L(Sa) + L(Sb) =
n∑

i=3

(|api | + |bpi |
) + 2|ab| ≥ (n − 2) + 2 = n.

�

We now continue with the new algorithm that achieves a (provable) 1
2 + 1

500 ap-
proximation ratio within the same running time O(n logn). We suspect that the ap-
proximation ratio of A3 is substantially better than that of the quadratic time algo-
rithm of Alon et al., namely 1/2. However at the moment we can only prove a lower
bound of 0.502 on this ratio.



740 Discrete Comput Geom (2010) 44: 727–752

Fig. 8 Three stars Sa , Sb , Sh , and two extended stars Ea , Eb

Fig. 9 A diameter pair a, b at
unit distance, and the three
vertical strips Va , Vm, and Vb .
The two circular arcs γa and γb

of unit radius centered at a and
b intersect at the point
(1/2,

√
3/2). All points of S

above ab lie in the region
bounded by ab, γa and γb

Algorithm A3 Compute a diameter ab of the point set, and output the longest of the
5 non-crossing structures Sa , Sb , Sh, Ea , Eb, described below.

Assume without loss of generality that ab is a horizontal unit segment, where
a = (0,0) and b = (1,0). Let h = (xh, yh) be a point in S with a largest value of |y|
(farthest from the y-axis). By symmetry, we can assume that yh ≥ 0. Sa , Sb , and Sh

are the 3 stars centered at a, b, and h, respectively. Ea and Eb are two non-crossing
extended stars centered at a and b, respectively, described below. Each of the five
structures can be computed in O(n logn) time, so the total execution time is also
O(n logn). The five structures for a small example are shown in Fig. 8.

We will use four parameters, which we collect here for easy reference. By the end
of the proof we will set

w = 0.6, t = 0.6, δ = 0.05, and z = 0.48, (5)

in order to maximize the approximation ratio (w and t are two lengths, while δ and z

are two numbers).
Let �1, �2, �3, and �4, be four parallel vertical lines: �1 : x = 0, �2 : x = 1−w

2 , �3 :
x = 1+w

2 , �4 : x = 1; refer to Fig. 9. Obviously, all points in S lie in the strip bounded
by �1 and �4. Let Vm be the vertical parallel strip symmetric about the midpoint of
ab and of width w. We refer to Vm as the middle strip; Vm is bounded by the vertical
lines �2 and �3. Let Va and Vb be the two vertical strips of width 1−w

2 bounded by
�1 and �2, and by �3 and �4, respectively. Let c = (xc, yc) be the intersection point
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between �3 and the circular arc γa of unit radius centered at a and sub-tending an
angle of 60◦. We have xc = 1+w

2 and

yc =
√

1 −
(

1 + w

2

)2

=: t.

We now describe the two extended star structures Ea and Eb . See Fig. 10 for an
example. To construct Ea , connect a with each point in the right strip Vb . Note that
b ∈ Vb , thus Vb �= ∅. Call S′

a the resulting star. The edges of this star together with the
vertical line �3 divide Va ∪ Vm into convex regions (wedges with a common apex a)
ordered top-down. The subset of points in each wedge can be computed using binary
search in overall O(n logn) time (over all wedges). S′

a is extended (augmented) as
follows. In the interior of each wedge, say paq , all points are connected to either

a or p, forming a star, to maximize the total length of the star. Let
−→
ap′ and

−→
ap′′,

p′,p′′ ∈ Vb , be the rays of minimum and maximum slope, respectively. Connect all

points in Va ∪ Vm lying below
−→
ap′ to either a or p′. Similarly, connect all points

in Va ∪ Vm lying above
−→
ap′′ to either a or p′′. Denote the resulting extended star

structure by Ea . The construction of Eb is analogous. It is clear by construction that
both Ea and Eb are non-crossing.

The next five lemmas provide various upper and lower bounds we need for estab-
lishing the approximation ratio of the Algorithm A3.

Lemma 4 For each p ∈ S, let dmax(p) denote the maximum distance between p and
other points in S. Then

L(TOPT) ≤
[

n∑

i=1

dmax(pi)

]

− 1.

Proof Consider TOPT rooted at a. Let π(v) denote the parent of a (non-root) ver-
tex v. Uniquely assign each edge π(v)v of TOPT to vertex v. Obviously, L(π(v)v) ≤
dmax(v) holds for each edge in the tree. By adding up the above inequalities, and
taking into account that dmax(a) = |ab| = 1, the lemma follows. �

Lemma 5 Assume that
∑n

i=1 |yi | ≥ δn for some constant δ ∈ [0,1]. Then

L(Sa) + L(Sb) ≥ 2n

√
1

4
+ δ2.

Proof Recall that xi ∈ [0,1] and yi ∈ [−√
3/2,

√
3/2]. By the optics reflection prin-

ciple,

√
x2
i + y2

i +
√

(1 − xi)2 + y2
i ≥ 2

√
1

4
+ y2

i .
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Therefore

L(Sa) + L(Sb) =
n∑

i=1

(√
x2
i + y2

i +
√

(1 − xi)2 + y2
i

) ≥ 2
n∑

i=1

√
1

4
+ y2

i .

It can be checked that the function f (x) =
√

1
4 + x2 is convex (f ′′(x) ≥ 0 for x ∈

[0,1]), thus by Jensen’s inequality we get

2
n∑

i=1

√
1

4
+ y2

i ≥ 2n

√
1

4
+

(∑n
i=1 |yi |
n

)2

≥ 2n

√
1

4
+ δ2,

L(Sa) + L(Sb) ≥ 2n

√
1

4
+ δ2. �

Lemma 6 Let na and nb denote the number of points in the left and right vertical
strips Va and Vb . Then L(Ea) ≥ 1+w

4 (n + nb), and similarly L(Eb) ≥ 1+w
4 (n + na).

Consequently L(Ea) + L(Eb) ≥ 1+w
4 (2n + na + nb). Ea and Eb can be constructed

in O(n logn) time.

Proof The distance between �1 and �3 is w + 1−w
2 = 1+w

2 . By an argument similar
to that in the proof of Lemma 3, the connection cost for a wedge with m points is at
least 1+w

4 m. Therefore the total length of Ea is

L(Ea) ≥ 1 + w

2
nb + 1 + w

4
(n − nb) = 1 + w

4
(n + nb).

The estimation of L(Eb) is analogous. The running time has been established previ-
ously. �

Lemma 7 Assume that
∑n

i=1 |yi | ≤ δn and yh ≥ t . Then L(Sh) ≥ (t − δ)n.

Proof

L(Sh) ≥
n∑

i=1

(yh − yi) = nyh −
n∑

i=1

yi ≥ nyh −
n∑

i=1

|yi | ≥ nyh − δn ≥ (t − δ)n.
�

Lemma 8 Let y0 ≥ 0. Assume that |yh| ≤ t . Let p ∈ S be a point in the middle strip
Vm, with y-coordinate satisfying |y| ≤ y0. Then dmax(p) ≤ |pc| ≤ √

w2 + (y0 + t)2.

Proof It is straightforward to check that the maximum distance from such a point is
attained for a point p on �2 with y-coordinate −y0. The furthest point from p in the
allowed region is c. Hence

dmax(p) ≤ |pc| =
√

w2 + (y0 + t)2.
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Approximation Ratio Set y0 = 0.15 and parameters w, t , δ and z as in (5). By
Lemma 8, if p is a point in the middle strip Vm, with y-coordinate satisfying |y| ≤ y0,
we have dmax(p) ≤ √

0.62 + 0.752 ≤ 0.9605. We distinguish the following four cases
to complete our estimation of the approximation ratio.

Case 1:
∑n

i=1 |yi | ≥ δn. The algorithm outputs2 Sa or Sb . By Lemma 5, the ap-
proximation ratio is at least

L(Sa) + L(Sb)

2L(TOPT)
≥

√
1

4
+ δ2 ≥ 0.502.

Case 2:
∑n

i=1 |yi | ≤ δn and yh ≥ t . The algorithm outputs Sh. By Lemma 7, the
approximation ratio is at least t − δ = 0.55.

Case 3:
∑n

i=1 |yi | ≤ δn and yh ≤ t and na +nb ≥ (1 − z)n. The algorithm outputs
Ea or Eb. We only need the last inequality in estimating the length. By Lemma 6, the
approximation ratio is at least

L(Ea) + L(Eb)

2L(TOPT)
≥ 1 + w

4
· 2n + na + nb

2n
≥ (1 + w)(3 − z)

8
= 1.6 · 2.52/8 = 0.504.

Case 4:
∑n

i=1 |yi | ≤ δn and yh ≤ t and na +nb ≤ (1 − z)n. The algorithm outputs
Sa or Sb . There are at least zn = 0.48n points in the middle strip Vm. Observe that at
most n/3 points in Vm have |yi | ≥ 0.15; otherwise we would have

n∑

i=1

|yi | ≥
∑

Vm

|yi | > 0.15 · n

3
= 0.05n = δn,

a contradiction. It follows that at least 12n/25 − n/3 = 11n/75 points in the middle
strip have |yi | ≤ 0.15. By Lemma 4 and Lemma 8,

L(TOPT) ≤ 64n

75
+ 0.9605 · 11n

75
≤ 0.9943n.

The approximation ratio is at least

L(Sa) + L(Sb)

2L(TOPT)
≥ n

2 · 0.9943n
≥ 0.502.

This completes the list of cases and thereby the proof of Theorem 2. �

Remarks Conforming with Theorem 4.1 of [3], or with our Lemma 3, there exists a
vertex v ∈ S such that L(Sv) ≥ L(TOPT)/2. Alon et al. pointed out that the constant
1/2 in their theorem is best possible in a metric space: take two points p1 and p2 at
distance 1 from each other, and replace pi by n/2 copies in a small neighborhood.
We further note here that the constant 1/2 in their theorem is also best possible in
the geometric setting, since for the above example, L(TOPT) ≥ L(HOPT) ≈ n − 1,

2Here and in other instances it is meant that the algorithm outputs a structure at least as long as these.
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Fig. 10 The non-crossing
structure Ea for an example
with n = 16 points on the circle.
The middle strip Vm is bounded
by the two dashed vertical lines

as given by a spanning path that alternates between the two groups of points, and
since the length of any star is about n/2. The example in Fig. 10 with n points (n
even) equally spaced along a circle shows that the constant 0.502 measuring the ap-
proximation ratio achieved by our Algorithm A3 cannot be improved to anything
larger than 2

π
≈ 0.6366. Indeed, the lengths of the five structures computed by the

algorithm are L(Sa) = L(Sb) = L(Sh) = L(Ea) = L(Eb) = (1 − o(1)) 2
π
n, while

L(TOPT) ≥ L(HOPT) = (1 − o(1))n.

4 The Hamiltonian Cycle

In this section we present the proof of Theorem 3, which is similar (including nota-
tion) to that of Theorem 1. The rotated coordinate system Γα , and the x-coordinates
xi with respect to this system are denoted in the same way. By relabeling the points
if necessary, assume that the optimal cycle is QOPT = (p1,p2, . . . , pn), with the con-
vention that pn+1 = p1. We will present two algorithms, A4 and A4′, fulfilling the
requirements in parts (i) and (ii) of the theorem.

We approximate QOPT by first constructing a non-crossing alternating path A on a
subset of S, and then completing it to a non-crossing cycle using convex hull vertices.
Let S = S′ ∪S′′, where S′ is the set of convex hull vertices and S′′ is the set of interior
points. Let S′ = {pj1,pj2, . . . , pjh

}. Put h = |S′|, m = |S′′|, thus n = h + m.
The general plan is as follows. First we construct a non-crossing alternating path

A for a bipartition of S′′. If the two endpoints of A lie on conv(S′′), each can be
connected to some vertex of conv(S) and these two vertices can be connected on the
hull of S, resulting in a non-crossing cycle of S \ Z, where Z ⊂ S′. Then this partial
cycle of S can be augmented with the remaining points (in Z) in a non-crossing
fashion, and with no decrease in length.

We need to observe that the alternating path A on the subset S′′ ⊂ S produced by
the algorithm of Abellanas et al. [1] is not good enough for this strategy: even though
one endpoint of A (the first computed by the algorithm) is always on the convex hull
of S′′, the other endpoint might be blocked by edges of A, so that A might not be
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Fig. 11 A non-crossing
alternating path of S′′ obtained
by the algorithm of Abellanas et
al. For the purpose of cycle
construction, the path is
non-extendible from its second
endpoint, vertex 7. Here
S′ = {a, b, c, d},
S′′ = {1,2,3,4,5,6,7}, and
S = S′ ∪ S′′

extendible to a non-crossing Hamiltonian cycle (an example is shown in Fig. 11).
Here, we give a stronger result (Lemma 9) that fits our purpose (for an even number
of points). We then apply Lemma 9 for constructing an alternating path of S′′.

Lemma 9 Let S be an n-element point set. Every linearly separable bipartition
S = R ∪ B , with |R| = |B|, admits an alternating non-crossing spanning path such
that (1) the edges cross any separating line � at points ordered monotonically along �;
and (2) the two endpoints are incident to the two distinct edges of conv(S) that con-
nect R and B (the two red-blue bridges). Such a Hamiltonian path can be computed
in O(n logn) time. We refer to the underlying procedure as the two-endpoint path
construction algorithm.

Proof We modify the algorithm of Abellanas et al. for path construction, so that the
path is grown from the two endpoints and the two sub-paths merge “in the middle”.
See also Fig. 12. Recall that S = R ∪ B , and |R| = |B|, thus |S| is even. Let r1b1 and
r2b2 be the top and bottom red-blue edges of the convex hull conv(S), respectively,
called top and bottom bridges; it is possible that r1 = r2 or b1 = b2 but not both (for
n ≥ 3). One endpoint is an endpoint of the top bridge, and the other endpoint is an
endpoint of the bottom bridge, and they are chosen of opposite colors.

Let A = {r1, b2} or A = {b1, r2} arbitrarily, containing two endpoints of the path.
At every step, recompute the top and bottom bridges of S \ A, and append either
the red or the blue vertex of each bridge to A such that the appended edges cross
the separating line �. In the last step, the convex hull of S \ A is a red-blue segment
that merges the two sub-paths. The two new edges added simultaneously at each
step cannot cross each other; and they cannot cross previous edges, since they are
separated from them by the convex hull of S \ A. Finally, they cannot extend the two
sub-paths by the same point either, because |S| is even. �

The next lemma follows from [13, Lemma 2.1]; we will only need its corollary,
Lemma 11.

Lemma 10 ([13]) Let P = (p1,p2, . . . , pn) be a simple polygon (with the convention
that pn+1 = p1) and q be a point in the exterior of the convex hull of P , where
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V (P ) ∪ {q} is in general position. Then q sees one edge pipi+1 of P . Such an edge
can be found in O(n) time.

Lemma 11 Let P = (p1,p2, . . . , pn) be a simple polygon (with the convention that
pn+1 = p1) and q be a point in the exterior of the convex hull of P , where V (P )∪{q}
is in general position. Then the polygonal cycle P can be extended to include q so
that P ∪ {q} is still a simple polygon. More precisely, there exists i ∈ [n], so that
Q = (p1, . . . , pi, q,pi+1, . . . , pn) is a simple polygon. Moreover, L(Q) > L(P ). The
extension can be computed in O(n) time.

Proof By Lemma 10, q sees one edge pipi+1 of P . Replacing this edge of P by the
two edges piq and qpi+1 results in a simple polygon Q = (p1, . . . , pi, q,pi+1, . . . ,

pn). By the triangle inequality, L(Q) > L(P ). The extension can be computed in
O(n) time, as determined by the time needed to find a visible edge. �

Note that the condition in the lemma that q lies in the exterior of the convex hull
of P , is indeed necessary. Otherwise one cannot guarantee that q sees an edge of P .

(i) Our first algorithm. We are now ready to present our Algorithm A4. Assume
first for simplicity that m is even. An easy modification of the algorithm, explained
below, is used if m is odd.

Algorithm A4 STEP 1. For all non-equivalent bisections of S′′ (i.e., for all balanced
bipartitions of S′′): 1. Compute a non-crossing alternating path A of S′′ by using
the two-endpoint path construction algorithm (Lemma 9). 2. Extend A to a cycle by
connecting its endpoints to (one or two) convex hull vertices. 3. Further extend this
cycle to include the remaining hull vertices, by repeated invocation of Lemma 11.

STEP 2. Output the longest such cycle (containing all points of S).

Observe that after STEP 1.1, the two endpoints of the path are vertices of conv(S′′),
hence they can be connected to hull vertices in S′ to make a cycle. If m is odd, then
there is a point q ∈ S′′ on the line �. Use the two-endpoint path construction algorithm
for S′′ \ {q}, and the same bisecting line �. If q is in the interior of conv(S′′ \ {q}), then
extend the path with point q , using Lemma 2. Otherwise, q sees the top or bottom
bridge of conv(S′′ \ {q}), so the path can be extended by connecting q to the endpoint
visible to q . The two endpoints of the extended path are on conv(S′′), hence they can
be connected to hull vertices to make a cycle, as in the case of even m.

See Fig. 12 for an illustration of the algorithm on a small example. We now justify
its correctness and estimate the length of the output cycle. Assume first that m is even.
For a given α, let Aα be a non-crossing alternating path with respect to a balanced
bipartition of S′′ induced by the y-axis of Γα , as computed by the algorithm. Assume
that Aα = (pi1 ,pi2, . . . , pim). By projecting on the x-axis of Γα , we get

L(Aα) ≥ |xi1 | + 2|xi2 | + · · · + 2|xim−1 | + |xim |

= 2
n∑

i=1

|xi | − |xi1 | − |xim | − 2
(|xj1 | + · · · + |xjh

|)
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Fig. 12 Left: an alternating path (1,2, . . . ,8) obtained by using the two-endpoint path construction al-
gorithm (Lemma 9) for the case of even m. The path is extended to a cycle by connecting its endpoints
to convex hull vertices (here 9 and 10). The cycle (1,2, . . . ,10) will be subsequently extended to include
the remaining hull vertices (here 11 and 12) using Lemma 11. Right: an alternating path (1,2, . . . ,8)

obtained in the same way, and then extended to pass through vertex 9 (Lemma 2); the resulting path is
(1,2,3,4,5,6,9,7,8). The path is extended to a Hamiltonian cycle in the same way (Lemma 11)

=
n∑

j=1

(|xj | + |xj+1|
) − |xi1 | − |xim | − 2

(|xj1 | + · · · + |xjh
|)

≥
n∑

j=1

(|xj | + |xj+1|
) − Wα − (2h − 2)Wα

≥
n∑

j=1

|pjpj+1|
∣∣cos(βj,j+1 − α)

∣∣ − (2h − 1)Wα. (6)

In the above chain of inequalities we have used the facts that m is even, thus pi1

and pim lie on opposite sides of �, and that at least two convex hull vertices are also
separated by �. The inequality is maintained for m odd, as in the proof of Theorem 1.

Let A = (pi1 ,pi2, . . . , pim) be the longest of the O(k) Hamiltonian non-crossing
paths Aαi

over all O(k) balanced bipartitions of S′′. (In estimating the length of the
output cycle, it is enough to analyze the augmentation of A to a Hamiltonian cycle,
rather than of each path Aα .) Let u and v be (hull) vertices in S′ that can be connected
with the two endpoints pi1 and pim of A without crossings any edge of A (u and v

may be forced to coincide). Let P be the simple cycle (polygon) obtained by adding
to A the points on one of the two convex hull chains connecting u and v. In the last
phase, P is further extended by adding the remaining hull vertices (on the 2nd hull
chain connecting u and v) one by one by Lemma 11. Note that the length of the cycle
increases with each point addition. The total time for all additions is trivially bounded
by O(n2). The resulting polygonal cycle Q is non-crossing and spans all points in S,
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therefore making a Hamiltonian cycle of S. Its length is bounded as follows.

L(Q) ≥ L(A) ≥
n∑

j=1

|pjpj+1|
∣∣cos(βj,j+1 − α)

∣∣ − (2h − 1)Wα,

and by integration over the α-interval [0,π],

L(Q) ≥ 2

π
L(QOPT) − (2h − 1)

P

π
. (7)

If the point set satisfies the condition (2h − 1)P
π

≤ δL(QOPT), then

L(Q) ≥ 2

π
L(QOPT) − δL(QOPT) =

(
2

π
− δ

)
L(QOPT).

This concludes the proof of part (i) of Theorem 3.
(ii) Our second algorithm. One can reduce the term (2h − 1)P

π
in Inequality (7)

to (h + 1)P
π

at the cost of increasing the running time to O(n3 logn). We replace the
balanced partitions of S′′ by two unbalanced partitions of S. Recall that a line has
direction α ∈ [0,π) if it makes a counterclockwise angle of α with the x-axis. Let S

be a set of n points in the plane in general position. A direction α ∈ [0,π) is general
if the supporting line of no two points in S has direction α. The lines of a general
direction α partition S in 2n + 1 different ways (into subsets lying on the left, on
the right, and on the line). Two directions, α and β , are equivalent if they induce the
same 2n + 1 partitions of S. There are exactly

(
n
2

)
non-equivalent directions.

Recall that S = S′ ∪ S′′, where S′ is the set of convex hull vertices and S′′ is
the set of interior points. Fix a general direction α ∈ (0,π). A line � of direction α

is left-balanced if the number of points of S in the left open halfplane equals the
number of points of S′′ in the right open halfplane. It is easy to see that all left-
balanced lines are equivalent. Indeed if we continuously move a line � of direction α

from left to right, then the number of points of S in the left open halfplane increases
every time � passes through a point of S, and the number of points of S′′ in the right
open halfplane monotonically decreases. Therefore, there is equality for exactly one
equivalence class of lines of direction α. Denote by S1

α the set of all points of S′′ and
the points in S′ lying in the left closed halfplane of a left-balanced line. Clearly, every
left-balanced line is a bisecting line for S1

α .
Similarly, a line � of direction α is right-balanced if the number of points of S in

the right open halfplane equals the number of points of S′′ in the left open halfplane.
Denote by S2

α the set of all points of S′′ and the points in S′ lying in the right closed
halfplane of a right-balanced line. Note that a left-balanced line lies to the left of
a right-balanced line, in particular, they are separated by the bisecting line of S of
direction α. We now present our Algorithm A4′.

Algorithm A4′ STEP 1. For all non-equivalent general directions α, compute a left-
balanced line �1

α , a right-balanced line �2
α , and the two sets S1

α and S2
α . For i = 1,2

do: 1. If |Si
α| is even, compute a non-crossing alternating path A for Si

α using the two-
endpoint path construction algorithm (in Lemma 9). 2. If |Si

α| is odd, then �i
α passes
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Fig. 13 Left: an alternating path 1,2, . . . ,10 constructed by the two-endpoint path construction algorithm
(Lemma 9) for the set bisected by �1

α . It is augmented to pass through point 11 incident to �1
α , and then to

a Hamiltonian cycle along the remaining convex hull vertices 12,13,14,15. Right: an alternating path, an
augmented path, and a Hamiltonian cycle analogously computed for line �2

α

through some point q ∈ Si
α . Compute a non-crossing alternating path for Si

α \ {q}
with the two-endpoint path construction algorithm, and then extend it to include q

as follows: if q is in the interior of conv(Si
α), then use Lemma 2 to augment the

alternating path with q; otherwise connect q to the endpoint of the path lying on the
upper or lower bridge of conv(Si

α), whichever is visible from q . 3. Complete the path
A on Si

α to a cycle through the remaining convex hull vertices in S \ Si
α .

STEP 2. Output the longest such cycle (containing all points of S).

We now analyze this algorithm. For a given α ∈ (0,π), let A1
α and A2

α be the two
non-crossing paths computed in STEP 1(1–2) of Algorithm A4′ for the lines �1

α and
�2
α , respectively. The path A1

α is a Hamiltonian path on S1
α such that one endpoint is

an endpoint of the top bridge of conv(S1
α), and the other endpoint is an endpoint of the

bottom bridge of conv(S1
α) with respect to �1

α . Since conv(S1
α) ⊂ conv(S), the end-

points of the top (resp., bottom) bridge of conv(S) and the top (resp., bottom) bridge
of conv(S1

α) are in convex position. Hence, the edges that connect the endpoints of A1
α

to the top and bottom vertices of conv(S \S1
α) lie outside of conv(S1

α), and so they do
not cross any edge of A1

α , which lies inside conv(S1
α). This shows that in STEP 1(3)

of Algorithm A4′, the path A1
α is completed to a non-crossing Hamiltonian cycle.

Analogously, the path A2
α is also completed to a non-crossing Hamiltonian cycle.

There are
(
n
2

) = O(n2) non-equivalent general directions α ∈ (0,π). In each di-
rection α, we can compute �1

α , �2
α , S1

α and S2
α in O(n logn) time by a sweep line algo-

rithm. By Lemma 1, we can compute the alternating paths A1
α and A2

α in O(n logn)

time. Consequently the total running time of A4′ is O(n3 logn).
Fix a general direction α ∈ (0,π), a left-balanced line �1

α , and a right-balanced
line �2

α . Assume that S1
α = {pi : i ∈ I } and S2

α = {pj : j ∈ J }. Denote by x1(p) and
x2(p) the distance of a point p from the lines �1

α and �2
α , respectively. A point p ∈ S′

in the closed slab between �1
α and �2

α is incident to neither A1
α nor A2

α ; for such a
point we have x1(p) + x2(p) ≤ Wα . Every point p ∈ S′ to the left of �1

α or to the
right of �2

α is incident to exactly one of A1
α and A2

α , and for such a point we have
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max{x1(p), x2(p)} ≤ Wα . This implies that
∑

i �∈I x1(pi)+∑
j �∈J x2(pj ) ≤ |S′|Wα =

hWα . Similarly to (6), we obtain

L
(
A1

α

) + L
(
A2

α

)

≥
(

2
∑

i∈I

x1(pi) − Wα

)
+

(
2
∑

j∈J

x2(pj ) − Wα

)

= 2

(
n∑

i=1

x1(pi) −
∑

i �∈I

x1(pi)

)

+ 2

(
n∑

j=1

x2(pj ) −
∑

j �∈J

x2(pj )

)

− 2Wα

= 2
n∑

i=1

x1(pi) + 2
n∑

i=1

x2(pi) − 2

(∑

i �∈I

x1(pi) +
∑

j �∈J

x2(pj )

)
− 2Wα

≥ 2
n∑

i=1

x1(pi) + 2
n∑

i=1

x2(pi) − 2hWα − 2Wα

=
n∑

i=1

[
x1(pi) + x1(pi+1)

] +
n∑

i=1

[
x2(pi) + x2(pi+1)

] − (2h + 2)Wα

≥ 2
n∑

i=1

|pipi+1|
∣∣cos(βi,i+1 − α)

∣∣ − (2h + 2)Wα.

Consequently,

max
{
L

(
A1

α

)
,L

(
A2

α

)} ≥
n∑

i=1

|pipi+1|
∣∣cos(βi,i+1 − α)

∣∣ − (h + 1)Wα.

By integration over the α-interval [0,π], we obtain the desired bound

L(Q) ≥ 2

π
L(QOPT) − h + 1

π
P. (8)

The proof of part (iii) is analogous to that of part (iii) of Theorem 1. This concludes
the proof of Theorem 3. �

We now discuss an example illustrating part (i). Denote by E[U ] the expected
value of a random variable U . According to a result of Rényi and Sulanke (1963),
if n points are chosen uniformly and independently at random from a plane convex
r-gon (r fixed), then E[h] = O(logn), where the hidden constant depends on r [19,
pp. 151]. According to a another result of Raynaud (1970), if n points are chosen
uniformly and independently at random in a circle, then E[h] = O(n1/3) [19, pp.
151]. Hence for a set of n random points uniformly selected in a convex polygon
or a circle, h = O(n1/3) with probability close to 1. Let the selection region have
unit diameter. Then also with high probability, we have L(MOPT) = Ω(n), thus also
L(QOPT) = Ω(n). Since P ≤ π , we have (2h − 1)P

π
≤ δL(QOPT) with high proba-

bility, for a very small δ = O(1/n2/3). Thus by inequality (7), the cycle returned by



Discrete Comput Geom (2010) 44: 727–752 751

A4 is a (2/π − o(1)) approximation of the optimal path for random point instances
as described above.

5 Concluding Remarks

It is generally believed that the number of halving lines of a point set is O(n1+ε), for
any ε > 0 [9, 11, 20], so it is also very likely that the running time of our algorithm
for Hamiltonian paths (n even) is also O(n2+ε), for any ε > 0.

Similarly to [3], our approximation factors are in terms of L(HOPT) and L(TOPT)

respectively, rather than their non-crossing counterparts. In other words, the trivial
bounds L(H ∗

OPT) ≤ L(HOPT), and L(T ∗
OPT) ≤ L(TOPT) are used in the proofs. It is not

clear if one can use the lengths of the non-crossing optimal structures for improving
the approximation ratios. The situation is similar for the Hamiltonian cycle problem.
It is worth studying whether the lower bound estimate on the length of the cycle
returned by our Algorithm A4 may be used to derive an approximation ratio that
holds for all instances, similarly to the Hamiltonian path problem. A more precise
analysis of the approximation ratio of our Algorithm A3 for non-crossing spanning
tree construction remains as another open problem. We believe that the approximation
ratio of A3 is substantially better than 1/2.

Acknowledgements The authors thank Gruia Călinescu for valuable remarks and for many interesting
conversations on the topic.
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