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1 Introduction

In this paper we consider extremal Betti numbers of Vietoris–Rips complexes. Given
a finite set of points S in Euclidean space R

d , we define the Vietoris–Rips complex
Rδ(S) as the simplicial complex whose faces are given by all subsets of S with diam-
eter at most δ. By scaling, we assume that δ = 1 and take R(S) := R1(S). Our main
goal in this paper is to determine the maximum Betti numbers of R(S) in terms of |S|
and d .

Finding such bounds is a natural problem in combinatorial geometry. Several au-
thors, including Björner and Kalai [1], have considered other types of bounds relat-
ing to Betti numbers and simplicial complexes. Since every Vietoris–Rips complex
is flag, such a complex is also determined by the edges it contains. This adds a flavor
of extremal graph theory to our work.

Vietoris–Rips complexes have a wide range of applications. Vietoris [23] used
them to calculate the homology groups of metric spaces. Other applications include
geometric group theory [11], simplicial approximation of point-cloud data [2–5, 13,
18], and modeling communication between nodes in sensor networks [8, 9, 14]. In
the specific case of the Euclidean plane, the topology of Vietoris–Rips complexes is
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studied by Chambers, de Silva, Erickson, and Ghrist [6]. Vietoris–Rips complexes
are used in manifold reconstruction by Chazal and Oudot [7].

For a fixed base field k, we denote the reduced homology groups of a simplicial
complex Γ by H̃p(Γ ;k). We use reduced homology to simplify usage of the Mayer–
Vietoris sequence. The Betti numbers are given by β̃p(Γ ;k) := dimk(H̃p(Γ ;k)). We
define

Mp,d(n;k) := max
{
β̃p

(
R(S);k

)
: S ⊂ R

d, |S| ≤ n
}
.

The values of β̃p(Γ ;k) and Mp,d(n;k) may depend on k. However, all of our results
are independent of k, and so k will be fixed and suppressed from our notation. Our
methods break down, though, when the coefficients are not chosen to be a field.

The Betti numbers of random Vietoris–Rips complexes are discussed by Kahle
[15]. Under Kahle’s set-up, points are chosen from a common distribution on a mani-
fold, and β̃p(R(S)) grows at most linearly in the number of vertices. By contrast, our
examples of super-linear growth in the Betti numbers arise from specialized construc-
tions. Kahle also explores Betti numbers of general random clique complexes [16].
Both papers make heavy use of methods from probability theory, algebraic topology,
and Morse theory.

We review notation and some facts on simplicial complexes and algebraic topol-
ogy in Sect. 2. One of our most important inductive tools, which we use in the
proof of every upper bound result, is that if Γ is a simplicial complex, v is a
vertex in Γ , and Δ is the complex that results from removing v from Γ , then
β̃p(Γ ) ≤ β̃p(Δ) + β̃p−1(lk(v)). In Sect. 3, we prove that M1,d (n) grows linearly
in n for each fixed d . The lower bound on M1,d (n) follows by a simple construction,
and the upper bound follows by an inductive argument on n. The inductive step ob-
serves that the number of connected components in the Vietoris–Rips complex of a
point set contained in a unit ball cannot exceed the Kd , the kissing number in R

d ,
and so the upper bound is M1,d (n) ≤ (Kd − 1)n.

The rest of Sect. 3 is devoted to a careful study of the structure of the first ho-
mology group of a Vietoris–Rips complex, as this is necessary to apply an inductive
argument to the second Betti number. We partition R

d into cubes with side length
ε, choosing ε small enough so that the diameter of each cube is at most 1. If S is
contained in a sphere of fixed size, then we can choose a basis of cycles for the first
homology so that all but a constant number of the cycles are of a convenient form that
we call ε-simple. Such a cycle is of the form (u,u′, v′, v), where u and u′ are in the
same ε-cube, and v and v′ are in the same ε-cube. After some additional refinements
to the set of generators, we choose a specific edge from each generator, and we call
the collection of edges a pseudobasis for the point set S. If we choose subsets U and
V of S to be intersections of S with ε-cubes, then the set of edges in the pseudobasis
with vertices in U and V is an induced matching in R(S).

Armed with a combinatorial approximation for the first homology of links of ver-
tices, in Sect. 4 we prove that M2,2(n) grows linearly in n. The lower bound also
follows by a simple construction. For the upper bound, we let W be a maximally
sized intersection of S with an ε-cube, and we prove that for some w ∈ W , the size of
the pseudobasis for lk(w) and hence β̃1(lk(w)) are bounded by absolute constants.
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This requires a careful analysis of planar geometry and the combinatorial properties
of a pseudobasis. Then induction gives us the upper bound on β̃2(R(S)).

Also in Sect. 4, for each fixed d we prove that M2,d (n) = o(n2). In this setting
we lack the tools from planar geometry and rely on the properties of a pseudobasis.
We choose W as before, and we show that by restricting the pseudobasis of lk(w)

for all w ∈ W to two ε-cubes, we get a collection of disjoint induced matchings
on a bipartite graph. The proof is finished by citing a deep result on the sizes of
disjoint induced matchings. We complete Sect. 4 by giving a construction to prove
that M2,5(n) = Ω(n3/2).

In Sect. 5, we extend the results of the previous sections by showing that for each
fixed p and d , Mp,d(n) = o(np) and Mp,2(n) = O(np−1). This follows readily by the
inductive argument. We also give constructions to show that Mp,2(n) = Ω(n�p/2�)
and Mp,5(n) = Ω(np/2+1/2) for each fixed p. Our upper bound on Mp,d(n) is better
than the trivial upper bound of

(
n

p+1

)
by slightly more than a factor of n.

In Sect. 6, we consider similar bounds on the Betti numbers of related objects
known as quasi-Vietoris–Rips complexes. A quasi-Vietoris–Rips complex is a relax-
ation of a Vietoris–Rips complex; if the distance between vertices u and v is between
some fixed α and 1, the edge uv may be included or excluded arbitrarily. In this set-
ting we are forced to rely on the combinatorial properties of a pseudobasis. We prove
that for fixed d , the upper bound on β̃2 is within a constant multiple of the maximum
number of edges in n disjoint induced matchings on a bipartite graph with n vertices
on each side.

2 Definitions and Preliminaries

In this section, we review some basic concepts relating to simplicial complexes, al-
gebraic topology, and matchings in a bipartite graph.

An abstract simplicial complex Γ on a finite set S, called the vertex set, is a col-
lection of subsets, called faces, of S that is closed under inclusion and contains all
singleton subsets. A face with two elements is called an edge. A simplex is a sim-
plicial complex that contains all subsets of the vertex set. For convenience, we often
suppress commas and braces when expressing faces of a simplicial complex. We also
refer to the vertex set of Γ by V (Γ ). In this section, Γ refers to a general simpli-
cial complex, a class which includes Vietoris–Rips complexes and graphs as special
cases, unless otherwise specified.

If v ∈ V (Γ ), then we define the link lkΓ (v), or lk(v) when Γ is implicit, as the set
of faces F in Γ such that F ∪{v} ∈ Γ and v /∈ F . The closed star stΓ (v) = st(v) is the
set of faces F in Γ such that F ∪ {v} ∈ Γ . For a Vietoris–Rips complex R(S), closed
stars and links are also Vietoris–Rips complexes. For a vertex v, define the neighbor
set N(v) to be the set of vertices u such that 0 < dist(u, v) ≤ 1. Then for v ∈ R(S),
we have that lk(v) = R(N(v)) and st(v) = R(N(v) ∪ {v}). The induced subcomplex
Γ [W ] for a set of vertices W is the set of faces in Γ that are also contained in W

(for technical reasons, we allow the possibility that W 	⊂ V (Γ )). For a Vietoris–Rips
complex R(S) with W ⊂ S, we have that R(S)[W ] = R(W).
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Every Vietoris–Rips complex is a flag complex. A flag complex, also called a
clique complex, is a simplicial complex Γ such that F ∈ Γ whenever all 2-subsets of
F are edges in Γ . Thus a flag complex is determined by its edges.

We use several basic concepts from algebraic topology; see Hatcher’s book [12]
for a good overview. For a simplicial complex Γ , let Δp(Γ ) be the vector space
over k of formal sums of p-faces with coefficients in k. For the moment we assume
that V (Γ ) is given by integers 1 to |V (Γ )|. Let ∂p : Δp(Γ ) → Δp−1(Γ ) be the
linear map that takes F = {v0, v1, . . . , vp} to

∑p

j=0(−1)j (F − {vj }), assuming that
v0 < v1 < · · · < vp . It is easy to check that ∂p ◦ ∂p+1 = 0, and we define

H̃p(Γ ;k) = H̃p(Γ ) := ker ∂p

im ∂p+1
and β̃p(Γ ;k) = β̃p(Γ ) := dimk

(
H̃p(Γ )

)
.

Up to isomorphism, the homology groups are independent of the ordering of the
vertices, and so an ordering is not assumed.

We make frequent use of the Mayer–Vietoris sequence, which asserts that for a
simplicial complex W that can be written as a union of subcomplexes U ∪ V , the
following sequence is exact:

· · · → H̃p+1(W) → H̃p(U ∩ V ) → H̃p(U) ⊕ H̃p(V ) → H̃p(W) → ·· · .
The following application of the Mayer–Vietoris sequence is one of our most im-

portant inductive tools.

Lemma 2.1 Let Γ be a simplicial complex, and consider v ∈ V (Γ ). Then for all p,
we have β̃p(Γ ) ≤ β̃p(Γ [V (Γ ) − {v}]) + β̃p−1(lk(v)).

Proof Consider Δ := Γ [V (Γ ) − {v}] and Δ′ := stΓ (v). Then Δ ∪ Δ′ = Γ and Δ ∩
Δ′ = lk(v). Since Δ′ is a cone—that is, v is contained in all maximal faces of Δ′—
all of its homology groups vanish. The lemma then follows from the Mayer–Vietoris
sequence. �

Let Γ and Δ be two simplicial complexes. We define their simplicial join Γ ∗ Δ

to have vertex set V (Γ )� V (Δ) and faces F ∪G for all F ∈ Γ and G ∈ Δ. For p ≥ 0,
the Künneth Formula [12] gives

β̃p(Γ ∗ Δ) =
∑

i+j=p−1

β̃i (Γ )β̃j (Δ),

noting that β̃−1(Γ ) = 1 if Γ = {∅} and β̃−1(Γ ) = 0 otherwise. Let S and S′ be
disjoint subsets of R

d such that dist(s, s′) ≤ 1 for all s ∈ S and s′ ∈ S′. Then
R(S ∪ S′) = R(S) ∗ R(S′).

Given a simplicial complex Γ with some vertices v1, . . . , vr , subscripts mod r ,
and edges vivi+1 for each i, the notation C = (v1, . . . , vr ) refers to the cycle in Γ .
We equivalently think of C as the simplicial 1-chain

∑r
i=1 ±vivi+1, with signs cho-

sen so that ∂C = 0. We denote by [C]Γ , or [C] when Γ is clear from context, the
equivalence class of C in H̃1(Γ ).
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We make use of complexity notation. Given positive functions f (n) and g(n),
the notation f (n) = O(g(n)) means that there exists a constant C such that f (n) <

Cg(n) for sufficiently large n. By f (n) = o(g(n)), we mean that for every ε > 0,
we have that f (n) < εg(n) for sufficiently large n. The expressions f (n) = Ω(g(n))

and f (n) = ω(g(n)) mean respectively that g(n) = O(f (n)) and g(n) = o(f (n)).
By f (n) = θ(g(n)), we mean that f (n) = O(g(n)) and f (n) = Ω(g(n)).

We express some of our bounds in terms of disjoint induced matchings. Let G be a
bipartite graph. Then a matching M is a set of edges in G such that no two edges share
a common vertex. Furthermore, we say that M is an induced matching if M is also
an induced subgraph of G. Define I (n) to be the maximum value of

∑
M∈M |M|,

where M is a set of disjoint, induced matchings on a bipartite graph with n vertices
on each side and |M| = n.

Determining the value of I (n), even to within a multiplicative constant, is a very
challenging problem. Via the method of Ruzsa and Szemerédi [21], an example of

Elkin [10] can be adapted to show that I (n) = Ω(n22−O(
√

log(n) )). As given in the

proof of Proposition 10.45 of Tao and Vu [22], I (n) = O( n2

(log∗(n))1/5 ), where log∗(n)

is the iterated logarithm, the number of natural logarithms one needs to apply to n to
obtain a value less than 1. The log∗(n) term comes from the usage of the Szemerédi
Regularity Lemma in the proof.

For our purposes, the most relevant observations are that I (n) = ω(n3/2) and
I (n) = o(n2). We also need to quantify the regularity of the growth of I (n). It is
easy to see that I (n) is increasing. Furthermore, given a bipartite graph with n ver-
tices on each side and with n disjoint induced matchings, we may create two disjoint
copies of the graph. This shows that for all n, I (2n) ≥ 2I (n) and I (2kn) ≥ 2kI (n),
which by monotonicity of I (n) implies that for n > m,

I (n) ≥ n

2m
I (m). (1)

3 Results on First Homology

We begin this section by proving the linear growth rate of M1,d (n). The lower bound
is approximately (d − 1)n for fixed d and large n. The upper bound on β̃1 is given
in terms of the kissing number. The kissing number in R

d , which we denote by Kd ,
is the maximum number of spheres of radius 1 that are tangent to a central sphere of
radius 1, given that no two spheres overlap in their interiors. See the article of Pfender
and Ziegler [20] for some information on kissing numbers. Let B(v, r) be the ball of
radius r centered at a point v.

Theorem 3.1 Let k := �n1/d�. Then

dkd−1(k − 1) − kd + 1 ≤ M1,d (n) ≤ (Kd − 1)n.

Proof First we prove the upper bound. Choose v ∈ S, and let U be a set of vertices
that are all in different components of lk(v). Then dist(u,u′) > 1 for all distinct u

and u′ in U , which implies that ∠uvu′ > π/3. For all u ∈ U , let wu be the point on
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the ray �vu that is distance 2 from v. Then all of the B(wu,1) are tangent to B(v,1)

and no two of them overlap, which proves that |U | ≤ Kd and β̃0(lk(v)) ≤ Kd − 1.
The upper bound follows by induction on n and Lemma 2.1.

To establish the lower bound, let S be the set of all points in R
d with inte-

ger coordinates between 1 and k inclusive. Then R(S) is connected, and it has
kd ≤ n vertices, dkd−1(k − 1) edges, and no higher faces. It follows that β̃1(R(S)) =
dkd−1(k − 1) − kd + 1 as desired. �

The rest of this section is devoted to constructing an approximate combinatorial
interpretation of a basis for H̃1(R(S)) called a pseudobasis.

For a given ε > 0, we partition R
d into ε-cubes. An ε-cube is a product of half-

open intervals

[
m1ε, (m1 + 1)ε

) × · · · × [
mdε, (md + 1)ε

)
, m1, . . . ,md ∈ Z.

If ε ≤ d−1/2 and S is a finite subset of a single ε-cube, then R(S) is a simplex. We
define an equivalence relationship ∼ε on vertices and cycles. For v and v′ in S, we
say that v ∼ε v′ if v and v′ are in the same ε-cube. For cycles C = (u1, . . . , uk) and
C′ = (v1, . . . , vk), we say that C ∼ε C′ if, perhaps under a cyclic rotation of vertices,
each ui ∼ε vi . If C = (u,u′, v′, v) is a cycle with u ∼ε u′ and v ∼ε v′, then we say
that C is ε-simple.

The bipartite core of a graph G on vertex set U � V is obtained by deleting all
edges of G[U ] and G[V ], and then deleting all isolated vertices. For sets U and V

of vertices in R
d , we denote by GS[U,V ] the bipartite core of the graph of R(S) on

U � V .
For the remainder of the paper, we define the values

κd,r,ε := (�2r/ε� + 1
)d and Cd,r,ε :=

2κd,r,ε∑

i=3

(κd,r,ε)
i

whenever d, r , and ε are defined. Suppose that S is a point configuration contained
in a ball of radius r . Then S is covered by a set of at most κd,r,ε ε-cubes. There are at
most (κd,r,ε)

i equivalence classes under ∼ε of cycles of length i in S, and there are at
most Cd,r,ε equivalence classes under ∼ε of cycles of length at most 2κd,r,ε in S. We
define a partitioning of S, called PεS, so that each element of PεS is the intersection
of S with an ε-cube. We consider ∅ as an element of PεS.

Definition 3.2 Let S ⊂ R
d be contained in a ball of radius r , and let W ∈ PεS.

A (W, r, ε)-pseudobasis of S (equivalently, a pseudobasis for the Vietoris–Rips com-
plex R(S)) is a set of edges E, which we partition into subsets EU,V = EV,U for all
distinct U and V in PεS, such that

|E| ≥ β̃1
(
R(S)

) − Cd,r,ε −
(

κd,r,ε

2

)

and the following conditions are satisfied.
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(PB1) Every edge in EU,V contains a vertex in U and a vertex in V .
(PB2) If neither U nor V is W , and uv ∈ EU,V , then there is no face wuv for any

w ∈ W .
(PB3) No two edges of EU,V are in the same component of GS[U,V ].
(PB4) Let e and f be edges in EU,V , and let Ge and Gf be the components of

GS[U,V ] that contain e and f respectively. Then there is no vertex s ∈ S

such that lk(s) contains an edge in Ge and an edge in Gf .

If W is a subset of R
d that is not contained in S, but W ∩ S is in PεS, then by a

(W, r, ε)-pseudobasis we mean a (W ∩ S, r, ε)-pseudobasis. An important observa-
tion is that PB1 and PB3 imply that EU,V is an induced matching in GS[U,V ].

Theorem 3.3 Let S ⊂ R
d be contained in a ball of radius r , let W ∈ PεS, and sup-

pose that ε ≤ d−1/2. Then S has a (W, r, ε)-pseudobasis.

We begin the proof with a lemma on the existence of a set of ε-simple cycles that
is linearly independent in H̃1(R(S)).

Lemma 3.4 Fix ε ≤ d−1/2, and let S ⊂ R
d be contained in a ball of radius r . Then

there exists a set of β̃1(R(S)) − Cd,r,ε cycles that are ε-simple in R(S), and this set
is linearly independent in H̃1(R(S)).

Proof It is a standard fact in algebraic topology that H̃1(R(S)) has a basis B̃ such that
every element of B̃ is the equivalence class of a cycle. Let B be the corresponding set
of cycles. If [C] is the equivalence class of a self-intersecting cycle or a cycle with a
chord (that is, an edge between vertices that are not adjacent in the cycle), then [C]
can be written as the sum of the equivalence classes of two smaller cycles. Thus by
induction H̃1(R(S)) is generated by the equivalence classes of non-self-intersecting,
chord-free cycles, and in particular we may assume that every element of B is a non-
self-intersecting, chord-free cycle.

In any simplicial complex, if C is a non-self-intersecting, chord-free cycle with at
least four vertices, then the subcomplex induced on the vertices of C does not contain
two-dimensional faces. If (v1, . . . , vk) ∈ B , then no three vertices are in the same ε-
cube, and k ≤ 2κd,r,ε . Thus the elements in B represent at most Cd,r,ε equivalence
classes under ∼ε .

Let C = (u1, . . . , uk) and C′ = (v1, . . . , vk) be two cycles in B that are not ε-
simple and that satisfy C ∼ε C′. See Fig. 1 for an illustration. There exist edges uivi

for all i, and so

[C′] = [C] + [v1, v2, u2, u1] + · · · + [vk−1, vk, uk, uk−1] + [vk, v1, u1, uk].
The operation of removing C′ from B , adding the cycles [vi, vi+1, ui+1, ui] for each
i and [vk, v1, u1, uk], and taking a maximal linearly independent subset in H̃1(R(S))

preserves the span of B in H̃1(R(S)). Furthermore, this operation strictly decreases
the number of non-ε-simple cycles in B . By induction, we assume that non-ε-simple
cycles in B comprise at most one element from each equivalence class under ∼ε .
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Fig. 1 The outer cycle is the
sum of the inner cycle and six
ε-simple cycles

Fig. 2 Rectification: replace
(u1, v1, v2, u2) with
(u, v, v1, u1) and (u, v, v2, u2)

Now remove all non-ε-simple cycles from B . After this operation, we have that
|B| ≥ β̃1(R(S)) − Cd,r,ε , and B is linearly independent in H̃1(R(S)). �

Proof of Theorem 3.3 We prove the theorem by construction. Let B be a set of
β̃1(R(S)) − Cd,r,ε cycles that are ε-simple and linearly independent in H̃1(R(S)).
The existence of such B is guaranteed by Lemma 3.4. Partition B into subsets
BU,V = BV,U for each U and V in PεS such that each cycle in BU,V contains vertices
of U and V . Note that BU,U = ∅ since if {u1, u2, u3, u4} ⊂ U , then R(u1, u2, u3, u4)

is a simplex and is acyclic. We perform two further standardizations to B , and then
we verify that by letting EU,V consist of a particular edge from each cycle in BU,V ,
the properties of a pseudobasis are fulfilled.

For our first standardization, we define an operation called rectification on BU,V as
follows. The process is illustrated in Fig. 2. Choose points u ∈ U and v ∈ V such that
the edge uv is in some cycle in BU,V . If (u1, v1, v2, u2) ∈ BU,V , then in H̃1(R(S)),
we have [u1, v1, v2, u2] = [u1, v1, v, v2, u2, u] by the existence of faces uu1u2 and
vv1v2 in R(S). By the existence of the edge uv,

[u1, v1, v2, u2] = [u,v, v2, u2] − [u,v, v1, u1]. (2)

In BU,V , replace every cycle of the form (u1, v1, v2, u2), with u1 and u2 in U and
v1 and v2 in V , with cycles (u, v, v2, u2) and (u, v, v1, u1), and then replace BU,V

with a maximal subset that is linearly independent in H̃1(R(S)). Rectification does
not decrease the span of B , nor does it increase the number of edges with one vertex
in U and the other in V used in cycles of BU,V . An edge uv with u ∈ U and v ∈ V

that is in every cycle of BU,V is called a pivot. By construction, BU,V has a pivot after
it has been rectified. Assume now that each BU,V is rectified.

For our second standardization, which is illustrated in Fig. 3, consider subsets U

and V in PεS −{W } with a pivot uv for points u ∈ U and v ∈ V . A butterfly configu-
ration consists of the following: points w1 and w2 in W ; distinct cycles (u, v, v1, u1)
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Fig. 3 A butterfly
configuration. Keep
(u, v, v1, u1), and replace
(u, v, v2, u2) with
(u1,w1,w2, u2) and
(v2,w2,w1, v1)

Fig. 4 Verifying Property PB3.
The edges u1v1 and u2v2 are in
the same component of
GS [U,V ]. The homology
classes [u,v, v1, u1] and
[u,v, v2, u2] are equal, and thus
u1v1 and u2v2 are not both
in EU,V

and (u, v, v2, u2) in BU,V ; and faces w1u1v1 and w2u2v2 in R(S). First suppose that
w1 	= w2. Then in H̃1(R(S)),

[u1, v1, v2, u2] = [u1,w1, v1, v2,w2, u2].
By the existence of an edge w1w2, this is equal to [u1,w1,w2, u2]+ [v2,w2,w1, v1].
Combining this with (2),

[u,v, v2, u2] = [u,v, v1, u1] + [u1,w1,w2, u2] + [v2,w2,w1, v1].
Consider the operation of removing (u, v, v2, u2) from BU,V ; adding (u1,w1,w2, u2)

and (v2,w2,w1, v1) to BW,U and BW,V respectively; and rectifying BU,V , BW,U ,
and BW,V . This operation does not decrease the span of B in H̃1(R(S)), and it strictly
decreases the number of edges between U and V that are used in cycles of BU,V .
In the case that w1 = w2, we have faces w1u1u2 and w1v1v2 in R(S) and hence
[u1, v1, v2, u2] = 0, and by (2), [u,v, v1, u1] = [u,v, v2, u2], violating linear inde-
pendence. By induction on the number of edges between U and V used in cycles of
BU,V , we assume that no butterfly configurations exist.

Next, for all U and V in PεS − {W } with pivot uv for u ∈ U and v ∈ V , delete
from BU,V every cycle of the form (u, v, v′, u′) such that there is a face wu′v′ in
R(S) for some w ∈ W . By the non-existence of butterfly configurations, at most one
cycle is deleted from BU,V , and at most

(κd,r,ε

2

)
cycles are deleted in total.

Now, for all U and V in PεS with pivot uv for u ∈ U and v ∈ V , define EU,V to be
the set of all u′v′ such that (u, v, v′, u′) is a cycle in BU,V , and let E be the union of
all the EU,V . By construction, |E| ≥ β̃1(R(S)) − Cd,r,ε − (κd,r,ε

2

)
, and PB1 and PB2

are fulfilled for E.
To verify PB3, we show that for vertices u1 and u2 in U and v1 and v2 in V

with the edges u1v1 and u2v2 in the same component of GS[U,V ], we cannot have
both u1v1 and u2v2 in EU,V , as shown in Fig. 4. By linear independence of BU,V , it



Discrete Comput Geom (2011) 46: 132–155 141

Fig. 5 Verifying Property PB4.
The edges e := u1v1 and
f := u2v2 are not both in EU,V

with all shown faces present

suffices to show that the homology classes [u,v, v1, u1] and [u,v, v2, u2] are equal.
In the case that v1 = v2, the claim holds by the existence of faces u1u2v1 and uu1u2.
The claim similarly holds in the case that u1 = u2, and it holds in general by induction
on the length of the shortest path between the edges.

To verify PB4, consider the following configuration: points s ∈ S; u1, u2, u
′
1,

u′
2 ∈ U ; and v1, v2, v

′
1, v

′
2 ∈ V ; edges e := u1v1 and u′

1v
′
1 in the same component

of GS[U,V ]; edges f := u2v2 and u′
2v

′
2 in the same component of GS[U,V ]; and

faces su′
1v

′
1 and su′

2v
′
2 in R(S); as shown in Fig. 5. We must show that e and f are

not both in EU,V , and it suffices to show by linear independence of BU,V that the
homology classes [u,v, v1, u1] and [u,v, v2, u2] are equal. By (2), it suffices to show
that [u1, v1, v2, u2] = 0. This is equivalent to [u′

1, v
′
1, v

′
2, u

′
2] = 0 by the argument of

the previous paragraph. This holds by the existence of faces su′
1v

′
1, su′

2v
′
2, su′

1u
′
2, and

sv′
1v

′
2 in R(S). �

4 Results on Second Homology

In this section, we prove upper bounds on M2,2(n) and M2,d (n) and a lower bound
on M2,5(n). Throughout this section, the phrase “the d-dimensional hypotheses” is
shorthand for the following: S is a subset of R

d of cardinality at most n, W in PεS

is chosen to be of maximum cardinality, Ew is a pseudobasis for lk(w) for every
w ∈ W , and for every U and V in PεS, the set of edges in Ew with one vertex in U

and the other in V is denoted by Ew
U,V . We also mean that r := 3/2 and ε := d−1/2,

except when d = 2, in which case we take ε := 0.01. We begin with M2,2(n).

Theorem 4.1 We have that M2,2(n) = Θ(n). In particular M2,2(n) ≥ �n/2� − 2.

Proof Take the two-dimensional hypotheses. The lower bound on M2,2(n) is estab-
lished by a more general construction in the proof of Theorem 5.2.

We claim that for all U and V in PεS,

∑

w∈W

∣∣Ew
U,V

∣∣ ≤ 10|W |.

Observe that
⋃

w∈W N(w) is contained in a disc of radius r . Hence there are at most(κd,r,ε

2

)
pairs U and V in PεS such that Ew

U,V is non-empty for some w ∈ W , and so
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Fig. 6 Edges in a pseudobasis
for lk(w). In this figure,
EU,V = {u1v1, u2v2, u3v3} and
Uw = {u1, u2, u3}

assuming the above claim, it follows that

∑

w∈W

∣∣Ew
∣∣ ≤ 10

(
κd,r,ε

2

)
|W |,

and that there exists some w ∈ W such that |Ew| ≤ 10
(κd,r,ε

2

)
. By construction of Ew ,

β̃1
(
lk(w)

) ≤ 10

(
κd,r,ε

2

)
+ Cd,r,ε +

(
κd,r,ε

2

)
. (3)

The theorem follows by Lemma 2.1 and induction on |S|.
The proof of the claim is accomplished over the next five lemmas. Lemma 4.2

is need both for the d = 2 and higher d cases, and it helps us limit the size of
Ew

U,W . Lemma 4.3, regarding the arrangement of four points that form two edges
in R(S) that intersect in the plane, is found in the work of Chambers et al. [6, Propo-
sition 2.1]. Lemma 4.4 is series of numerical claims about arrangements of points in
the plane. We prove the claim for V = W in Lemma 4.5 and for U 	= W and V 	= W

in Lemma 4.6. �

Lemma 4.2 Take the d-dimensional hypotheses, and choose a subset of points U in
PεS − {W }. For each w ∈ W , let Uw be the set of points that are in U and are also
contained in some edge of Ew

U,W , as illustrated in Fig. 6. Consider distinct w and w′
in W and distinct a, b, and c in Uw′ . Then not all of aw,bw, cw are edges in R(S).
In particular, |Uw ∩ Uw′ | ≤ 2.

Proof By definition of Uw′ , there exist distinct vertices x, y, and z in W such that
Ew′

U,W contains edges ax, by, and cz. By PB4, lk(w) contains at most one edge of

Ew′
U,W , say ax if any of ax, by, or cz. If bw is an edge in R(S), then since lk(w)

contains b, we have that lk(w) does not contain y to insure that lk(w) does not contain
by. But y and w are both in W and dist(w,y) < 1, and so it must be that w = y.
Likewise, if cw ∈ R(S), then w = z. Since Ew′

U,W is a matching, we have that z 	= y,
and so either bw or cw is not an edge. Hence either b /∈ Uw or c /∈ Uw . This proves
the lemma. �

Lemma 4.3 Let S = {u,u′, v, v′} ⊂ R
2 so that R(S) contains edges uv and u′v′, and

suppose that the segments uv and u′v′ intersect. Then R(S) is a cone.

Given U ⊂ R
2, we define a partial ordering on R

2 as follows. We say that v <U v′
if for all u ∈ U , we have dist(v,u) < dist(v′, u). For sets of points U and V , define

dist(U,V ) := inf
{
dist(u, v): u ∈ U,v ∈ V

}
and

Dist(U,V ) := sup
{
dist(u, v): u ∈ U,v ∈ V

}
.
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Fig. 7 In this configuration,
θ( �uv) and θ( �̃uṽ) are within
π/24 of each other. Hence if
∠uvv′ is not within π/24 of a
right angle, then ∠ũṽv′ is not a
right angle

For a ray �uv, let θ( �uv) denote the angle measured counterclockwise from the positive
x-axis to �uv. We take θ( �uv) mod 2π . Let conv(S) denote the convex hull of a set S.

Lemma 4.4 Set ε := 0.01. Then the following claims hold.

(A) Let u, v, u′, and v′ be points in R
2 with 1 − 4ε < dist(u, v) < 1 + 4ε;

dist(u,u′) < 2ε; and dist(v, v′) < 2ε. Then θ( �u′v′) is within π/24 of θ( �uv).
(B) Let u, v, and v′ be as above, and let U := B(u,2ε). If v and v′ are incomparable

under <U , then ∠uvv′ is within π/24 of a right angle.
(C) Let u, v, and w be points in R

2 with each of dist(u, v), dist(u,w), and dist(v,w)

between 1 − 4ε and 1 + 4ε. Then all of the angles in the triangle uvw are within
π/24 of π/3.

Proof The first claim follows from straightforward computation, and the third claim
follows from the law of cosines.

Now consider the second claim. For ũ ∈ U and ṽ ∈ conv(v, v′), the first claim
implies that θ( �uv) is within π/24 of θ( �̃uṽ). As illustrated in Fig. 7, if ∠uvv′ is not
within π/24 of a right angle, then ∠ũṽv′ is never a right angle for any ũ ∈ U and ṽ ∈
conv(v, v′). By the intermediate value theorem and connectivity of U × conv(v, v′),
∠ũṽv′ is either always less than π/2 or always greater than π/2. A particle moving
on a straight line from v to v′ is either always strictly moving toward U or always
strictly moving away from U . Hence v and v′ are comparable under <U . �

Lemma 4.5 Take the two-dimensional hypotheses, and let U ∈ PεS. Then∑
w∈W |Ew

U,W | ≤ 10|W |.

Proof Recall that GN(w)[U,W ] is the bipartite core of lk(w) on U � W . For some
fixed u∗ ∈ U and w∗ ∈ W , we may assume by rotation that u∗ is directly above w∗. If
dist(U,W) > 1, then |Ew

U,W | = 0 for all w ∈ W . If Dist(U,W) ≤ 1, then |Ew
U,W | ≤ 1

for all w ∈ W by PB3 and the observation that GN(w)[U,W ] is a complete bipartite
graph. Hence we may assume that dist(U,W) ≤ 1 < Dist(U,W) and hence 1 − 4ε <

dist(u,w) < 1 + 4ε for all u ∈ U and w ∈ W .
Let Uw be the set of points that are in U and are also contained in some edge of

Ew
U,W , and let W ′ := {w ∈ W : |Ew

U,W | ≥ 5}. Note that |Uw| = |Ew
U,W | since Ew

U,W is
a matching. It suffices to show that

∑
w∈W ′ |Uw| ≤ 6|W | by

∑

w∈W

∣∣Ew
U,W

∣∣ =
∑

w∈W ′
|Uw| +

∑

w∈W−W ′
|Uw| ≤

∑

w∈W ′
|Uw| + 4|W |.

As illustrated in Fig. 8, if w and w′ are in W with w <U w′, then there is an edge
wu in GN(w′)[U,W ] for all u ∈ U ∩ N(w′). Hence GN(w′)[U,W ] is connected, and
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Fig. 8 In this configuration,
w <U w′ . Hence w′ is not
in W ′ . The vertices of W ′ are
almost arranged on a horizontal
line

by PB3, |Uw′ | ≤ 1. Hence W ′ only contains points of W that are minimal under <U .
For all distinct w and w′ in W ′ with w not right of w′, apply Lemma 4.4(A) to u∗,
u∗, w∗, and w and then Part B to conclude that |θ( �ww′)| < π/12.

Consider u and u′ in U with u <W u′ and w and w′ in W . If w′u′ is and edge
in Ew

U,W , then w′u is an edge in GN(w)[U,W ] in the same component as w′u′. Hence
we may replace w′u′ with w′u and still satisfy all of the pseudobasis properties. Let
U ′ be the set of vertices of U that are minimal under <W . We may choose Ew

U,W so
that every U -vertex of an edge in Ew

U,W is actually in U ′. As above, for all distinct u

and u′ in U ′ with u not right of u′, we have that |θ( �uu′)| < π/12. Label the vertices
of U ′ by u1, . . . , u|U ′| from left to right.

Consider w and w′ in W ′ with w left of w′, and we claim that there cannot exist
a, b, c ∈ Uw′ and d, e, f ∈ Uw with each of {a, b, c} left of each of {d, e, f }, as in
Fig. 9. Suppose by way of contradiction that such a, . . . , f exist. By Lemma 4.2, we
may assume without loss of generality that cw and f w′ are not edges in R(S). By
Lemma 4.4(A), both θ( �w′c) and θ( �wf ) are between π/2 − π/24 and π/2 + π/24.
Also, as shown above, |θ( �cf )| < π/12 and |θ( �ww′)| < π/12. By consideration of an-
gles, w and f are on opposite sides of the line w′c, and w′ and c are on opposite sides
of the line wf . Hence the segments wf and w′c intersect, and the set {w,w′, c, f }
violates Lemma 4.3. Thus there cannot exist such a, . . . , f .

For w ∈ W ′, let l3(w) and r3(w) denote the indices of the points of Uw with third
smallest and third largest x-coordinates respectively. By the previous paragraph, if w

and w′ are points in W ′ with w left of w′, then

l3(w
′) ≥ r3(w) ≥ l3(w) + |Uw| − 5. (4)

If W ′ = {w1, . . . ,w|W ′|} from left to right and x := x|W ′|, then by (4) and induction
on k we have that l3(wk) ≥ l3(w1) + ∑k−1

i=1 (|Uwi
| + 5). Hence

l3(w1) +
∑

w∈W ′−{x}

(|Uw| − 5
) ≤ l3(x) ≤ |U ′| − |Ux | + 3.
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Fig. 9 We cannot have a point
configuration
{a, b, c, d, e, f,w,w′} as above.
Dotted lines indicate edges that
are not in R(S)

Fig. 10 The relative positions
of U , V , and W and
representative points u∗, v∗,
and w∗ . We assume that
θ( �u∗w∗) is π/6, and it follows
that θ( �v∗w∗) is approximately
−π/6

Then
∑

w∈W ′

∣∣U(w)
∣∣ ≤ |U ′| + 3 + 5

(|W ′| − 1
)
< 6|W |.

The latter inequality follows from the assumption that |W | ≥ |U |. This proves the
lemma. �

Lemma 4.6 Take the two-dimensional hypotheses, and consider U and V in
PεS − {W }. Then

∑
w∈W |Ew

U,V | ≤ 2|W |.

Proof Our first step is to justify an assumption that the sets U , V , and W approx-
imately form an equilateral triangle, as shown in Fig. 10. As above, GN(w)[U,V ]
is the bipartite core of lk(w) on U � V . If dist(U,V ) > 1; or if dist(U,W) > 1;
or if dist(V ,W) > 1, then |Ew

U,V | = 0 for all w ∈ W , and the lemma holds. If
Dist(U,V ) ≤ 1, then GN(w)[U,V ] is a complete bipartite graph, and hence by PB3,
|Ew

U,V | ≤ 1 for all w ∈ W . The claim follows.
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Fig. 11 The arrangement of Wu

and vu

Define Uw and Vw to be the sets of points that are in U and V respectively and
are also contained in edges in Ew

U,V . If Dist(U,W) ≤ 1, then consider distinct w

and w′ in W , together with an edge uv in Ew
U,V for points u ∈ Uw and v ∈ Vw .

By PB2 for Ew
U,V , uv is not an edge in lk(w′), which by u ∈ N(w′) implies that v /∈

N(w′). It follows that Vw ∩Vw′ = ∅. Since each Ew
U,V is a matching,

∑
w∈W |Ew

U,V | ≤
|V | ≤ |W |, proving the lemma. Likewise, if Dist(V ,W) ≤ 1, then the lemma holds.

We assume that

1 − 4ε < dist(U,V ),dist(U,W),dist(V ,W) and

Dist(U,V ),Dist(U,W),Dist(V ,W) < 1 + 4ε.

Fix points u∗ ∈ U , v∗ ∈ V , and w∗ ∈ W , and orient the plane so that θ( �u∗w∗) = π/6
and u∗, v∗, and w∗ are arranged clockwise in the triangle u∗v∗w∗. By Lemma 4.4(C),

∣
∣θ( �v∗w∗) + π/6

∣
∣ < π/24. (5)

For u ∈ U and v ∈ V , define Wu to be the set of points w in W such that some
edge of Ew

U,V contains u, as shown in Fig. 11. Analogously, define Wv to be the set
of points w in W such that some edge of Ew

U,V contains v. For w ∈ Wu, define the
vertex vuw so that Ew

U,V contains the edge uvuw . We may think of vuw as the “mate”
of u in Ew

U,V . Consider distinct w and w′ in Wu with w′
≮V w. By Lemma 4.4(A)

and (5), we have that |θ( �v∗w) + π/6| < π/12, which by Part B implies that either

∣∣θ( �ww′) − π/3
∣∣ < π/8 (6)

or w <V w′. But if w <V w′, then u and vuw′ are both in N(w), and thus uvuw′ is an
edge in lk(w) and in Ew′

U,V , a contradiction to PB2. We conclude that (6) holds. By

Lemma 4.4(A), we have that |θ( �u∗w) − π/6| < π/24, and so by Part B, w and w′
are comparable under <U . Thus Wu is totally ordered under <U and is an antichain
(that is, no two elements are comparable) under <V . Similarly, Wv is totally ordered
under <V and is an antichain under <U .

For all u ∈ U with Wu nonempty, there exists w ∈ Wu that is of maximal dis-
tance from u; given this w, define vu := vuw , as shown in Fig. 11. For all v ∈ V
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Fig. 12 The arrangement of
w,u, v,wu,wv

with Wv 	= ∅, define uv similarly. There are at most |U | (resp. |V |) edges uv in⋃
w∈W Ew

U,V such that v = vu (resp. u = uv).
Suppose by way of contradiction that

∑
w∈W |Ew

U,V | > 2|W |. By choice of W ,∑
w∈W |Ew

U,V | > |U | + |V |. The Ew
U,V are disjoint by PB2, and so there exist points

w ∈ W , u ∈ U , and v ∈ V such that uv ∈ Ew
U,V , u 	= u(v), and v 	= v(u). The arrange-

ment of points is illustrated in Fig. 12. Choose points wu ∈ Wu and wv ∈ Wv such
that dist(u,wu) > dist(u,w) and dist(v,wv) > dist(v,w). Such wu and wv exist by
choice of w. By Lemma 4.4(A),

∣∣θ( �uw) − π/6
∣∣ < π/24. (7)

Combining Part A with (5),

∣∣θ( �vw) + π/6
∣∣ < π/12. (8)

By (6),

∣
∣θ( �wwu) − π/3

∣
∣ < π/8. (9)

Since Wv is an antichain under <U , by (7) and Lemma 4.4(B) we have that

∣∣θ( �wwv) + π/3
∣∣ < π/12. (10)

By (7) and (9), w is below the line uwu, which by (10) implies that wv is below the
line uwu. Also, v is above the line uwu. By (8) and (10), w is above the line vwv ,
which by (9) implies that wu is above the line vww . Also, u is below the line vwv .
Hence the segments uwu and vwv intersect. By Lemma 4.3, either uwv or vwu is
an edge, yielding either the face uvwv or uvwu by the existence of edges uv, vwv ,
and uwu. This contradicts PB2 for Ew . We conclude that

∑
w∈W |Ew

U,V | ≤ 2|W | as
desired. �

Specifically, it follows by the inductive argument and (3) that

M2,2(n) ≤
(

11

(
κ2,1.5,0.01

2

)
+ C2,1.5,0.01

)
n.
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The coefficient is quite large, and we expect that a linear upper bound with a modest
coefficient should exist.

We now turn our attention to higher dimensions. Lacking the tools from plane
geometry, the proof of the following theorem relies on the pseudobasis properties.
Recall that I (n) is the maximum size of the union of n disjoint matchings on a bipar-
tite graph with n vertices on each side.

Theorem 4.7 For all fixed d , M2,d (n) = O(I (n)), and thus M2,d (n) = o(n2).

Proof Take the d-dimensional hypotheses. We use some of the same methods as in
the proof of Theorem 4.1. Let S ⊂ R

d with |S| ≤ n. We have that
⋃

w∈W N(w) is
contained in a ball of radius r .

We claim that for all U and V in PεS,

∑

w∈W

∣∣Ew
U,V

∣∣ ≤ |W |max

{
2I (n)

n
,2

√
n

}
= |W |O(

I (n)/n
)
.

Since there are at most
(κd,r,ε

2

)
pairs {U,V } ⊂ PεS such that Ew

U,V is non-empty, it
then follows that

∑
w∈W |Ew| = |W |O(I (n)/n), and that there exists some w ∈ W

such that |Ew| = O(I (n)/n). By construction of Ew , β̃1(lk(w)) = O(I (n)/n). Then
by Lemma 2.1, β̃2(R(S)) < β̃2(R(S − {w})) + O(I (n)/n), and the theorem follows
by induction on n and (1).

To prove the claim, first consider the case that V = W . Let G be the bipartite graph
with vertex set identified with U �W and an edge uw whenever u is a vertex of some
edge of Ew

U,W . Then G is a bipartite graph with at most |W | vertices on each side, and
by Lemma 4.2, no two vertices in W have three common neighbors in G. It follows
from a special case of the theorem of Kövári, Sós, and Turán [17] that G has at most√

2(|W | − 1)|W |1/2 + |W | < 2|W |3/2 edges. Also, since EU,W is a matching, G has∑
w∈W |Ew

U,W | edges. Hence

∑

w∈W

∣∣Ew
U,W

∣∣ ≤ 2|W |3/2 ≤ 2n1/2|W |.

Now consider U and V in PεS −{W }. PB1 and PB3 imply that Ew
U,V is an induced

matching in GS[U,V ] for all w ∈ W . PB2 implies that Ew
U,V and Ew′

U,V are disjoint
for all w 	= w′. It follows that

∑

w∈W

∣∣Ew
U,V

∣∣ ≤ I
(|W |) ≤ |W |2I (n)/n.

The first inequality follows from the assumption that |W | ≥ |U | and |W | ≥ |V |, and
the second inequality follows from (1). �

By construction of a pseudobasis, we have a specific bound of

M2,d (n) ≤ n

((
κd,r,ε

2

)
max

{
2n1/2,2I (n)/n

} + Cd,r,ε +
(

κd,r,ε

2

))
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with r = 3/2 and ε = d−1/2. For large n,

M2,d (n) ≤ 2

(
κd,r,ε

2

)
I (n) +

(
Cd,r,ε +

(
κd,r,ε

2

))
n.

We conclude this section with a lower bound on M2,5(n). A (U,V,Y )-concen-
trated simplicial complex, of which the following construction is an example, is a
flag complex on vertex set U �V �Y with each of Γ [U ], Γ [V ], and Γ [Y ] a simplex.

Theorem 4.8 We have M2,5(n) ≥ �
√

n
3 �3 − n ≈ (n/3)3/2.

Proof We prove the result by construction. Set k := �
√

n
3 �. Let U := {ui,l, 1 ≤ i, l ≤

k}; V := {vj,l, 1 ≤ j, l ≤ k}; and Y := {yi,j , 1 ≤ i, j ≤ k} with

ui,l :=
(√

2

2
cos

(
i

n

)
,

√
2

2
sin

(
i

n

)
,0,0,

l

n3

)
,

vj,l :=
(

0,0,

√
2

2
cos

(
j

n

)
,

√
2

2
sin

(
j

n

)
,

l

n3

)
, and

yi,j :=
(√

2

4
cos

(
i

n

)
,

√
2

4
sin

(
i

n

)
,

√
2

4
cos

(
j

n

)
,

√
2

4
sin

(
j

n

)
,

√
3

2

)
.

The subgraphs of R(S) induced on U , V , and Y are cliques. The edge set of R(S)

contains exactly the following additional edges:

(1) ui,lvj,l for all 1 ≤ i, j, l ≤ k,
(2) ui,lyi,j for all 1 ≤ i, j, l ≤ k,
(3) vj,lyi,j for all 1 ≤ i, j, l ≤ k.

For each y = yi,j ∈ Y , we have that GN(y)[U,V ] is an induced matching with edge
set {ui,lvj,l : 1 ≤ l ≤ k}. These matchings are disjoint over all y ∈ Y . By Lemma 4.9,

β2(R(S)) ≥ k3 − 3k2 ≥ �
√

n
3 �3 − n. �

Lemma 4.9 Let Γ be a (U,V,Y )-concentrated simplicial complex. Suppose that for
every y ∈ Y , the restriction of lkΓ (y) to the bipartite core of U � V is an induced
matching on ky pairs of vertices, and also that these matchings are disjoint. Then

β̃2(Γ ) ≥
∑

y∈Y

ky − |U | − 2|Y |.

Proof We first show that for every u ∈ U , v ∈ V , and y ∈ Y such that uvy is a face
of Γ , in fact uvy is a maximal face. To see this, consider u′ ∈ U , v′ ∈ V , and y′ ∈ Y

that are distinct from u, v, and y. By the assumption that the matchings are disjoint,
uv /∈ lk(y′). If u′vy (resp. uv′y) is a face, then u′v ∈ lk(y) (resp. uv′ ∈ lk(y)), contra-
dicting the assumption that the matchings are induced. Hence none of uvyu′, uvyv′,
or uvyy′ are faces, which implies that uvy is maximal.
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Construct Δ from Γ by removing all faces of the form uvy for u ∈ U , v ∈ V , and
y ∈ Y . Note that Δ is not flag, but Δ[U,V ], Δ[U,Y ], and Δ[V,Y ] are all flag and
Δ[U ], Δ[V ], and Δ[Y ] are all simplices.

We first place an upper bound on β̃1(Δ). Note that Δ[V ] is a simplex and
β̃1(Δ[V ]) = 0. Consider some U ′ ⊂ U and some u ∈ U ′. Then Λ := lkΔ[U ′,V ](u)

has at most two components since Λ[U ] and Λ[V ] are simplices. Thus β̃0(Λ) ≤ 1.
By Lemma 2.1 and induction on |U ′|, we have that β̃1(Δ[U ′,V ]) ≤ |U ′| and thus
β̃1(Δ[U,V ]) ≤ |U |. Now consider some Y ′ ⊂ Y and some y ∈ Y ′. Then Λ :=
lkΔ[Y ′,U,V ](y) has at most three components since Λ[U ], Λ[V ], and Λ[Y ] are
simplices. Thus β̃0(Λ) ≤ 2. By Lemma 2.1 and induction on |Y ′|, we have that
β̃1(Δ[Y ′,U,V ]) ≤ |U | + 2|Y ′| and β̃1(Δ) ≤ |U | + 2|Y |.

The operation of adding a two-dimensional face to a simplicial complex either
decreases β̃1 by 1 or increases β̃2 by 1. Since Γ is constructed from Δ by adding∑

y∈Y ky two-dimensional faces, β̃2(Γ ) ≥ ∑
y∈Y ky − |U | − 2|Y |. �

Label the construction of Theorem 4.8 as S2(n). All points of U , V , and Y are
within distance o(1) of (

√
2/2,0,0,0,0), (0,0,

√
2/2,0,0), and (

√
2/4,0,

√
2/4,0,√

3/2) respectively.

5 Results on Higher Homology

The results of the previous section can be extended to higher Betti numbers.

Theorem 5.1 Fix p ≥ 2 and d . Then Mp,d(n) = O(np−2I (n)). Also, Mp,2(n) =
O(np−1).

Proof We claim that Mp,d(n) ≤ nMp−1,d (n). To see this, consider S ⊂ R
d and

a point v ∈ S. Then lk(v) = R(N(v)), and so β̃p−1(lk(v)) ≤ Mp−1,d (n). By
Lemma 2.1, we have that Mp,d(n) ≤ Mp,d(n − 1) + Mp−1,d (n). The claim follows
by induction on n and the observation that Mp−1,d (n) is non-decreasing in n.

The two statements in the theorem then follow by induction on p and Theo-
rems 4.7 and 4.1 respectively. �

Theorem 5.2 For fixed p > 0, we have that Mp,2(n) = Ω(n�p/2�).

Proof First consider the case that p = 2k − 1. We prove the result by giving S ⊂ R
2

with |S| ≤ n and β̃2k−1(R(S)) ≥ (� n
2k

� − 1)k . See Fig. 13 for an illustration. For
0 ≤ i ≤ k − 1, define

S−
i :=

{[
cos(i/n) − sin(i/n)

sin(i/n) cos(i/n)

][−1/2
jn−4

]
: 0 ≤ j <

⌊
n

2k

⌋}
,

S+
i :=

{[
cos(i/n) − sin(i/n)

sin(i/n) cos(i/n)

][
1/2
jn−4

]
: 0 ≤ j <

⌊
n

2k

⌋}
,
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Fig. 13 Left: a point
configuration in R

2 with β̃3
large. Right: β̃4 is large. Edges
between S0 and S1 are not
shown

and Si := S−
i ∪ S+

i . In words, Si consists of �n/2k� pairs of opposing points concen-
trated on two parallel segments separated by distance 1. Each Si is a slight counter-
clockwise rotation of Si−1. Each R(S+

i ) and R(S−
i ) is a simplex, and the bipartite

core of the graph of R(S+
i � S−

i ) is a matching on all of the vertices. It is easy to
check that β̃p(R(Si)) = 0 for p 	= 1 and that

β̃1
(
R(Si)

) =
⌊

n

2k

⌋
− 1.

For all u ∈ Si and v ∈ Sj with i 	= j , we have that dist(u, v) < 1. Set S := S0 ∪
· · · ∪ Sk−1, and then R(S) = R(S0) ∗ · · · ∗ R(Sk−1). By the Künneth Formula,

β̃2k−1
(
R(S)

) =
(⌊

n

2k

⌋
− 1

)k

.

Now we consider the case that p = 2k. Replace the points (−1/2,0) and (1/2,0)

in the above construction with a := (0, .6) and b := (0,−.6). See Fig. 13 for an
illustration. Then β̃0(R(a, b)) = 1, and all other homology groups of R(a, b) vanish.
For all u ∈ {a, b} and v ∈ S − {a, b}, we have that dist(u, v) < 1. Then

R(S) = R

(
S0 −

{(
1

2
,0

)
,

(
−1

2
,0

)})
∗ R(S1) ∗ · · · ∗ R(Sk−1) ∗ R(a, b).

It similarly follows from the Künneth Formula that

β̃2k

(
R(S)

) =
(⌊

n

2k

⌋
− 2

)(⌊
n

2k

⌋
− 1

)k−1

. �

If p is odd, then label the above construction as Sp(n) with S−1(n) := ∅. Ob-
serve that for odd p, all points of Sp(n) are within distance o(1) of either (1/2,0) or
(−1/2,0).

Theorem 5.3 For every p > 0, we have that Mp,5(n) = Ω(np/2+1/2).

Proof The theorem follows for odd p by Theorem 5.2, and so we consider even p.
We may assume that n is even and define m := n/2. Let S := S2(m) as at the
end of Sect. 4, and let S′ be the image of Sp−3(m) under the isometry that
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sends (x, y) to (
√

2/4, x,
√

2/4, y,
√

3/6). Every point in S is within distance
o(1) of either (0,0,

√
2/2,0,0), (

√
2/2,0,0,0,0), or (

√
2/4,0,

√
2/4,0,

√
3/2), and

every point of S′ is within distance o(1) of either (
√

2/4,1/2,
√

2/4,0,
√

3/6) or
(
√

2/4,−1/2,
√

2/4, 0,
√

3/6). Hence Dist(S,S′)=√
7/12+o(1). Then R(S∪S′)=

R(S) ∗ R(S′). By the Künneth Formula,

β̃p

(
R(S)

) ≥
(⌊√

m

3

⌋3

− m

)(⌊
m

p − 2

⌋
− 1

)p/2−1

= Ω
(
np/2+1/2). �

6 Quasi-Vietoris–Rips Complexes

Quasi-Vietoris–Rips complexes, discussed by Chambers et al. [6], are relaxations of
Vietoris–Rips complexes. Given a finite set S ⊂ R

d and a fixed 0 < α < 1, a quasi-
Vietoris–Rips complex with parameter α on S is a flag complex with vertex set S,
an edge uv whenever dist(u, v) ≤ α, and no edge uv when dist(u, v) > 1. If α <

dist(u, v) ≤ 1, then uv may be included or excluded arbitrarily. All Vietoris–Rips
complexes are quasi-Vietoris–Rips complexes.

There is much greater freedom in the kinds of graphs that arise as the graphs of
quasi-Vietoris–Rips complexes. Despite this freedom, the Betti numbers of quasi-
Vietoris–Rips complexes obey nontrivial upper bounds. Let Mα

p,d(n) be the maxi-

mum value of β̃p(Γ ), where Γ is a Quasi-Vietoris–Rips complex with parameter α

on a set of n points in R
d . In this section, we prove bounds on Mα

1,d (n), Mα
2,d (n), and

Mα
p,d(n). These bounds are analogous to the results of the previous sections.

Theorem 6.1 For all d , n, and α, we have that

Mα
1,d (n) ≤

(⌈
2d1/2

α

⌉d

− 1

)
n = O(n).

Proof Consider S ⊂ R
d and v ∈ S. All vertices of lk(v) are contained in a ball B

of radius 1, and there exists a set of �2d1/2α−1�d cubes of side length αd−1/2 that
covers B . Two vertices in the same cube have distance at most α and are joined by an
edge. Hence lk(v) has at most �2d1/2α−1�d connected components, and β̃0(lk(v)) ≤
�2d1/2α−1�d − 1. The theorem follows by induction on n and Lemma 2.1. �

Theorem 6.2 Fix d ≥ 2 and 0 < α < 1. Then Mα
2,d (n) = Θ(I (n)).

Proof The proof of the upper bound is very similar to that of Theorem 4.7. The only
change necessary is to use ε = αd−1/2 instead of ε = d−1/2.

We prove the lower bound by construction. Assume that n is a multiple of 3,
and consider a bipartite graph G with vertex set U � V with |U | = |V | = n and
a set M of n disjoint, induced matchings on G with

∑
M∈M |M| = I (n). Choose

M′ ⊂ M,U ′ ⊂ U , and V ′ ⊂ V uniformly at random among subsets of size n/3, and
restrict each element of M′ to edges with vertices in U ′ and V ′. Since each edge
of

⋃
M∈M M has probability 1/27 of being in

⋃
M∈M′ M , the expected value of
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∑
M∈M′ |M| is 1

27I (n), and so we assume that M′, U ′, and V ′ are chosen so that
∑

M∈M′ |M| ≥ 1
27I (n).

Let G′ be the graph with vertex set identified with U ′ �V ′ � M′ and with edges ex-
actly as follows. Let G′[U ′], G′[V ′], and G′[M′] be cliques. For u ∈ U ′ and v ∈ V ′,
say that uv is an edge in G′ if it is an edge in G. Also, say that Mu and Mv are
edges in G′ if uv is an edge in the matching M . If Γ is the unique flag complex with
underlying graph G′, then by Lemma 4.9,

β̃2(Γ ) ≥
∑

M∈M′
|M| − |U ′| − 2|M′| ≥ 1

27
I (n) − n.

Finally, we show that Γ can be realized as a quasi-Vietoris–Rips complex with
parameter α in R

2. Place all points of U ′, V ′, and M′ within distance α/2 of (0,0),
(0,1), and (

√
3/2,1/2) respectively, with all points of U ′ �V ′ � M′ inside the trian-

gle with vertices (0,0), (0,1), and (
√

3/2,1/2). �

Following the argument of Theorem 4.7, for ε = αd−1/2, r = 3/2, and large n, we
have that

Mα
2,d (n) ≤ 2

(
κd,r,ε

2

)
I (n) + (Cd,r,ε +

(
κd,r,ε

2

)
)n.

Theorem 6.3 Fix d ≥ 2,p > 2, and 0 < α < 1. Then Mα
p,d(n) = O(np−2I (n)).

Proof The claim that Mα
p,d(n) ≤ nMα

p−1,d (n) follows by Lemma 2.1, induction on n,
and the fact that Mα

p,d(n) is non-decreasing in n, similarly to the claim in the proof
of Theorem 5.1. The theorem then follows by Theorem 6.2 and induction on p. �

7 Concluding Remarks

In general, while the upper and lower bounds on Mp,d(n) presented in this paper are
nontrivial, there are considerable gaps between the two. The author makes no con-
jectures beyond that which has already been proven. The value of Mp,2(n) has been
determined to within a multiplicative constant for p ≤ 3 (Θ(n), Θ(n), and Θ(n2)

for p = 1,2, and 3 respectively). Can the methods of Theorem 4.1 be adapted to es-
timate M4,2(n)? It would also be interesting to know whether M2,3(n) and M2,4(n)

grow linearly in n, as does M2,2(n).
Do the concepts of ε-simple cycles and a pseudobasis have useful analogues

in higher dimensions? The natural candidate for a two-dimensional version of an
ε-simple cycle, the octahedron, does not seem to work; the construction of Theo-
rem 4.8, while having large β̃2 and points contained in a ball of radius slightly over
1/2, does not have an induced octahedron. However, perhaps some slightly more
complicated cycle would work. Also, we have expressed the value of Mα

p,d(n) to
within a multiplicative constant of another natural combinatorial function, I (n), when
p = 2. Can something similar be done for larger values of p?
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Vietoris–Rips complexes can be defined in general metric spaces. One possibility
is to compare Mp,d(n) to the bound that would result by considering Vietoris–Rips
complexes on a given d-dimensional Riemannian manifold.

One may also consider extremal Betti numbers of C̆ech complexes, another tool
for analyzing the topology of a point cloud. Given S ⊂ R

d , the Čech complex Cδ(S)

has vertex set S and a face F whenever F is contained in a ball of radius δ/2. By
the Nerve Lemma [19], β̃p(Cδ(S)) = 0 for p ≥ d , in contrast to the situation for
Vietoris–Rips complexes. A challenge of extending our results to C̆ech complexes
is that if Γ is a C̆ech complex and v ∈ V (Γ ), then lk(v) might not be a C̆ech com-
plex.
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