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Abstract We describe a variant of a method used by modern graphic artists to design
what are traditionally called Celtic knots, which are part of a larger family of designs
called “mirror curves.” It is easily proved that every such design specifies an alternat-
ing projection of a link. We use medial graphs and graph minors to prove, conversely,
that every alternating projection of a link is topologically equivalent to some Celtic
link, specifiable by this method. We view Celtic representations of knots as a frame-
work for organizing the study of knots, rather like knot mosaics or braid representa-
tions. The formalism of Celtic design suggests some new geometric invariants of links
and some new recursively specifiable sequences of links. It also leads us to explore
new variations of problems regarding such sequences, including calculating formulae
for infinite sequences of knot polynomials. This involves a confluence of ideas from
knot theory, topological graph theory, and the theory of orthogonal graph drawings.
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1 Introduction

Celtic knots are an ancient art form of continuing interest to modern graphic artists.
Repetitive patterns and symmetries are among their geometric characteristics. In gen-
eral, the art works of authentic Celtic origin that are called “Celtic knots” are topo-
logically recognizable as alternating links. Various art experts have noted that similar
figures (of a class called “mirror curves” [9]) that have occurred among Romans, Sax-
ons, and Vikings, and also in some Islamic art and African art. Our exploration herein
of Celtic knots blends knot theory, topological graph theory, and discrete geometry,
with applications to computer graphics.

Our main concern is analyzing the topological properties of knots specified by
Celtic designs. (For simplicity of exposition, we may sometimes say “knot” when
our meaning is either a knot or a link.) We view Celtic representations of knots as a
framework for organizing the study of knots, in the same spirit as, for example, knot
mosaics [16], Gauss coding, or braid representations. Relevant background in knot
theory is given, for example, by [1, 12, 17], and [20].

Our topological graph theory terminology is consistent with [8] and [5]. We regard
a normal projection of a link either as a graph or as a graph imbedded in the plane.
Graph imbeddings are taken to be cellular and graphs to be connected, unless the
alternative is declared or evident from context.

In computer-graphics research on Celtic knots by [11, 18] and others, the primary
concern has been the creation of computer-assisted artwork that produces their clas-
sical geometric and stylistic features. Cyclic plain-weaving is a more general form
of computer-assisted artwork, and, as observed by [2], the graphics it creates are al-
ternating projections of links onto various surfaces in 3-space. From a topological
perspective, Celtic knots and links are a special case of cyclic plain-weaving.

2 Drawing a Celtic Knot

To construct a barrier-free Celtic design, we begin with a 2m × 2n rectangular ar-
ray of grid-squares, where m and n are positive integers. Place a construction dot at
each lattice-point (x, y) such that x + y is odd, where 0 ≤ x ≤ 2n and 0 ≤ y ≤ 2m.
Through each construction dot, draw two small line-segments that cross. If the
x-coordinate is odd, the overcrossing is southwest to northeast; if even, the over-
crossing is northwest to southeast. Also, the mirror image of a Celtic design (which
switches overcrossings to undercrossings, and vice versa) is a Celtic design. Then join
the ends of the segments to the ends of segments along the border or in diagonally
adjacent grid-squares to form a rectangular plaitwork design, as shown in Fig. 1(a),
which depicts a 4 × 6 barrier-free Celtic design.

In a barrier-free Celtic design, each construction dot lies at the center of a 1 × 1
subgrid, which contains one of the two types of crossings shown in Fig. 1(b), and
is therefore called a crossing-subgrid. The operation of replacing a crossing-subgrid
by one of the two types of 1 × 1 subgrids shown in Fig. 1(c) is called installing a
barrier, and those two subgrids are called barrier-subgrids. The heavier solid lines
in the upper and lower subgrids are called a vertical barrier and a horizontal barrier,
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Fig. 1 Drawing a Celtic knot

respectively. Any design resulting from the installation of barriers is called a Celtic
design. The link within any Celtic design is called a Celtic knot.

M. Wallace [22] has posted a method in which the barriers are drawn first, based
on publications of G. Bain [3] and I. Bain [4], intended for graphic artists, by which
anyone capable of following directions can hand-draw Celtic knots, and which lends
itself to implementation within a graphics system for creating computer-assisted art.
Lomonaco and Kauffman [16] describe how a knot can be specified as a mosaic,
in which the tiles contain crossings or the equivalent of barriers. Cromwell [6] con-
structs Celtic knots by replacing crossings in basic plaitwork. Our method and these
three other methods all have much in common.

3 Every Alternating Link is Celtic

For the sake of completeness, we include a simple proof that every Celtic link, as we
have defined it here, is alternating.

Theorem 3.1 Every Celtic diagram specifies an alternating link.

Proof It is easily proved that a barrier-free grid specifies an alternating link. Thus,
before installing a barrier at a construction dot, the local pattern for an alternating
link is as illustrated by Fig. 2 (left) or by a reflection of that figure. After installing
the barrier, the local configuration is as in Fig. 2 (right) or its reflection. Thus, the
link that results from splitting and reconnecting remains alternating. �

One possible way to prove that every alternating link is topologically equivalent to
some Celtic link is by induction on the number of crossings. The proof is reasonably
straightforward, but involves numerous details and cases. Accordingly, we present a
proof that draws on some basic concepts from topological graph theory, specifically
medial graphs and graph minors.

Medial Graphs and Inverse-Medial Graphs

Given a cellular imbedding ι : G → S of a graph in a closed surface, the medial graph
Mι (sometimes, just medial) is defined as follows:

• The vertices of Mι are the barycenters of the edges of G.
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Fig. 2 Installing a barrier in an
alternating link diagram

• For each face f of the imbedding ι : G → S and for each vertex v of G on bd(f ),
install an edge joining the vertex of Mι that immediately precedes v in an fb-walk
for f to the vertex of Mι that immediately follows v on that fb-walk. (If the face
f is a monogon, then that edge is a self-loop.)

The imbedding Mι → S is called the medial imbedding for the imbedding ι : G → S,
which we call, in turn, an inverse-medial of the imbedding Mι → S.

Clearly, the medial imbedding is 4-regular. Moreover, since each face of the me-
dial imbedding corresponds to either a vertex or a face of the original imbedding, the
faces can be two-colored by the terms “vertex” or “face” so that each edge lies on
one face of each color. These two properties characterize completely which 4-regular
imbeddings are medial imbeddings.

Proposition 3.2 If the imbedding M → S is 4-regular with bipartite dual, then it has
an inverse medial imbedding.

Proof Suppose the faces of the imbedding M → S are colored red and blue. Place a
vertex at the center of each red face. For each vertex v of M , draw an edge through v

between the centers of the two red faces incident to v. The resulting graph imbedding
G → S has M → S as its medial. Note that if we had placed the centers in the blue
faces instead, we would have the dual imbedding G∗ → S. �

The following well-known fact identifies the characteristic of an imbedded
4-regular plane graph that permits it to have an inverse-medial graph.

Proposition 3.3 The dual of a 4-regular plane graph G → R
2 is bipartite.

Proof Each face of the dual graph is 4-sided. Since every cycle of a planar graph is
made up of face-cycles, it follows that all cycles in the dual graph have even length,
making the graph bipartite. �

Theorem 3.4 Every 4-regular plane graph has two inverse-medial graphs.

Proof We observe that an imbedded graph and its dual have the same medial graph.
Thus, this theorem follows from Propositions 3.3 and 3.2. �

Inverse-Medial Graphs for Celtic Shadows

The image of a normal projection π : L → R
2 of a link is a 4-regular graph Gπ

called the shadow of the link (e.g., see [17]); its vertices are the crossings, and its
edges are the curves that join the crossings. Another consequence of Proposition 3.2
is as follows:



90 Discrete Comput Geom (2011) 46: 86–99

Fig. 3 An inverse-medial for
the shadow of the Celtic link
CK6

4

The link specified by the barrier-free 2m × 2n Celtic diagram is denoted CK2n
2m.

In Fig. 3, we observe that a 1 × 2 orthogonal mesh (in black) is an inverse-medial
graph for the shadow of the Celtic link CK6

4 .
Within any 2m × 2c Celtic diagram the (m − 1) × (n − 1) orthogonal grid whose

horizontals are on the lines y = 1,3,5, . . . ,2m − 1 and whose verticals are on the
lines x = 1,3,5, . . . ,2n − 1 is called the inner grid of that diagram. As a graph, it
is isomorphic to the Cartesian product Pm × Pn of the path graphs Pm and Pn. We
observe that every interior dot of the diagram lies at the midpoint of some edge of this
grid. The outer grid is formed by the horizontals y = 0,2,4, . . . ,2m and the verticals
x = 0,2,4, . . . ,2n.

Proposition 3.5 The shadow of the Celtic link CK2n
2m has as one of its two inverse-

medial graphs the inner grid for the 2m × 2n Celtic diagram.

Proof A formal approach might use an easy double induction on the numbers of rows
and columns. �

Remark In general, the other inverse-medial graph of the Celtic link CK2n
2m is ob-

tained by contracting the border of the outer grid to a single vertex.

Clearly, every interior dot in a Celtic diagram is the midpoint of some edge of the
inner grid, and every interior barrier in the diagram either coincides with an edge of
the inner grid or lies orthogonal to the edge of that grid whose midpoint it contains.

Theorem 3.6 Given a Celtic diagram we can construct an inverse-medial graph for
the shadow of the link it specifies as follows:

1. Start with the inner grid M .
2. Delete every edge of M that meets a barrier orthogonally at its midpoint.
3. Contract every edge of M that coincides with a barrier.

Proof Use induction on the number of barriers. This result follows from the given
method for constructing the link specified by a Celtic diagram. �

In view of Theorem 3.6, we can characterize each interior barrier in a Celtic dia-
gram as a deletion barrier, if it meets an edge of the inner grid orthogonally, or as a
contraction barrier, if it coincides with an edge of the inner grid.
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Fig. 4 (a) A Celtic link, its
inner grid, and the barriers,
(b) The inverse-medial of the
shadow of that Celtic link

Example 3.1 We apply Theorem 3.6 to the Celtic link in Fig. 4. We delete the edge
of the inner grid that is crossed by barriers, in the lower left corner of the diagram,
and we contract the three edges of the mesh that coincide with barriers. The result is
an inverse-medial for the shadow of the link, whose vertices are the black dots.

To obtain the other inverse-medial of the shadow of the given link, we would con-
tract the edges of the outer grid that cross barriers and delete the edges that coincide
with barriers. We would also contract the border of the diagram to a single vertex.

Corollary 3.7 One inverse-medial graph for the shadow of any link specified by a
2m× 2n Celtic diagram is a minor of the graph Pm ×Pn, and the other is a minor of
Pm+1 × Pn+1.

Proof This follows easily from Theorem 3.6. �

Constructing a Celtic Diagram for an Alternating Link

By splitting a vertex of a graph, we mean inverting the operation of contracting an
edge to that vertex.

Proposition 3.8 Let ι : G → S be a graph imbedding such that some vertex of G

has degree greater than 3. Then it is possible to split that vertex so that the resulting
graph is imbedded in S and that the result of contracting the new edge is to restore
the imbedding ι : G → S.

Proof This is a familiar fact that follows from elementary considerations in topolog-
ical graph theory. �

Proposition 3.9 Let G be any planar graph with maximum degree at most 4. Then
G is homeomorphic to a subgraph of some orthogonal grid.

Proof As explained, for instance, in Chap. 5 of [7] or in [21], every planar graph with
maximum degree at most 4 has a subdivision that can be drawn as a subgraph of some
orthogonal planar mesh. �

The following Celtification algorithm constructs a Celtic diagram for any alternat-
ing link L supplied as input.

1. Construct an inverse-medial graph G for the shadow of the link L.
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2. Iteratively split vertices of G as needed, so that every split graph is planar, and so
that the final result G× has maximum degree at most 4. After each such split at
a vertex v, install a contraction barrier on the newly created edge—the edge with
endpoint v.

3. Represent a subdivided copy of the planar graph G× as a subgraph of an orthogo-
nal grid (as per Proposition 3.9), and enclose the grid by a border. Install a deletion
barrier orthogonal to each edge of the grid that is not in the image of G×.

4. The resulting orthogonal grid with its contraction and deletion barriers is a Celtic
design for the given link L.

Theorem 3.10 Let L be an alternating link. Then there is a Celtic diagram that
specifies L.

Proof We verify that each of the steps of the Celtification algorithm is feasible. The-
orem 3.4 establishes that Step 1 is possible. Proposition 3.8 verifies the possibility of
Step 2. Proposition 3.9 ensures that Step 3 is possible. Theorem 3.6 is the basis for
Step 4. �

Celtistic Link Diagrams

To generalize our scope, we define a Celtistic diagram to be otherwise like a Celtic
diagram, except that we are permitted to specify at each dot whether the overcross-
ing is northwest to southeast or southwest to northeast. The Celtistic perspective on
links simplifies the derivation of some kinds of general results and also facilitates the
application of our methods of calculating knot polynomials for infinite sequences of
knots and links.

Theorem 3.11 Every link is Celtistic.

Proof The proof that every alternating link is Celtic depends only on the shadow of
the link, not on the overcrossings and undercrossings. Accordingly, we may apply the
same argument here. �

Corollary 3.12 Every 4-regular plane graph G is the shadow of an alternating link.

Proof The straight-ahead walks (in a 4-regular graph, this means neither left nor
right) in G form the components of a link L. Of course, overcrossings and under-
crossings could be assigned arbitrarily. By Theorem 3.11, the link L could be speci-
fied by a Celtistic design. Changing the intersections so that they all follow the rules
for a Celtic diagram produces a Celtic link L′ whose shadow is the plane graph G. �

Remark 1 An interpretation of Corollary 3.12 within Kauffman’s terminology [12]
is that every knot universe corresponds to some alternating knot. There are many
different proofs of this widely known fact.
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4 Some Geometric Invariants of Knots and Links

Blending the theory of graph drawings (for an extensive survey, see [14]) with The-
orems 3.10 and 3.11 suggests some interesting new geometric invariants of links.
These four come immediately to mind:

• The Celtic area of a projection of a link L is the minimum product mn such that
an equivalent projection L is specifiable by a Celtistic diagram with m rows and n

columns. The Celtic area of a link L, denoted CA(L), is the minimum Celtic area
taken over all projections of L.

• The Celtic depth of a link projection is the minimum number m such that a Celtistic
diagram with m rows specifies an equivalent projection. The Celtic depth of an
alternating link L, denoted CD(L), is the minimum Celtic depth taken over all
projections of L.

• The Celtic edge-length of a projection of a link L is the minimum number of grid-
squares traversed by the link in a Celtistic diagram for that projection. If a sublink
of components of the link specified by the diagram splits off from the projection of
L, then the edge-length of that sublink is not counted. The Celtic edge-length of a
link, denoted CL(L), is the minimum Celtic edge-length taken over all projections.
(This invariant is akin to what Kuriya [13] calls the mosaic number of a link.)

• The Celtic perimeter of a projection of a link L, denoted CP (L), is the minimum
sum 4m + 4n, such that there is a 2m × 2n Celtic diagram for L.

The following simple proposition is helpful in deriving values of these geometric
invariants for specific links. Its proof is omitted. We use cr(D) for the number of
crossings in a Celtistic diagram.

Proposition 4.1 Let D be a 2m × 2n Celtistic diagram with h horizontal barriers
and v vertical barriers.

• cr(D) + h + v = 2mn − m − n.
• The Celtic depth of a non-trivial knot is at least 4.
• The Celtic area of a link with x crossings is at least 2x + 4.

Example 4.1 Using Proposition 4.1, we calculate some geometric invariants for the
trefoil knot 31 and for the figure-eight knot 41 (Table 1).

We observe that the total curvature κ(L) of a link in R
3 (see [19]) can be bounded

using Celtic invariants. For example, for the barrier-free Celtic knot in the 2m × 2n

grid, each corner supplies π to the total curvature, and each of the 2(m−2)+2(n−2)

curves at the sides adds π/2. Thus the total curvature is at most (m + n)π . The

Table 1 Values of Celtic
invariants for the trefoil knot
and the figure-eight knot

Knot CA CD CL CP

31 16 4 16 16

41 24 4 24 20
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addition of each barrier increases the total curvature by at most π ; however, adding
barriers can also reduce the curvature. Since there are at most 2mn − m − n barriers,
we have the following upper bound:

Proposition 4.2 The total curvature of a link L satisfies the inequality

κ(L) ≤ CA(L) · π

2

The total curvature invariant also provides upper bounds on other physical in-
variants of knots, such as thickness (see [15]). Accordingly, Celtic invariants can be
related to those invariants as well.

5 Knot Polynomials

Celtic diagrams can be helpful when calculating knot polynomials for a recursively
specifiable family of links. Indeed, they provide a way to identify families of links
whose knot polynomials are amenable to recursive analysis. In this section, we de-
rive recursions for the Alexander–Conway polynomials and the Kauffman bracket
polynomials of the links specified by 4 × 2n barrier-free Celtic diagrams. The three
smallest 4 × 2n barrier-free Celtic links are shown in Fig. 5. We see that CK6

4 is the
knot 74.

Alexander–Conway Polynomials

Definition The link diagrams L and L′ are equivalent link diagrams if one can be
derived from the other by a sequence of Reidemeister moves.

Notation L ∼ L′.

We calculate the Alexander–Conway polynomial, denoted either by ∇K or by
∇(K), of a knot (or link) K by using the following three axioms.

Axiom 1. If K ∼ K ′, then ∇K = ∇K ′ .
Axiom 2. If K ∼ 0, then ∇K = 1.
Axiom 3. If K , K , and L are related as in Fig. 6, then ∇K − ∇K ′ = z∇L.

A link L is said to be split if there is a 2-sphere in 3-space that does not intersect
the link, such that at least one component of L is on either side of the separation.

Fig. 5 Some small barrier-free
4 × c Celtic knots
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Fig. 6 Switch and elimination
operations

Fig. 7 Iterative operations on CK2n
4

Proposition 5.1 (a) The Alexander–Conway polynomial of the Hopf link, with either
mix of component orientations, is z. (b) The Alexander–Conway polynomial of a split
link is 0. (c) The Alexander–Conway polynomial of a trefoil knot is 1 + z2.

Proof These polynomials are well known. �

Notation The notation Sc
r means switch the crossing of a Celtic link K at row r ,

column c. The notation Ec
r means eliminate the crossing at row r , column c.

Remark The orientations of the components of the link matter quite a lot, in particu-
lar, when calculating the Alexander–Conway polynomial or the genus of a link.

Lemma 5.2 The following three relations hold for operations on Celtic links.

S2n−2
1 S2n−1

2 CK2n
4 ∼ CK2n−4

4 (5.1)

E2n−2
1 S2n−1

2 CK2n
4 ∼ CK2n−2

4 (5.2)

E2n−1
2 CK2n

4 ∼ CK2n−2
4 (5.3)

Proof These relations follow from the diagrams in Fig. 7. Retracting the dashed parts
of the links corresponds to Reidemeister moves. �

Theorem 5.3 The coefficients of the Alexander–Conway polynomial for the barrier-
free link sequence CK2

4 , CK4
4 , CK6

4 , . . . are given by this formula:

∇(
CK2n

4

) =
n−1∑

k=0

b2n
k zk where b2n

k =
⎧
⎨

⎩

0 if k ≡ n mod 2
(
(n+k−1)/2

k

)
2k otherwise
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Proof We first establish this recursion:

∇(
CK0

4

) = 0 (5.4)

∇(
CK2

4

) = 1 (5.5)

∇(
CK2n

4

) = ∇(
CK2n−4

4

) + 2z∇(
CK2n−2

4

)
for n ≥ 2 (5.6)

Equation (5.4) is a normalization constant. Since CK2
4 is an unknot, (5.5) follows

from Axiom 2. We now verify (5.6).

∇(
CK2n

4

) = ∇(
S2n−1

2 CK2n
4

) + z∇(
E2n−1

2 CK2n
4

)
(Axiom 3)

= [∇(
S2n−2

1 S2n−1
2 CK2n

4

) + z∇(
E2n−2

1 S2n−1
2 CK2n

4

)]

+ z∇(
E2n−1

2 CK2n
4

)
(Axiom 3)

= ∇(
CK2n−4

4

) + 2z∇(
CK2n−2

4

)
(Lemma 5.2)

To obtain b2n
k as the coefficient of t2nuk , the generating function is

t2

1 − t2(t2 + 2u)

The conclusion follows. �

Example 5.1 Applying Theorem 5.3 gives these Alexander–Conway polynomials:

∇(
CK4

4

) = 2z

∇(
CK6

4

) = 1 + 4z2, and

∇(
CK8

4

) = 4z + 8z3

Kauffman Bracket Polynomials

Kauffman’s bracket polynomial is defined by three axioms:

Axiom 1. 〈 〉 = 1

Axiom 2u. 〈 〉 = A〈 〉 + A−1〈 〉 〈 〉-overcross

Axiom 2d. 〈 〉 = A〈 〉 + A−1〈 〉 〈 〉-overcross
Axiom 3. 〈L ∪ 〉 = (−A2 − A−2)〈L〉

Calculating the Jones polynomial of a link is known to be #P -hard [10], and the co-
efficients of a Jones polynomial can be calculated by making a substitution into a
bracket polynomial. Accordingly, the general problem calculating the bracket poly-
nomial of links is regarded as computationally intractable. Nonetheless, there remains
the possibility of calculating bracket polynomials for an infinite sequence of links, as
we now illustrate.
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Fig. 8 Celtic diagrams for
bracket polynomial relations

Notation The notation Hc
r means replace the crossing of a Celtic link K at row r ,

column c by a horizontal pair. The notation V c
r means replace the crossing at row r ,

column c by a vertical pair.

Lemma 5.4 The following four relations hold for bracket polynomials:
〈
H 2n−1

2 CK2n
4

〉 = A−6〈CK2n−2
4

〉
(5.7)

〈
V 2n−2

1 V 2n−1
2 CK2n

4

〉 = −A−3〈CK2n−2
4

〉
(5.8)

〈
H 2n−2

3 H 2n−2
1 V 2n−1

2 CK2n
4

〉 = −A3〈V 2n−3
2 CK2n−2

4

〉
(5.9)

〈
V 2n−2

3 H 2n−2
1 V 2n−1

2 CK2n
4

〉 = 〈
CK2n−2

4

〉
(5.10)

Proof Equations (5.7), (5.8), (5.9), and (5.10), follow from the diagrams (a), (b), (c),
and (d), respectively in Fig. 8. �

Remark Equations (5.7), (5.8), and (5.9) reflect the fact that the bracket polynomial
is not preserved by the first Reidemeister move. Indeed, the first Reidemeister move
changes the bracket polynomial by A3 or A−3, depending on the direction of the
twisting or untwisting.

Theorem 5.5 The bracket polynomial for the barrier-free link sequence CK0
4 ,

CK2
4 ,CK4

4 ,CK6
4 , . . . is given by the following recursion:

〈
CK0

4

〉 = 0 (5.11)
〈
V 1

2 CK2
4

〉 = 1 (5.12)
〈
CK2

4

〉 = −A−3 (5.13)
〈
V 2n−1

2 CK2n
4

〉 = (
1 − A−4)〈CK2n−2

4

〉 − A5〈V 2n−3
2 CK2n−2

4

〉
for n ≥ 2 (5.14)

〈
CK2n

4

〉 = A
〈
V 2n−1

2 CK2n
4

〉 + A−7〈CK2n−2
4

〉
for n ≥ 2 (5.15)
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Proof Equation (5.11) is a normalization constant, and (5.12) and (5.13) are easily
verified from fundamentals. We now confirm (5.14) and (5.15).

〈
V 2n−1

2 CK2n
4

〉 = A
〈
H 2n−2

1 V 2n−1
2 CK2n

4

〉

+ A−1〈V 2n−2
1 V 2n−1

2 CK2n
4

〉
(by Ax. 2d)

= A
〈
H 2n−2

1 V 2n−1
2 CK2n

4

〉

+ A−1(−A−3)〈CK2n−2
4

〉 (
by (5.8)

)

= −A−4〈CK2n−2
4

〉 + A
[
A

〈
H 2n−2

3 H 2n−2
1 V 2n−1

2 CK2n
4

〉

+ A−1〈V 2n−2
3 H 2n−2

1 V 2n−1
2 CK2n

4

〉]
(by Ax. 2d)

= −A−4〈CK2n−2
4

〉 + A2(−A3)〈V 2n−3
2 CK2n−2

4

〉

+ A · A−1〈CK2n−2
4

〉 (
by (5.9, 5.10)

)

= (
1 − A−4)〈CK2n−2

4

〉 − A5〈V 2n−3
2 CK2n−2

4

〉

〈
CK2n

4

〉 = A
〈
V 2n−1

2 CK2n
4

〉 + A−1〈H 2n−1
2 CK2n

4

〉
(by Ax. 2u)

= A
〈
V 2n−1

2 CK2n
4

〉 + A−1A−6〈CK2n−2
4

〉 (
by (5.7)

)

= A
〈
V 2n−1

2 CK2n
4

〉 + A−7〈CK2n−2
4

〉
�

Example 5.2 Applying Theorem 5.5 gives these bracket polynomials:

〈
V 3

2 CK4
4

〉 = A−7 − A−3 − A5 knot 31
〈
CK4

4

〉 = −A−10 + A−6 − A−2 − A6 link 42
1

〈
V 5

2 CK6
4

〉 = A−14 − 2A−10 + 2A−6 − 2A−2

+ 2A2 − A6 + A10 knot 62
〈
CK6

4

〉 = −A−17 + 2A−13 − 3A−9 + 2A−5

− 3A−1 + 2A3 − A7 + A11 knot 74

Remark Whereas the time to calculate 〈CK4
2n〉 by the usual skein relations is ex-

ponential in n, we observe that each iteration of the recursions (5.14) and (5.15)
increases the span of the bracket polynomial by at most 12. Thus, the time needed to
calculate 〈CK4

2n〉 by applying these recursions is quadratic in n.

6 Conclusions

Celtic design can be used to specify any alternating link and that Celtistic design can
be used to specify any link. We have seen that Celtic representation suggests some
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new geometric invariants, which can yield information about some well-established
knot invariants. It can also be used to calculate knot polynomials for infinite families
of knots and links. Moreover, the computation time for bracket polynomials (or Jones
polynomials) by the methods given here is quadratic in the number of crossings, in
contrast to the standard exponential-time skein-based recursive algorithm.
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