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Abstract We present examples of flag homology spheres whose γ -vectors satisfy
the Kruskal–Katona inequalities. This includes several families of well-studied sim-
plicial complexes, including Coxeter complexes and the simplicial complexes dual to
the associahedron and to the cyclohedron. In these cases, we construct explicit flag
simplicial complexes whose f -vectors are the γ -vectors in question, and so a result
of Frohmader shows that the γ -vectors satisfy not only the Kruskal–Katona inequal-
ities but also the stronger Frankl–Füredi–Kalai inequalities. In another direction, we
show that if a flag (d − 1)-sphere has at most 2d + 3 vertices its γ -vector satisfies
the Frankl–Füredi–Kalai inequalities. We conjecture that if Δ is a flag homology
sphere then γ (Δ) satisfies the Kruskal–Katona, and further, the Frankl–Füredi–Kalai
inequalities. This conjecture is a significant refinement of Gal’s conjecture, which
asserts that such γ -vectors are nonnegative.

Keywords γ -Vector · Gal’s conjecture

1 Introduction

In [5], Gal gave counterexamples to the real-root conjecture for flag spheres and
conjectured a weaker statement which still implies the Charney–Davis conjecture.
The conjecture is phrased in terms of the so-called γ -vector.
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Conjecture 1.1 Gal [5, Conjecture 2.1.7] If Δ is a flag homology sphere then γ (Δ)

is nonnegative.

This conjecture is known to hold for the order complex of a Gorenstein∗ poset [7],
all Coxeter complexes (see [17], and references therein), and for the (dual simplicial
complexes of the) “chordal nestohedra” of [12]—a class containing the associahe-
dron, permutahedron, and other well-studied polytopes.

If Δ has a nonnegative γ -vector, one may ask what these nonnegative integers
count. In certain cases (the type A Coxeter complex, say), the γ -vector has a very
explicit combinatorial description. We will exploit such descriptions to show that not
only are these numbers nonnegative, but they satisfy certain non-trivial inequalities
known as the Kruskal–Katona inequalities. Put another way, such a γ -vector is the
f -vector of a simplicial complex. Our main result is the following.

Theorem 1.2 The γ -vector of Δ satisfies the Kruskal–Katona inequalities for each
of the following classes of flag spheres:

(a) Δ is a Coxeter complex.
(b) Δ is the simplicial complex dual to an associahedron.
(c) Δ is the simplicial complex dual to a cyclohedron (type B associahedron).

Note that the type A Coxeter complex is dual to the permutahedron, and for types
B and D there is a similarly defined polytope—the “Coxeterhedron" of Reiner and
Ziegler [13].

We prove Theorem 1.2 by constructing, for each such Δ, a simplicial complex
whose faces correspond to the combinatorial objects enumerated by γ (Δ).

In a different direction, we are also able to show that if Δ is a flag sphere with
few vertices relative to its dimension, then its γ -vector satisfies the Kruskal–Katona
inequalities.

Theorem 1.3 Let Δ be a (d − 1)-dimensional flag homology sphere with at most
2d + 3 vertices, i.e., with γ1(Δ) ≤ 3. Then γ (Δ) satisfies the Kruskal–Katona in-
equalities. Moreover, all possible γ -polynomials with γ1 ≤ 3 that satisfy the Kruskal–
Katona inequalities, except for 1+3t +3t2, occur as γ (Δ; t) for some flag sphere Δ.

Theorem 1.3 is proved by characterizing the structure of such flag spheres.
Computer evidence suggests that Theorems 1.2 and 1.3 may be enlarged signifi-

cantly. We make the following strengthening of Gal’s conjecture.

Conjecture 1.4 If Δ is a flag homology sphere then γ (Δ) satisfies the Kruskal–
Katona inequalities.

This conjecture is true, but not sharp, for flag homology 3- (or 4-) spheres. In-
deed, Gal showed that 0 ≤ γ2(Δ) ≤ γ1(Δ)2/4 must hold for flag homology 3- (or 4-)
spheres [5], which implies the Kruskal–Katona inequality γ2(Δ) ≤ (

γ1(Δ)
2

)
. Our

stronger Conjecture 6.3 is sharp for flag homology spheres of dimension at most 4.
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In Sect. 2, we review some key definitions. Section 3 collects some known results
describing the combinatorial objects enumerated by the γ -vectors of Theorem 1.2.
Section 4 constructs simplicial complexes based on these combinatorial objects and
proves Theorem 1.2. Section 5 is given to the proof of Theorem 1.3. Finally, Sect. 6
describes a strengthening of Theorem 1.2 by showing that under the same hypotheses
the stronger Frankl–Füredi–Kalai inequalities hold for the γ -vector. These inequal-
ities hold in Theorem 1.3 as well, leading us to present a stronger companion to
Conjecture 1.4, namely Conjecture 6.3.

2 Terminology

A simplicial complex Δ on a vertex set V is a collection of subsets F of V , called
faces, such that:

• If v ∈ V then {v} ∈ Δ.
• If F ∈ Δ and G ⊂ F , then G ∈ Δ.

The dimension of a face F is dimF = |F | − 1. In particular, dim∅ = −1. The di-
mension of Δ, denoted by dimΔ, is the maximum of the dimensions of its faces.

We say that Δ is flag if all the minimal subsets of V which are not in Δ have size
2; equivalently, F ∈ Δ if and only if all the edges of F (two element subsets) are
in Δ.

We say that Δ is a sphere if its geometric realization is homeomorphic to a sphere.
The link lk(F ) = lkΔ(F) of a face F of Δ is the set of all G ∈ Δ such that F ∪G ∈ Δ

and F ∩G = ∅. We say that Δ is a homology sphere if for every face F ∈ Δ, lk(F ) is
homologous to the (dimΔ − |F |)-dimensional sphere. In particular, if Δ is a sphere
then Δ is a homology sphere.

The f -polynomial of a (d−1)-dimensional simplicial complex Δ is the generating
function for the dimensions of the faces of the complex:

f (Δ; t) :=
∑

F∈Δ

tdimF+1 =
∑

0≤i≤d

fi(Δ)ti .

The f -vector

f (Δ) := (f0, f1, . . . , fd)

is the sequence of coefficients of the f -polynomial. We have that fi is the number of
(i − 1)-dimensional faces of Δ. (We caution the reader that other authors index the
f -vector as (f−1, f0, . . . , fd−1), so that fi is the number of i-dimensional faces.)

The h-polynomial of Δ is a transformation of the f -polynomial:

h(Δ; t) := (1 − t)df
(
Δ; t/(1 − t)

) =
∑

0≤i≤d

hi(Δ)ti ,

and the h-vector is the corresponding sequence of coefficients,

h(Δ) := (h0, h1, . . . , hd).
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Though they contain the same information, often the h-polynomial is easier to work
with than the f -polynomial. For instance, if Δ is a homology sphere, then the Dehn–
Sommerville relations guarantee that the h-vector is symmetric, i.e., hi = hd−i for all
0 ≤ i ≤ d .

When referring to the f - or h-polynomial of a simple polytope, we mean the f -
or h-polynomial of the boundary complex of its dual. So, for instance, we refer to the
h-vector of the type A Coxeter complex and the permutahedron interchangeably.

Whenever a polynomial of degree d has symmetric integer coefficients, it has an
integer expansion in the basis {t i (1 + t)d−2i : 0 ≤ i ≤ d/2}. Specifically, if Δ is a
(d − 1)-dimensional homology sphere then there exist integers γi(Δ) such that

h(Δ; t) =
∑

0≤i≤d/2

γi(Δ)ti(1 + t)d−2i .

We refer to the sequence γ (Δ) := (γ0, γ1, . . .) as the γ -vector of Δ, and the corre-
sponding generating function γ (Δ; t) = ∑

γit
i is the γ -polynomial. Our goal is to

show that under the hypotheses of Theorems 1.2 and 1.3 the γ -vector for Δ is seen
to be the f -vector for some other simplicial complex.

A result of Schützenberger, Kruskal and Katona (all independently), characterizes
the f -vectors of simplicial complexes as follows. (See [16, Chap. II.2].) By con-
vention we call the conditions characterizing these f -vectors the Kruskal–Katona
inequalities.

Given a pair of integers a and i there is a unique expansion:

a =
(

ai

i

)
+

(
ai−1

i − 1

)
+ · · · +

(
aj

j

)
,

where ai > ai−1 > · · · > aj ≥ j. With this in mind, define

a(i) =
(

ai

i + 1

)
+

(
ai−1

i

)
+ · · · +

(
aj

j + 1

)
, 0(i) = 0.

Theorem 2.1 (Katona, Kruskal, Schützenberger) An integer vector (f0, f1, . . .) is
the f -vector of a simplicial complex if and only if:

(a) f0 = 1,
(b) fi ≥ 0,
(c) fi+1 ≤ f

(i)
i for i = 1,2 . . . .

We will use the Kruskal–Katona inequalities directly for Theorem 1.3 and for
checking the Coxeter complexes of exceptional type in part (a) of Theorem 1.2. (See
Table 1.) For the remainder of Theorem 1.2 we construct explicit simplicial com-
plexes with the desired f -vectors.

3 Combinatorial Descriptions of γ -Nonnegativity

Here we provide combinatorial descriptions (mostly already known) for the γ -vectors
of the complexes described in Theorem 1.2.
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Table 1 The γ -vectors for
finite Coxeter complexes of
exceptional type

W γ (W)

E6 (1,1266,7104,3104)

E7 (1,17628,221808,282176)

E8 (1,881744,23045856,63613184,17111296)

F4 (1,232,208)

G2 (1,8)

H3 (1,56)

H4 (1,2632,3856)

I2(m) (1,2m − 4)

3.1 Type A Coxeter Complex

We begin by describing the combinatorial objects enumerated by the γ -vector
of the type An−1 Coxeter complex, or equivalently, the permutahedron. (For the
reader looking for more background on the Coxeter complex itself, we refer to [6,
Sect. 1.15]; for the permutahedron see [18, Example 0.10].)

Recall that a descent of a permutation w = w1w2 · · ·wn ∈ Sn is a position i ∈
[n − 1] such that wi > wi+1. A peak (resp., valley) is a position i ∈ [2, n − 1] such
that wi−1 < wi > wi+1 (resp., wi−1 > wi < wi+1). We let des(w) denote the number
of descents of w, and we let peak(w) denote the number of peaks. It is well known
that the h-polynomial of the type An−1 Coxeter complex is expressed as:

h(An−1; t) =
∑

w∈Sn

tdes(w).

Foata and Schützenberger were the first to demonstrate the γ -nonnegativity of
this polynomial (better known as the Eulerian polynomial), showing h(An−1; t) =∑

γit
i(1 + t)n−1−2i , where γi = the number of equivalence classes of permutations

of n with i + 1 peaks [2]. (Two permutations are in the same equivalence class if they
have the same sequence of values at their peaks and valleys.) See also Shapiro, Woan,
and Getu [14] and, in a broader context, Brändén [1] and Stembridge [17].

Following Postnikov, Reiner, and Williams [12], we choose the following set of
representatives for these classes:

Ŝn = {w ∈ Sn : wn−1 < wn, and if wi−1 > wi then wi < wi+1}.
In other words, Ŝn is the set of permutations w with no double descents and no
final descent, or those for which des(w) = peak(0w0) − 1. We now phrase the γ -
nonnegativity of the type An−1 Coxeter complex in this language.

Theorem 3.1 Foata–Schützenberger [2, Théorème 5.6] The h-polynomial of the type
An−1 Coxeter complex can be expressed as follows:

h(An−1; t) =
∑

w∈Ŝn

tdes(w)(1 + t)n−1−2 des(w).
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We now can state precisely that the type An−1 Coxeter complex (permutahedron)
has γ (An−1) = (γ0, γ1, . . . , γ
 n−1

2 �), where

γi(An−1) = ∣∣{w ∈ Ŝn : des(w) = i
}∣∣.

The permutahedron is an example of a chordal nestohedron. Following [12], a
chordal nestohedron PB is characterized by its building set, B. Each building set B
on [n] has associated to it a set of B-permutations, Sn(B) ⊂ Sn, and we similarly
define Ŝn(B) = Sn(B) ∩ Ŝn. See [12] for details. The following is a main result of
Postnikov, Reiner, and Williams [12].

Theorem 3.2 Postnikov, Reiner, Williams [12, Theorem 11.6] If B is a connected
chordal building set on [n], then

h(PB; t) =
∑

w∈Ŝn(B)

tdes(w)(1 + t)n−1−2 des(w).

Thus, for a chordal nestohedron, γi(PB) = |{w ∈ Ŝn(B) : des(w) = i}|.

3.2 Type B Coxeter Complex

We now turn our attention to the type Bn Coxeter complex. The framework of [12]
no longer applies, so we must discuss a new, if similar, combinatorial model.

In type Bn, the γ -vector is given by γi = 4i times the number of permutations w of
Sn such that peak(0w) = i. See Petersen [11] and Stembridge [17]. We define the set
of decorated permutations Decn as follows. A decorated permutation w ∈ Decn is a
permutation w ∈ Sn with bars following the peak positions (with w0 = 0). Moreover,
these bars come in four colors: {| = |0, |1, |2, |3}. Thus for each w ∈ Sn we have
4peak(0w) decorated permutations in Decn. For example, Dec9 includes elements such
as

4|238|176519, 4|3238|276519, 25|137|169|284.

(Note that Ŝn ⊂ Decn.) Let peak(w) = peak(0w) denote the number of bars in w. In
this context, we have the following result.

Theorem 3.3 Petersen [11, Proposition 4.15] The h-polynomial of the type Bn Cox-
eter complex can be expressed as follows:

h(Bn; t) =
∑

w∈Decn

tpeak(w)(1 + t)n−2 peak(w).

Thus,

γi(Bn) = ∣∣{w ∈ Decn : peak(w) = i
}∣∣.
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3.3 Type D Coxeter Complex

We now describe how to view the elements enumerated by the γ -vector of the type
D Coxeter complex in terms of a subset of decorated permutations. Define a subset
DecD

n ⊂ Decn as follows:

DecD
n = {

w = w1 · · · |c1wi1 · · · |c2 · · · ∈ Decn such that w1 < w2 < w3, or,

both max{w1,w2,w3} �= w3 and c1 ∈ {0,1}}.
In other words, we remove from Decn all elements whose underlying permutations
have w2 < w1 < w3, then for what remains we dictate that bars in the first or second
positions can only come in one of two colors. Stembridge [17] gives an expression
for the h-polynomial of the type Dn Coxeter complex, which we now phrase in the
following manner.

Theorem 3.4 Stembridge [17, Corollary A.5] The h-polynomial of the type Dn Cox-
eter complex can be expressed as follows:

h(Dn; t) =
∑

w∈DecD
n

tpeak(w)(1 + t)n−2 peak(w).

Thus,

γi(Dn) = ∣∣{w ∈ DecD
n : peak(w) = i

}∣∣.

3.4 The Associahedron

The associahedron Assocn is an example of a chordal nestohedron, so Theorem 3.2
applies. Following [12, Sect. 10.2], the B-permutations of Assocn are precisely the
312-avoiding permutations. Let Sn(312) denote the set of all w ∈ Sn such that there
is no triple i < j < k with wj < wk < wi . Then we have:

h(Assocn; t) =
∑

w∈Ŝn(312)

tdes(w)(1 + t)n−1−2 des(w),

where Ŝn(312) = Sn(312) ∩ Ŝn. Hence,

γi(Assocn) = ∣∣{w ∈ Ŝn(312) : des(w) = i
}∣∣.

3.5 The Cyclohedron

The cyclohedron Cycn, or type B associahedron, is a nestohedron, though not a
chordal nestohedron and hence Theorem 3.2 does not apply. Its γ -vector can be ex-
plicitly computed from its h-vector as described in [12, Proposition 11.15]. We have
γi(Cycn) = (

n
i,i,n−2i

)
. Define

Pn = {
(L,R) ⊆ [n] × [n] : |L| = |R|,L ∩ R = ∅}

.
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It is helpful to think of elements of Pn as follows. For σ = (L,R) with |L| = |R| = k,
write σ as a k × 2 array with the elements of L written in increasing order in the
first column, the elements of R in increasing order in the second column. That is, if
L = {l1 < · · · < lk} and R = {r1 < · · · < rk}, we write

σ =
⎛

⎜
⎝

l1 r1
...

...

lk rk

⎞

⎟
⎠ .

For σ ∈ Pn, let ρ(σ ) = |L| = |R|. Then we can write

h(Cycn; t) =
∑

σ∈Pn

tρ(σ )(1 + t)n−2ρ(σ ).

Thus,

γi(Cycn) = ∣∣{σ ∈ Pn : ρ(σ ) = i
}∣∣.

4 The Γ -Complexes

We will now describe simplicial complexes whose f -vectors are the γ -vectors de-
scribed in Sect. 3.

4.1 Coxeter Complexes

Notice that if

w = w1|c1 · · · |ci−1wi |ci wi+1|ci+1 · · · |cl−1wl,

is a decorated permutation, then each word wi = wi,1 · · ·wi,k has some j such that:

wi,1 > wi,2 > · · · > wi,j > wi,j+1 < wi,j+2 < · · · < wi,k.

We say wi is a down-up word. We call ẁi = wi,1 · · ·wi,j the decreasing part of wi

and ẃi = wi,j+1 · · ·wi,k the increasing part of wi . Note that the decreasing part may
be empty, whereas the increasing part is nonempty if i �= l. Also, the rightmost block
of w may be strictly decreasing (in which case wl = ẁl) and the leftmost block is
always increasing, even if it is a singleton.

Define the vertex set

VDecn := {
v ∈ Decn : peak(v) = 1

}
.

The adjacency of two such vertices is defined as follows. Let

u = ú1|c ù2 ú2

and

v = v́1|d v̀2 v́2
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be two vertices with |ú1| < |v́1|. We define u and v to be adjacent if and only if there
is an element w ∈ Decn such that

w = ú1 |c ù2 á|d v̀2 v́2,

where á is the letters of ú2 ∩ v́1 written in increasing order. Such an element w exists
if, as sets:

• ú1 ∪ ù2 ⊂ v́1 (⇔ v̀2 ∪ v́2 ⊂ ú2)
• min ú2 ∩ v́1 < min ù2, and
• max ú2 ∩ v́1 > max v̀2. (Note that ú2 ∩ v́1 is nonempty by the first condition.)

Definition 4.1 Let Γ (Decn) be the collection of all subsets F of VDecn such that
every two distinct vertices in F are adjacent.

Note that by definition Γ (Decn) is a flag complex. It remains to show that the
faces of Γ (Decn) correspond to decorated permutations.

Let φ : Decn → Γ (Decn) be the map defined as follows. If

w = w1|c1 · · · |ci−1wi |ci wi+1|ci+1 · · · |cl−1wl,

then

φ(w) = {
w1|c1 ẁ2 b́1, . . . , ái |ci ẁi+1 b́i , . . . , ál−1|cl−1 ẁl b́l−1

}
,

where ái is the set of letters to the left of ẁi+1 in w written in increasing order and b́i

is the set of letters to the right of ẁi+1 in w written in increasing order.

Proposition 4.2 The map φ is a bijection between faces of Γ (Decn) and decorated
permutations in Decn.

Proof First, let us check that φ is well defined, i.e., that φ(w) ∈ Γ (Decn) for w ∈
Decn. Indeed, it is easy to verify that the three bulleted conditions above hold for any
two vertices in φ(w).

It is straightforward to see that φ is injective. Indeed, if φ(w) = φ(v) then w and
v have the like colored bars in the same positions. Further, their vertex with bar |c1

shows w1 = v1 and ẁ2 = v̀2. Therefore, their vertex with bar |c2 shows ẃ2 = v́2 and
ẁ3 = v̀3, and inductively, w = v.

To see that φ is surjective, we will construct the inverse map. Clearly, if |F | ≤ 2,
there is an element of Decn corresponding to F . Now, given any F ∈ Γ (Decn), order
its vertices by increasing position of the bar in the vertex: u1,u2, . . . ,ul . Suppose by
induction on |F | that the face {u1, . . . ,ul−1} corresponds to the decorated permuta-
tion

w = w1|c1 · · · |ci−1wi |ci wi+1|ci+1 · · · |cl−1 ẁl ẃl ,

so that ul−1 = úl−1 |cl−1 ẁl ẃl .
Then since ul−1 and ul = úl,1 |cl ùl,2 úl,2 are adjacent, we know ùl,2 ∪ úl,2 ⊂ ẃl ,

min ẃl ∩ úl,1 < min ẁl , and max ẃl ∩ úl,1 > max ùl,2. Then obviously the following
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is, in fact, a decorated permutation in Decn:

w′ = w1|c1 · · · |ci−1wi |ci wi+1|ci+1 · · · |cl−1 ẁl á|cl ùl,2 úl,2,

where á = ẃl ∩ úl,1 written in increasing order. By construction, we have φ(w′) = F ,
completing the proof. �

We now make explicit how to realize Decn as the face poset of Γ (Decn). We say w
covers u if and only if u can be obtained from w by removing a bar |ci and reordering
the word wiwi+1 = ẁi ẃi wi+1 as a down-up word ẁi a where a is the word formed
by writing the letters of ẃi wi+1 in increasing order. Then (Decn,≤) is a poset graded
by number of bars.

Proposition 4.3 The map φ is an isomorphism of graded posets from (Decn,≤) to
(Γ (Decn),⊆).

Proof The previous proposition shows the map φ is a grading-preserving bijection.
We verify that φ and φ−1 are order preserving. If w ≤ v then clearly φ(w) ⊆ φ(v) for
both the bars in w and their adjacent decreasing parts are unaffected by the removal
of other bars from v.

If G = F ∪ {u} is in Γ (Decn), we now show that φ−1(F ) ≤ φ−1(G). For |G| ≤ 2
this is obvious. The general situation follows from showing that φ−1(G) is inde-
pendent of the order in which its bars are inserted. More precisely, it is enough
to check that for three pairwise adjacent vertices u = ú1|c ù2 ú2,v = v́1|d v̀2 v́2, and
w = ẃ1|e ẁ2 ẃ2 in VDecn (with bars in increasing position order |c, |d , |e , respec-
tively), we can insert the middle bar last. This can be done if the following holds:

ú2 ∩ ẃ1 = (ú2 ∩ v́1) ∪ v̀2 ∪(v́2 ∩ ẃ1).

Equality holds since in both φ−1({u,w}) and φ−1({u,v,w}) the words to the right of
|e and to the left of |c are the same. �

We now show that the γ -objects for the type An−1 and type Dn Coxeter complexes
form flag subcomplexes of Γ (Decn).

Proposition 4.4 For S ∈ {Ŝn,DecD
n } the image Γ (S) := φ(S) is a flag subcomplex

of Γ (Decn).

Proof To show Γ (S) is a subcomplex, by Proposition 4.3 it suffices to show that
(S,≤) is a lower ideal in (Decn,≤). This is straightforward to verify in all cases.

For w ∈ Ŝn, all bars have color 0 and all subwords between bars are increasing.
Omitting a bar |ci from w we reorder wiwi+1 in increasing order as ẁi is empty, thus
the resulting element is in Ŝn.

Finally, if w ∈ DecD
n , we observe that if the first three letters of w do not satisfy

w2 < w1 < w3, then neither can the first three letters of any coarsening of w.
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To show that Γ (S) is flag, we will show that it is the flag complex generated by
the elements of S with exactly one bar. Precisely, let

VS := {v ∈ S : v has exactly one bar}.
Since we have already shown S is a lower ideal, we know if w ∈ S, φ(S) ⊂ VS . It
remains to show that if F is a collection of pairwise adjacent vertices in VS then we
have φ−1(F ) ∈ S. (Pairwise adjacency guarantees φ−1(F ) is well-defined; suppose
each F below has this property.) We now examine the combinatorics of each case
individually.

First, if F ⊂ V
Ŝn

, then all the vertices of F are of the form ẃ1| ẃ2, and so φ−1(F )

has only 0-colored bars and no decreasing parts. That is, φ−1(F ) ∈ Ŝn.
In the case of DecD

n , observe that w ∈ Decn has w2 < w1 < w3 if and only if φ(w)

has a vertex with the same property, and likewise for the color of a bar in position
1 or 2. Thus if F ⊂ VDecD

n
, then because each vertex avoids w2 < w1 < w3 and has

appropriately colored bars (if any) in positions 1 and 2, we have φ−1(F ) ∈ DecD
n .

This completes the proof. �

In light of the results of Sects. 3.1, 3.2, and 3.3, and because the dimension of
faces corresponds to the number of bars, we have the following result, which, along
with Table 1, implies part (a) of Theorem 1.2.

Corollary 4.5 We have:

(1) γ (An−1) = f (Γ (Ŝn))

(2) γ (Bn) = f (Γ (Decn), and
(3) γ (Dn) = f (Γ (DecD

n )

In particular, the γ -vectors of the type An−1, Bn, and Dn Coxeter complexes satisfy
the Kruskal–Katona inequalities.

Remark 4.6 The construction of Γ (Decn) admits an obvious generalization to any
number of colors of bars, though we have no examples of simplicial complexes whose
γ -vectors would be modeled by the faces of such a complex (and for which a result
like Corollary 4.5 might exist).

Remark 4.7 In view of Theorem 3.2, we can observe that if B is a connected chordal
building set such that (Ŝn(B),≤) is a lower ideal in (Decn,≤), then a result such as
Corollary 4.5 applies. That is, we would have γ (PB) = f (φ(Ŝn(B))). In particular,
we would like to use such an approach to the γ -vector of the associahedron. However,
Ŝn(312) is not generally a lower ideal in Decn. For example, with n = 5, we have
w = 3|24|15 > 3|1245 = u. While w is 312-avoiding, u is clearly not.

4.2 The Associahedron

First, we give a useful characterization of the set Ŝn(312).
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Observation 4.8 If w ∈ Ŝn(312), it has the form

w = á1 j1i1 á2 j2i2 · · · ák jkik ák+1, (1)

where:

• j1 < · · · < jk

• js > is for all s, and
• ás is the word formed by the letters of {r ∈ [n] \ {i1, j1, . . . , ik, jk} : js−1 < r < js}

(with j0 = 0, jk+1 = n + 1) written in increasing order

In particular, since w has no double descents and no final descent, we see that ák+1
is always nonempty and wn = n. We refer to (is, js) as a descent pair of w.

Given distinct integers a, b, c, d with a < b and c < d , we say the pairs (a, b) and
(c, d) are crossing if either of the following statements are true:

• a < c < b < d or
• c < a < d < b

Otherwise, we say the pairs are noncrossing. For example, (1,5) and (4,7) are cross-
ing, whereas both the pairs (1,5) and (2,4) and the pairs (1,5) and (6,7) are non-
crossing.

Define the vertex set

V
Ŝn(312)

:= {
(a, b) : 1 ≤ a < b ≤ n − 1

}
.

Definition 4.9 Let Γ (Ŝn(312)) be the collection of subsets F of V
Ŝn(312)

such that
every two distinct vertices in F are noncrossing.

By definition, Γ (Ŝn(312)) is a flag simplicial complex, and so the task remains
to show that the faces of the complex correspond to the elements of Ŝn(312).

Define a map π : Ŝn(312) → Γ (Ŝn(312)) as follows:

π(w) = {
(wi+1,wi) : wi > wi+1

}
.

Proposition 4.10 The map π is a bijection between faces of Γ (Ŝn(312)) and
Ŝn(312).

Proof Suppose w is as in (1). We claim that the descent pairs (is, js) and (it , jt ) (with
js < jt , say) are noncrossing. Indeed, if is < it < js < jt , then the subword jsis it
forms the pattern 312. Therefore (and because wn = n), we see the map π(w) =
{(i1, j1), . . . , (ik, jk)} is well-defined.

That π is injective follows from the Observation 4.8. Indeed, if π(w) = π(v), then
because j1 < · · · < jk the descents jsis occur in the same relative positions in w as in
v, and the contents of the increasing words ás are forced after identifying the descent
pairs, then w = v.

Now consider a face F = {(i1, j1), . . . , (ik, jk)} of Γ (Ŝn(312)). To construct
π−1(F ), we simply order the pairs in F so that j1 < · · · < jk and form the per-
mutation π−1(F ) = w as in (1). �
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By construction, we have |π(w)| = des(w), and therefore the results of Sect. 3.4
imply the following result, proving part (b) of Theorem 1.2.

Corollary 4.11 We have

γ (Assocn) = f
(
Γ

(
Ŝn(312)

))
.

In particular, the γ -vector of the associahedron satisfies the Kruskal–Katona inequal-
ities.

Remark 4.12 It is well known that the h-vector of the associahedron has a combina-
torial interpretation given by noncrossing partitions. Simion and Ullmann [15] give
a particular decomposition of the lattice of noncrossing partitions that can be used to
describe γ (Assocn) in a (superficially) different manner.

4.3 The Cyclohedron

For the cyclohedron, let

VPn := {
(l, r) ∈ [n] × [n] : l �= r

}
.

Two vertices (l1, r1) and (l2, r2) are adjacent if and only if:

• l1, l2, r1, r2 are distinct and
• l1 < l2 if and only if r1 < r2

Define Γ (Pn) to be the flag complex whose faces F are all subsets of VPn such that
every two distinct vertices in F are adjacent.

We let ψ : Pn → Γ (Pn) be defined as follows. If

σ =
⎛

⎜
⎝

l1 r1
...

...

lk rk

⎞

⎟
⎠

is an element of Pn, then ψ(σ) is simply the set of rows of σ :

ψ(σ) = {
(l1, r1), . . . , (lk, rk)

}
.

Clearly, this map is invertible, for we can list a set of pairwise adjacent vertices in
increasing order (by li or by ri ) to obtain an element of Pn. We have the following.

Proposition 4.13 The map ψ is a bijection between faces of Γ (Pn) and the elements
of Pn.

We are now able to complete the proof of Theorem 1.2, as the following implies
part (c).
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Corollary 4.14 We have

γ (Cycn) = f
(
Γ (Pn)

)
.

In particular, the γ -vector of the cyclohedron satisfies the Kruskal–Katona inequali-
ties.

5 Flag Spheres with Few Vertices

We now describe a different class of flag spheres whose γ -vectors satisfy the
Kruskal–Katona inequalities: those with few vertices relative to their dimension.
Our starting point is the following lemma, see [8] and [5, Lemma 2.1.14]. (Recall
that the boundary of the d-dimensional cross-polytope is the d-fold join of the zero-
dimensional sphere, called also the octahedral sphere.)

Lemma 5.1 (Meshulam, Gal) If Δ is a flag homology sphere then:

(a) γ1(Δ) ≥ 0.
(b) if γ1(Δ) = 0, then Δ is an octahedral sphere.

By definition, if Δ is a (d − 1)-dimensional flag homology sphere, we have
f1(Δ) = 2d + γ1(Δ). For Theorem 1.3, we will classify γ -vectors of those Δ for
which 0 ≤ γ1(Δ) ≤ 3, or equivalently, 2d ≤ f1(Δ) ≤ 2d + 3. Notice that an octahe-
dral sphere (of any dimension) has γ = (1,0,0, . . .).

If Δ is a flag homology d-sphere, F ∈ Δ and |F | = k, then lk(F ) is a flag homol-
ogy (d − k)-sphere (for flagness see Lemma 5.2(b) below). The contraction of the
edge {u,v} in Δ is the complex Δ′ = {F ∈ Δ : u /∈ F } ∪ {(F \ {u}) ∪ {v} : F ∈ Δ,
u ∈ F }. By [9, Theorem 1.4], Δ′ is a sphere if Δ is a sphere, but it is not necessarily
flag. The same holds for homology spheres [10, Proposition 2.3].

We have the following relation of γ -polynomials:

γ (Δ; t) = γ (Δ′; t) + tγ
(
lk

({u,v}); t). (2)

Also, the suspension susp(Δ) = Δ ∪ {{a} ∪ F, {b} ∪ F : F ∈ Δ} (for vertices a and b

not in the vertex set of Δ), of a flag sphere Δ has the same γ -polynomial as Δ:

γ
(
susp(Δ); t) = γ (Δ; t).

Further, for A ⊆ V , define Δ[A] to be the induced subcomplex of Δ on A, consisting
of all faces F of Δ such that F ⊆ A. The antistar ast(v) of a vertex v ∈ V is the
induced subcomplex Δ[V − {v}].

In the following lemma, we collect some known facts and some simple observa-
tions which will be used frequently in what follows.

Lemma 5.2 Let Δ be a flag complex on vertex set V . Then the following holds:

(a) If A ⊆ V then Δ[A] is flag.
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(b) If F ∈ Δ then lk(F ) is an induced subcomplex of Δ, hence flag.
Let K be a simplicial complex on vertex set U and Γ a subcomplex of K on

vertex set A. Then:
(c) If Γ = K[A] then K − Γ deformation retracts on K[U − A].
(d) If K and Γ are homology spheres then K −Γ has the same homology as a sphere

of dimension dimK − dimΓ − 1. In particular, if dimK = dimΓ then K = Γ .

Proof Part (a) is obvious. For (b), Let v be a vertex of Δ. If all proper subsets of a
face T ∈ Δ are in lk(v), then by flagness T ∪ {v} ∈ Δ, hence T ∈ lk(v) so lk(v) is
an induced subcomplex. If F = T ∪ {v} in Δ where v /∈ T , then lkΔ(F) = lklk(v)(T ),
and by induction on the number of vertices in F we conclude that lk(F ) is an induced
subcomplex. By part (a), it is flag, concluding (b).

Part (c) is easy and well known, and (d) is a consequence of Alexander duality. �

It is clear that the link of any vertex in an octahedral sphere is itself an octahedral
sphere. The following lemma, suggested to us by one of the referees and used in the
sequel, shows that the converse is true as well.

Lemma 5.3 Let Δ be a (d − 1)-dimensional flag homology sphere on vertex set
V such that for any v ∈ V lk(v) is an octahedral sphere. Then Δ is an octahedral
sphere.

Proof Fix v ∈ V and let I be the set of interior vertices in the homology ball ast(v),
i.e., the set of vertices that do not share an edge with v. If I is empty, then Δ is a
cone over lk(v), which contradicts the fact that Δ is a homology sphere. If |I |=1, say
I = {u}, then lk(u) ⊆ lk(v) are homology spheres of the same dimension, hence by
Lemma 5.2(d) lk(u) = lk(v). Thus Δ contains the suspension of lk(v), and again by
Lemma 5.2(d) Δ = susp(lk(v)). Thus Δ is octahedral.

Now assume for a contradiction that |I | > 1. Then there exists a vertex w ∈ lk(v)

with at least two neighbors in I , say a and b. Then lkΔ(w) contains the vertices in
lklkΔ(v)(w) and {a, b, v}, hence more than 2(d − 1) vertices. But lk(w) is a (d −
2)-dimensional octahedral sphere, so it has precisely 2(d − 1) vertices. This is a
contradiction. �

Proposition 5.4 If Δ is a (d −1)-dimensional flag homology sphere with γ1(Δ) = 1,
then γ (Δ; t) = 1+ t and Δ is a repeated suspension over the boundary of a pentagon.

Proof We will proceed by induction on dimension. As a base case d = 2, observe
that for Δ the boundary of an n-gon one has f (Δ; t) = 1 + nt + nt2, h(Δ; t) =
1 + (n − 2)t + t2, and hence γ (Δ; t) = 1 + (n − 4)t and γ1(Δ) = 1 only for the
pentagon.

Now suppose Δ is a (d − 1)-dimensional flag homology sphere with 2d + 1 ver-
tices. If Δ is a suspension, it is a suspension of a homology (d − 2)-sphere with
2d − 1 = 2(d − 1) + 1 vertices and we are finished by induction.

Otherwise, the link of any vertex v is a (d − 2)-dimensional homology sphere
with precisely 2d − 2 vertices, i.e., an octahedral sphere. By Lemma 5.3, Δ is an
octahedral sphere, so this case is impossible. �
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Proposition 5.5 If Δ is a (d −1)-dimensional flag homology sphere with γ1(Δ) = 2,
then γ (Δ; t) ∈ {1 + 2t,1 + 2t + t2}.

Proof Again we proceed by induction on dimension. For base case d = 2, as we
observed beforehand, γ1(Δ) = 2 only for the boundary of a hexagon, in which case
γ (Δ; t) = 1 + 2t . Assume d > 2.

We now analyze the structure of Δ according to the number of vertices in the
interior of the antistar of a vertex v ∈ Δ, denoted by i(v). We always have i(v) > 0
as Δ is flag with nontrivial top homology (use Lemma 5.2(b) with F = {v}).

If there is a vertex v ∈ Δ with i(v) = 1, then Δ is the suspension over lk(v), and
we are done by induction on dimension.

If there is a vertex v ∈ Δ with i(v) = 2, let b and c denote the vertices in the inte-
rior of its antistar. First, we show that {b, c} ∈ Δ. Assume by contradiction that {b, c}
is not an edge in Δ. Then the homology (d − 2)-sphere lk(b) must be contained in
the induced subcomplex lk(v), and by Lemma 5.2(d) we get lk(b) = lk(v). Delet-
ing c gives a proper subcomplex of Δ that is itself a homology (d − 1)-sphere (the
suspension over lk(v)), an impossibility. Thus {b, c} must be an edge in Δ.

Let Δ′ be obtained from Δ by contracting the edge {b, c}. Then γ1(Δ
′) = 1.

Since Δ′ is also a flag homology sphere (it is the suspension over lk(v)) we have
γ (Δ′) = 1 + t by Proposition 5.4. We now show that γ1(lk({b, c})) ∈ {0,1}. Let m =
γ1(lk({b, c})) and assume by contradiction that m ≥ 2. By Lemma 5.2(b), lk({b, c})
is an induced subcomplex of codimension 1 in lk(v), and by 5.2(d) lk(v) − lk({b, c})
is homologous to the zero dimensional sphere. Thus lk(v) has at least 2 vertices
more than lk({b, c}), hence Δ has at least 5 vertices more than lk({b, c}). This means
γ1(Δ) ≥ m + 1 ≥ 3, a contradiction.

Thus γ (lk({b, c}) ∈ {1,1 + t} and by (2), γ (Δ) ∈ {1 + 2t,1 + 2t + t2} in this case.
The last case to consider is when i(v) = 3 for every vertex v ∈ Δ. In this case, a

vertex count tells us any lk(v) is an octahedral sphere, hence by Lemma 5.3 Δ is an
octahedral sphere, so this case is impossible. �

Proposition 5.6 If Δ is a (d −1)-dimensional flag homology sphere with γ1(Δ) = 3,
then γ (Δ; t) ∈ {1 + 3t,1 + 3t + t2,1 + 3t + 2t2,1 + 3t + 3t2 + t3}.

Proof Again we proceed by induction on dimension. For base cases d = 2,3,

γ (Δ; t) = 1 + 3t and there is nothing to prove. Assume d > 3.
As in the proof of Proposition 5.5, we fix a vertex v ∈ Δ and analyze the structure

of Δ according to the number i(v) > 0. If i(v) = 1 then Δ is the suspension over
lk(v), and we are done by induction on dimension.

If i(v) = 2, then as before we conclude that {b, c} ∈ Δ, where b and c are the ver-
tices in the interior of the antistar of v in Δ, and for Δ′ obtained from Δ by contracting
the edge {b, c} observe that Δ′ is the flag homology sphere which is the suspension
over lk(v). Thus γ (Δ′) = γ (lk(v)) ∈ {1 + 2t,1 + 2t + t2} by Proposition 5.5.

As in the proof of Proposition 5.5, γ1(lk({b, c})) ≤ γ1(Δ) − 1, so in this case
γ1(lk({b, c})) ≤ 2. Thus by Propositions 5.4 and 5.5, γ (lk({b, c})) ∈ {1,1 + t,1 +
2t,1 + 2t + t2}. By (2), to conclude the assertion we need to show that the two cases
where one of γ (Δ′) and γ (lk({b, c})) equals 1 + 2t and the other equals 1 + 2t + t2
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are impossible. In these two cases, γ1(lk({b, c})) = γ1(lk(v)) = 2. As lk({b, c}) is
an induced homology sphere of codimension 1 in lk(v), by Lemma 5.2(d) it sep-
arates lk(v) and we conclude that lk(v) = susp(lk({b, c})), hence γ (lk({b, c})) =
γ (lk(v)) = γ (Δ′), showing the above two cases are impossible.

If i(u) = 4 for every vertex u ∈ Δ, then all vertex links are octahedral spheres, an
impossibility by Lemma 5.3.

We are left to deal with the case where for every vertex u ∈ Δ, i(u) ≥ 3 and there
exists a vertex v ∈ Δ with i(v) = 3. Let I (v) = {b, c, e} be the set of interior vertices
in ast(v). By 5.2(c) and (d), the induced subcomplex Δ[v, b, c, e] is homotopic to
Δ − lk(v) and hence homologous to the zero dimensional sphere. Thus, Δ[b, c, e] is
either a triangle or a 3-path, say (b, c, e).

If Δ[b, c, e] is a triangle, let F be a facet in ast(v) containing it and x a vertex
in F ∩ lk(v). We see lklk(v)(x) is a (d − 3)-flag homology sphere and so has at least
2d −4 vertices by Lemma 5.1. But then lkΔ(x) has at least 2d vertices (now counting
b, c, e, and v). Thus since Δ itself has 2d + 3 vertices, x can have at most 2 vertices
in its antistar. This contradicts the assumption that i(x) ≥ 3.

Now suppose Δ[b, c, e] is the 3-path (b, c, e). By Proposition 5.4, lk(v) is a re-
peated suspension over a pentagon. Denote the pentagon by C. The argument we
used in the case of a triangle shows that we can assume that a vertex x ∈ lk(v) is
contained in lk({b, c}) only if x ∈ C (as otherwise i(x) < 3). Thus lk({b, c}) ⊆ C,
hence the dimension of Δ is at most 3. Thus γ (Δ) satisfies 0 = γ3 = γ4 = · · · and

0 ≤ γ2 ≤ 
 γ 2
1
4 � = 2. The assertion follows. �

To complete the proof of Theorem 1.3 we construct a flag sphere for each
admissible γ -vector. Let Cm denote the m-gon and ∗ the simplicial join opera-
tion. As mentioned before, a γ -vector of the form (1,m,0,0, . . .) is γ (Cm+4),
m ≥ 0. Recall that the γ -polynomial is multiplicative with respect to join. Then
γ (C5 ∗C5; t) = (1+ t)2 = 1+2t + t2, γ (C5 ∗C6; t) = (1+ t)(1+2t) = 1+3t +2t2

and γ (C5 ∗C5 ∗C5; t) = (1 + t)3 = 1 + 3t + 3t2 + t3. Lastly, let Δ be obtained from
C5 ∗ C5 by subdividing an edge whose vertices belong to different copies of C5. By
(2) (see also [5, Proposition 2.4.3]) we get γ (Δ; t) = (1 + t)2 + t = 1 + 3t + t2. �

6 Stronger Inequalities

A (d − 1)-dimensional simplicial complex Δ on a vertex set V is balanced if there
is a coloring of its vertices c : V → [d] such that for every face F ∈ Δ the restriction
map c : F → [d] is injective. That is, every face has distinctly colored vertices.

Frohmader [4] proved that the f -vectors of flag complexes form a (proper) subset
of the f -vectors of balanced complexes. (This was conjectured earlier by Eckhoff
and Kalai, independently.) Further, a characterization of the f -vectors of balanced
complexes is known [3], yielding stronger upper bounds on fi+1 in terms of fi than
the Kruskal–Katona inequalities, namely the Frankl–Füredi–Kalai inequalities. For
example, a balanced 1-dimensional complex is a bipartite graph, hence satisfies f2 ≤
f 2

1 /4, while the complete graph has f2 = (
f1
2

)
. See [3] for the general description of

the Frankl–Füredi–Kalai inequalities.
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Because the Γ -complexes of Sect. 4 are flag complexes, Frohmader’s result shows
that the γ -vectors of Theorem 1.2 satisfy the Frankl–Füredi–Kalai inequalities. The
same is easily verified for the γ -vectors given by Theorem 1.3 and in Table 1 for
the exceptional Coxeter complexes. We obtain the following strengthening of Theo-
rem 1.2.

Theorem 6.1 The γ -vector of Δ satisfies the Frankl–Füredi–Kalai inequalities for
each of the following classes of flag homology spheres:

(a) Δ is a Coxeter complex.
(b) Δ is the simplicial complex dual to an associahedron.
(c) Δ is the simplicial complex dual to a cyclohedron.
(d) Δ has γ1(Δ) ≤ 3.

Remark 6.2 The complexes Γ (S) where S ∈ {Decn, Ŝn,DecD
n } are balanced. The

color of a vertex v with a peak at position i is � i
2�.

Similarly, this suggests the following strengthening of Conjecture 1.4.

Conjecture 6.3 If Δ is a flag homology sphere then γ (Δ) satisfies the Frankl–
Füredi–Kalai inequalities.

As mentioned in the Introduction, this conjecture is true for flag homology spheres
of dimension at most 4. We do not have a counterexample to the following strength-
ening of this conjecture.

Problem 6.4 If Δ is a flag homology sphere, then γ (Δ) is the f -vector of a flag
complex.

Very recently Frohmader (personal communication) verified that the γ -vectors of
the exceptional Coxeter complexes are the f -vectors of flag complexes, by straight-
forward ‘greedy’ constructions.

Acknowledgements We thank the referees for helpful suggestions.
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