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Abstract We prove that for every centrally symmetric convex polygon Q, there ex-
ists a constant α such that any locally finite αk-fold covering of the plane by translates
of Q can be decomposed into k coverings. This improves on a quadratic upper bound
proved by Pach and Tóth. The question is motivated by a sensor network problem, in
which a region has to be monitored by sensors with limited battery life.
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1 Introduction

A collection of subsets of the plane forms an f -fold covering if any point in the plane
is covered by at least f subsets. We consider the following problem (see Fig. 1):

Given a convex planar body Q, does there exist a function f (Q,k) such that any
f (Q,k)-fold covering of the plane by translates of Q can be decomposed into k dis-
joint (1-fold) coverings?

This problem, first raised by Pach in 1980 (see [10] and references therein), is
a classical question in discrete geometry (see, e.g., [9, 11, 16]) and remains largely
open. In fact it is not even known whether there exists a constant c such that any
c-fold covering can be decomposed into two coverings. A survey of the literature
can be found in the book of Brass, Moser, and Pach [4]. Note that there is no such
function in general; for certain concave polygons, this was first shown in [12], and it
was extended to a larger class of concave polygons by Pálvölgyi [14].

In an unpublished manuscript, Mani and Pach [9] claim that 33-fold coverings
by open unit disks can be decomposed into two coverings.1 Tardos and Tóth recently
proved that any 43-fold covering by translates of an open triangle can be decomposed
into two coverings; they proved an exponential upper bound on f (Q,k) for open
triangles [16].

For the case of translates of an open centrally symmetric convex polygon, the
problem proved to be challenging. The existence of a function f (Q,k) was conjec-
tured in 1980 [10], and a few years later, resolved positively [11] by Pach, showing
that f (Q,k) is at most exponential in k. Only twenty years later it was shown that
f (Q,k) is at most quadratic.

Theorem 1 (Pach and Tóth [13]) Given a centrally symmetric open convex polygon
Q, there exists a constant αQ such that every αQk2-fold covering of the plane by
translates of Q can be decomposed into k coverings.

Fig. 1 A 3-fold covering of a
rectangle by hexagons that can
be decomposed into three
coverings

1In the November 2009 issue of the Communications of the ACM, Perter Winkler poses this as an open
problem. He conjectures that 4-fold coverings with unit disks are decomposable.
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In addition to the above, a lower bound of �4k/3� − 1 was also given in [13].
The main result in this paper is an improvement of the bound in Theorem 1, from

αQk2 to αQk; thus, the upper and lower bounds now asymptotically match.
Note that for translates of an arbitrary open convex polygon, Pálvölgyi and Tóth

recently proved that there exists a constant c such that c-fold coverings can be decom-
posed into two coverings [15]. This leads to a high-degree polynomial upper bound
on the function f (Q,k) for translates of an arbitrary open convex polygon.

As mentioned above, previous results hold for open bodies and for arbitrary cover-
ings. By requiring that the covering is locally finite, the results hold for both open and
closed bodies. This observation was made in previous papers and was first discussed
in [16]; the problem is still open for unrestricted coverings by closed convex bodies.

In what follows, we require that the covering is locally finite, and we solve the
problem for translates of a centrally symmetric closed polygon. Our results do not
rely on the closeness of polygons (we can slightly perturb the input to avoid the
open/closed issue), and therefore our results apply, similar to most other results in the
field, to unrestricted coverings by open centrally symmetric polygons and to locally
finite coverings by either open or closed centrally symmetric polygons.

Related Work Coverings with other families of convex shapes have also been stud-
ied. For instance, indecomposable multiple coverings of the plane by strips and con-
cave quadrilaterals were given by Pach, Tardos, and Tóth [12] and for large classes of
concave polygons by Pálvölgyi [14]. The problem for arbitrary (open) disks remains
open, although a negative result for the dual problem was proved in [12]: for any k,
there exists a point set such that for any 2-coloring of this set, an open disk containing
k points of the same color can be found. Set-theoretic investigations of infinite-fold
coverings can be found in [6].

Note that decompositions of coverings can be seen as colorings of geometric hy-
pergraphs. In these hypergraphs, vertices are the convex bodies in the covering, and
every point in the plane corresponds to a hyperedge, defined as the set of bodies
containing that point. The assignment of colors to the vertices of this graph, such that
every hyperedge contains all k colors, yields a suitable decomposition. A recent study
of such problems and of their duals, including colorings of hypergraphs induced by
halfspaces, halfplanes, disks, and pseudo-disks, is presented in [3].2

Similar definitions of proper colorings of geometric hypergraphs have been stud-
ied, such as conflict-free colorings [7]. Here the problem is to find a coloring such
that every hyperedge contains at least one vertex with a unique color. Variants of this
notion have also been analyzed, e.g., k-fault-tolerant conflict-free colorings where
the conflict-free property must be true even if we were to remove any k vertices in
a hyperedge [1]. k-conflict-free colorings [2] require k vertices with unique colors in
every hyperedge.

Applications to Sensor Networks Consider a planar region monitored by sensors.
Each sensor is represented as a point, which is said to monitor every other point
contained in a polygonal region around it. Sensors can be on for a fixed amount of

2Using the notation of [3], the main result of this paper is that pT̄ (k) = O(k).
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time and can be switched on at any chosen time. Such models of limited-battery
sensors have been studied in other contexts [5]. Our results imply that a region can
be monitored for k units of time, provided that every point is covered by at least αk

sensors. This involves partitioning the set of sensors into k subsets, each covering the
region. Sensors in the j th subset are switched on at time j .

Problem Modification We now slightly modify the statement of the problem. Let
Qp denote a centrally symmetric polygon Q centered at point p. Notice that Qp

covers a point p′ if and only if Qp′ contains p.
The problem involves a set of translates of Q that covers every point of the plane

at least αQk times. This is geometrically equivalent to a point set S such that any
translate of Q in the plane contains at least αQk points of S. Note that, of course,
S must be infinite, as must be a covering in the original problem.

The decomposition of translates into k covers is equivalent to a coloring of S

such that every translate of Q in the plane will contain k colors. We strengthen the
problem statement by relaxing the condition that every translate in the plane contains
sufficiently many points. That is, we say that if a translate contains enough points,
it will contain k colors. This allows us to consider finite point sets as well. We thus
prove the following result.

Theorem 2 Given a centrally symmetric convex polygon Q, there exists a constant
αQ such that for every (locally finite) planar point set S and every k ∈ N, S can be
k-colored so that any translate of Q containing at least αQk points will also contain
at least one point of each color.

After the initial submission of this manuscript, Gibson and Varadarajan [8] ex-
tended Theorem 2 by showing that translates of an arbitrary convex polygon can be
decomposed into a linear number of coverings. Their methods rely heavily on the
results presented in the following sections.

For simplicity of exposition, we assume that no two points in S have the same
slope as an edge of Q. This assumption can be removed by applying an infinitesimal
perturbation to the points. Also, we assume that S is locally finite; every compact
region contains a finite number of points.

Overview We start by giving a sketch of the complete proof before going into de-
tails. The original problem is transformed as follows.

The problem of coloring a (possibly infinite) point set with respect to translates of
a polygon (the strengthened statement presented in Theorem 2) is shown to be equiv-
alent to coloring a finite point set with respect to a finite set of wedges determined
by Q (see Sect. 2). In other words, the problem is now to k-color a set of points
such that every wedge containing a sufficient number of points m will also contain k

colors. Our goal is to show that m = O(k).
We will restrict to color points inside certain witness wedges which have the prop-

erty that any wedge containing at least m points will contain a witness. Witnesses will
contain at least r points. This is why we will define the level curve which bounds the
union of such minimal wedges for a fixed pair of bounding directions (see Sect. 2).
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If the level curves did not intersect, coloring the points would be straightforward.
It is the intersections of these curves that make the problem nontrivial and forbid
us to restrict to witnesses on level curves only. Since k is small with respect to the
point set, intuitively one can imagine that level curves tend not to venture too “deep”
into a point set. In other words, a typical wedge will not reach far into the set before
collecting r points. In Sect. 3 we define a polygonal region that is deep enough so
that the complexity of level curve intersections within the region is manageable. Our
construction of this region will be such that we will be able to restrict to considering
witness wedges within.

To reduce our problem to circular arc coloring, in Sect. 4 we define a parame-
terization which maps the set of witness wedges to the boundary of a circle. This is
directly tied to a mapping of points in S to circular arcs, i.e., intervals on the boundary
of the circle (Sect. 5). Our mapping is such that a position x on the circle belongs to
an interval corresponding to point p ∈ S if and only if the witness wedge represented
by x contains p. As every witness wedge contains at least r points, every position on
the circle belongs to at least r intervals. The key property of the parameterization is
that every point in S is mapped to at most two intervals.

Thus, the problem is reduced to k-coloring arcs on a Θ(k)-covered circle (with
certain geometric constraints for the arcs), so that every position on the circle is cov-
ered by at least one interval of each color. In Section 6 we give an algorithm for this
circular arc coloring problem.

Note that the reductions and transformations of the problem are constructive; thus
our algorithm to color circular arcs yields a simple polynomial algorithm for the
original problem.

2 Reduction to Wedges

Let Q be a closed, convex, centrally symmetric 2n-gon, with vertices q0, q1, . . . ,

q2n−1 in counterclockwise order. Throughout the paper, indices are taken modulo 2n.
The set of indices between i and j in counterclockwise order is denoted by [i, j ].

We first reduce the problem to coloring a finite set of points with respect to wedges
instead of coloring a possibly infinite set with respect to polygons. This idea is also
used in [13, 16].

We consider a tiling of the plane, with squares of side δ, where δ is half of the
smallest distance between nonconsecutive edges of Q. Let Q′ be a translate of Q.
By construction, any intersection of Q′ with a square is the intersection of a square
with a wedge with boundary directions parallel to two consecutive edges of Q (see
Fig. 2). A wedge bounded by rays parallel to qiqi−1 and qiqi+1 will be called type i,
or alternatively an i-wedge. The closed i-wedge with apex x is denoted by Wi(x).

The number of squares that Q′ intersects is bounded by a constant cQ that only de-
pends on Q. Therefore if Q′ contains at least αQk points, by the pigeonhole principle
Q′ contains at least αQk/cQ points within one of the squares.

We will restrict to considering a single square and the 2n wedges defined by Q.
Hence the problem reduces to coloring (independently) the finite bounded point set
S in each square, i.e., we will seek a k-coloring of each square such that any i-wedge
containing at least αQk/cQ points will contain all k colors.
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Fig. 2 Reduction of the
problem with centrally
symmetric polygons to wedges
in a square

We now define the notion of level curves for wedges. This notion extends the
definition of boundary points in [13] and [11], which are the points found on the first
level. We associate a curve with each i-wedge. Let W r

i be the set of spices of all
i-wedges containing r points. Formally,

W r
i := Cl

({
x ∈ R

2 : ∣∣Wi(x) ∩ S
∣∣ = r

})
,

where Cl(·) is the closure operator. We define Ci (r) as the boundary of W ≥r
i :=

⋃
j≥r W j

i . Accordingly, the closed region that includes the complement of W ≥r
i will

be denoted W <r
i (i.e., the intersection of the two regions is Ci (r)).

Note that Ci (r) is a monotone staircase polygonal path, with edge directions par-
allel to those of its corresponding i-wedge. Since S is in general position, for any
x ∈ Ci (r) that is not a vertex of Ci (r), Wi(x) contains exactly r points. More pre-
cisely, we have the following:

Observation 1 For all x ∈ Ci (r), Wi(x) contains either r or r + 1 points of S.

The curves Ci (3) for a square are illustrated in Fig. 3. A key property of Ci is the
following:

Observation 2 Any i-wedge containing at least r points of S contains an i-wedge
whose apex belongs to Ci (r).

We conclude that it is sufficient to color points in the union of all W <r
i (in other

words, in the union of regions to the “left” of each Ci (r)). Handling the complexity
of the intersections of these curves is the next problem that we deal with.

3 Restriction to High-Depth Region

We will show that in order to determine the witness wedges that we must color, it is
not necessary to consider complete level curves. At the expense of a constant factor
to f (Q,k), we restrict to the portion of the level curves inside a polygon T . Inside
this polygon, only few intersections between level curves can occur, which simplifies
the coloring task.
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Fig. 3 The curves of Ci (3)

when Q is an axis-parallel
square

Let �i be the oriented line with direction qiqi+1 going through a point of S and
such that the closed halfplane to its left contains exactly 2r + 3 points. Let Li be the
closed halfplane to the right of �i . Denote by T the intersection of the 2n halfplanes
defined by Q:

T :=
2n−1⋂

i=0

Li.

We assume that T �= ∅: this will be shown true later for the values of r that we will
use (by the well-known center point theorem, it is true as long as 2r + 3 ≤ |S|/3).
Note that not all lines �i appear on the boundary of T (see Fig. 4(a)).

Lemma 1 For all i ∈ [0,2n − 1], there is a vertex vi of T such that vi ∈ Wi(x) for
all x ∈ T .

Proof Let �̂i be the oriented line parallel to �i that is tangent to T and such that T is
contained in the closed halfplane to the right of �̂i . Then for

vi := �̂i ∩ �̂i−1,

the wedge Wi+n(vi) contains T . Therefore, vi ∈ Wi(x) for all x ∈ T . Note that a
vertex of T may have multiple labels vi (see Fig. 4(a)). �

Lemma 2 Let x be a point contained in two wedges Wi(y) and Wj(z) that contain at
most r and r ′ points of S, respectively, with 0 < (j − i) < n. Then for all i′ ∈ [i, j −1],
the oriented line with direction qi′qi′+1 through x has at most r + r ′ points of S

strictly to its left.
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Fig. 4 Construction of T and illustration of Lemma 2

Proof It suffices to observe that the halfplane to the left of the line is contained in the
union of wedges Wi(x) and Wj(x). (See Fig. 4(b).) �

We now show that if two level curves have an intersection in T , then they must
have antipodal indices, that is, i and i + n. We actually prove the stronger statement
that the regions W <r

i do not have any intersection in T , unless they have antipodal
indices.

Lemma 3 If j �= i and j �= i + n, then W <r
i ∩ W <r

j ∩ T = ∅.

Proof Assume by symmetry that 0 < (j − i) < n and suppose that the two regions
intersect at point x ∈ T . Consider the two wedges Wi(x) and Wj(x). Since x is
contained in W <r

i ∩ W <r
j , they both contain at most r + 1 points. By Lemma 2, for

all i′ ∈ [i, j −1], the oriented line with direction qi′qi′+1 through x has at most 2r +2
points of S strictly to its left. This contradicts the fact that x ∈ T . �

We proceed to show that in fact only one pair of level curves can intersect inside T
(a related statement was proved by Pach [11]). This is illustrated in Fig. 5.

Lemma 4 At most one pair of regions {W <r
i , W <r

i+n} intersect in T .

Proof By contradiction, suppose that y ∈ W <r
i ∩ W <r

i+n∩ T and z ∈ W <r
j ∩ W <r

j+n∩ T
with j �= i, i + n.

First, let us suppose that z ∈ Wi(y) ∪ Wi+n(y) and focus on the case z ∈ Wi(y).
Trivially, z ∈ Wj(z). Thus Lemma 2 implies that for all i′ ∈ [i, j − 1], the oriented
line with direction qi′qi′+1 through z has at most 2r + 2 points of S strictly to its left,
contradicting z ∈ T . The case z ∈ Wi+n(y) works analogously.

On the other hand, if z �∈ Wi(y) ∪ Wi+n(y), then we claim that y ∈ Wj(z) ∪
Wj+n(z), and a similar argument leads to a contradiction. In order to prove the
claim, consider the rays from y parallel to qsqs+1 for s ∈ [0,2n − 1]. Then, z �∈
Wi(y) ∪ Wi+n(y) implies that y lies (counterclockwise) between either the pair
of rays parallel to qi−1qi and to qiqi+1 or the pair parallel to qi+n−1qi+n and to
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Fig. 5 Illustration of Lemmas 3
and 4

Fig. 6 Proof of Lemma 4

qi+nqi+n+1. Given j ∈ [i + 1, i + n − 1], we have that y ∈ Wj+n(z) in the first case
and y ∈ Wj(z) in the second case (see Fig. 6). �

Lemma 5 If Ci (r) intersects the interior of T , then it intersects the boundary of T
at exactly two distinct lines.

We denote the lines by �ai
and �bi

, so that �ai
, vi , and �bi

appear in counterclock-
wise order on the boundary of T , as shown in Fig. 7.

Proof Take any point x on Ci (r) ∩ T . We have vi ∈ Wi(x) and vi+n ∈ Wi+n(x), and
each of the common supporting lines of those two wedges properly intersects Ci (r)

only once. These supporting lines decompose the plane into four wedges: Wi(x),
Wi+n(x), and two additional wedges, each of which contains at least one intersection
of Ci (r) with the boundary of T (see the shaded area in Fig. 7). This implies that we
can find two lines �ai

and �bi
such that ai ∈ [i −n, i − 1] and bi ∈ [i, i +n− 1], each
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Fig. 7 Proof of Lemma 5

of which contains at least one intersection of Ci (r) with the boundary of T . Since this
reasoning is valid for all x ∈ Ci (r), there are at most two intersections. �

Lemma 5 implies that every Ci (r) intersecting T is such that i ∈ [ai + 1, bi]. Let
C′

i (r) be the portion of Ci (r) contained in T :

C′
i (r) := Ci (r) ∩ T .

Lemma 6 (i) The curve C′
i (r) is connected. (ii) If ai �= i − 1, then C′

j (r) is empty for
j ∈ [ai + 1, i − 1]. (iii) If bi �= i, then C′

j (r) is empty for j ∈ [i + 1, bi].

Proof Statement (i) follows directly from the fact that Ci (r) is an unbounded curve
and intersects T at most twice (Lemma 5). Statements (ii) and (iii) follow from
Lemma 5 and Lemma 3. �

Observation 3 If C′
i (r) is empty, then any i-wedge Wi(x) for x ∈ T contains at least

r points of S. In particular, Wi(vi) ⊆ Wi(x) and |Wi(vi) ∩ S| ≥ r .

The combinatorial properties described in this section lay the foundations for the
definition of a set of witness wedges in Sect. 4.

4 Witness Wedges

We now describe a set of wedges parameterized by a real number t ∈ [0,2n) with
apex at point x(t) and type(t) = �t�. We abbreviate Wtype(t)(x(t)) = W(t). This set
of wedges is such that any i-wedge containing at least 4r +5 points contains a witness
wedge W(t). Thus it suffices to color points with respect to those witness wedges.

The wedge W(t) will have its apex on C′
i (r) for t ∈ [i, i + 1) if C′

i (r) is not empty.
More precisely, we let σi(t), t ∈ [i, i + 1) be a parameterization of C′

i (r), where
σi(i) := �ai

∩ C′
i (r) and σi(t) := �bi

∩ C′
i (r) for t ∈ [i + 0.9, i + 1). If C′

i (r) is empty,
then we distinguish three cases (see Fig. 8):

A. If there is a j such that i ∈ [aj + 1, j − 1], then σi(t) := C′
j (r) ∩ �aj

for t ∈
[i, i + 1).
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Fig. 8 Definition of σi(t),
when C′

i
(r) is empty

Fig. 9 Illustration of the proof
of Lemma 7

B. If there is a j such that i ∈ [j + 1, bj ], then σi(t) := C′
j (r) ∩ �bj

for t ∈ [i, i + 1).
C. Otherwise, σi(t) := vi for t ∈ [i, i + 1).

We define x(t) as the concatenation of the functions σi(t):

x(t) := σ�t�(t).

Lemma 7 For any wedge Wi(y) that contains at least 4r + 5 points of S, there is a
value t ∈ [i, i + 1) such that W(t) ⊆ Wi(y) and W(t) contains at least r points.

Proof Since Wi(y) contains at least 4r + 5 points, it intersects T : by contradiction,
if it does not intersect T , it is completely contained in the union of the two halfplanes
adjacent to T at vi (see Fig. 9). But as each of these halfplanes contains exactly 2r +2
points (by definition of T ), their union can contain at most 4r + 4 points, and we get
the desired contradiction.

Because of that intersection, Wi(y) contains a wedge Wi(z) such that z ∈ T .
First suppose that C′

i (r) is not empty. Then C′
i (r) ∩ Wi(y) �= ∅; otherwise Wi(y)

cannot contain enough points. If x(t) ∈ C′
i (r) ∩ Wi(y), then W(t) is contained in

Wi(y) and contains at least r points.
Now suppose that C′

i (r) is empty and refer to cases A, B, and C in the preceding.
In case A, note that the wedges W(i) and W(j) have the same apex C′

j (r) ∩ �aj
,

W(j) contains at most r + 1 points, �aj
has 2r + 3 points on its left, and W(i) is

in the union of W(j) and the halfplane to the left of �aj
(see Fig. 10). This implies

that both W(j) and the halfplane to the left of the oriented line of direction qiqi+1
through its apex have at most 3r + 4 points. Thus Wi(y) has its apex outside both
W(j) and the halfplane, which implies that W(i) ⊆ Wi(y). Because C′

i (r) is empty,
|W(i) ∩ S| ≥ r . Case B is identical.

In case C, from Observation 3, Wi(vi) ⊆ Wi(z), and Wi(vi) contains at least r

points. Since in that case x(t) = vi for t ∈ [i, i + 1), any value of t in [i, i + 1) will
work. �
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Fig. 10 Case A in the proof of
Lemma 7

It is natural to view the range [0,2n) as a counterclockwise parameterization of
the points on a unit circle. Thus, in what follows, the real parameter t will be viewed
modulo 2n, and an interval [t, t ′] is the set of points on the circle on a counterclock-
wise walk from t to t ′.

5 Reduction to Intervals

Our goal is to color the points of S with k colors such that any witness wedge W(t)

contains at least one point of each color. For each point p in S, we consider the set
I (p) of witness wedges containing p:

I (p) := {
t ∈ [0,2n) : p ∈ W(t)

}
.

Intuitively, the following lemma states that if a point p is contained in the wedges
for two different values t and t ′ of the parameterization, then p is contained in every
wedge W(t ′′) of the parameterization with t , t ′′, and t ′ appearing consecutively in an
interval of length less than n − 1.

Lemma 8 For any point p ∈ S, if p ∈ W(t)∩W(t ′), where t ′ /∈ [�t�, t] and type(t ′) ∈
[type(t), type(t) + n − 1], then p ∈ W(t ′′) for all t ′′ ∈ [t, t ′].

Proof There are two cases to consider, depending on type(t) and type(t ′):

• type(t) = type(t ′), or
• type(t ′) ∈ [type(t) + 1, type(t) + n − 1].

In the first case, either W(t) = W(t ′), or x(t ′′) lies on C′
i (r) between x(t) and

x(t ′), by definition of the parameterization. Since C′
i (r) is monotone in all directions

between qiqi−1 and qiqi+1, the wedge W(t ′′) contains the intersection of W(t) and
W(t ′), and therefore W(t ′′) contains p.

In the second case, without loss of generality, we can assume that type(t ′′) �=
type(t) and type(t ′′) �= type(t ′), for otherwise the arguments of the first case apply.

By Lemma 3, p /∈ T . Otherwise, it would mean that two wedges W(t) and W(t ′)
intersect inside T , with type(t ′) �= type(t)+n. Also, because x(t) and x(t ′) are in T ,
by the same lemma and reasoning, we get that x(t) /∈ W(t ′) and x(t ′) /∈ W(t).

Thus we have the situation depicted in Fig. 11. By the definition of the parame-
terization, two wedges W(t) and W(t ′), with t ′ ∈ [t, t + n − 1] are such that the
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Fig. 11 Second case of Lemma 8. Intersections of the wedges W(t), W(t ′′) and W(t ′)

counterclockwise bounding ray u of W(t) intersects the clockwise bounding ray u′
of W(t ′), and the two other rays do not intersect. The point p is in the closed wedge
V to the right of u and left of u′.

Then for any point q in the closed wedge V ′ opposite to V , the wedges Wj(q)

contain V for j ∈ [type(t), type(t ′)]: indeed, by the definition of the wedges, the ab-
solute angle of the clockwise ray of Wj(q) is between that of W(t) and of W(t ′), and
symmetrically the absolute angle of the counterclockwise ray of Wj(q) is between
that of W(t) and of W(t ′).

To conclude the proof, we will now show that every x(t ′′) of the parameterization
is inside V ′. Recall that, by Lemma 1, W(t ′′) contains vtype(t ′′), and by definition, the
vertices vtype(t), vtype(t ′′), and vtype(t ′) appear in nonstrictly sequential counterclock-
wise order on the boundary of T . As W(t), W(t ′′), and W(t ′) cannot intersect strictly
inside T , and the ray from x(t ′′) to vtype(t ′′) is contained in W(t ′′), either x(t ′′) ∈ V ′
or x(t ′′) is on the boundary of T . But in that latter case, x(t ′′) must appear to the left
of or on u and to the right of or on u′ (according to case A, B, or C of the definition
of the parameterization), therefore it must also be in V ′. �

As a consequence, a point corresponds to either an interval of values of the pa-
rameterization or a pair of intervals, the corresponding wedges of which are of two
types i and i + n.

Corollary 1 I (p) is either an interval or a pair of intervals I1(p), I2(p) such that
type(t) = i for t ∈ I1(p) and type(t) = i + n for t ∈ I2(p), where i is such that W <r

i

and W <r
i+n intersect in T .

Proof By Lemma 8, I (p) cannot consist of more than two intervals, since otherwise
we can find two points t and t ′ satisfying the conditions of Lemma 8 in two distinct
intervals.

Now first suppose that no pair {W <r
i , W <r

i+n} intersects in T . Then again the state-
ment is a direct consequence of Lemma 8. Otherwise suppose that p ∈ W <r

i ∩ W <r
i+n.

Then we must show that I1(p) ⊂ [i, i + 1) and I2(p) ⊂ [i + n, i + n + 1). For con-
tradiction, let i + 1 be contained strictly in the interior of I1(p). Then there are again
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two points t ∈ I1(p) ∩ [i + 1, i + 2) and t ′ ∈ I2(p) ∩ [i + n, i + n + 1) satisfying the
conditions of Lemma 8, a contradiction. �

6 Coloring

We give an algorithm for coloring the points with k colors so that all wedges {W(t) :
t ∈ [0,2n)} contain all k colors. In the following, we say that a point p ∈ S covers a
point t ∈ [0,2n) whenever t ∈ I (p). We proceed by iteratively removing a covering
of [0,2n), that is, a subset of S the elements of which collectively cover the circle
[0,2n). We use a greedy algorithm to select such a subset; we iteratively expand the
cover for [0, t) by selecting a new point that covers the largest interval starting from t .
Every point in a cover is assigned the same color. By repeating this k times, we ensure
that all k colors are represented in each of the wedges W(t) and thus, by Lemma 7,
in all wedges containing at least 4r + 5 points. The key property of the algorithm is
that it only requires r = O(k).

A formal description of the algorithm follows. We suppose, without loss of gener-
ality, that only the pair {W <r

0 , W <r
n } may intersect in T .

Coloring Algorithm

for i ← 1 to k do:

1. x ← 0, S′ ← ∅
2. while

⋃
p∈S′ I (p) �= [0,2n) do:

(a) find p ∈ S such that y(p) := maxt∈[0,2n){t −x : [x, t] ⊆ I (p)} is maximized
(b) S′ ← S′ ∪ {p}
(c) x ← x + y(p)

3. assign color i to all points in S′
4. S ← S \ S′

When every set I (p) is a simple interval, this algorithm greedily colors circular
arcs. The following lemma states that in that case, no point on a circle is covered
more than a constant number of times per iteration (see Fig. 12).

Fig. 12 Covering the circle
[0,2n) by circular arcs
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Lemma 9 Suppose that no pair {W <r
i , W <r

i+n} intersects in T and that there are
enough points to perform j iterations of the coloring algorithm. Let V be the set of
points colored by the algorithm after the iteration j . Then every point of [0,2n) is
covered at most 3j times by points of V .

Proof It is sufficient to prove that no point of [0,2n) is covered more than three times
by points of S′. Note that if no pair of curves intersect, then, by Corollary 1, every
set I (p) is an interval. Hence S′ is a greedy covering of the circle by intervals (i.e.,
circular arcs).

Let I (p) be the last interval chosen by the algorithm, and consider S′′ := S′ − {p}.
Suppose that a point t is covered by more than two points of S′′. Let a and b be
the first and the last points chosen, respectively, that cover t . The remaining intervals
that cover t either extend further than I (b) and should have been chosen instead of
I (b), or do not extend further than I (b), in which case I (b) should have been chosen
instead. In both cases, we have a contradiction. Hence the points of S′′ do not cover
any point of [0,2n) more than twice. The last interval I (p) can cover some points of
the circle a third time. Therefore, every point of [0,2n) is covered at most three times
by points of S′. �

By Corollary 1, a point p may correspond to two intervals on opposite regions of
the circle [0,2n). We show that the following similar property holds.

Lemma 10 Suppose that there are enough points to perform j iterations of the above
algorithm, and let V be the set of points colored by the algorithm after the iteration j .
Then every point of [0,2n) is covered at most 6j times by points of V .

Proof We suppose that W <r
0 and W <r

n intersect in T . Otherwise, the statement is
implied by Lemma 9. By Lemma 4, only one such pair can intersect. Without loss of
generality, we also assume that C′

0 and C′
n are both orthogonal staircases going from

top left to bottom right. This setting can always be enforced by symmetry and affine
transformation of the points. We assume that C′

0 is, at some point, above C′
n, which

might cause a point between the two curves to generate one interval on each (see
Fig. 13(a)).

We will prove our statement by induction on the number of iterations. Let us show
that after the iteration (j +1), no point of [0,2n) is covered more than 6(j +1) times.
The induction hypothesis is that this is true for the iterations 0 to j , where iteration 0
corresponds to the initial situation. The base case j = 0 is trivial.

Consider a point t ∈ [n,n + 1), and the corresponding point x(t) on C′
n. Suppose

that this point was covered τ times in the previous iterations (thus by points of colors
1 to j ). By the induction hypothesis, τ ≤ 6j . We consider the set of points S′ selected
by the algorithm at the iteration (j + 1). The sets I (p) start by covering the wedges
of type 0 corresponding to points on C′

0. Let p be the first point of S′, in order of
selection, that also covers t . By Corollary 1, p only covers two types of wedges,
0 and n. Let q be the horizontal projection of p on C′

0.
Let p′ be the next point selected by the greedy algorithm. If it covers the point 1,

then by Corollary 1, it cannot cover any point on C′
n. Otherwise, since the algorithm
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Fig. 13 Illustration of the proof
of Lemma 10

is greedy, the point is associated with an interval that intersects I (p) and that has the
farthest right endpoint. Geometrically, p′ is the lowest point to the left of the vertical
line � through q . Let z be the projection of x(t) onto �.

Two cases can occur. First, if p′ is below x(t), then t is covered at most once,
by p. On the other hand, if p′ is above x(t), then p′ covers t .

By the induction hypothesis, W0(q) contains at most 6j colored points. By Ob-
servation 1 and since q ∈ C′

0, W0(q) contains at least r points. Hence W0(q) contains
at least r − 6j uncolored points (including p and p′). Also, since the algorithm is
greedy, W0(p) and W0(z) do not contain uncolored points, otherwise they would
have been selected by the algorithm. Hence the orthogonal rectangle R with opposite
vertices p and z contains at least r − 6j uncolored points (see Fig. 13(b)).

Since t is covered τ times and x(t) ∈ C′
n, Wn(x(t)) can contain at most r + 1 − τ

uncolored points. The rectangle R is included in Wn(x(t)), and thus by the previous
observation, on R, there are at most (r + 1 − τ) − (r − 6j) = 6j + 1 − τ uncolored
points that are both to the right of � and above x(t). These, together with p and p′,
are the only points that may cover t after we have covered the interval [0,1). Hence
after we have covered the interval [0,1), the points in [n,n + 1) cannot be covered
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more than τ + (6j +1− τ)+2 = 6j +3 times. On the other hand, the points in [0,1)

cannot be covered more than 6j + 3 times.
A similar reasoning holds when the algorithm starts to cover points in the interval

[n,n+1). We have to replace 6j by 6j +3, since the points on both sides can already
be covered 6j + 3 times. Thus after the (j + 1)th iteration, no point is covered more
than 6j + 3 + 3 = 6(j + 1) times, which concludes the proof. �

Corollary 2 For r ≥ 6k, the coloring algorithm finds a k-coloring of the points in S

such that all wedges W(t) for t ∈ [0,2n) contain all k colors.

Note that with this choice of r , by the well-known center point theorem, T is never
empty. By Lemma 7, this concludes the proof of Theorem 2, with αQk ≥ cQ × (4 ×
6k + 5) and hence for any αQ ≥ 29cQ. By duality, as the polygon Q is symmetric,
this implies the following:

Theorem 3 Given a closed centrally symmetric convex polygon Q, there exists a
constant αQ such that every locally finite αQk-fold covering of the plane by translates
of Q can be decomposed into k coverings.
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