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Abstract Greedy Routing is a class of routing algorithms in which the packets are
forwarded in a manner that reduces the distance to the destination at every step. In
an attempt to provide theoretical guarantees for a class of greedy routing algorithms,
Papadimitriou and Ratajczak (Theor. Comput. Sci. 344(1):3–14, 2005) came up with
the following conjecture:

Any 3-connected planar graph can be drawn in the plane such that for every
pair of vertices s and t a distance decreasing path can be found. A path s =
v1, v2, . . . , vk = t in a drawing is said to be distance decreasing if ‖vi − t‖ <

‖vi−1 − t‖,2 ≤ i ≤ k where ‖ . . .‖ denotes the Euclidean distance.

We settle this conjecture in the affirmative for the case of triangulations.
A partitioning of the edges of a triangulation G into 3 trees, called the realizer

of G, was first developed by Schnyder who also gave a drawing algorithm based
on this. We generalize Schnyder’s algorithm to obtain a whole class of drawings of
any given triangulation G. We show, using the Knaster–Kuratowski–Mazurkiewicz
Theorem, that some drawing of G belonging to this class is greedy.

Keywords Graph drawing · Routing · Greedy routing · Triangulations · Fixed point
theorem · Schnyder realizers · Planar graphs

1 Introduction

With the increasing use of large wireless communication systems comes an increas-
ing need for reliable and scalable routing algorithms. Internet routing is accomplished
using Internet Protocol addresses which are hierarchical and encode topological and
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geographic information about the nodes in the network. Such a protocol is not pos-
sible in an ad-hoc network, such as sensornets, where little information about geo-
graphic proximity or network topology can be gleaned from node identifiers.

One important family of routing algorithms used for such networks is Geographic
(or Geometric) routing. This is a family of algorithms that use the geographic location
of the nodes as their addresses. See, for instance [2, 8, 11, 15]. One such algorithm
is the Euclidean Greedy Routing algorithm which is conceptually quite simple: each
node forwards the packet to the neighbor, i.e., a node it can communicate directly
with, that has the smallest Euclidean distance to the destination. This algorithm has
the disadvantage of not being able to deal with lakes or voids in the network, i.e.,
nodes which have no neighbor closer to the destination. To deal with this, variants of
the algorithm (such as face routing, which involves routing around faces) have been
proposed, see [11, 15].

Geometric routing has the following two drawbacks: (i) it needs the global position
of every node in the network, (ii) it relies entirely on the global position and as such
cannot account for local obstructions or the topology of the network. Since GPS
units are quite expensive in terms of both money and power requirements, it is quite
a restrictive limitation to require every node in the network to have one.

Both the above issues were addressed in [22], where a variant of greedy routing
which just uses the local connectivity information of the network without needing the
global position of any node, was discussed. The algorithm first computes fictitious or
virtual coordinates for each node, i.e., it draws the graph of the network (where each
node in the network is represented by a vertex of the graph and two vertices are adja-
cent iff the pair of nodes they represent can communicate directly) on the Euclidean
plane and routes greedily using these locations. The authors obtain experimental ev-
idence showing that this approach makes greedy routing more reliable. However no
theoretical guarantees were obtained.

In a bid to place this approach on a more solid theoretical footing, Papadimitriou
and Ratajczak [20] investigated classes of graphs on which greedy routing (without
having to rely on variants like face routing) could be guaranteed to work, i.e., graphs
which can be drawn in the plane without lakes or voids. They came up with the
following conjecture.

Let a distance decreasing path in a drawing of a graph be a path s = v1, v1, v2, . . . ,

vk = t such that ‖vi − t‖ < ‖vi−1 − t‖, 2 ≤ i ≤ k where ‖ . . .‖ denotes the Euclidean
distance.

Conjecture 1 [20] Any 3-connected planar graph can be drawn1 on the Euclidean
plane such that there exists a distance decreasing path between every pair of vertices
of the graph.

Such a drawing is called a Greedy Drawing of the graph. It is easy to see that
using the greedy drawing of a graph (assuming such a drawing exists) as the virtual
coordinates of the vertices guarantees that greedy routing will always work.

1Note that the conjecture in [20] uses “embed” instead of “draw”. To be consistent with the Graph Drawing
literature, we use “draw”.
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1.1 Our Results

We settle Conjecture 1 in the affirmative for the case of planar triangulations and
thus obtain the first non-trivial class of graphs for which this class of greedy routing
algorithms can be guaranteed to work.

We show, in fact, that a planar drawing of any given triangulation can be obtained,
i.e., one in which no pair of edges cross.

The result is obtained by applying the Knaster–Kuratowski–Mazurkiewicz
Theorem, which is known to be equivalent to the Brouwer Fixed Point Theorem.
We believe that the technique used in obtaining the result might be of independent
interest and might prove helpful in showing the existence of plane drawings with
other properties.

Note that greedy drawings can be trivially seen to exist for many simple classes
of graphs, like graphs with Hamiltonian circuits, all 4-connected planar graphs (since
they have a Hamiltonian circuit by a theorem of Tutte [25]) etc. It is not very difficult
to show that the Delaunay triangulation of any set of points in the plane is also
greedy. But thus far no non-trivial class of graphs with this property was known.

2 Preliminaries and Related Work

Given a n-vertex graph G(V,E), a drawing of G is a mapping of the vertices of G to
points and of the edges of G to curve segments (with the images of the corresponding
vertices as end points) in the plane. We consider only those drawings in which the
edges are mapped to straight-line segments and so the drawing is fully specified by
the images of the vertices.

Recall that a plane graph is an abstract planar graph whose embedding has been
fixed, using, say the Hopcroft–Tarjan algorithm [9]. In the rest of the paper we as-
sume that G is plane triangulation. We consider only planar drawings of graphs, i.e.,
drawings in which no pair of edges cross, in this paper. So any reference to a drawing
of a graph must be taken to mean a planar straight-line drawing.

2.1 Drawing Planar Graphs in the Plane

An overview of graph drawing algorithms can be obtained from [19, 24]. We describe
some well-known algorithms for obtaining planar straight-line drawings of planar
graphs.

1. Rubber Band Embedding [26]: this algorithm has a elegant physical interpreta-
tion: fix the positions of the vertices of some face of the graph and replace all
other edges by springs (or “rubber bands”). It can be shown that if the graph is
3-connected and planar then the equilibrium position of the nodes gives a planar
straight-line drawing. Many interesting generalizations of this approach have been
obtained, see for instance [16]. The drawback of this method is that the size of the
grid required for the drawing may be large (exponential in the number of vertices).
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2. Canonical Ordering [4]: this result showed for the first time that a planar straight-
line drawing of a planar graph could be obtained on grid of polynomial (in fact
O(n) × O(n)) size. This approach was used in [10] to obtain drawings satisfying
various bounds on the minimum angle, bends, grid size etc.

3. Schnyder’s Realizers [23]: The author describes an elegant algorithm for partition-
ing the edges of a triangulation into three trees and obtaining a planar drawing (on
a O(n) × O(n) grid) of the graph based on this. Our result uses the techniques
developed here and so this approach is described in detail in Sect. 4. This was
generalized to all 3-connected planar graphs in [5]. Also see [1, 6, 7, 21].

On a related note, it was shown recently, [14], that any graph has a greedy drawing
in the Hyperbolic plane. But this might require an exponential sized grid, i.e., Ω(n)

bits might be required to store the coordinates of a single vertex, see [13]. This has
been further explored in [18]. In contrast, examples of graphs with no greedy drawing
in the Euclidean plane were obtained in [20].

3 Outline

We describe the approach of [23] in Sects. 4 and 5. The details of how the edges of a
triangulation can be partitioned into three trees is described in the former section and
the latter section describes how a drawing of the triangulation can be obtained from
this partitioning and also describes some interesting geometric properties of these
drawings.

In Sect. 6, we investigate greedy paths in drawings and show that any drawing in
which every face is good, Definition 9, is greedy. In Sect. 7, we prove the main result
of the paper that there exists a greedy drawing of the triangulation, by showing that
there exists a drawing in which every face is good.

In Sect. 8, we prove a technical result on the sum of weights of all bad faces of a
drawing, which is needed for proving the main result.

4 Schnyder Realizers of a Triangulation

We designate a (triangular) face f0 of G as the exterior face. All vertices (edges)
not belonging to f0 are called the interior vertices (edges). Let the vertices of f0

be P0,P1 and P2. We define the order (P0,P1,P2) to be the “counter-clockwise”
(CCW) order.

Theorem 1 [23] Given a plane triangulation G(V,E), there exist three directed
edge-disjoint trees, T0, T1 and T2, called the realizer of G, Fig. 1, such that

1. Ti is rooted at Pi , i ∈ {0,1,2} and contains all vertices of G except Pi+1 and Pi−1

(the indices are mod 3).
2. All edges of Ti are directed towards the root and every edge of G except those

belonging to the exterior face are contained in exactly one Ti .
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Fig. 1 A triangulation and its realizers. The leftmost figure contains all three trees together and the three
edges of the exterior face, which do not belong to any tree. The remaining figures show each of the three
trees separately

Fig. 2 (a) The order of the edges belonging to different trees around an internal vertex v. There are ex-
actly three outgoing edges, one belonging to each tree. There can be any number (including 0) of incoming
edges. (b) The paths in Ti from v to Pi are vertex disjoint and divide the graph into three regions. (c) Ob-
taining Realizers from the Canonical Order. Note that m ≥ 2 since Gk+1 must be biconnected. If m = 2
then the edges shown directed towards vk+1 will not exist

3. Each interior vertex, v, has exactly 3 outgoing edges, one for each Ti . The edge
belonging to T0 is followed by the one belonging to T1 which is followed by the
one in T2 in CCW order around v, Fig. 2a.

Note that there might be any number (including zero) of incoming edges of each
Ti at any vertex.

Let v ∈ G be an interior vertex. Then, it follows from the above that there exist
(directed) paths Pi (v) from v to Pi in Ti, i = 0,1,2 called the canonical paths of v.
From the fact the Ti are edge disjoint and the order of the edges around v, it is clear
that Pi (v) and Pj (v) must be vertex disjoint (except for v itself which appears on
all three paths) if i �= j . Hence the Pi (v), i = 0,1,2 divide the graph G into three
“regions”, R0(v), R1(v) and R2(v), see Fig. 2b.

4.1 Schnyder Realizers from Canonical Ordering

Let f0 = (P0,P1,P2) be the external face of G. An ordering of the vertices

v1 = P0, v2 = P1, . . . , vi, . . . , vn = P2

is called a Canonical Ordering [4], if we have the following.

• The graph Gk induced by vertices v1, v2, . . . , vk is biconnected and the boundary
of its exterior face is a cycle Ck containing edge P0P1.
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• Vertex vk+1 lies in the exterior face of Gk and its neighbors form a subinterval (of
length at least 2) of the path Ck − P0P1.

A simple way of using the canonical ordering to find the realizers of G was ob-
tained in [4] and [3]. We describe this below.

We process the vertices in the decreasing order of their rank in the canonical or-
dering. First, we add all internal edges incident to vn(=P2) to tree T2 and orient
them towards vn. Let the neighbors of vk+1 in Ck be v′

1, v
′
2, . . . , v

′
m. We add the edge

vk+1v
′
1 to tree T0 and orient it towards v′

1. The edge vk+1v
′
m is added to tree T1 and

oriented towards v′
m. All other edges (if any) are added to tree T2 and oriented towards

vk+1, Fig. 2c.

5 Schnyder Drawings and Their Properties

Let each internal face fi be assigned a non-negative weight wi such that∑2n−5
i=1 wi = 1. Let wRi(v) be the sum of weights of all faces in region Ri(v), Fig. 2b.

We can obtain a drawing of G in the following way:

Place vertex v at the point (wR0(v),wR1(v),wR2(v)).

Recall that we only deal with straight-line drawings and so the drawing is specified
by the positions of the vertices. Since the total weight of all faces is 1, every vertex
of G is placed on the x + y + z = 1 plane. Notice that the external vertices P0, P1
and P2 are always placed at the points (1,0,0), (0,1,0) and (0,0,1) irrespective of
how the weights of the internal faces are assigned and that these points determine an
equilateral triangle (on the x + y + z = 1 plane). Also notice that all internal vertices
are placed inside this equilateral triangle.

The drawing obtained by the above method is defined to be a Schnyder drawing
of G.

The set of solutions to the equation
∑2n−5

i=1 wi = 1 such that the wi are non-
negative can be represented by the unit simplex S in 2n − 6 dimensions, with 2n − 5
vertices. Hence, for each point p ∈ S, a Schnyder drawing of G can be obtained.

The following theorem, while a generalization of the result proved in [23], follows
directly from the proofs given there.

Theorem 2 [23] In any Schnyder drawing of a triangulation G, the edges are non-
intersecting, i.e., the drawing is planar.

Definition 3 A non-degenerate Schnyder drawing is defined to be one obtained by
assigning strictly positive weights to the faces.

In the rest of the paper, we use the same notation for a vertex v of G and the point
in the plane it is drawn on. The ray

−−→
P0P1 is defined to have a slope of 0◦ and all

angles are measured counter-clockwise from this ray. So, the ray
−−→
P0P2 has slope 60◦,−−→

P2P1 has slope 300◦ and so on. Recall that all drawings we consider (and the points
P0,P1 and P2) lie on the x + y + z = 1 plane.

The following is a key property of Schnyder drawings.
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Fig. 3 (a) The shaded 60◦ wedges contain exactly one outgoing edge each. The trees containing the edges
are marked. (b) All incoming edges (if present) fall in the shaded wedges. (c) The equilateral triangle
determined by lines through v and w with slopes 0◦,60◦ and 120◦ is free of other vertices. A similar
result holds if edge uw were to belong to T1 or T2 (with the equilateral triangle changing appropriately).
(d) The enclosing triangle of a face

Lemma 4 (The Three Wedges Property [21, 23]) In every Schnyder drawing the
three outgoing edges at an internal vertex v have slopes that fall in the intervals
[60◦,120◦] (T2), [180◦,240◦] (T0) and [300◦,360◦] (T1), with exactly one edge in
each interval. See Fig. 3a.

Further, if the drawing is non-degenerate, no edge has slope which is a multiple
of 60◦ and every edge has positive length.

Lemma 5 The incoming edges (if present) have slopes in the following ranges: T0 :
[0◦,60◦], T1 : [120◦,180◦] and T2 : [240◦,300◦], Fig. 3b.

Proof Let v′v be an edge directed from v′ towards v. Applying Lemma 4 at v′, the
result follows. �

Recall that any number of incoming edges might be present at any vertex.
In the rest of the paper, we prove many propositions specifically for non-

degenerate Schnyder drawings. Extending them to degenerate Schnyder drawings
would make the proof quite messy as degenerate drawings might have zero length
edges. Also, non-degenerate drawings are sufficient for our purpose. So we disregard
degenerate drawings.

Let v be a vertex and (v,w) an outgoing (at v) edge. Let the coordinates of v be
(vR0, vR1, vR2) and the coordinates of w be (wR0,wR1,wR2). If (v,w) ∈ T0, it fol-
lows from Lemma 4 that wR0 > vR0 , wR1 < vR1 and wR2 < vR2 . Similar conclusions
follow if (v,w) ∈ T1 or if (v,w) ∈ T2.

Let max0(v,w) = Max(vR0 ,wR0) with max1 and max2 being defined in a similar
manner. The set of all points (x0, x1, x2) in the drawing such that xi = c is said to be
the line determined by xi = c, 0 ≤ i ≤ 2.

Lemma 6 (The Enclosing Triangle Property [21, 23])

1. Let (v,w) be an edge of the graph. Consider the equilateral triangle determined by
the lines x0 = max0(v,w), x1 = max1(v,w) and x2 = max2(v,w), superscribing
the edge (v,w), see Fig. 3c. This triangle is free of other vertices.

2. For any face f = (u, v,w) the equilateral triangle determined by the lines xi =
maxi (u, v,w), 0 ≤ i ≤ 2 is free of other vertices, see Fig. 3d. This triangle is
called the enclosing triangle of f .
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Proof (1) follows from Lemma 4. (2) follows from (1) and the fact that the drawing
is planar. �

6 Greedy Paths in Schnyder Drawings

A face of the triangulation is said to be cyclic if its edges form a directed cycle and
is said to be acyclic otherwise. Any cyclic face of a graph can be stacked by adding
a vertex adjacent to the three vertices of the face and adding the new edges to each
of the trees as shown in Fig. 4a. This breaks the face into three acyclic faces. After a
greedy drawing has been found, the new vertex can be deleted without affecting the
greedy paths between the other vertices. Hence, we will assume from now on that
every face in the triangulation is acyclic.

Notice that any acyclic face must have a vertex (like vertex t in face (u, t, v) in
Fig. 4a) with two outgoing face edges which must belong to different trees. The face
is said to belong to tree Ti if these two outgoing edges belong to trees Ti−1 and Ti+1.

The following lemma will prove useful.

Lemma 7 Let u be some vertex and (u, v) an edge incident to it. Let (u, x, x′) be
any equilateral triangle superscribing (u, v) with a vertex at u. Let z be any point in
the wedge determined by (x,u, x′) not on the same side of the line (x, x′) as u, see
Fig. 4b.

Then, ‖v − z‖ < ‖u − z‖.

Proof Let l be the perpendicular bisector of uv. It is easy to see that z /∈ l and it lies
on the same side of l as v. Hence, it follows that ‖v − z‖ < ‖u − z‖. �

To show that a drawing of G is greedy, it clearly suffices to show the following.

For every pair of (ordered) distinct vertices u,v ∈ V , there exists some neigh-
bor of u, say u′ such that ‖u − v‖ > ‖u′ − v‖.

In the rest of the paper we will show that a non-degenerate Schnyder drawing of
G exists which satisfies the above property.

Fig. 4 (a) The cyclic face (u, v,w) is stacked by adding vertex t and its incident edges. The edge tu is
added to the same tree as wu, edge tv the same tree as uv and tw the same tree as vw. (b) The triangle
(u, x, x′) is equilateral. ‖v − z‖ < ‖u − z‖ irrespective of where z lies in the shaded region and where v

lies on xx′
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Fig. 5 (a) An acyclic face with its active region shaded. The thin lines have slopes that are multiples of
60◦ . The active region at u is bounded by rays with slope 180◦ and 300◦ . (b) Note that v and v′ need not
be adjacent. (c) Vertices u0, u and u1 form a face. Edge u0u1 could be directed either way. (d) The greedy
region of face f = (u, v,w) is shown shaded

Let f = (u, v,w) be an acyclic face and let u be the vertex with two incoming
edges. Let the coordinates of u be (u0, u1, u2). Without loss of generality, we assume
that both these incoming edges belong2 to T0. See Fig. 5a. It is easy to see that u0 =
max0(u, v,w) and u2 = min2(u, v,w).

Let the active region of ∠uvw, denoted by A∠uvw , be the set of points (x0, x1, x2)

with x0 ≥ u0 and x2 ≤ u2. It is easy to see that this region is the wedge with sides of
slopes 180◦ and 300◦ at vertex u, Fig. 5a.

Lemma 8 Let f = (u, v,w) be an acyclic face of G and in some non-degenerate
Schnyder drawing of G, let z be a vertex in the active region of ∠uvw. Then,
‖v − z‖ > min(‖u − z‖,‖w − z‖).

Proof From Lemma 4, it follows that u lies below the horizontal line (denoted by l

in Fig. 5a) through w.
Since z lies in the active region of vertex u, only two possibilities can arise.

• z lies in the wedge bounded by rays of slope 180◦ and 240◦ at vertex v (the wedge
x1vx2 in Fig. 5a): from Lemma 7, it follows that ‖v − z‖ > ‖u − z‖.

• z lies in the wedge bounded by rays of slope 240◦ and 300◦ at vertex v (the wedge
x2vx3 in Fig. 5a): it follows that z must lie below the horizontal line through w

since u and so the whole active region lies below this line.
Now applying Lemma 7 again it follows that ‖v − z‖ > ‖w − z‖.

Hence, in every case ‖v − z‖ > min(‖u − z‖,‖w − z‖). �

Let u and v be a pair of non-adjacent vertices. It follows that v lies in one of three
regions R0(u), R1(u) or R2(u) (or their boundaries), Fig. 2b. Assume wlog, that v

lies in region R2(u), i.e., the region bounded by the edge P0P1 of the external face
and the paths Pi (u), i = 0,1 from u to P0 and P1, Fig. 5b. The path P2(v) from v to
P2 must intersect either P0(u) or P1(u). Assume wlog, that it intersects P0(u) and
let v′ = P2(v) ∩ P0(u). Let u0 (u1) be the neighbor of u on P0(u) (P1(u)).

The following possibilities arise.

2Note that both edges must belong to the same tree.
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Case I v′ = u: let P2(v) = (v = v0, v1, v2, . . . , vk−1, vk = v′ = u,vk+1, . . . ,P2). It
follows from Lemmas 7 and 5 that ‖u − v‖ > ‖vk−1 − v‖ in every non-
degenerate Schnyder drawing of G.

Case II u has one or more edges directed inwards lying between the edges uu0 and
uu1 in the embedding: let the edge following uu0 (in CCW direction) be
uu′, Fig. 5b. It follows from Lemma 4 that v lies in the active region of
∠u0uu′.

Hence from Lemma 8 it follows that either ‖u0 − v‖ < ‖u − v‖ or
‖u′ − v‖ < ‖u − v‖ in every non-degenerate Schnyder drawing.

Case III The vertices u, u0 and u1 form a (acyclic) face of G, Fig. 5c: in this case
there might exist some Schnyder drawings in which for every neighbor ui of
u, ‖ui − v‖ > ‖u − v‖. But we will show below that there must exist some
non-degenerate Schnyder drawing in which ‖u0 − v‖ < ‖u − v‖.

The greedy region of a face f = (u, v,w) is the region bounded by the edge vw

and the paths P0(v) and P1(w) as shown in Fig. 5d. Note that even though the greedy
region depends on the drawing, the set of vertices falling in this region is fixed by the
realizer of G.

Definition 9 Let f = (u, v,w) be a triangular face with edges uv and uw directed
away from u, Fig. 5d, and let ε > 0 be some small constant depending only on the
number of vertices of G. Then, in a Schnyder drawing of G, f is said to be good if

I The length of every edge of f is at least
√

ε.
II For every vertex z in the greedy region:

‖u − z‖2 − ‖v − z‖2 ≥ ε if P2(z) ∩ P0(u) �= ∅,

‖u − z‖2 − ‖w − z‖2 ≥ ε if P2(z) ∩ P1(u) �= ∅,

and is said to be bad otherwise.

Note that for every vertex z in the greedy region exactly one of P2(z)∩ P0(u) and
P2(z) ∩ P1(u) is non-empty. Clearly, a non-degenerate drawing in which every face
is good, is greedy.

The following lemma is not used directly in the paper but is helpful because it pro-
vides some intuition as to why the Schnyder drawing framework can lead to greedy
drawings of graphs.

Lemma 10 Given any two vertices u,v ∈ G, then in any non-degenerate Schnyder
drawing of G, there exists a neighbor of u, say u′ and a neighbor of v, say v′ such
that ‖u − v‖ > min(‖u′ − v‖,‖u − v′‖).3

Proof Follows from Lemmas 4 and 7. �

3This lemma holds more generally for all 3-connected planar graphs and not just triangulations. We will
not prove this generalization here as we deal only with triangulations.
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7 The Main Result

The following theorem will prove useful.

Theorem 11 (Knaster–Kuratowski–Mazurkiewicz [12]) Let a d-simplex with ver-
tices {v0, . . . , vd}, be covered by closed sets Ci, i ∈ {0, . . . , d} such that the following
covering condition holds.

For any Q ⊆ {0, . . . , d} the face spanned by the vertices {vi |i ∈ Q} is covered
by

⋃
i∈Q Ci .

Then,
⋂

i∈{0,...,d} Ci �= ∅.

This theorem is known to be equivalent to the Brouwer Fixed Point Theorem [17].
The main result is the following.

Theorem 12 Given an n-vertex plane triangulation G, there exists a non-degenerate
Schnyder drawing of G which is greedy.

Proof Recall that for each point p ∈ S, the unit simplex with 2n − 5 vertices (in
2n − 6 dimensions), a Schnyder drawing of G can be obtained.

We define good sets Gf1 , . . . ,Gf2n−5 where Gfi
⊆ S ∀i, in the following way.

Let w = (w1,w2, . . . ,w2n−5) ∈ S. Then w ∈ Gfi
iff in the Schnyder drawing of

G corresponding to w, the face fi is good. Note that the definition of these good sets
depends on the value of ε (Definition 9).

In Sect. 8.1, it is shown that in any Schnyder drawing of G the sum of the weights
of all the bad faces is always strictly less than 1, if ε is small enough (Theorem 15).
Let p = (p0, . . . , p2n−5) ∈ S lie in the interior of some k-face of S. Wlog, we can as-
sume that p0,p1, . . . , pk > 0 and pk+1 = · · · = p2n−5 = 0. Since the sum of weights
of bad faces is always less than 1, it follows that some face fi where i ∈ [0, k] must
be good in the drawing corresponding to point p. Hence p ∈ Gfi

and so the KKM
covering condition is satisfied.

It is easy to see that the sets Gfi
are closed. The condition that the length of the

edges of fi are at least
√

ε can be expressed in the form P ≥ ε where P is a quadratic
polynomial, see (1). It is not very difficult to see that Condition II in Definition 9 can
also be expressed as a polynomial (in fact quadratic) inequality. Hence, the set Gfi

can be expressed as the set of all points satisfying some weak polynomial inequalities.
Hence Gfi

is closed.
From this it follows that the Gfi

satisfy the conditions of Theorem 11.
Hence,

⋂
i∈{1,...,2n−5} Gfi

�= ∅. Let g ∈ ⋂
i∈{1,...,2n−5} Gfi

. It follows that every
face is good in the Schnyder drawing corresponding to g, which implies that this
drawing is greedy.

It is possible that the drawing corresponding to g is degenerate. But since ε > 0
and the drawing varies continuously with the set of face weights, we can always pick
another point g′ close enough to g such that the drawing corresponding to g′ is non-
degenerate and greedy. �
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Fig. 6 The sum of weights of
faces in different regions are
denoted by a, b, c, d, e and f .
Note that w and w′ could
possibly be the same vertex,
depending on how the edge wv

is directed. The analysis below
remains the same in either case

8 Schnyder Drawings and the Weights of Faces

In this section we show that sum of weights of the bad faces in a drawing of the
triangulation is always strictly less than 1 for ε small enough.

Consider the face F = (u, v,w) in Fig. 6. The sum of weights of faces in various
regions are marked. All paths shown in the figure are canonical paths (Pi (·)) starting
from some vertex. Note that b is the weight of the region demarcated by uvw′w
where w and w′ could possibly be the same vertex.

The coordinates of the points the vertices are mapped to are given below. Recall
that the graph is being drawn on the x + y + z = 1 plane, so the points lie on this
plane. The vectors corresponding to various edges are also given below. Note that
u0 represents the first coordinate of vertex u, x1 represents the second coordinate of
vertex x and similar is the case with y2.

u = (u0, x1 + a + f, y2 + b + c + d + e),

v = (u0 + a + b, x1 + f, y2 + c + d + e),

y = (u0 + a + b + c + d + f, x1 + e, y2),

−−−→
u − y = (−a − b − c − d − f, a + f − e, b + c + d + e),

−−−→
v − y = (−c − d − f, f − e, c + d + e),

−−−→
u − v = (−a − b, a, b).

It follows that the length of the edge uv is given by

‖u − v‖2 = 2
(
a2 + b2 + ab

)
. (1)

Lemma 13 Let Wuvw be the weight of face (u, v,w). If Wuvw ≥
√

ε
2 , every edge of

face F has length at least
√

ε.

Proof

‖u − v‖2 = 2
(
a2 + b2 + ab

) ≥ 2W 2
uvw ≥ ε. (2)
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An identical argument applies to edge uw. For edge vw, notice that from
Lemma 4, ∠vuw ≥ 60◦. Hence the edge vw is longer than at least one of the other
two edges. �

Note that b ≥ Wuvw since b is the weight of all faces in region uvw′w.

Theorem 14 Assuming that b ≥
√

ε
2 , the following conditions are necessary (but not

sufficient) for ‖u − y‖2 − ‖v − y‖2 < ε.

a > b, (3)

e > b, (4)

a <
√

a − b and b <
√

a − b. (5)

Proof

‖u − y‖2 − ‖v − y‖2 < ε

�⇒ a(a + b + c + d + 2f − e) + b(b + 2c + 2d + f + e) <
ε

2
.

(6)

Since b ≥
√

ε
2 and all variables are non-negative, we must have

a + b + c + d + 2f − e < 0

�⇒ b < e.

Rearranging the terms of (6), we obtain

a(a + b + c + d + 2f ) + b(b + 2c + 2d + f ) + e(b − a) <
ε

2
�⇒ b − a < 0 �⇒ a > b

for the same reason as before.
Rearranging the terms of (6) again we obtain

a(a + b + c + d + 2f ) + b(b + 2c + 2d + f ) + e(b − a) <
ε

2

�⇒ a2 + e(b − a) < 0

�⇒ a2 < e(a − b)

�⇒ a <
√

a − b (since e < 1). �

8.1 The Maximum Weight of Bad Faces

Let point w = (w1, . . . ,w2n−5) ∈ S be such that in the Schnyder drawing, every face
fi with weight wi > 0 is bad. Then, the faces can be divided into three types.
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Type A the face has weight 0 and can be either good or bad.

Type B the face has weight strictly less than
√

ε
2 and is bad because either one of

its edges is shorter than ε (and so violating Condition I in Definition 9) or
because it violates Condition II in Definition 9.

Type C the face has weight at least
√

ε
2 and is bad because it violates Condition II in

Definition 9.

If ε is small enough, then “most” of the weight must be present in faces of Type C.

Theorem 15 In any Schnyder drawing of G, the sum of weights of all faces of type
B and C is strictly less than 1.

We first give a brief description of the main idea behind the proof.
We try to find a point in S such that, in the Schnyder drawing corresponding to it,

every face with positive weight is bad. But we run into a contradiction, thus showing
that such a point cannot exist.

Let v1, v2, v3, . . . , vn be the canonical order of G where v1 and v2 are the vertices
of the bottom edge of the external face and vn is the topmost node. We start with the
edge v1v2 and construct the triangulation by adding vertices one by one according to
the canonical order. This also gives us an ordering on the faces. As faces are added,
we try to assign weights to them in such a way that no face with positive weight is
good. This condition places an upper bound on the weight each face can be assigned.
Once we are done with all faces, we show that the sum of weight of all faces (good
or bad) is forced to be less than 1, which is a contradiction.

Proof Proof by contradiction. We try to find an assignment of weights to the faces
such that every face with positive weight is bad and show that this would require the
sum of weights of all faces to be less than 1, which is impossible.

Let v1, v2, v3, . . . , vn be the canonical order of G where v1 and v2 are the edges
of the bottom edge of the external face and vn is the topmost node.

We start with the edge v1v2 and build the graph by adding vertices one by one
according to the canonical order. The vertex v3 and the face, f1, it forms with v1 and
v2 are shown in Fig. 7a. Since the greedy region of v3 contains no vertices, it is clear

that f1 cannot be a type C face. Hence wf1 <
√

ε
2 .

Let Gk be the graph induced by the vertices v1, v2, . . . , vk and let weight of all
faces of Gk be Wk . Assume that Wk → 0 as ε → 0. This is clearly satisfied by

W3 = wf1 <
√

ε
2 . Let W = max(Wk,

√
ε
2 ). We will show that Wk+1 also satisfies

this property.
We now add vk+1 to Gk and try to assign weights to the new faces formed. Let

Wnew be the maximum weight that can be assigned to the new faces while ensuring
that every face with positive weight is bad. We have the two following possibilities.

Case I vk+1 has only two neighbors in Gk . Let them be vertices u and w as shown
in Fig. 7b. In this case, the only new face is (u, vk+1,w) which belongs to
tree 2. Then it follows from (4) that Wnew < W , as otherwise the face is good.
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Fig. 7 (a) The first faced added. Note that the vertex P2 and the edges P2P0 and P2P1 have not yet been
added to the graph and are shown only for clarity. (b) and (c) Faces obtained when the vertex vk+1 is added
to Gk . Note that the path from vk+1 to P2 is not present in Gk and is shown only for clarity. (d) Note that
only face fl = (vk+1, tl , tl−1) is shown to avoid clutter. (e) Only face f ′

l
= (vk+1, tl′ , tl′−1) is shown for

the same reason. Note that fl′ lies to the right of fl

Case II vk+1 has more than two neighbors, say u, t1, . . . , tm and w as shown in
Fig. 7c. The new faces are f1 = (u, t1, vk+1) which belongs to tree 1,
fm = (vk+1, tm,w) which belongs to tree 0 and m − 1 faces of the form
fi = (ti , vk+1, ti+1) each of which may belong to either tree 0 or 1. Let wfi

be the weight of face fi .
Case i none of the new faces have weight more than W . Hence, Wnew < nW

as m + 1 < n.
Case ii at least one face, say belonging to tree 1, has weight more than W ,

Fig. 7d.
Let l ∈ [1..m] be the maximum value such that (a) wfl

> W and
(b) fl belongs to tree 1. Let l′ ∈ [l + 1..m] be the minimum value
such that (a) wfl′ > W and (b) fl′ belongs to tree 0.

Of course such an l′ need not exist. If it does not, then, in Fig. 7d
every face in the region h has weight at most W . By (3) applied4 to
face fl , g < h if fl is to be bad. Every new face must fall in one of

4Note that the face shown in Fig. 6 in the derivation of (3) belongs to tree 2 while face fl and f ′
l

belong
to trees 0 and 1. Of course this does not really change anything as the same argument applies. To see how
(3) (or (5)) applies to face fl , compare Figs. 6 and 7d where vertices vk+1, tl , tl−1 map to v,u,w in that
order.
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the regions g or h. Since h < nW , we have Wnew < g + h < 2nW

(since m + 1 < n).
If l′ does exist, then by (3), applied to face fl′ , g′ > h′ in Fig. 7e.

Note that is possible to have l = 1 and/or l′ = m.
Let S(g), S(g′), S(h) and S(h′) denote the set of faces in the re-

gions so marked in Figs. 7d and 7e. Since fl′ lies to the right of fl ,
it is clear that S(g) ⊂ S(g′) and S(h′) ⊂ S(h) and by (3) applied to
faces fl and fl′ , h > g and g′ > h′.

Let Dgg′ = S(g′)\S(g) and Dhh′ = S(h)\S(h′) and Wgg′ (Whh′ )
be the weight of the faces in Dgg′ (Dhh′ ). We have

g + Wgg′ = g′ and h′ + Whh′ = h

�⇒ Wgg′ + Whh′ > g′ − h′ since h > g

and Wgg′ + Whh′ > h − g since g′ > h′.

The only new faces in the sets Dgg′ and Dhh′ are fi, i ∈ [l + 1,

l′ − 1]. Each of these faces have weight at most W (by definition
of l and l′). Since the sum of all the old faces is at most W , we have
Wgg′ + Whh′ < 2(W + nW) = 2(n + 1)W .

From (5) applied to faces fl and fl′ , it follows that g,g′, h,h′ <√
2(n + 1)W .

Hence Wnew < max(2nW,c
√

nW) where c is some small constant. Since
W → 0 as ε → 0, we can assume that ε is small enough that 2nW < 1 and

so Wnew < c
√

nW . Recall that W = max(Wk,
√

ε
2 ). It follows that Wk+1 =

Wk + Wnew < W + c
√

nW < c′√nW . Hence Wk+1 < c′
√

n max(Wk,
√

ε
2 ).

Notice that Wk+1 → 0 as ε → 0.
Hence it easy to see that by picking ε small enough, we can make Wn < 1

(in fact, we can make Wn → 0). But the total weight of all faces must be
exactly 1 and so this gives us a contradiction and the result follows.

�

9 Conclusions

We have been able to show that every triangulation has a planar greedy drawing in
the Euclidean plane. As for algorithmic questions, the following iterative approach
works quite well in practice.

• Let W i = (w0,w1, . . . ,w2n−5) ∈ S be the weights of the faces in iteration i.
• Let W i+1 = 1

W
(w′

0,w
′
1, . . . ,w

′
2n−5) where w′

j = wj if fj is good in the drawing

corresponding to W i and w′
j = 2wj otherwise and W is the normalizing factor

such that W i+1 ∈ S.
• For i = 0, let w0 = w1 = · · · = w2n−5 = 1

2n−5 .

This algorithm converges quite fast, but so far no theoretical bounds are known.
We are confident that good bounds can be obtained.
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