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Abstract An obstacle representation of a graph G is a drawing of G in the plane with
straight-line edges, together with a set of polygons (respectively, convex polygons)
called obstacles, such that an edge exists in G if and only if it does not intersect an
obstacle. The obstacle number (convex obstacle number) of G is the smallest number
of obstacles (convex obstacles) in any obstacle representation of G. In this paper,
we identify families of graphs with obstacle number 1 and construct graphs with
arbitrarily large obstacle number (convex obstacle number). We prove that a graph
has an obstacle representation with a single convex k-gon if and only if it is a circular
arc graph with clique covering number at most k in which no two arcs cover the host
circle. We also prove independently that a graph has an obstacle representation with
a single segment obstacle if and only if it is the complement of an interval bigraph.
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Fig. 1 Every finite graph has
finite obstacle number

1 Introduction

Given a set V of points in the plane and a set O of polygons, called obstacles, in the
plane, we form a graph G with a vertex for each point in V , and an edge between two
vertices if and only if the line segment between them does not intersect an obstacle.
We call the pair (V ,O) an obstacle representation of G. We assume that the points
in V and the vertices of polygons in O , taken together, are in general position, i.e.,
no three are collinear.

A (straight-edge) drawing of a graph G assigns the vertices of G to points in
general position in the plane, and the edges of G to line segments between the cor-
responding points. We use the same names for the vertices and edges of G and of
the drawing of G. All our representations of graphs in the plane will be straight-edge
drawings.

Note that every finite graph G has an obstacle representation with a finite number
of obstacles, constructed in the following way. In any drawing of G, for each non-
edge of G, construct a small obstacle intersecting that non-edge and no edge of G,
as shown in Fig. 1. For a given graph G, we call the least number of obstacles in any
obstacle representation of G the obstacle number of G.

In fact, the above construction shows that a graph with n vertices has obstacle
number at most n2/2 − n/2.

Open Question Is the obstacle number of a graph with n vertices bounded above by
a linear function of n?

Given a straight-edge drawing of G, let G′ be the plane graph obtained by adding a
vertex at every intersection of edges. We call a face of G′ a face of the drawing of G.
Every obstacle is contained in a face and may intersect as many as all of the non-
edges through that face. Thus, the obstacle number of G is the least number of faces
needed in any drawing of G to intersect all the non-edges. Also, given any connected
set contained in a face of the drawing, we may replace it with a polygon intersecting
the same non-edges. So relaxing the definition of obstacle to allow any connected set
does not change the obstacle number.

2 Graphs with Large Obstacle Number

In this section, we construct graphs with obstacle number greater than 1. We start by
constructing a family of graphs with arbitrarily large obstacle number. Our construc-
tion uses the following theorem, first proven in [11].
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Fig. 2 The graph H formed by
v and a path from a to b in
Case 1

Theorem 1 (Happy Ending Theorem) For any integer n ≥ 3, there exists a smallest
positive integer N(n) such that any set of at least N(n) points in general position in
the plane contains n points that are the vertices of a convex n-gon.

More recently Tóth and Valtr proved N(n) ≤ (2n−5
n−2

) + 1 [22]. See [1, 2, 18] for
surveys of research on values of N(n).

For positive integers k and m, let Gk,m be the graph consisting of the complete
graph Kk , and for each subset S containing exactly 2m + 2 vertices of Kk , an addi-
tional vertex adjacent to the vertices in S.

Theorem 2 The obstacle number of Gk,m is at least m for sufficiently large k.

Proof Given a positive integer m, we use Theorem 1 to choose k such that for any
placement of k vertices in general position in the plane, 4m + 4 of them form the
vertices of a convex (4m + 4)-gon. Suppose (V ,O) is an obstacle representation of
Gk,m for these values of k and m. We show that O contains at least m obstacles.

Let P be the convex (4m+4)-gon in the vertices of Kk . Starting from an arbitrary
vertex of P and traversing P counter-clockwise, we label every second vertex of P

blue and the remaining vertices red. Because there are 2m + 2 blue vertices in P ,
there is a vertex v of Gk,m adjacent to all of the blue vertices but none of the red. We
consider the placement of v in the obstacle representation (V ,O).

Case 1. The point v is outside P . There are two vertices a and b of P , such that the
segments va and vb lie on the boundary of the convex hull of v ∪ P . There are two
paths from a to b along the perimeter of P . Because there are 2m + 2 blue vertices,
one of these paths must contain at least m + 1 of them. This path and its edges to v

form a subgraph H of G embedded in the plane without edge crossings, as shown in
Fig. 2. Its faces are quadrilaterals whose vertices are v and three consecutive vertices
of P . Each quadrilateral Q must contain an obstacle to block the non-edge between
v and the red vertex of Q. There are at least m faces of H , so Gk,m requires at least
m obstacles.

Case 2. The point v is inside P . In this case, the edges from v to the blue vertices
of P form 2m + 2 disjoint quadrilaterals, as shown in Fig. 3. As in Case 1, each
quadrilateral is composed of two blue vertices, a red vertex, and v, requiring at least
2m + 2 obstacles to block the non-edges from the red vertices to v.

Because the representation (V ,O) requires at least m obstacles in both cases, Gk,m

has obstacle number at least m. �
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Fig. 3 The graph H in Case 2

Fig. 4 The three ways to draw a
4-cycle in the plane

Note that by the upper bound N(n) ≤ (2n−5
n−2

)+ 1 given above, it suffices to choose

k = (8m+3
4m+2

) + 1 in the proof of Theorem 2, in which case the number of vertices in
Gk,m is

((8m+3
4m+2

) + 1

2m + 2

)
+

(
8m + 3

4m + 2

)
+ 1.

We expect that there are much smaller graphs with obstacle number m. The next
theorem gives an example of a graph with 12 vertices with obstacle number 2.

Given points a, b, and c in the plane, we say that a sees b to the left of c (equiva-
lently, sees c to the right of b) if the points a, b, and c appear in clockwise order. If a

sees b to the left of c, c to the left of d , and d to the left of b, then a is in the convex
hull of b, c, and d . Thus, if a is outside the convex hull of some set S of points, the
relation “a sees to the left of” is transitive on S, and hence is a total ordering of S,
which we call the a-sight ordering of S.

Let H be a complete bipartite graph with parts R (colored red) and B (colored
blue), |R| ≥ 2 and |B| ≥ 3.

Lemma 3 In any obstacle representation of H with one obstacle, the convex hull of
R is disjoint from the convex hull of B . Furthermore, the r-sight ordering of B is the
same for every red vertex r , and the b-sight ordering of R is the same for every blue
vertex b.

Proof Let S be an obstacle representation of H with one obstacle. There are three
ways to draw a 4-cycle in the plane: the dart, the square, and the bowtie, shown in
Fig. 4. No 4-cycle in H can form a dart in S, because one non-edge appears inside
the cycle and one appears outside, requiring two obstacles. If a 4-cycle in H forms
a square in S, then any other vertex of H inside the square forms a dart with three
vertices of the square, and any other vertex outside the square creates a non-edge
outside the square in addition to the non-edges already inside. So every 4-cycle in H

must form a bowtie in S.
Suppose by way of contradiction that the convex hulls of R and B intersect. There

are two ways this can happen.
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Fig. 5 A two-obstacle representation of K∗
5,7 and a one-obstacle representation of K∗

4,5

Case 1. r1r2 and b1b2 intersect for some red vertices r1 and r2 and some blue
vertices b1 and b2. In this case, the 4-cycle r1, b1, r2, b2 forms a square.

Case 2. The convex hull of R is completely contained in the convex hull of B . Let
r1 be a red vertex. Then every line through r1 has blue vertices on both sides, so two
blue vertices b1 and b2 are on different sides of the line through r1 and any other
red vertex r2. These four vertices create a dart if the segments r1r2 and b1b2 do not
intersect and a square if they do.

Because both cases lead to contradictions, the convex hulls of R and B are disjoint.
We now prove that the r-sight ordering of B is the same for every red vertex r , and

the b-sight ordering of R is the same for every blue vertex b. Suppose the r1-sight
ordering of B and the r2-sight ordering of B are different for some red vertices r1
and r2. Then for some two blue vertices b1 and b2, r1 sees b1 to the left of b2, but
r2 sees b2 to the left of b1. Equivalently, r1 and r2 are on different sides of the line
←→
b1b2. But that means these four vertices form a dart or a square, so in fact the sight
orderings must be the same. �

Let K∗
m,n, m ≤ n, be the graph formed by deleting m non-adjacent edges from

the complete bipartite graph Km,n. Note that K∗
m,n has obstacle number at most 2,

because we can arrange the m non-adjacent non-edges to all intersect the same small
obstacle. Figure 5 shows a two-obstacle representation of K∗

5,7. On the other hand,
K∗

4,5 has obstacle number 1, also shown in Fig. 5. We conjecture that K∗
5,5 has obsta-

cle number 2.

Theorem 4 K∗
5,7 has obstacle number exactly 2.

Proof It suffices to show that K∗
5,7 cannot be represented with one obstacle. Suppose

by way of contradiction that there exists an obstacle representation of K∗
5,7 with a

single obstacle. Let R be the partite set of size 7, colored red, and B be the partite set
of size 5, colored blue. There are two red vertices r1 and r2 adjacent to all five blue
vertices in K∗

5,7, inducing the subgraph K2,5. By Lemma 3, the r1-sight ordering of
B and the r2-sight ordering of B are the same. Let bL be the left-most blue vertex
and bR be the right-most blue vertex in this common ordering.

For the remainder of the proof, we ignore the red vertices not adjacent to bL and
bR , respectively, only considering the five red vertices all adjacent to bL and bR . We
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Fig. 6 The bL-, b-, and
bR -sight orderings of the red
vertices are the same

Fig. 7 Non-edge r∗b∗ requires
a second obstacle

claim that every blue vertex has the same sight ordering of the five red vertices. By
Lemma 3, the bL- and bR-sight orderings of the five red vertices are the same, and for
any other blue vertex b not adjacent to some red vertex r , the bL-, bR-, and b-sight
orderings of the four red vertices other than r are the same. To show that the b-sight
ordering of all five vertices is the same as the bL- and bR-sight orderings, we show
that for any red vertex ri other than r , the b-sight ordering of ri and r is the same as
the bL- and bR-sight ordering of ri and r .

Because ri is adjacent to bL, b, and bR , by Lemma 3 the ri -sight ordering of
those three blue vertices is the same as the r1- and r2-sight ordering of those vertices;
namely, ri sees b between bL and bR . So b lies in the interior of the angle ∠bLribR ,
as shown in Fig. 6. Because the bL- and bR-sight orderings of ri and r are the same,

bL and bR are on the same side of the line ←→
rir , so b must be too. Thus the b-sight

ordering of the five red vertices must be the same as the bL- and bR-sight ordering of
these vertices.

Three red vertices—all except r1 and r2—have blue non-neighbors. In the com-
mon blue-sight-ordering of the five red vertices, some red vertex r∗ not adjacent to
some blue vertex b∗ is neither the left-most red vertex rL nor the right-most red vertex
rR . Then the non-edge r∗b∗ is completely contained in the intersection of the interiors
of angles ∠bLr∗bR and ∠rLb∗rR , as shown in Fig. 7. This region is a quadrilateral,
which we call Q. The vertices rL, rR , bL, and bR lie outside Q, because, for instance,
if rL were interior to angle ∠bLr∗bR , then bL and bR would be on different sides of

the line
←→
rLr∗, and so the bL- and bR-sight orderings of rL and r∗ would be different.

Similar reasoning shows that all four points rL, rR , bL, and bR are outside Q, and so
Q is bounded by the edges r∗bL, r∗bR , b∗rL, and b∗rR and contains the non-edge
r∗b∗ but excludes the non-edge r∗rL. Hence there must be an obstacle in Q and an
obstacle outside Q, so K∗

5,7 has obstacle number 2. �
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Fig. 8 A non-visibility graph
with obstacle number 1

Open Question For an integer m > 1, what is the smallest number of vertices of a
graph with obstacle number m?

Open Question For each m ≥ 3, is there a graph with obstacle number exactly m?

Open Question Are there bipartite graphs with arbitrarily large obstacle number?

3 Graphs with Obstacle Number 1

We define the outside of a drawing D to be the outside face of D. The inside of D is
the complement of the outside.

Each of our examples of graphs with obstacle number 1 has an obstacle represen-
tation with the single obstacle contained in the outside of the drawing. We call such
a representation an outside-obstacle representation.

Open Question Does every graph with obstacle number 1 have an outside-obstacle
representation?

One family of graphs with obstacle number 1 is the family of polygon-vertex
visibility graphs. A polygon-vertex visibility graph is the graph formed by taking
the vertices of a polygon in the plane and drawing an edge between two vertices if
the line segment between them has no point exterior to the polygon [19]. In such
a drawing, every non-edge intersects the outside face, so one obstacle is sufficient.
However, the converse is not true. The graph shown in Fig. 8 has obstacle number 1
but is not a polygon-vertex visibility graph [19], because in every outside-obstacle
representation, the polygon bounding the inside of the drawing has vertices that are
not vertices of the graph.

Recall that a graph is outerplanar if it has a planar embedding with all vertices on
the outside face. In [10], ElGindy proved that every maximal outerplanar graph is a
polygon-vertex visibility graph, which implies that every maximal outerplanar graph
has obstacle number 1. We now extend this result to show that all outerplanar graphs
have obstacle number 1.

Theorem 5 Every outerplanar graph has obstacle number 1. In particular, every
outerplanar graph has an outside-obstacle representation.
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Fig. 9 Adding the vertices
v1, . . . , vk

Proof Let G be an outerplanar graph. If G is disconnected, and each component of
G has an outside-obstacle representation, we can place these representations side by
side and connect the obstacles in the outside face to form a single obstacle. Thus, we
may assume that G is connected. We use induction on the number of vertices of G. If
G consists of a single vertex, the statement follows easily. Assume that G has n > 1
vertices.

Case 1. Every vertex of G has degree at least 2. We find a cycle F of G with
consecutive adjacent vertices a, b, v1, . . . , vk , such that the vertices v1, . . . , vk all
have degree 2 in G, in the following way. Let B be a 2-connected component of G

that contains at most one cut vertex of G. Then let F be a face of G corresponding to
any leaf of the weak dual of B [25].

Let H be the graph obtained by deleting v1, . . . , vk from G. H is a connected
outerplanar graph, so by the inductive hypothesis, H has an outside-obstacle repre-
sentation R with a single obstacle O . We add v1, . . . , vk to R in the following way,
as shown in Fig. 9.

In R, find edge {a, b} and follow ray
−→
ab to where it first intersects the outside of

the drawing. Let p and q be points on
−→
ab such that closed line segment ap is inside

the drawing of H and the open line segment pq is outside the drawing. The points p

and b may be identical.
There exists ε > 0 such that the distance between O and the inside of H is at

least ε, and such that p is at least distance ε away from every edge of H not incident
with p. Choose r ∈ pq such that the distance between p and r is less than ε, and draw
a circle C through r centered at p. Then because r is in the outside of the drawing,
there is some circular wedge W of C that contains r and lies completely outside the
drawing. We place v1, . . . , vk in W in the following way.

Case 1a. k = 1. Place v1 in W close enough to r that for every vertex x of H ,
v1 and r are on the same side of the lines ←→

ax and
←→
bx . Then the v1- and r-sight

orderings of a and x are the same, and similarly with b and x. Because r , a, and b

are collinear, r sees x on the same side of b as of a, so v1 does, too. Thus, v1 sees no
vertex between a and b, and a and b appear consecutively in the v1-sight ordering of
the vertices of H .
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To place the obstacle in the representation, it suffices to show that every non-edge
incident to v1 intersects the outside of the drawing. Note that the inside of G is the
union of triangle 
abv1 with the inside of H . Because every non-edge incident to
v1 intersects the outside of H and is disjoint from triangle 
abv1, it intersects the
outside of G.

Case 1b. k �= 1. Place v1 and vk in W in such a way that edges avk and bv1 inter-
sect at point s ∈ W . Place v2, . . . , vk−1 inside triangle 
v1vks, such that v1, . . . , vk

are the vertices of a convex k-gon, in that order, as shown in Fig. 9. We also place
these vertices so that no non-edge of G contains the point s.

Now we place the obstacle in the representation. We will show that every non-edge
of G intersects the outside of the drawing of G. Then we can easily place an outside
obstacle blocking all non-edges. There are three types of non-edge to consider: if x

and y are arbitrary vertices of H , and 1 ≤ i, j ≤ k, then we have potential non-edges
of the form {x, y}, {x, vi}, and {vi, vj }. First, consider a non-edge of the form {x, y}.
The segment xy intersects the obstacle O because {x, y} is a non-edge of H , and O

is still outside G because W is disjoint from O . Now consider a non-edge of the form
{x, vi}. Note that the removal of the point s would separate the inside of the drawing
of G into two regions; by construction, xvi does not contain s, so it intersects the
outside. Finally, consider a non-edge of the form {vi, vj }. By construction, vivj is
completely contained in the outside of the representation.

Case 2. G has a vertex v of degree 1. We remove v to form H , an outerplanar sub-
graph of G which by the inductive hypothesis has an outside-obstacle representation.
Let a be the one neighbor of v, and let b be any neighbor of a. (If a has no neighbor,
then G is a single edge and is trivially an outside-obstacle graph.) Then, as before,
use the outside-obstacle representation of H to find point p and wedge W . Place v

in W ; all non-edges incident to v intersect the outside of G.
Thus, every outerplanar graph G is an outside-obstacle graph. In particular, every

outerplanar graph has obstacle number 1. �

Open Question Does every planar graph have obstacle number 1? Specifically, what
are the obstacle numbers of the icosahedron and the dodecahedron graphs?

4 Graphs with Large Convex Obstacle Number

The convex obstacle number of a graph G is the least number of obstacles in any
obstacle representation of G with all obstacles convex. Note that for a given graph G,
the convex obstacle number of G is always greater than or equal to the obstacle
number of G. In this section, we describe a family of graphs for which the obstacle
number is 1 and the convex obstacle number is arbitrarily large.

Recall that the Ramsey number Rk(3) = R(3,3, . . . ,3) (where the number 3 is
repeated k times) is the least integer m such that any coloring of the edges of the
complete graph Km with k colors contains a monochromatic triangle [20]. Choose
integers a1, a2, . . . , an with a1 ≥ 2 and ak ≥ Rk−1(3) for 2 ≤ k ≤ n.

Consider the complete n-partite graph Ka1,a2,...,an . We describe a drawing of this
graph that requires one regular obstacle or n convex obstacles. For 1 ≤ i ≤ n, select
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Fig. 10 Placing the ith partite
set of Ka1,a2,...,an

two vertices xi and yi from the ith partite set, and position them on a circle C, in
the order x1, y1, x2, y2, . . . , xn, yn clockwise. Then place the other vertices of the ith
partite set inside the triangle enclosed by lines ←→

xiyi ,
←−−→
xixi+1, and ←−−→

yiyi−1, such that all
ai vertices form a convex polygon, as in Fig. 10. This ith convex polygon contains all
non-edges of the ith partite set, but intersects no edges, so we can place one convex
obstacle per partite set, for a total of n convex obstacles. Connecting these convex
obstacles around the outside would produce a single connected non-convex obstacle,
so Ka1,a2,...,an has obstacle number 1 and convex obstacle number at most n.

Theorem 6 The complete n-partite graph Ka1,a2,...,an has convex obstacle number
exactly n.

Proof We use induction on n. When n = 1, Ka1,a2,...,an is the graph consisting of
two disconnected vertices, and clearly requires one obstacle. Suppose for the sake of
contradiction that there is an obstacle representation of Ka1,a2,...,an with only n − 1
convex obstacles. Label these obstacles with n − 1 different colors. We color each
non-edge in the nth partite set with the color corresponding to an obstacle that inter-
sects that non-edge. The choice of an guarantees a triangle of non-edges all blocked
by the same obstacle. This obstacle must intersect a non-edge in the smaller graph
Ka1,a2,...,an−1 ; if not, we could represent Ka1,a2,...,an−1 with n − 2 obstacles, contra-
dicting the inductive hypothesis. The two vertices of this old non-edge and the three
vertices of the triangle of new non-edges induce a K2,3, and all of its non-edges are
blocked by the same obstacle. But we show below in Corollary 9 that K2,3 has convex
obstacle number 2, which is a contradiction. Thus, Ka1,a2,...,an has convex obstacle
number exactly n. �

By Theorem 6, Ka1,a2,...,an is an example of a graph with obstacle number 1 and
arbitrarily large convex obstacle number. On the other hand, the convex obstacle num-
ber of any graph is greater than or equal to its obstacle number, so the graphs Gk,m

in Theorem 2 have both large obstacle number and large convex obstacle number.

Open Question Are there planar graphs or outerplanar graphs with arbitrarily large
convex obstacle number?
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5 Graphs with Convex Obstacle Number 1

In this section, we completely characterize graphs with convex obstacle number 1.
A graph G is a circular arc graph if there exists a one-to-one correspondence

between the set of vertices of G and a set of arcs of a circle, such that two arcs in-
tersect if and only if the corresponding vertices are adjacent. The set of arcs is called
a circular arc representation of G [8, 13, 17, 24]. We assume without loss of gen-
erality that every circular arc representation is on a unit circle and the endpoints of
arcs are distinct. We define a number of special properties of circular arc represen-
tations and graphs. We say that R is non-double-covering if no two arcs in R cover
the entire circle. A graph is a non-double-covering circular arc graph if it has a non-
double-covering circular arc representation. Fischer and Simon call such a circular
arc representation not inherently 2-covered [12]. McConnell calls two arcs of this
form double overlapping [9, 16]. These representations also appear in Golumbic and
in Hell and Huang without a name [13, 15]. We say that R is bounded if every arc in
R has length less than π .

Consider the sequence of endpoints of arcs in R, traversing the circle counter-
clockwise. For an arc A of R, its endpoint further counter-clockwise is its left end-
point, and its endpoint further clockwise is its right endpoint. We say that R is alter-
nating if the sequence of endpoints of arcs in R alternates between left endpoints and
right endpoints of arcs.

If a circular arc representation R of a graph G has the property that no arc is prop-
erly contained in another, then R is proper and G is a proper circular arc graph [8,
23]. Note also that every proper circular arc graph has a non-double-covering circu-
lar arc representation [13]. We prove in Theorem 8 that every non-double-covering
circular arc graph has convex obstacle number 1, so every proper circular arc graph
has convex obstacle number 1. The converse is not true: K1,3 is easily seen to have
convex obstacle number 1 but is not a proper circular arc graph.

In [12], the authors (using different terminology) show that every graph with con-
vex obstacle number 1 is a non-double-covering circular arc graph. They also claim
that there are non-double-covering circular arc graphs that have convex obstacle num-
ber greater than 1. By contrast, we prove in Theorem 8 that a graph has convex obsta-
cle number 1 if and only if it is a non-double-covering circular arc graph. We include
both directions of the proof for completeness, and to provide additional details omit-
ted in [12].

Lemma 7 Suppose G is a circular arc graph. G has a non-double-covering circular
arc representation if and only if G has a bounded circular arc representation.

Proof Suppose G is a circular arc graph with circular arc representation R. Note
that if every arc in R has length less than π , then every two arcs in R must
have total length less than 2π , so R is non-double-covering. It remains to show
that if R is non-double-covering, then G has a bounded circular arc representa-
tion.

Specifically, we use induction on the number of vertices of G to show that G has
a bounded circular arc representation in which the arc endpoints appear in the same
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order as in the non-double-covering representation R. If G has only one vertex, then
G can be represented by one arc of length less than π . Suppose G has n vertices and
non-double-covering circular arc representation R.

Case 1. Some arc A is properly contained in another arc B of R. Let a be the
vertex of G corresponding to arc A. By the inductive hypothesis, there is a bounded
representation R′ of G − a containing an arc X′ for every arc X ∈ R − A, such that
the endpoints of arcs in R′ are in the same order as the corresponding endpoints in
R − A. Choose any arc A′ such that when we add A′ to R′, the arc endpoints in R′
are in the same order as in R. Then A′ ⊂ B ′, so length(A′) < length(B ′) < π , and R′
is bounded after the addition of A′.

Case 2. R is proper and not alternating. Because R has the same number of left
and right endpoints, in this case there exist two arcs A and B in R such that the left
endpoints of A and B occur consecutively in the sequence of endpoints of R. Say
the left endpoint of A occurs further counter-clockwise. Again we find a bounded
representation R′ of G − a by the inductive hypothesis, containing an arc X′ for
every arc X ∈ R − A, with the endpoints of R′ in the same order as in R − A. First,
we place the right endpoint of A′ between the same arc endpoints in R′ as in R.
Because R is proper, this right endpoint of A′ is contained in B ′. The arc from the
left endpoint of B ′ to the right endpoint of A′ is shorter than B ′, so by choosing the
left endpoint of A′ close enough to the left endpoint of B ′, we may draw A′ with
length(A′) < length(B ′) < π .

Case 3. R is proper and alternating. Let A and B be two arcs in R. If A and
B intersect, then A and B contain the same number of arc endpoints, as follows.
Without loss of generality, the left endpoint of B is contained in A. Then because R

is proper, for every left endpoint in A \ B of some other arc C, the right endpoint
of C must lie in B \ A. So the number of left endpoints in A equals the number of
the right endpoints in B; because R is alternating, each interval has the same number
of left endpoints as right endpoints, so A and B must contain the same total number
of endpoints. Notice that as a point moves around the circle in R, the number of
arcs containing the point alternates between k and k − 1 as the point passes left and
right endpoints. So if R is disconnected, it is completely disconnected. Whether R is
connected or completely disconnected, we may conclude that every arc in R contains
the same number of endpoints.

We form a new representation R′ of G by evenly spacing the endpoints of arcs in R

around the circle, so that every arc in R′ has the same length. If this length is less than
π , then R′ is bounded. If every arc has length exactly π , then move each endpoint
slightly (say, by ε < 2π/4n, if there are 2n endpoints) to shorten each arc and make
a bounded representation R′′. If every arc has length greater than π , consider any arc
A ∈ R′ with left endpoint a1 and right endpoint a2. The point p antipodal to a1 is an
endpoint of R′, because R′ has an even number of endpoints. Between p and a2 is
the endpoint in A closest to a2; this closest endpoint is the left endpoint b1 of some
arc B because R′ is alternating. Then, because B has length greater than π , B must
contain a1, in which case A∪B is the whole circle, contradicting the assumption that
R, and therefore R′, is non-double-covering. Thus, no arc has length greater than π ,
and so either R′ or R′′ is a bounded representation of G. �
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Fig. 11 Transforming an obstacle representation into a circular arc representation

Theorem 8 A graph G has convex obstacle number 1 if and only if it is a non-double-
covering circular arc graph.

Proof First, suppose that G has an obstacle representation with one convex obsta-
cle P . We will construct a non-double-covering circular arc representation of G with
open arcs with endpoints not necessarily distinct. In any such representation, for any
two arcs with the same endpoint, one arc can be shortened slightly to distinguish
the endpoints, and then the arcs can be changed to closed arcs without losing the
non-double-covering property. Thus, even though we use open arcs, G also has a
non-double-covering representation with the more conventional closed arcs.

The process is summarized in Fig. 11. Choose ε > 0 such that ε is less than the
distance from P to any edge of G. Let C be the set of points of distance at most
ε away from P . Then C is convex and blocks exactly the non-edges of G, and its
boundary is differentiable.

There is a well-defined tangent line L(x) at every point x of the boundary of C.
L(x) determines an open half-plane H(x) disjoint from C. For any vertex v of G, if
H(x) contains v, then L(x) separates v from C [12]. Let A(v) be the set of such x.
Notice that if L(x1) separates v from C and L(x2) does not, then there must be some
point x∗ between x1 and x2 with v ∈ L(x∗). Thus, the two such x∗ on the boundary
of C are endpoints of A(v), which is the open arc of C on the side nearest to v.

We claim that for any two vertices v1 and v2 of G, their corresponding arcs A(v1)

and A(v2) intersect if and only if v1 ∼ v2 in G. It suffices to show that A(v1) and
A(v2) intersect if and only if v1v2 ∩ C = ∅. For the forward direction, consider x ∈
A(v1) ∩ A(v2). Then v1, v2 ∈ H(x), so v1v2 ∈ H(x) and is disjoint from C. For the
reverse direction, suppose v1v2 ∩ C = ∅. Because v1v2 and C are disjoint convex
sets, there is some line L separating them. Without loss of generality, take L to be the
x-axis, v1v2 to be below the axis, and C to be above. Let y0 be the least y coordinate
in C, and let L′ be the horizontal line with equation y = y0. Then L′ is tangent to C

at some point x, with v1 and v2 below L′ and C above, so x ∈ A(v1) ∩ A(v2).
Let R = {A(v) |v ∈ G}, and let ϕ be any homeomorphism from the boundary of

C to a circle. The set of arcs ϕ(R) = {ϕ(A(v)) |v ∈ G} forms a circular arc repre-
sentation of G. Additionally, ϕ(R) is non-double-covering, as follows. It suffices to
show that R is non-double-covering, because this property will be preserved under a
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Fig. 12 Replacing the circle C

with the polygon P

Fig. 13 If segment v1v2 is
blocked by C, it is blocked by P

homeomorphism. Suppose by way of contradiction that there are two arcs A(v1) and
A(v2) whose union is the entire boundary of C. Consider the set of all tangent lines
to C. This set has exactly two lines of every slope (including infinite slope). Then
because A(v1) and A(v2) intersect, by the Pigeonhole principle one of them (say
A(v1)) contains two points x1 and x2 with corresponding parallel tangent lines L(x1)

and L(x2). Therefore, v1 ∈ H(x1) ∩ H(x2), which is impossible because H(x1) and
H(x2) are disjoint. Therefore, R is non-double-covering.

Now suppose that G is a non-double-covering circular arc graph. Let S be a
bounded circular arc representation of G on circle C. For each arc A of S, let T1

and T2 be the tangents to C at the endpoints of A, and place a corresponding vertex
v at the intersection of T1 and T2. Note that, using the terminology from the first half
of the proof, A = A(v). Now let P be the convex polygon with a vertex for every
endpoint of every arc in S, as in Fig. 12.

We claim that these vertices together with obstacle P form a convex obstacle
representation of G. By the arguments above, given two vertices v1 and v2 of G,
A(v1) and A(v2) intersect if and only if v1v2 intersects the circle C. We show this
is still true when C is replaced with P . Because P is a subset of C, any segment
not intersecting C does not intersect P . Now suppose v1v2 intersects C. Let v1 be a
vertex of G, and let p and q be the endpoints of A(v1). The set of points v2 outside
C for which v1v2 intersects C is the same as the set of points v2 outside C for which
v1v2 intersects pq , as shown in Fig. 13. The segment pq is contained in P , so v1v2

intersects P whenever it intersects C. �

Corollary 9 The convex obstacle number of K2,3 is 2.
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Proof The convex obstacle number of K2,3 is at most 2, because one obstacle for
each partite set suffices. Then by Theorem 8, it suffices to show that K2,3 is not a
circular arc graph. Assume to the contrary that R is a circular arc representation of
K2,3, with A(v) denoting the arc corresponding to each vertex v. Let {a1, a2, a3}
and {b1, b2} be the two partite sets. Then A(a1), A(a2), and A(a3) are disjoint, and
however A(b1) is placed to intersect all three, it must contain one of them; without
loss of generality, A(a1) ⊂ A(b1). Then there is no way for A(b2) to intersect A(a1)

but not A(b1), so R is not a circular arc representation of K2,3, and K2,3 requires
more than one convex obstacle. �

Note that recent work has been done in recognizing circular arc graphs. McConnell
provides a linear-time algorithm for recognizing circular arc graphs [16], Deng, Hell,
and Huang provide a linear-time algorithm for recognizing proper circular arc graphs
[8], and Durán et al. provide an n2-time algorithm for recognizing unit circular arc
graphs [9]. Since we have shown that the graphs with convex obstacle number 1 are
exactly the non-double-covering circular arc graphs, we are interested in the recogni-
tion of these graphs as well.

Open Question With what time complexity can we recognize graphs with convex
obstacle number 1?

6 Graphs Representable with a k-gon Convex Obstacle

In this section, we characterize the graphs with a convex obstacle representation with
one convex obstacle with k sides. Recall that the clique covering number of a graph
G is the least number of cliques of G which contain all of its vertices [14, 25]. Note
that the clique covering number of G is the chromatic number of GC , the comple-
ment of G. For brevity, in the following discussion a k-gon representation of G is an
obstacle representation with one convex k-gon obstacle.

Theorem 10 A graph G has a k-gon representation if and only if G is a non-double-
covering circular arc graph that can be covered by k cliques, for any k ≥ 2.

In other words, the least number of sides of the obstacle in a convex obstacle
representation of G is equal to the clique covering number of G. For the forward
direction, note that if G has a k-gon representation, then the set of vertices visible
from each edge of the k-gon forms a clique, so G has clique covering number at
most k. We prove the other direction of Theorem 10 as a series of lemmas. We first
address the case k ≥ 3, and then modify the proof for the case k = 2, where the
obstacle is a single segment.

A transversal of a circular arc representation R is a set of points T such that every
arc of R contains some point of T [12]. We assume as before that all endpoints of R

are distinct, and thus we may also assume, without loss of generality, that no point
in T is an endpoint of an arc in R. We define a bounded k-points representation,
k ≥ 3, of a graph G to be a bounded circular arc representation of G together with
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Fig. 14 Placing the vertex vi at
point ϕ(xi )

a transversal T , |T | = k, such that no half of the circle contains T . Theorem 12 and
Lemmas 13, 14, and 15 construct a bounded k-points representation for any k-clique-
coverable non-double-covering circular arc graph. Lemma 11 completes the proof by
transforming the bounded k-points representation into a k-gon representation.

Lemma 11 If a graph G has a bounded k-points representation, k ≥ 3, then G has
a k-gon representation.

Proof Let R be a bounded k-points representation of G on circle C. We construct a
k-gon representation of G. Let v1, v2, . . . , vn be the vertices of G, and for each vi ,
let Ai denote its corresponding arc in R. For each arc Ai , let xi be the intersection of
the tangents to C through the endpoints of Ai , as shown in Fig. 14. Then by the proof
of Theorem 8, the set {xi} with obstacle C is an obstacle representation of G.

Let P be the convex k-gon enclosed by the k lines tangent to C at the points of
the transversal T . P is indicated by the shaded region shown in Fig. 14. The fact that
not all points of T are on the same half of C guarantees that P is in fact a bounded
polygon. We define a function ϕ on the set {xi} and prove that {ϕ(xi)} with obstacle
P is the desired k-gon representation of G.

Let us say a line L is tangent to the polygon P if L ∩ P is non-empty but P

is contained in one of the closed half-planes determined by L. The lines tangent to
P and the lines tangent to C correspond according to slope: each line L tangent to
C corresponds to the line Φ(L) parallel to L and tangent to P , such that the closed
half-plane determined by L containing C can be translated to coincide with the closed
half-plane determined by Φ(L) containing P . Now since xi is the intersection of two
tangents L1 and L2 to C, we may define ϕ(xi) to be the intersection of the corre-
sponding tangents Φ(L1) and Φ(L2) to P . Each ϕ(xi) is external to P , as follows.
By the construction of P , Φ(L1) and Φ(L2) contain the same vertex of P if and only
if L1 and L2 are tangent to C at two points that lie between consecutive points of
the transversal. This situation does not occur, because each Ai contains a point of the
transversal, so Φ(L1) and Φ(L2) intersect at ϕ(xi) external to P .

We now show that the set {ϕ(xi)} with obstacle P is an obstacle representation
of G. The key observation is that for a point ϕ(xi) and any line Φ(L) tangent to P ,
Φ(L) separates ϕ(xi) from P if and only if L separates xi from C. As in the proof of
Theorem 8, ϕ(xi)ϕ(xj ) is disjoint from P if and only if there is some line tangent to
P separating both ϕ(xi) and ϕ(xj ) from P , just as xixj is disjoint from C if and only
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Fig. 15 The impossible arc B

if there is some line tangent to C separating both xi and xj from C. Thus, ϕ(xi)ϕ(xj )

is disjoint from P if and only if Ai intersects Aj , so {ϕ(xi)} with P is an obstacle
representation of G. �

The remaining lemmas show how to find a bounded k-points representation for
any k-clique-coverable non-double-covering circular arc graph. The first step is the
following theorem of Hell and Huang.

Theorem 12 ([14]) Suppose that a circular arc graph G can be covered by k ≥ 2
cliques. Then any circular arc representation of G has a k-point transversal.

It remains to show that if G has a non-double-covering circular arc representation
with a k-point transversal, then G has a bounded k-points representation.

Lemma 13 If G has a non-double-covering circular arc representation with a k-
point transversal, k ≥ 2, then G has a non-double-covering circular arc representa-
tion with a k-point transversal for which no arc of the representation contains all k

points.

Proof Consider a non-double-covering circular arc representation R of G with k-
point transversal T that minimizes the sum over all arcs A ∈ R of the number of
transversal points contained in A. We will show that no arc of R contains all k points
of T .

For any points p and q of the circle, let [p,q] denote the clockwise arc from p

to q . Suppose there is some arc A = [a1, a2] containing every point of T . Let t1 be
the point of T immediately clockwise from a1, and t2 the point of T immediately
counterclockwise from a2. We claim that we can shorten A by moving a1 past t1 and
still have a representation of G. Then A contains fewer points of T , contradicting
minimality.

To show this, suppose there is some arc B = [b1, b2] with b2 ∈ [a1, t1], as in
Fig. 15. Then because B must contain some transversal point, B must contain t2
and therefore a2, contradicting the assumption that G is non-double-covering. There-
fore no such B exists, and moving a1 past t1 maintains all the intersections of A with
the other arcs. �

An alternate proof of Lemma 13 for the case k = 2 is given in [21]. The following
lemma concludes the proof of Theorem 10 for the case k ≥ 3.
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Lemma 14 If there exists a non-double-covering circular arc representation R of
graph G with a transversal T of size k ≥ 3, in which no arc contains every point
of T , then there exists a bounded k-points representation of G.

Proof Let t1, t2, . . . , tk be the points of T , labeled clockwise around the circle. We
create a collection S of k arcs A1, A2, . . . ,Ak as follows. For 1 ≤ i ≤ k, we place Ai

so that it contains the clockwise arc [ti , ti+1] (where tk+1 = t1) but no arc endpoints
outside [ti , ti+1]. Then R ∪ S is non-double-covering, because for any Ai ∈ S, B ∈
R ∪ S with Ai ∪ B equal to the whole circle, B would contain all of T , contradicting
the hypothesis of the lemma.

We apply Lemma 7 to R ∪ S to find a bounded representation R∗ ∪ S∗ with arc
endpoints in the same order as in R ∪ S, and find a transversal T ∗ of size k so that
the arc endpoints of R∗ and S∗ and the points of T ∗ all appear in the same order as
in R ∪ S ∪ T . Suppose H is a semicircle containing T ∗. Then the complementary
semicircle H ′ is between two consecutive points of T ∗ and so must be contained in
some arc of S∗. But every arc of S∗ is shorter than a semicircle, so no such H exists.
Thus, R∗ with T ∗ is a bounded k-points representation of G. �

For the case k = 2, we define a bounded 2-points representation of a graph G to be
a bounded circular arc representation of G together with a transversal T consisting of
two antipodal points of the circle. We extend the proof of Lemma 11 to the case k = 2
by choosing the obstacle P to be a segment oriented orthogonal to the line through
the two transversal points. The remainder of the proof of the lemma is the same.

As with k ≥ 3, a non-double-covering circular arc graph G coverable by two
cliques has a non-double-covering circular arc representation with a two-point
transversal not fully contained by any arc, by Theorem 12 and Lemma 13. The fol-
lowing lemma concludes the proof of Theorem 10.

Lemma 15 If there exists a non-double-covering circular arc representation R of
graph G with a transversal T containing exactly two points, in which no arc contains
both points of T , then there exists a bounded 2-points representation of G.

Proof First, we use Lemma 7 to find a bounded representation R∗ of G on a circle C

of circumference 1 with endpoints in the same order as in R, with transversal points
p and q so that each arc in R∗ contains exactly one of p and q . We replace p by an
arc P of length 2, and replace q by an arc Q of length 2. C is now a closed curve
of total length 5. Each arc which contained p now contains all of P , and each arc
which contained q now contains all of Q, so the length of every arc in R∗ increases
by exactly 2.

Preserving all lengths, make C into a circle of total circumference 5. Any arc
that had length l < 1/2 now has length (2 + l) < 5/2, so the new representation is
bounded. Some point q∗ ∈ Q is antipodal to some point p∗ ∈ P , because the set of
points antipodal to points in P has length 2, while the set of points not in P or Q has
length only 1. We choose {p∗, q∗} as our new transversal. �

The proof of Theorem 10 is now complete.
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For the case k = 2, a graph G is a non-double-covering circular arc graph with
clique covering number 2 if and only if GC is an interval bigraph [15]. In Sect. 7, we
offer an alternate proof by proving directly that G has a 2-gon representation if and
only if GC is an interval bigraph.

7 Segment Obstacle Representations and Interval Bigraphs

The segment obstacle number of a graph G is the least number of obstacles in any
obstacle representation of G in which all the obstacles are line segments.

An interval bigraph representation of a graph G is a set of closed intervals on the
real line, colored red and blue, in one-to-one correspondence with the vertices of G,
such that two vertices of G are adjacent if and only if their corresponding intervals
intersect and are different colors. We frequently color the vertices G with the colors
of their corresponding intervals. If G has an interval bigraph representation, then G

is an interval bigraph [4–6]. Note that all interval bigraphs are bipartite, because no
two vertices of the same color are adjacent.

In [15], Hell and Huang show that GC is an interval bigraph if and only if G is a
non-double-covering circular arc graph with clique covering number 2. Now suppose
G is a graph with segment obstacle number 1. By Theorem 10, we know G is a non-
double-covering circular arc graph with clique covering number 2. In Theorem 16,
we present a construction that takes an interval bigraph representation of GC and
produces a segment obstacle representation of G, and vice versa.

Theorem 16 A graph G has segment obstacle number 1 if and only if GC is an
interval bigraph.

Proof For a given interval bigraph representation T of G, we assume without loss
of generality that T is a set of closed intervals on the line y = 1 in the plane, and
denote an interval [(a,1), (b,1)], a < b, by [a, b]. Similarly, for a given segment
obstacle representation of G with one segment S, we assume that S is the line segment
[(−1,0), (1,0)] on the x-axis. Because we take vertices of G and vertices of S to be
in general position, vertices in T cannot be on the x-axis. We color vertices above the
x-axis red and vertices below the x-axis blue.

We construct a bijection ϕ from the set of closed intervals on y = 1 to the set of
points above the x-axis, such that two intervals I and J intersect if and only if the seg-
ment between ϕ(I) and −ϕ(J ) (or equivalently, between −ϕ(I) and ϕ(J )) intersects
the segment [(−1,0), (1,0)]. Then given an interval bigraph representation T on line
y = 1 of GC , the set of points {ϕ(R) |R ∈ T is red} ∪ {−ϕ(B) |B ∈ T is blue} with
the segment [(−1,0), (1,0)] is a segment obstacle representation of G. Conversely,
given a segment obstacle representation of G with obstacle [(−1,0), (1,0)], the set
of intervals {ϕ−1(r) | r ∈ V (G) is red} ∪ {ϕ−1(−b) |b ∈ V (G) is blue} is an interval
bigraph representation of GC .

The construction is as follows. We define ϕ([a, b]) to be the intersection of two
lines: one line through (−1,0) parallel to the line through (b,1) and (0,0), and the
other through (1,0) parallel to the line through (a,1) and (0,0), as shown in Fig. 16.
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Fig. 16 The bijection ϕ

between an interval [a, b] and a
point (x, y)

Note that ϕ is invertible, because there is a corresponding geometric interpretation
for the inverse function ϕ−1.

Algebraically,

ϕ([a, b]) =
(

a + b

b − a
,

2

b − a

)

and

ϕ−1(x, y) =
[
x − 1

y
,
x + 1

y

]
.

We will show that point ϕ(J ) is visible from −ϕ(I) if and only if intervals I and
J are disjoint. Observe that ϕ(J ) is to the right of the line through −ϕ(I) and (1,0)

if and only if the left endpoint of J is to the right of the right endpoint of I ; that is,
−ϕ(I) sees ϕ(J ) to the right of [(−1,0), (1,0)] if and only if J is completely to the
right of I . Likewise, ϕ(J ) is to the left of the line through −ϕ(I) and (−1,0) if and
only if the right endpoint of J is to the left of the left endpoint of I , so −ϕ(I) and
ϕ(J ) are mutually visible if and only if I and J are disjoint.

Thus we have constructed the desired bijection, and so G has segment obstacle
number 1 if and only if GC is an interval bigraph. �

An interval k-graph representation of a graph G is a set of closed intervals on the
real line, colored with k colors, in one-to-one correspondence with the vertices of G,
such that two vertices of G are adjacent if and only if their corresponding intervals
intersect and are different colors. We frequently color the vertices of G with the colors
of their corresponding intervals. If G has an interval k-graph representation, then G

is an interval k-graph [7]. Since G is a non-double-covering circular arc graph with
clique covering number 2 if and only if GC is an interval bigraph [15], it is natural
to try replacing 2 by k and hope that a graph G is a non-double-covering circular
arc graph with clique covering number k if and only if GC is an interval k-graph.
Unfortunately, neither implication is true. We provide two separating examples to
show that, for k > 2, neither of the classes of complements of interval k-graphs and
non-double-covering circular arc graphs (equivalently, graphs with convex obstacle
number 1) is contained in the other.

First, we show that not every interval k-graph is the complement of a non-double-
covering circular arc graph. Let G be the disjoint union of K2 and K3. It is easy to
check that G is an interval 3-graph. However, GC is the complete bipartite graph
K2,3, which is not a non-double-covering circular arc graph (equivalently, not repre-
sentable with a single convex obstacle) by Corollary 9.

Now we show that not every complement of a non-double-covering circular arc
graph is an interval k-graph. Consider the graph C5, a non-double-covering circular
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arc graph. Brown, Flink, and Lundgren showed that if G is an interval k-graph, then
G is weakly chordal; that is, neither G nor GC contains a cycle of length at least 5 as
an induced subgraph [3, 7]. The graph (C5)

C = C5 is clearly not weakly chordal and
thus is not an interval k-graph. Thus, C5 is a non-double-covering circular arc graph,
but its complement is not an interval k-graph for any k.
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