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Abstract The present paper studies certain classes of closed convex sets in finite-
dimensional real spaces that are motivated by their application to convex maximiza-
tion problems, most notably, those evolving from geometric clustering. While these
optimization problems are NP-hard in general, polynomial-time approximation al-
gorithms can be devised whenever appropriate polyhedral approximations of their
related clustering bodies are available. Here we give various structural results that
lead to tight approximations.
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1 Introduction

The present paper studies structural problems for certain classes of closed convex sets
in finite-dimensional real spaces that are motivated by optimization problems of the
form

maxf (x)

G(x, y) ≤ 0,

where

f : R
R1 → R convex, G : R

R1 × R
R2 → R

R3 affine.
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Note that G is of the form

G(x, y) = M

(
x
y

)
+ a,

where M is a real R3 × (R1 + R2) matrix, and a ∈ R
R3 ; thus,

F = {(
xT , yT

)T : G(x, y) ≤ 0
}

is a polyhedron. As it is well known, in general such convex maximization problems
admit exponentially many local maxima and are computationally hard; see, e.g., [8].
In fact, by [2] even the very special case

R1 = n, R2 = 0, R3 = m, A ∈ R
m×n, b ∈ R

m,

f (x) = f (x1, . . . , xn) =
n∑

i=1

x2
i , G(x) = Ax − b,

of maximizing the square of the Euclidean norm over a polyhedron is already NP-
hard even if the polyhedron is a parallelotope.

Our problem is, however, much more general. Since f does not depend on y,
we are, in effect, faced with the problem of maximizing a convex function over the
orthogonal projection of the polyhedron F in R

R1+R2 on the space R
R1 of the vari-

ables x. Since the number of facets of the projection of F may be exponential in the
number of facets of F , our problem statement actually allows a compact encoding of
feasible regions of an exponential number of linear inequalities.

Another example that is in spirit close to our main application is given by

R1 = kd, R2 = n, R3 = 2kd + m,

x1, . . . , xk ∈ R
d , x = (

xT
1 , . . . , xT

k

)T
, A1, . . . ,Ak ∈ R

d×n,

B ∈ R
m×n, b ∈ R

m, f (x) =
k∑

i=1

fi(xi),

G(x, y) = (
. . . , (xi − Aiy)T ,−(xi − Aiy)T , . . . , (By − b)T

)T
.

Here a convex objective function that is separable in x1, . . . , xk is maximized over
a polyhedron that is specified by inequalities involving variables y that are coupled
with x1, . . . , xk by linear equations.

In this paper we focus on special classes of such problems that are basic in geo-
metric clustering, a prime example for practical applications being the consolidation
of farmland; see [4, 5]. (We will outline this class of examples in more detail at the
end of this introduction.) While these problems are NP-hard, polynomial-time ap-
proximation algorithms can be devised whenever appropriate approximations of f

by piecewise affine functions are available.
Here we will take the geometric point of view leading to the problem of approxi-

mating certain closed convex sets by polyhedra. While such questions are well stud-
ied in fixed dimension with the number of facets of the approximation polyhedra
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tending to infinity (see, e.g., [10]), different asymptotics become relevant when the
dimension of the space is part of the input. Then the asymptotics involve the dimen-
sion tending to infinity while the number of facets of the approximating polyhedra
is bounded by a polynomial in that dimension. In fact, it is precisely the number of
facets of an approximating polyhedron that gives the number of linear programs that
have to be solved in the corresponding approximation algorithms for the given convex
maximization problem.

The functions of particular relevance here are defined on R
kd by means of norms

in R
d and R(k

2), respectively. In what follows, let for some n ∈ N,

‖ · ‖, B, S

denote a norm in R
n, the unit ball, and unit sphere of the Minkowski space M =

(Rn,‖ · ‖), respectively, i.e.,

B = {
x ∈ R

n : ‖x‖ ≤ 1
}
, S = {

x ∈ R
n : ‖x‖ = 1

}
.

The notation B
n and S

n−1 is used in order to signify the dimension of the space.
The most important cases are the Minkowski spaces with �p norms. For x =
(ξ1, . . . , ξn)

T ∈ R
n, the �p norm ‖x‖(p) is defined for 1 ≤ p ≤ ∞ as follows:

‖x‖(p) =
(

n∑
i=1

|ξi |p
)1/p

(1 ≤ p < ∞), ‖x‖(∞) = max
1≤i≤n

|ξi |.

The Minkowski space R
n endowed with an �p norm will be denoted by R

n
(p)

, its
unit ball and unit sphere by B(p) and S(p) respectively. Note that the norms ‖ · ‖(1)

and ‖ · ‖(∞) are polytopal, i.e., their unit balls are polytopes; B(1) is the regular cross
polytope, while B(∞) is the standard cube. Other norms of particular importance are
ellipsoidal norms whose unit balls are images of the Euclidean unit ball B(2) under
linear transformations.

Often, we will be dealing with different norms in different spaces simultaneously.
We will then use a lower index � for distinction and write ‖ · ‖ or ‖ · ‖�. Similarly, B

and B� will indicate the corresponding unit balls.
In the following, let ‖ · ‖ be an arbitrary norm on R

d , and let ‖ · ‖� be a norm on

R(k
2) that is monotone i.e.,

0 ≤ x ≤ y ⇒ ‖x‖� ≤ ‖y‖�,

where, as usual, the inequalities on the left side are meant componentwise. Note that
each �p norm is monotone, but, for instance, general ellipsoidal norms are not. Take,
as an example, the norm in R

2 whose unit ball is the ellipsoid with axes

[−2,2]
(

1
1

)
, [−1,1]

(
1

−1

)
.

Then the point (2,2)T has a smaller norm than its projection (2,0)T on the first
coordinate axis.
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The objective functions f that will be considered here are then defined for
x1, . . . , xk ∈ R

d and x = (xT
1 , . . . , xT

k )T by

f (x) = f (x1, . . . , xk) = ∥∥(‖x1 − x2‖,‖x1 − x3‖, . . . ,‖xk−1 − xk‖
)T ∥∥�.

To be more specific, let

R1 = kd, r =
(

k

2

)
, τi,j = ‖xi − xj‖ (1 ≤ i < j ≤ k),

and let t = (τ1, . . . , τr )
T ∈ R

r be the vector with the coordinates τi,j arranged in
lexicographically increasing order of the index pairs (i, j). The fact that the lth coor-
dinate corresponds to the pair (i, j) will sometimes be indicated by writing l = l(i, j).
Also, whenever we write

⎛
⎜⎜⎜⎝

x1 − x2
x1 − x3

...

xk−1 − xk

⎞
⎟⎟⎟⎠ ∈ R

dr ,

⎛
⎜⎜⎜⎝

‖x1 − x2‖
‖x1 − x3‖

...

‖xk−1 − xk‖

⎞
⎟⎟⎟⎠ ∈ R

r ,

it is always this underlying lexicographical order we are tacitly referring to. To ex-
clude the most trivial cases, we will always assume that d ≥ 1 and k ≥ 2.

For ‖ · ‖� = ‖ ·‖(p) with 1 ≤ p < ∞ and ‖ · ‖� = ‖ ·‖(∞), we are in fact confronted
with the objective functions f (x) = (fp(x))1/p and f (x) = f∞(x), where

fp(x) =
k−1∑
i=1

k∑
j=i+1

‖xi − xj‖p, f∞(x) = max
i,j=1,...,k

‖xi − xj‖,

respectively. Also, when κ1, . . . , κk > 0, the weighted objective function

k−1∑
i=1

k∑
j=i+1

κiκj‖xi − xj‖2

corresponds to the axis oriented ellipsoidal norm ‖ · ‖� with half axes lengths√
1/(κiκj ).
In geometric clustering, such objective functions are used to model real-world

problems where clusters are built with respect to geometric proximity but under
certain polyhedral balancing constraints. A major example where the results of the
present paper are utilized is that of the consolidation of farmland based on modern
land-lease initiatives. Here k is the number of farmers in a certain region, who culti-
vate a larger number m of lots scattered across a wider agricultural region. The goal
is to redistribute the lots so as to reduce distances of the lots that are cultivated by the
same farmer; see [4, 5] for details and [3] for some further background information.
Naturally, the total size of each farmer’s land should not change much in the course
of redistribution, neither should its value or other possibly relevant parameters. While
these constraints can be reasonably well modelled by linear inequalities, the objective
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is to maximize a convex function of the kind introduced in the previous paragraph.
Here the points x1, . . . , xk correspond to the centers of gravity of all lots assigned to
each of the k farmers, respectively, and the objective is simply to “push them apart.”

As we are taking here a geometric point of view, the prime objects of our study
will be the level sets

C = {
x = (

xT
1 , . . . , xT

k

)T ∈ R
kd : f (x) ≤ 1

}
= {

x ∈ R
kd : ∥∥(‖x1 − x2‖,‖x1 − x3‖, . . . ,‖xk−1 − xk‖

)T ∥∥� ≤ 1
}
,

the so-called clustering bodies. These and related convex sets are studied with a view
towards their applications in new practical models for clustering under balancing con-
straints. However, their geometry is remarkably rich and makes the clustering bod-
ies an interesting class of geometric objects in their own right. For instance, certain
zonotopes fall into this class, but also bodies in some R

dk , k of whose d-dimensional
coordinate sections are Euclidean balls while “diagonal” k-sections from a certain
d-parameter class are duals of permutahedra.

In the following, the “generic notation” C will be used in the general case, i.e.,
when the occurring norms are not particularly specialized. Of course, after first study-
ing the structure of general clustering bodies, we will later derive additional results
for some specific cases, most notably those where ‖ · ‖� = ‖ · ‖(1) while ‖ · ‖ is still
arbitrary or where both norms ‖ · ‖ and ‖ · ‖� are certain �p norms.

As to the connection to our optimization problem, note that, for the given instance,
the task can be interpreted as to find the minimal nonnegative λ such that the corre-
sponding polyhedron F is contained in λC × R

R2 or, alternatively, λC contains the
orthogonal projection of F on R

R1 × {0}R2 . See [9] for a survey on containment
problems.

The paper is organized as follows. Section 2 studies the geometry of general clus-
tering bodies C, while Sects. 3 and 4 derive additional results particularly when the
determining norms are specified to certain �p norms. Section 5 considers polynomial-
time polyhedral approximations.

2 General Geometric Structure

In the following, we study the geometry of the clustering bodies C. We begin with
two preparatory lemmas that deal with the basic underlying set

K = {
v = (vT

1 , . . . , vT
r )T : ∥∥(‖v1‖, . . . ,‖vr‖

)T ∥∥� ≤ 1
}
,

which, by the first lemma, is a union of certain Cartesian products.

Lemma 2.1 With t = (τ1, . . . , τr )
T ,

K =
⋃

t∈B�∩[0,∞[r
(τ1S × · · · × τrS).
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Proof Let v = (vT
1 , . . . , vT

r )T ∈ K , τi = ‖vi‖, si ∈ S with τisi = vi for i = 1, . . . , r ,
and t = (τ1, . . . , τr )

T . Then t ∈ B� and vi ∈ τiS; hence, v ∈ τ1S × · · · × τrS.
Conversely, let t ∈ B� ∩ [0,∞[r , si ∈ S, and vi = τisi for i = 1, . . . , r . Then

∥∥(‖v1‖, . . . ,‖vr‖
)T ∥∥� = ∥∥(τ1, . . . , τr )

T
∥∥� = ‖t‖� ≤ 1.

Hence, v = (vT
1 , . . . , vT

r )T ∈ K . �

By Lemma 2.1 it is by no means clear whether K is convex. As we will see later,
this is not always the case. However, the following lemma shows that K is convex
whenever ‖ · ‖� is monotone; in particular, the function g : R

dr → R defined by

g(v) = g(v1, . . . , vr ) = ∥∥(‖v1‖, . . . ,‖vr‖
)T ∥∥�

is then a norm.

Lemma 2.2 Let ‖ · ‖� be monotone. Then K has the following properties:

(1) K is symmetric about the origin, compact, convex, and int(K) �= ∅.
(2) Let S ⊂ R

d and T ⊂ R
r be such that

B = conv(S), B� ∩ [0,∞[r= conv(T ).

Then, with t = (τ1, . . . , τr )
T ,

K = conv

(⋃
t∈T

(τ1S × · · · × τrS)

)
.

(3) K is a polytope if and only if B and B� ∩ [0,∞[r are polytopes.

Proof To prove (1) we show that g is a norm. Of course, g is positive definite and
homogeneous. To verify the triangle inequality, observe that, by the monotonicity
of ‖ · ‖�, we have

g(v + w) = ∥∥(‖v1 + w1‖, . . . ,‖vr + wr‖
)T ∥∥�

≤ ∥∥(‖v1‖ + ‖w1‖, . . . ,‖vr‖ + ‖wr‖
)T ∥∥� ≤ g(v) + g(w).

Hence, K is the unit ball associated with the norm g.
(2) Since K is convex, the inclusion “⊃” is clear.
Now, let v = (vT

1 , . . . , vT
r )T ∈ K . Then, of course, (‖v1‖, . . . ,‖vr‖)T ∈ B� ∩

[0,∞[r . Hence, by Caratheodory’s theorem, there exist t0, . . . , tr ∈ T and
λ0, . . . , λr ∈ [0,1] with

∑r
i=0 λi = 1 such that

(‖v1‖, . . . ,‖vr‖
)T =

r∑
i=0

λiti .
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For i = 0, . . . , r , let ti = (τi,1, . . . , τi,r )
T , and let j ∈ {1, . . . , r}. Then,

vj ∈
r∑

i=0

λiτi,jB.

Hence, there exist sj,0, . . . , sj,d ∈ S and μj,0, . . . ,μj,d ∈ [0,1] with
∑d

l=0 μj,l = 1
such that

vj =
r∑

i=0

λiτi,j

d∑
l=0

μj,lsj,l =
r∑

i=0

d∑
l=0

λiμj,lτi,j sj,l .

Using the fact that
∑d

l=0 μj,l = 1 for each j = 1, . . . , r , this implies
⎛
⎜⎝

v1
...

vr

⎞
⎟⎠ =

r∑
i=0

d∑
l1=0

· · · · ·
d∑

lr=0

λi

⎛
⎝ r∏

j=1

μj,lj

⎞
⎠

⎛
⎜⎝

τi,1s1,l1
...

τi,r sr,lr

⎞
⎟⎠ .

Since

r∑
i=0

d∑
l1=0

· · · · ·
d∑

lr=0

λi

r∏
j=1

μj,lj =
r∑

i=0

λi

(
d∑

l1=0

μ1,l1

(
· · · · ·

(
d∑

lr=0

μr,lr

)
· · ·

))
= 1,

this is the desired convex combination of vectors of the specified form.
(3) If B and B� ∩ [0,∞[r are polytopes, then there exist finite sets S ⊂ R

d and
T ⊂ R

r such that

B = conv(S), B� ∩ [0,∞[r = conv(T ).

Hence, by (2), K is a polytope. So suppose now that K is a polytope. Then, according
to Lemma 2.1, K is the convex hull of finitely many, say m, vectors v1, . . . ,vm of the
form

vi = (
τi,1s

T
i,1, . . . , τi,r s

T
i,r

)T
,

where for i = 1, . . . ,m and j = 1, . . . , r ,

si,j ∈ S, ti = (τi,1, . . . , τi,r )
T ∈ B� ∩ [0,∞[r .

Let s ∈ B. Further, let t ∈ B� ∩ [0,∞[r be such that its first coordinate τ is max-
imal. Then, of course, τ > 0, and, by the monotonicity of ‖ · ‖� and Lemma 2.1, in
particular, (τ sT ,0, . . . ,0)T ∈ K . Thus,

τs ∈ conv{τ1,1s1,1, . . . , τm,1sm,1}.
Hence,

B ⊂ conv

{
τ1,1

τ
s1,1, . . . ,

τm,1

τ
sm,1

}
⊂ B;

thus, B is a polytope.
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Now, let t = (τ1, . . . , τr )
T ∈ B� with t ≥ 0. Further, let s1, . . . , sr ∈ S. Then, ac-

cording to Lemma 2.1, v = (τ1s
T
1 , . . . , τr s

T
r )T ∈ K , and there are λ1, . . . , λm ∈ [0,1]

with
∑m

i=1 λi = 1 such that v = ∑m
i=1 λivi . In particular, we have for j = 1, . . . , r ,

τj = ‖τj sj‖ =
∥∥∥∥∥

m∑
i=1

λiτi,j si,j

∥∥∥∥∥ ≤
m∑

i=1

λiτi,j‖si,j‖ =
m∑

i=1

λiτi,j ;

hence,

t ≤
m∑

i=1

λiti .

Therefore,

B� ∩ [0,∞[r ⊂ conv
({t1, . . . , tm}) + ]−∞,0]r .

Since ‖ · ‖� is monotone, this implies the asserted polytopality. �

Next we derive some simple properties of C. Let Πk denote the symmetric group
on k-elements. We will regard π ∈ Πk as a permutation on whatever underlying set
of k elements is involved.

Lemma 2.3 Let ‖ · ‖� be monotone. Then C has the following properties:

(1) 0 ∈ C and C is convex and closed.
(2) C is invariant under translations of R

d , i.e.,

f (x1, . . . , xk) = f (a + x1, . . . , a + xk)

for a ∈ R
d .

(3) C is invariant under all (affine or surjective) isometries of R
d , i.e.,

f (x1, . . . , xk) = f
(
σ(x1), . . . , σ (xk)

)

for any affine or surjective mapping σ : R
d → R

d with ‖σ(x)‖ = ‖x‖ for all
x ∈ R

d . In particular, C = −C.
(4) If ‖ · ‖� is invariant under permutations of coordinates, then C is invariant under

permutations of x1, . . . , xk , i.e.,

f (x1, . . . , xk) = f (xπ(1), . . . , xπ(k))

for any permutation π ∈ Πk .
(5) The lineality space of C is the d-dimensional subspace

ls(C) = {
x = (

xT
1 , . . . , xT

k

)T : x1 = · · · = xk

}
.

(6) Let

L :=
{

x = (
xT

1 , . . . , xT
k

)T :
k∑

i=1

xi = 0

}
, B := C ∩ L.
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Then L⊥ = ls(C), and B is centrally symmetric, compact, and convex.

Proof (1) Of course, f (0) = 0. Further, note that f (x) is the composition of the
function g : R

dr → R defined by

g(v) = g(v1, . . . , vr ) = ∥∥(‖v1‖, . . . ,‖vr‖
)T ∥∥�

already before the previous lemma and the linear function induced by the matrix con-
sisting of r blocks of the form (0d , . . . ,0d , Id,0d, . . . ,0d,−Id,0d, . . . ,0d), where Id

and 0d denote the d × d identity and zero matrices, respectively.
Since, by Lemma 2.2, g is convex, the function f is convex on R

dk and thus
continuous. So, as the preimage of the closed interval ] − ∞,1], or, which is the
same here, of [0,1], under f , C is closed and convex.

(2) and (4) are obvious. (3) is clear for affine isometries; and by the Mazur–Ulam
Theorem, surjective isometries are affine; see, e.g., [1, 14.1].

(5) Let S = {
x : x1 = · · · = xk

}
. Clearly, S ⊂ ls(C). Suppose now that x �∈ S. Then

there are i, j ∈ {1, . . . , k} with i < j and xi �= xj . Let yi,j ∈ R
r be the vector whose

components are all 0 except for the lth component with l = l(i, j), i.e., that corre-
sponding to (i, j) which is ‖xi − xj‖. By monotonicity it follows for λ > 1/‖yi,j‖�,
that λx �∈ C, and hence x �∈ ls(C).

(6) Since the other parts are clear, it remains to show that B is bounded. Suppose
that B is unbounded. Then, since 0 ∈ B and B is closed, there is a vector x �= 0 such
that [0,∞[x ⊂ B . By central symmetry of B , this implies Rx ⊂ B , i.e., x ∈ ls(B).
But then x ∈ L ∩ ls(C), which implies x = 0, a contradiction. �

Let us remark that it is the condition that ‖ · ‖� is monotone which guarantees the
convexity of C. As an example, let d = 1, k = 3, and let

C =
⎧⎨
⎩

⎛
⎝x1

x2
x3

⎞
⎠ :

∥∥∥∥∥∥
⎛
⎝ |x1 − x2|

|x1 − x3|
|x2 − x3|

⎞
⎠

∥∥∥∥∥∥�
≤ 1

⎫⎬
⎭ .

Specifically, let ‖ · ‖� be the ellipsoidal norm

‖v‖� = vT Ev with E = 1

5

⎛
⎝ 1 −1 1

−1 7 −7
1 −7 8

⎞
⎠ .

Then (1,1,0)T , (1,−1,0)T ∈ C; in fact, the corresponding vectors (|x1 −
x2|, |x1 − x3|, |x2 − x3|)T are (0,1,1)T and (2,1,1)T , and have ‖ · ‖�-norms 1/5
and 1. However,

1

2

⎛
⎝1

1
0

⎞
⎠ + 1

2

⎛
⎝ 1

−1
0

⎞
⎠ =

⎛
⎝1

0
0

⎞
⎠ �∈ C

since ‖(1,1,0)T ‖� = 6/5. So, C is not convex.
Hence, in the following we will always assume that ‖ · ‖� is monotone.
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Note that, by Lemma 2.3, C defines a seminorm in R
dk , while B is the unit ball

of a norm in L.
Next, we describe the sets C via polarity. Recall first, that with each Minkowski

space M, there is an associated conjugate space M
∗ whose points are the linear func-

tionals on M. The norm ‖ · ‖∗ on M
∗ is defined by ‖y‖∗ = maxx∈B y(x) for y ∈ M

∗;
its unit ball and sphere are denoted by B

∗ and S
∗, respectively. (Note that, by the

compactness of B and the continuity of 〈·, y〉, the maximum is actually attained.) As
an example, note that the spaces R

n
(p) and R

n
(q) are conjugate to each other, where for

p ∈ [1,∞], the number q is defined by the condition

1

p
+ 1

q
= 1

(with the understanding that 1/∞ = 0). The most important spaces of this sort are
the self-conjugate Euclidean space R

n
(2) and the mutually conjugate spaces R

n
(1)

and R
n
(∞)

. Note that, in general, the monotonicity of ‖ · ‖ does not imply that ‖ · ‖∗ is
monotone.

The usual bilinear form 〈 , 〉 on M×M
∗ is given by 〈x, y〉 = y(x). When the points

x and y are expressed as coordinate vectors x = (ξ1, . . . , ξn)
T and y = (η1, . . . , ηn)

T

in the standard conjugate bases, then, of course,

〈x, y〉 =
n∑

i=1

ξiηi .

By polarity we have

〈x, y〉 ≤ ‖x‖ · ‖y‖∗.

Note that for each y ∈ S
∗, there exists x ∈ S for which the equality is attained.

For X ⊂ M, the polar X◦ is given by

X◦ = {
y ∈ M

∗ : x ∈ X ⇒ 〈x, y〉 ≤ 1
}
.

Note that, in particular, B
∗ = B

◦. Also, if X is polyhedral, then so is X◦. Polars are
defined analogously for subsets of M

∗ and, by identifying (M∗)∗ with M in the usual
way, are regarded as subsets of M. We use the fact that if X is a closed convex set
containing the origin, then (X◦)◦ = X. Whenever appropriate, we will also identify
(Rn,‖ · ‖)∗ with

(
R

n,‖ · ‖∗)
. For more background information on convex analysis

and specifically on polarity, see [11].
Now we consider the polar of the unit ball K of the Minkowski space (Rdr , g).

Lemma 2.4 Let ‖ · ‖� and ‖ · ‖∗� be monotone. Then

K◦ = {
w = (

wT
1 , . . . ,wT

r

)T : ∥∥(‖w1‖∗, . . . ,‖wr‖∗)T ∥∥∗
� ≤ 1

}
.

Proof Let

W = {
w = (

wT
1 , . . . ,wT

r

)T : ∥∥(‖w1‖∗, . . . ,‖wr‖∗)T ∥∥∗
� ≤ 1

}
.
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With the aid of polarity applied to ‖ · ‖ and ‖ · ‖�, we obtain

〈v,w〉 =
r∑

i=1

〈vi,wi〉 ≤
r∑

i=1

‖vi‖ · ‖wi‖∗

= 〈(‖v1‖, . . . ,‖vr‖
)T

,
(‖w1‖∗, . . . ,‖wr‖∗)T 〉

≤ ∥∥(‖v1‖, . . . ,‖vr‖
)T ∥∥� · ∥∥(‖w1‖∗, . . . ,‖wr‖∗)T ∥∥∗

�.

So, for v ∈ K and w ∈ W , we have 〈v,w〉 ≤ 1. Hence, W ⊂ K◦.
Now, let w = (wT

1 , . . . ,wT
r )T ∈ K◦. Applying the general fact that for each

y ∈ M
∗, the equality in 〈x, y〉 ≤ ‖x‖ · ‖y‖∗ is attained for some x ∈ S to the two

pairs of conjugate spaces (Rd ,‖ · ‖), (Rd ,‖ · ‖∗) and (Rr ,‖ · ‖), (Rr ,‖ · ‖∗), we see
that there exists a vector v̂ = (v̂T

1 , . . . , v̂T
r )T ∈ bd(K) such that

〈v̂,w〉 = ∥∥(‖v̂1‖, . . . ,‖v̂r‖
)T ∥∥� · ∥∥(‖w1‖∗, . . . ,‖wr‖∗)T ∥∥∗

�.

Hence, ∥∥(‖w1‖∗, . . . ,‖wr‖∗)T ∥∥∗
� ≤ 1,

i.e., w ∈ W . �

Now, let A denote the dr × dk matrix that maps x = (xT
1 , . . . , xT

k )T to the vec-
tor of pairwise differences xi − xj , ordered again according to our convention, i.e.,
lexicographically increasing with respect to (i, j).

In the following, we will always use the notation ui to denote the ith standard unit
vector in whatever space R

n (with i ≤ n) we are in.
With I = Id , the matrix A is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −I 0 · · · 0 0
I 0 −I · · · 0 0
...

...
. . .

...
...

I 0 0 · · · −I 0
I 0 0 · · · 0 −I

0 I −I · · · 0 0
...

...
. . .

...
...

0 I 0 · · · −I 0
0 I 0 · · · 0 −I
...

...
...

...
...

0 0 0 · · · I −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order to emphasize the dimension d of the “component vectors” xi , we will some-
times write Ad . In particular, A1 will be the corresponding r × k matrix.

Note that Ad is the Kronecker product A1 ⊗ Id with each component αi,j of A1
replaced by αi,j Id , i.e., Ad is obtained from A1 by replacing each entry 0 by the
d × d zero matrix 0d , each entry 1 by Id , and each entry −1 by −Id .
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In particular, A comprises a product structure with respect to R
d . More precisely,

let xi = (ξi,1, . . . , ξi,d )T for i = 1, . . . , k,

yj = (ξ1,j , . . . , ξk,j )
T

for j = 1, . . . , d , and y = (yT
1 , . . . , yT

d )T . Then, up to a reordering of components,
Ad(xT

1 , . . . , xT
k )T coincides with ((A1y1)

T , . . . , (A1yd)T )T . The lth row with l =
(i − 1)d + j in the standard ordering (which corresponds to the block i with i =
1, . . . , r and the j th coordinate with j = 1, . . . , d) is replaced by the mth row with
m = (j − 1)r + i. Hence this reordering is facilitated by the permutation matrix P ∈
R

dr×dr whose ((j − 1)r + i)th row is u(i−1)d+j . Then

PAx =
⎛
⎜⎝

A1
...

A1

⎞
⎟⎠ y.

Observe that

A−1K = {z : Az ∈ K} = C.

Theorem 2.5

C◦ = AT K◦, B◦ = AT K◦ + ls(C).

Proof By polarity and Lemma 2.3,

B◦ = (C ∩ L)◦ = C◦ + L◦ = C◦ + L⊥ = C◦ + ls(C).

Hence it suffices to prove the first statement. We have
(
AT K◦)◦ = {

x : y ∈ AT K◦ ⇒ 〈x, y〉 ≤ 1
} = {

x : z ∈ K◦ ⇒ 〈Ax, z〉 ≤ 1
}

= A−1{
w : z ∈ K◦ ⇒ 〈w,z〉 ≤ 1

} = A−1K = C.

Since AT K◦ is closed and contains the origin, we have ((AT K◦)◦)◦ = AT K◦, which
completes the proof of the theorem. �

The following corollary should be read with a view towards Lemma 2.2.

Corollary 2.6 If K is polyhedral, then so are C and B .

Proof The assertion follows directly from Theorem 2.5 in conjunction with the facts
that the polar and the linear image of a polyhedron are themselves polyhedral. �

3 Minkowski Sums and Permutahedra

In the following, we will build on the results for general clustering bodies of the
previous section to gain further structural insight when ‖ · ‖� is specialized to certain
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�p norms. The specific situation of ‖ · ‖� = ‖ · ‖(p) will in the following be signified
by the subscript p, i.e.,

Cp =
{

x = (
xT

1 , . . . , xT
k

)T ∈ R
kd :

k−1∑
i=1

k∑
j=i+1

‖xi − xj‖p ≤ 1

}

for 1 ≤ p < ∞, and

C∞ =
{

x = (
xT

1 , . . . , xT
k

)T ∈ R
kd : max

i,j=1,...,k
‖xi − xj‖ ≤ 1

}
.

(Note, that taking the pth root on the left side of the defining inequality for Cp does
not change the set. Hence, Cp coincides indeed with C for ‖ · ‖� = ‖ · ‖(p).) In this
section, ‖ · ‖ is still an arbitrary norm; Sect. 4 will also restrict ‖ · ‖.

As we will see, the most interesting case is that of ‖ · ‖� = ‖ · ‖(1). In particular,
C◦

1 is the Minkowski sum of certain balls. More precisely, let for l = 1, . . . , r ,

B
∗
l = {

w = (
wT

1 , . . . ,wT
r

)T ∈ R
dr : wl ∈ B

∗ ∧ wi = 0 (i �= l)
}
.

Hence, B
∗
l is just B

∗ embedded into the lth coordinate R
d of R

dr . Further, set for
i, j ∈ {1, . . . , k} with i < j ,

D
∗
i,j = {

y = (
yT

1 , . . . , yT
k

)T ∈ R
dk : yi, yj ∈ B

∗ ∧ (yi + yj = 0) ∧ yr = 0 (r �= i, j)
}
.

Lemma 3.1 Let i, j ∈ {1, . . . , k} with i < j , and l = l(i, j). Then

AT
B

∗
l = D

∗
i,j .

Proof The columns of the matrix AT fall into r blocks of size dk × d of the form

(0d , . . . ,0d, Id ,0d, . . . ,0d ,−Id,0d, . . . ,0d)T .

In the lth such block, the entries Id and −Id are at the positions i and j , respectively.
Hence, for a vector w = (0, . . . ,0,wT

l ,0, . . . ,0)T ∈ B
∗
l , we have

AT w = (
0, . . . ,0,wT

l ,0, . . . ,0,−wT
l ,0, . . . ,0

)T ∈ D
∗
i,j .

The assertion follows now from that fact that every vector of D
∗
i,j is obtained that

way. �

The following theorem characterizes the structure of C1 and C∞.

Theorem 3.2

C◦
1 = AT (B∗)r =

k−1∑
i=1

k∑
j=i+1

D
∗
i,j , C◦∞ = conv

(
k−1⋃
i=1

k⋃
j=i+1

D
∗
i,j

)
.
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Proof By Theorem 2.5 and Lemmas 2.4 and 3.1, we have

C◦
1 = AT

{(
vT

1 , . . . , vT
r

)T :
r∑

i=1

‖vi‖ ≤ 1

}◦

= AT
{(

wT
1 , . . . ,wT

r

)T : max
i=1,...,r

‖wi‖∗ ≤ 1
}

= AT (B∗)r = AT (B∗
1 + · · · + B

∗
r ) = AT

B
∗
1 + · · · + AT

B
∗
r

=
k∑

i,j=1
i<j

D
∗
i,j .

Similarly,

C◦∞ = AT
{(

vT
1 , . . . , vT

r

)T : max
i=1,...,r

‖vi‖ ≤ 1
}◦

= AT

{(
wT

1 , . . . ,wT
r

)T :
r∑

i=1

‖wi‖∗ ≤ 1

}
= AT conv(B∗

1 ∪ · · · ∪ B
∗
r )

= conv
(
AT

B
∗
1 ∪ · · · ∪ AT

B
∗
r

) = conv

(
k⋃

i=1,j
i<j

D
∗
i,j

)
,

completing the proof of the theorem. �

Except for their specific embedding, all D
∗
i,j are of the form

D̂
∗ =

{(
x

−x

)
: x ∈ B

∗
}

.

Hence, D̂
∗ is the image of

√
2B

∗ × {0}d under the rotation

1√
2

(
I I

−I I

)
,

i.e., C◦
1 is the Minkowski sum and C◦∞ the convex hull of balls

√
2B

∗ that are em-
bedded into all possible “diagonal spaces.”

In particular, if B is the Euclidean unit ball, then C◦
1 is the Minkowski sum of d-

dimensional Euclidean balls “diagonally embedded” in (2d)-dimensional coordinate
spaces. Also, if B

∗ is a zonotope, then so is C◦
1 .

It is clear that C1 has d-dimensional sections similar to B. In fact, we have the
following simple theorem.

Theorem 3.3 Let i0 ∈ {1, . . . , k} and R
dk
i0

= 0d(i0−1) × R
d × 0d(k−i0). Then

C1 ∩ R
dk
i0

= 1

k − 1

(
0d(i0−1) × B × 0d(k−i0)

)
.
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Proof Let x ∈ R
dk
i0

. Then x is of the form (0, . . . ,0, xT
i0
,0, . . . ,0)T , and hence,

f1(x) =
k−1∑
i=1

k∑
j=i+1

‖xi − xj‖ = (k − 1)‖xi0‖.

Thus,

f1(x) ≤ 1 ⇔ xi0 ∈ 1

k − 1
B,

which proves the assertion. �

In particular, C1 contains the convex hull of ‖ · ‖-balls of radius 1
k−1 embedded in

each of the k coordinate R
d ’s.

The next lemma studies certain k-dimensional sections of C1. Let for x ∈ R
d \{0},

Tx = Rx × · · · × Rx.

Note that R(xT , . . . , xT )T ⊂ Tx ∩ ls(C).
In the following, we will use the notation xi,j for x ∈ R

d , i = 1, . . . , k − 1, and
j = i + 1, . . . , k to signify the vector

xi,j = (
0T
(i−1)d , xT ,0(j−i−1)d ,−xT ,0T

(k−j)d

)T
,

and similarly

yi,j = (
0T
(i−1)d , yT ,0(j−i−1)d ,−yT ,0T

(k−j)d

)T

for y ∈ (Rd)∗.

Theorem 3.4 Let x ∈ S. Then

C1 ∩ Tx = Tx ∩
(

1

‖x‖2
(2)

k−1∑
i=1

k∑
j=i+1

[−1,1]xi,j

)◦
.

Proof By Theorem 3.2 and duality we have

(C1 ∩ Tx)
◦ = T ◦

x +
k−1∑
i=1

k∑
j=i+1

D
∗
i,j =

k−1∑
i=1

k∑
j=i+1

(
D

∗
i,j + T ⊥

x

)
.

Further,

T ⊥
x = {

y = (
yT

1 , . . . , yT
k

)T : 〈x, y1〉 = · · · = 〈x, yk〉 = 0
}
.

Now, let y∗ ∈ S
∗ with 〈x, y∗〉 �= 0. For y ∈ (Rd)∗, there exists a unique vector

zy ∈ (Rd)∗ such that

y = 〈x, y〉
〈x, y∗〉y

∗ + zy, 〈x, zy〉 = 0.
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Hence, using the notation introduced above, we have for y ∈ B
∗, y ∈ T ⊥

x , and i < j ,

yi,j + y ∈ 〈x, y〉
〈x, y∗〉y

∗
i,j + T ⊥

x ⊂ 1

〈x, y∗〉 [−1,1]y∗
i,j + T ⊥

x .

It follows that

D
∗
i,j + T ⊥

x = 1

〈x, y∗〉
{[−1,1]y∗

i,j + y : y ∈ T ⊥
x

}
,

and thus,

(C1 ∩ Tx)
◦ = T ⊥

x + 1

〈x, y∗〉
k−1∑
i=1

k∑
j=i+1

[−1,1]y∗
i,j .

Identifying again (Rd ,‖ · ‖)∗ with
(
R

d,‖ · ‖∗)
and choosing y∗ = x/‖x‖∗, we obtain

〈x, y∗〉 = 〈x, x〉
‖x‖∗ = ‖x‖2

(2)

‖x‖∗ ,

and hence, by polarity,

C1 ∩ Tx = Tx ∩
(

1

‖x‖2
(2)

k−1∑
i=1

k∑
j=i+1

[−1,1]xi,j

)◦
,

as asserted. �

As an example, consider the case d = 1 and B = [−1,1]. Then, by Theorem 3.4,

C◦
1 =

k−1∑
i=1

k∑
j=i+1

[−1,1](ui − uj ),

where ui denotes again the ith standard unit vector in R
k .

Of course, in general dimensions, all sections B ∩ Rx are line segments of the
form [−α,α] for some positive real α. This accounts for the additional factor in
Theorem 3.4. Further, note that

T ⊥
x ⊂

(
k−1∑
i=1

k∑
j=i+1

[−1,1]xi,j

)◦
.

Therefore, C1 ∩ Tx is the “cross section” of the dual of a certain zonotope, which,
as we will show, is a general permutahedron. While it is standard fare to derive the
connection to the standard permutahedron

Pk = conv
{(

π(1), . . . , π(k)
)T : π ∈ Πk

}
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directly, we will give the explicit statement and a direct independent proof in the
next theorem. (In particular, Corollary 3.6 contains an alternative definition of the
permutahedron as a certain zonotope.)

Theorem 3.5 Let x ∈ S. Then

C1 ∩ Tx =
⋂

π∈Πk

{
z = (

ν1x
T , . . . , νkx

T
)T :

k∑
i=1

(k + 1 − 2i)νπ(i) ≤ 1

}
.

Proof Let x = (xT
1 , . . . , xT

k )T ∈ C1 ∩ Tx and ν1, . . . , νk ∈ R be such that xi = νix

for i = 1, . . . , k. Further, let ν0 ≤ mini=1,...,k νi , and yi = (νi − ν0)x for i = 1, . . . , k.
Then, for an arbitrary permutation π ∈ Πk , we have

k∑
i=1

(k + 1 − 2i)νπ(i) =
k−1∑
i=1

k∑
j=i+1

(νπ(i) − νπ(j))

=
k−1∑
i=1

k∑
j=i+1

(
(νπ(i) − ν0) − (νπ(j) − ν0)

)

=
k−1∑
i=1

k∑
i=j+1

(‖yπ(i)‖ − ‖yπ(j)‖
) ≤

k−1∑
i=1

k∑
i=j+1

‖yπ(i) − yπ(j)‖

=
k−1∑
i=1

k∑
i=j+1

‖xπ(i) − xπ(j)‖ ≤ 1,

showing the first inclusion “⊂”.
To prove the reverse inclusion, let ν1, . . . , νk ∈ R be such that

k∑
i=1

(k + 1 − 2i)νπ(i) ≤ 1

for all π ∈ Πk . Further, set xi = νix for i = 1, . . . , k and z = (xT
1 , . . . , xT

k )T . Then,
of course, z ∈ Tx . Now, let π∗ ∈ Πk be such that

νπ∗(1) ≥ · · · ≥ νπ∗(k).

Then, in particular,
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k−1∑
i=1

k∑
j=i+1

‖xi − xj‖ =
k−1∑
i=1

k∑
j=i+1

|νi − νj |‖x‖ =
k−1∑
i=1

k∑
j=i+1

|νπ∗(i) − νπ∗(j)|

=
k−1∑
i=1

k∑
j=i+1

(νπ∗(i) − νπ∗(j)) =
k∑

i=1

(k + 1 − 2i)νπ∗(i) ≤ 1,

and hence, z ∈ C1. This completes the proof. �

Theorem 3.5 gives an explicit description by inequalities of C1 ∩ Tx as the dual of
a general permutahedron, which is a homothetic copy of the standard permutahedron
Pk . Since Pk is a (k − 1)-dimensional polytope in R

k which lies in the hyperplane of
all points whose coordinate sum equals k(k + 1)/2 and is symmetric with respect to

c = k + 1

2
(1, . . . ,1)T ,

the combination of Theorems 3.4 and 3.5 gives, in particular, the following well-
known description.

Corollary 3.6

(
2(Pk − c)

)◦ =
(

k−1∑
i=1

k∑
j=i+1

[−1,1](ui − uj )

)◦

=
⋂

π∈Πk

{
v = (ν1, . . . , νk) ∈ R

k :
k∑

i=1

(k + 1 − 2i)νπ(i) ≤ 1

}
.

Proof We have

(
2(Pk − c)

)◦ = {
v ∈ R

k : w ∈ 2Pk ⇒ vT (w − 2c) ≤ 1
}

=
⋂

π∈Πk

{
v = (ν1, . . . , νk) ∈ R

k :
k∑

i=1

2νiπ(i) − (k + 1)

k∑
i=1

νi ≤ 1

}

=
⋂

σ∈Πk

{
v = (ν1, . . . , νk) ∈ R

k :
k∑

i=1

(2i − (k + 1))νσ(i) ≤ 1

}
,

which proves the assertion. �

Of course, the following result is another immediate corollary.
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Corollary 3.7 Let x ∈ S, and let h = hx : R
k → R

kd denote the linear map defined
by

h(v) =
⎛
⎜⎝

ν1x
...

νkx

⎞
⎟⎠ for v = (ν1, . . . , νk)

T ∈ R
k.

Then

C1 ∩ Tx = h
((

2(Pk − c)
)◦)

.

Proof The assertion follows directly from Theorem 3.5 and Corollary 3.6. �

4 On the Structure of A

In Sect. 3 we have used the special form of A to determine C◦ for some particular
choices of ‖ ·‖�. We begin the present section by studying the matrix A in more detail
and then further specialize the involved norms. The following lemma specifies A’s
singular value decomposition.

Lemma 4.1 The spectrum of AT A consists of 0 and k; k is a d(k − 1)-fold eigen-
value. Let the components of D = (δi,j ) ∈ R

dr×dk be given by

δi,j =
{√

k for i = j = 1, . . . , d(k − 1),

0 else;

let Q = (q1, . . . , qdk) ∈ R
dk×dk such that q1, . . . , qd(k−1) and qd(k−1)+1, . . . , qdk

form an orthonormal bases of L and ls(C), respectively. Then there is an orthog-
onal matrix Q = (q1, . . . , qdr ) ∈ R

dr×dr such that

qi = 1√
k
Aqi for i = 1, . . . , d(k − 1)

and

A = QDQ.

Proof With I = Id and 0 = 0d , we have

AT A = k ·

⎛
⎜⎜⎜⎝

I 0 · · · 0
0 I · · · 0
...

. . .
...

0 0 0 I

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

I I · · · I

I I · · · I
...

...
. . .

...

I I · · · I

⎞
⎟⎟⎟⎠

= kIdk − (I, . . . , I )T (I, . . . , I ).
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Now, note that

AT Ax =
{

kx for x ∈ L,

0 for x ∈ ls(C).

Hence, k and 0 are a d(k − 1)-fold and a d-fold eigenvalue, respectively, with the
corresponding eigenspaces L and ls(C).

There exist orthogonal matrices

Q ∈ R
dk×dk, Q ∈ R

dr×dr

such that A has the singular value decomposition

A = QDQ.

The columns of Q = (q1, . . . , qdk) and Q = (q1, . . . , qdr ) constitute an orthonormal
basis of eigenvectors of AT A and AAT , respectively, that satisfy the relation

qi = 1√
k
Aqi for i = 1, . . . , d(k − 1),

and all such corresponding choices are allowed. In particular, we can choose as
columns of Q an arbitrary orthonormal basis of L expanded by an arbitrary orthonor-
mal basis of ls(C). �

Note that we can choose Q and Q so that their determinants are +1. In conjunction
with Theorem 2.5, Lemma 4.1 shows then that

C◦ = AT K◦ = QT DT Q
T
K◦

is geometrically obtained from K◦ by a sequence of operations beginning with a
rotation, followed by a projection on the space of the first d(k − 1) coordinates of
R

dk , an expansion by a factor
√

k, and finally another rotation.
Of course, there are various lines of studies starting from here. It is natural to

consider bodies K◦ which are invariant under Q
T

or, even more appropriately, whose

intersection with a suitable R
d(k−1) coincides with 1√

k
DT Q

T
K◦. Also, one can start

from a norm in R
d(k−1) and design “preimage norms” in R

dr . We, however, will
not do that here since other aspects are more important in our context. Rather, we
will close this section with a few remarks on the situation where ‖ · ‖� and ‖ · ‖ are
specialized to certain �p norms.

If p1,p2 ∈ [1,∞] and

‖ · ‖� = ‖ · ‖(p1), ‖ · ‖ = ‖ · ‖(p2),

we will signify C, B , and K by the subscripts p1,p2, i.e., we write Cp1,p2 , Bp1,p2 ,
and Kp1,p2 . In particular, for p1,p2 ∈ [1,∞[ and with x = (xT

1 , . . . , xT
k )T and
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xi = (ξi,1, . . . , ξi,d )T for i = 1, . . . , k,

Cp1,p2 =
{

x ∈ R
kd :

k−1∑
i=1

k∑
j=i+1

(
d∑

l=1

|ξi,l − ξj,l |p2

) p1
p2

≤ 1

}
.

Clearly, the fully �p case, i.e., p = p1 = p2, is most natural; in particular,

Kp,p = {
v ∈ R

dr : ‖v‖(p) ≤ 1
} = B

dr
(p).

Among the clustering bodies Cp,p , the fully �∞ body C∞,∞ has the simplest
structure; in fact,

C∞,∞ =
{

x = (xT
1 , . . . , xT

k )T ∈ R
kd : max

i=1,...,k−1,j=i+1,...,k
l=1,...,d

|ξi,l − ξj,l | ≤ 1
}
,

i.e., C∞,∞ is the polyhedron given by the dk(k − 1) linear inequalities

−1 ≤ ξi,l − ξj,l ≤ 1

for i = 1, . . . , k −1, j = i +1, . . . , k, l = 1, . . . , d . Of course, then B∞,∞ is the poly-
tope obtained from C∞,∞ by adding the d additional homogeneous linear equations

k∑
i=1

ξi,l = 0 (l = 1, . . . , d).

Let us now turn to the fully �1 case, i.e, ‖ · ‖� and ‖ · ‖ are �1 norms. B(1) is, of
course, the well-known regular cross polytope. As we have seen, for d = 1, the cor-
responding clustering body is the dual of a permutahedron. This is the special case of
the following result which identifies C◦

1,1 as a Cartesian product of permutahedra (up
to the reordering of coordinates facilitated by the permutation matrix P introduced
in Sect. 2).

Theorem 4.2

C◦
1,1 = (k + 1)(−1, . . . ,−1)T + 2P(Pk × · · · × Pk).

Proof Since B
∗
(1) = B(∞) = ∑d

l=1[−1,1]ul , we have

D̂
∗ =

{(
x

−x

)
: ‖x‖(∞) ≤ 1

}
=

{(
x

−x

)
: x ∈

d∑
l=1

[−1,1]ul

}

=
d∑

l=1

[−1,1](ul − ud+l ).

(Recall that by our convention ul denotes the lth standard unit vector independently
of the space we are in. In the first two lines, ul ∈ R

d , while in the third line, ul ∈ R
2d .)
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Hence, by Theorem 3.2 and Corollary 3.6,

C◦
1,1 = AT (B∗

(1))
r =

k−1∑
i=1

k∑
j=i+1

D
∗
i,j =

k−1∑
i=1

k∑
j=i+1

d∑
l=1

[−1,1](ud(i−1)+l − ud(j−1)+l )

=
d∑

l=1

k−1∑
i=1

k∑
j=i+1

[−1,1](ud(i−1)+l − ud(j−1)+l )

= P
(
2(Pk − c) × · · · × 2(Pk − c)

)
= (k + 1)(−1, . . . ,−1)T + 2P(Pk × · · · × Pk). �

The fully Euclidean case where ‖ · ‖� and ‖ · ‖ are both �2 norms is a simple
corollary of Lemma 4.1.

Theorem 4.3 B2,2 is congruent to
√

kB
d(k−1).

Proof By Lemma 4.1, the corresponding body C2,2 is the cylinder with “axis” ls(C)

and “cross section” similar to the Euclidean ball of dimension d(k − 1) with the
dilatation factor

√
k. �

5 Approximation

In the following, we prove results on the approximation of C and C◦ by polyhedra. As
is well known, polyhedra Q can be given as the feasible region of a finite number of
linear inequalities or as the Minkowski sum of the convex hull of a finite point set and
the conic hull of another finite point set. We will speak of an H-presentation of Q in
the first, and a V -presentation in the second case; see [9]. For simplicity, we will also
refer to Q as an H-polyhedron or a V -polyhedron, respectively. Since the number of
facets of a polytope can be exponential in the number of its vertices and vice versa,
the given presentation is highly relevant for algorithmic purposes. Of course, with a
view towards polynomial-time approximation algorithms for the underlying convex
maximization problems, approximations of C by H-polyhedra Q with polynomially
many facets or of C◦ by V -polytopes with polynomially many vertices are our main
focus. Once such an approximation is known, say by a (centrally symmetric) H-
polyhedron

Q = {
z : zT q1 ≤ 1 ∧ · · · ∧ zT qn ≤ 1

}
,

the original convex maximization problem can be (approximately) solved by means
of the n linear programs with objective functions z �→ qT

i z (i = 1, . . . , n).
We begin with a simple consequence of Theorem 2.5 that sharpens Corollary 2.6.

Lemma 5.1 Let K be a polytope with m facets. Then the number of vertices of C◦
and the numbers of facets of C and B (as a polytope in L) are bounded above by m.
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Proof The results follow from Theorem 2.5 with the aid of polarity. �

Of course, in general, the upper bound given in Lemma 5.1 is not tight. This is

due to the projection part in the equation C◦ = AT K◦ = QT DT Q
T
K◦. For instance,

in the fully �1 case, Lemma 5.1 gives the upper bound 2dr for the number of facets
of C1,1, while by Theorem 4.2 we know that the correct number is (k!)d , which
is asymptotically much smaller. However, (k!)d is still exponential in d and in k,
so even for rather small values of these parameters, it will not be possible to solve
the underlying convex maximization problem exactly in practice since this would
require the solution of (k!)d linear programs. Hence, even in such a polytopal case let
alone for more general norms, we will have to resort to polynomial approximations,
i.e., approximations of C or B by H-polyhedra with only polynomially many facets.
Equivalently, we may approximate C◦ by V -polyhedra with only polynomially many
vertices.

The following simple observation reduces this task to that of approximating K◦.

Lemma 5.2 Let λ,μ > 0, let S be a V -polytope such that λS ⊂ K◦ ⊂ μS, and set
Q = AT S. Then Q is a V -polytope whose number of vertices is bounded by that of
S, and we have

λQ ⊂ C◦ ⊂ μQ.

Proof Applying Theorem 2.5, we obtain

λQ = λAT S ⊂ AT K◦ = C◦ ⊂ μAT S = μQ. �

In the fully �p case, we have K = B
dr
(p); hence, Lemma 5.2 can be combined with

known results on the approximation of �p balls by polytopes. In fact, [6, 7] give de-
terministic and randomized algorithms which in many cases are even asymptotically
optimal for that task. With q again defined by

1

p
+ 1

q
= 1,

we then obtain the error bounds

O

(
1√
dr

)
(p = 1), O

(
(log(dr))1/q

√
dr

)
(1 < p < 2),

O

((
log(dr)

dr

) 1
p

)
(p ≥ 2)

for our polynomial approximations of the specific balls. (Bounds for the convex max-
imization problem that involve pth powers of norms have, of course, to be adjusted.)
Let us point out that, as for polynomial-time approximations of B

dr
(p)

(and in the ap-
propriate model of computation), the given bound is tight for p ≥ 2; see [7] for more
details and further results on the polynomial-time approximation of various other
geometric functionals.
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Note that approximation in R
dr ignores part of the potential that lies in the specific

structure of clustering bodies. For instance, since r = k(k − 1)/2, in the fully �2
case, we only obtain an error bound of O((log(dk)/(dk2))1/2) along these lines.
Theorem 4.3, on the other hand, leads to the bound

O

((
log(dk)

dk

) 1
2
)

and hence reduces the impact of k from linear to just square root.
As we have already remarked after Lemma 5.1, a similar effect occurs in the fully

�1 case. Hence, in the following, we give improved approximations by utilizing the
specific structural properties of clustering bodies. We concentrate on the case of Bp

for p ∈ [1,∞] and begin with p = ∞.

Theorem 5.3 Let λ,μ > 0, and let S be a polytope with m vertices such that λS ⊂
B

∗ ⊂ μS. Then there is a polytope Q with mr vertices such that

λQ ⊂ C◦∞ ⊂ μQ.

Proof By Theorem 3.2 we have

C◦∞ = conv

(
k−1⋃
i=1

k⋃
j=i+1

D
∗
i,j

)
,

where

D
∗
i,j = {

y = (
yT

1 , . . . , yT
k

)T ∈ R
dk : yi, yj ∈ B

∗ ∧ (yi + yj = 0) ∧ yr = 0 (r �= i, j)
}
.

So, let s1, . . . , sm denote the vertices of S and set

Ti,j = conv
{
y = (

yT
1 , . . . , yT

k

)T ∈ R
dk :

yi ∈ {s1, . . . , sm} ∧ (yi + yj = 0) ∧ yr = 0 (r �= i, j)
}

and

Q = conv

(
k−1⋃
i=1

k⋃
j=i+1

Ti,j

)
.

Then, of course, λTi,j ⊂ D
∗
i,j ⊂ μTi,j , and hence,

λQ ⊂ C◦∞ ⊂ μQ.

Clearly, Q is a polytope with mr vertices. �

In the special case of B = B
d
p , we then obtain from [6] that C∞,p can be approxi-

mated by a polytope with polynomially many facets up to an error

O

(
1√
d

)
(p = 1), O

(
(log(d))1/q

√
d

)
(1 < p < 2),
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O

((
log(d)

d

) 1
p

)
(p ≥ 2).

The next theorem gives an inequality that will lead to a close approximation of Cp

once a close approximation of B is given.
We will make free use of a standard inequality between different �p norms of

vectors z ∈ R
n. More precisely,

‖z‖(q) ≤ ‖z‖(p) ≤ n
1
p

− 1
q ‖z‖(q)

for 1 ≤ p ≤ q ≤ ∞ (with the understanding again that 1/∞ = 0).

Theorem 5.4 Let x = (xT
1 , . . . , xT

k )T ∈ L and p ∈ [1,∞[. Then

k

2

(
k

k − 1

)p−1 k∑
i=1

‖xi‖p ≤
k−1∑
i=1

k∑
j=i+1

‖xi − xj‖p ≤ 2p−1(k − 1)

k∑
i=1

‖xi‖p.

Proof We have

kp
k∑

i=1

‖xi‖p =
k∑

i=1

‖kxi‖p =
k∑

i=1

‖(k − 1)xi + xi‖p

=
k∑

i=1

∥∥∥∥∥(k − 1)xi −
k∑

j=1
j �=i

xj

∥∥∥∥∥
p

=
k∑

i=1

∥∥∥∥∥
k∑

j=1
j �=i

(xi − xj )

∥∥∥∥∥
p

≤
k∑

i=1

(
k∑

j=1
j �=i

‖xi − xj‖
)p

.

Now, with τi,j = ‖xi − xj‖ and ti = (τi,1, . . . , τi,i−1, τi,i+1, . . . , τi,k)
T ∈ R

k−1, we
obtain from the standard inequalities between �1 and �p norms that, for all i =
1, . . . , k,

k∑
j=1
j �=i

‖xi − xj‖ = ‖ti‖(1) ≤ (k − 1)
1− 1

p ‖ti‖(p).

Also, for si,j = (‖xi‖,‖xj‖)T ,

‖si,j‖(1) ≤ 21− 1
p ‖si,j‖(p).

With the aid of these two inequalities, we can continue with
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kp
k∑

i=1

‖xi‖p ≤ (k − 1)p−1
k∑

i=1

k∑
j=1
j �=i

‖xi − xj‖p ≤ (k − 1)p−1
k∑

i=1

k∑
j=1
j �=i

(‖xi‖ + ‖xj‖
)p

≤ (
2(k − 1)

)p−1
k∑

i=1

k∑
j=1
j �=i

(‖xi‖p + ‖xj‖p
) = (

2(k − 1)
)p

k∑
i=1

‖xi‖p.

Hence, we have

k

(
k

k − 1

)p−1 k∑
i=1

‖xi‖p ≤
k∑

i=1

k∑
j=1
j �=i

‖xi − xj‖p ≤ 2p(k − 1)

k∑
i=1

‖xi‖p,

which implies the assertion. �

We can use Theorem 5.4 now to relate Bp to a convex body in the same space R
dk

rather than to Kp in R
dr . In fact, let

Np = {
x = (

xT
1 , . . . , xT

k

)T : ∥∥(‖x1‖, . . . ,‖xk‖
)T ∥∥

(p)
≤ 1

}
.

Note that Np has the same structural properties as Kp; see Sect. 2.
In terms of approximations we obtain the following result.

Theorem 5.5 Let λ,μ > 0, let S be a polytope with m facets such that λS ⊂ Np ⊂
μS, and set

Q = 1

k

(
k − 1

2

)1/q

(S ∩ L).

Then (as a polytope in L) Q has at most m facets, and

λ

(
k

k − 1

)
Q ⊂ Bp ⊂ μ2Q.

Proof The nontrivial part of the assertion follows directly from Theorem 5.4. �

Since the case p = 1 in Theorem 5.4 is of special relevance, we state the following
corollary explicitly.

Corollary 5.6

1

k − 1

(
B

dk
(1) ∩ L

) ⊂ B1,1 ⊂ 2

k

(
B

dk
(1) ∩ L

)
.

Proof The assertion follows by applying Theorem 5.4 to N1,1. �

As a special case, we see that the dual of the standard permutahedron Pk can be
approximated by a polytope with at most 2k facets up to an error of less than 2.
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Of course, now we can again use the results of [7] to approximate Bp,p by a
polytope with polynomially many facets up to an error

O

(
1√
dk

)
(p = 1), O

(
(log(dk))1/q

√
dk

)
(1 < p < 2),

O

((
log(dk)

dk

) 1
p

)
(p ≥ 2).

As an example for the reductions we obtain, let us point out that for k = 13, P ◦
k

has 6,227,020,800 facets. Its �1-ball approximation has an error less than 2 and only
8,192 facets, while the final approximation error of at most 2

√
k ≈ 7.21 needs only 28

facets. Consequently, we obtain a provably good approximation for the optimum of
the corresponding convex optimization problem over an arbitrary polytope by solving
only 28 linear programs. (Naturally, for all practical purposes of the consolidation of
farmland, the approximation error is much smaller than the given worst-case bound.)
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