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Abstract Recent results have confirmed that the global rigidity of bar-and-joint
frameworks on a graph G is a generic property in Euclidean spaces of all dimensions.
Although it is not known if there is a deterministic algorithm that runs in polynomial
time and space, to decide if a graph is generically globally rigid, there is an algorithm
(Gortler et al. in Characterizing generic global rigidity, arXiv:0710.0907v1, 2007)
running in polynomial time and space that will decide with no false positives and
only has false negatives with low probability. When there is a framework that is in-
finitesimally rigid with a stress matrix of maximal rank, we describe it as a certificate
which guarantees that the graph is generically globally rigid, although this frame-
work, itself, may not be globally rigid. We present a set of examples which clarify a
number of aspects of global rigidity.

There is a technique which transfers rigidity to one dimension higher: coning.
Here we confirm that the cone on a graph is generically globally rigid in R

d+1 if and
only if the graph is generically globally rigid in R

d . As a corollary, we see that a
graph is generically globally rigid in the d-dimensional sphere S

d if and only if it is
generically globally rigid in R

d .

Keywords Infinitesimal rigidity · Global rigidity · Self-stress · Coning · Projective
geometry · Spherical geometry
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1 Introduction

Over the last 20 years, there has been a continuing development of methods and
results in Global Rigidity [6, 7, 10, 12, 13]. Early work of Hendrickson provided clear
necessary conditions for generic frameworks [12]: when the graph is not a simplex,
it must be generically redundantly rigid (having a self-stress in each member) and
(d + 1)-vertex connected, in dimension d . The work of Connelly provided methods
related to global minima of energy functions as well as some initial analysis of an
example in [6].

Recent work has focused on specific techniques for global rigidity of generic
frameworks. Connelly’s work with stress matrices provided a sufficient condition for
global rigidity of generic frameworks [7]. The paper also showed that the inductive
technique of edge splitting preserves generic global rigidity in all dimensions. This in
turn became a crucial technique in the work of Berg and Jordán [3] and Jackson and
Jordán [13], which provided a proof that the necessary conditions of Hendrickson
were also sufficient, in the plane. Later, they also provided an independent proof for
this inductive technique, in the plane. As a final piece of the puzzle, Gortler, Healy,
and Thurston [10] showed that, for generic configurations, Connelly’s sufficient con-
dition was also necessary, in all dimensions. As a corollary, if a framework is globally
rigid for a generic configuration, then all generic configurations correspond to glob-
ally rigid frameworks. This property is combinatorial.

Knowing that generic global rigidity is combinatorial has increased the interest in
global rigidity in general, and in finding additional combinatorial techniques for gen-
erating globally rigid frameworks [4, 8, 14, 15]. Some of these papers provide some
additional sufficient conditions in various dimensions that cover classes of frame-
works which are studied in some applications. Among the current applications of
global rigidity are location of sensors within a network [1, 9] and general issues of
uniqueness of constraints within CAD and computational geometry. At a recent work-
shop in Banff, there was a proposal that in the study of molecular rigidity and flexibil-
ity, global rigidity was the mathematical concept matching the stability of molecular
structures, while infinitesimal rigidity matches fluctuation within a structure. These
connections raise the overall interest in the study of global rigidity.

Given the difficulties of characterizing graphs which are generically infinitesi-
mally rigid as bar-and-joint frameworks in 3-space [11, 19, 22], it is not a surprise
that we have encountered difficulties with characterizing graphs which are generi-
cally globally rigid as bar-and-joint results in d-space. These difficulties are further
emphasized by Connelly’s proof [6] that the complete bipartite graph K5,5 is not
generically globally rigid in 3-space, although it satisfies the two necessary condi-
tions of Hendrickson [7].

With these difficulties in giving overall characterizations of graphs which are
generically globally rigid, there is added interest in new techniques which gener-
ate generically globally rigid graphs in higher dimensions. In Sect. 3 we show that
particular properties of a specific framework G(p) provide a certificate that the
graph is generically globally rigid. Using this certificate, we use an algorithm, de-
scribed in [10], which can demonstrate that a specific graph is generically globally
rigid (Sect. 2). This is applied to a set of examples which demonstrate some key con-
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Fig. 1 Coning takes a
framework in d-space to a
framework in (d + 1)-space,
transferring redundant rigidity
and taking (d + 1)-connectivity
to (d + 2)-connectivity

nections among global rigidity, the rank of the stress matrix, infinitesimal rigidity,
and affine transformations in Sects. 3 and 8.

Coning (Fig. 1) is one process which is well studied for both geometric and generic
rigidity [20]. This result is connected to the projective invariance of infinitesimal
rigidity. In Sect. 5 we show directly that a graph is generically globally rigid in R

d if
and only if the cone is generically globally rigid in R

d+1. This proof is also connected
to the invariance of the rank of the stress matrix (though not of global rigidity itself)
under projective transformations (Sect. 4).

In Sect. 6 we convert this result on cones into a geometrically equivalent result for
frameworks on the d-sphere S

d . This shows that a graph G is generically globally
rigid in R

d if and only if G is generically globally rigid in S
d .

In Sect. 7 we outline another method that shows the equivalence of generic global
rigidity in S

d , R
d , and H

d , hyperbolic space, using a formula of Pogorelov in [16].
In Sect. 8 we present some additional examples, which further clarify the connec-

tions among the techniques and concepts in the paper. We also show that another set
of properties of a specific framework G(p) guarantees that there is an open neigh-
borhood of p with all frameworks globally rigid and that the graph G is generically
globally rigid. In Sect. 9 we present some further conjectures and problems for future
work.

Given the overall difficulty with characterizing generic global rigidity of bar-and-
joint frameworks in dimensions greater than two, there is a general interest in the spe-
cial class of frameworks which have good combinatorial characterizations for generic
rigidity: the body-bar frameworks. In a separate paper with Tibor Jordán, we present
a new result characterizing generic body-bar frameworks in all dimensions, by the
simple necessary condition of generic redundant rigidity [8].

2 Prior Results

We recall the basic vocabulary and definitions from the literature [6, 7, 11, 22, 23].
A bar-and-joint framework in R

d is a graph G and a configuration p which assigns
a point pi in Rd to each vertex i of the graph. For each edge {i, j} ∈ E, pi �= pj .

Given a framework G(p) in R
d , an infinitesimal motion p′ is a solution to the

system of linear equations (pi − pj ) · (p′
i − p′

j ) = 0. This system of equations is

brought together as RG(p)(p′)T = 0, with the |E| × d|V | rigidity matrix RG(p). An
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infinitesimal motion is trivial if it is the derivative of an analytic path of congruences,
and nontrivial otherwise. A framework G(p) is infinitesimally rigid if all infinitesimal
motions are trivial, and infinitesimally flexible otherwise.

A framework G(p) is globally rigid in R
d if all frameworks G(q) in R

d which are
G(p)-equivalent (have all bars the same length as G(p)) are congruent to G(p).

A configuration is generic if the coordinates do not satisfy any nonzero polynomial
equation with integer coefficients (or equivalently algebraic coefficients). It is impor-
tant to realize that the generic configurations are not an open set of configurations in
R

d|V |, but they do form a dense set of full measure.
Hendrickson [12] proved two key necessary conditions for global rigidity of a

framework at a generic configuration.

Theorem 1 (Hendrickson [12]) If a framework G(p), other than a simplex, is glob-
ally rigid for a generic configuration p in R

d , then:

• The graph G is vertex (d + 1)-connected.
• The framework G(p) is redundantly rigid, in the sense that removing any one edge

leaves a graph which is infinitesimally rigid.

A graph G is generically globally rigid in R
d if G(p) is globally rigid at all generic

configurations p [6, 7]. It is now known that global rigidity is a generic property in this
sense for graphs in each dimension [7, 10]. The critical technique used for proving
global rigidity of frameworks uses stress matrices. This technique is at the core of
the proof that global rigidity is a generic property, as well as some specific inductive
techniques (below).

Clearly, the conditions of Theorem 1 are necessary for generic global rigidity.
They are also sufficient on the line and in the plane [13]. However, by a result of
Connelly [6], K5,5 in 3-space is generically redundantly rigid and 5-connected, but
is not generically globally rigid. See Example 3.1.

This stress matrix approach was started in [5] and builds on the fact that any glob-
ally rigid framework, except for a simplex, is dependent with a self-stress ω. Recall
that a self-stress is an assignment of scalars ωij to the edges such that for each i ∈ V ,

∑

{ij∈E}
ωij (pi − pj ) = 0. (1)

This can also be seen as a linear dependence of the rows of the rigidity matrix [22].
Given a stress, there is an associated |V | × |V | symmetric matrix Ω , the stress

matrix such that for i �= j , the i, j entry of Ω is −ωi,j , and the diagonal entries for
i, i are

∑
j �=i ωi,j . Note that all row and column sums are now zero, and Connelly

has developed a number of properties of these stress matrices [6, 7].
The key connection for global rigidity is the following pair of results:

Theorem 2 (Connelly [7]) If p is a generic configuration in R
d such that there is an

equilibrium stress where the rank of the associated stress matrix Ω is |V | − d − 1,
then G(p) is globally rigid in R

d .
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Theorem 3 (Gortler, Healy, and Thurston [10]) Suppose that p is a generic config-
uration in R

d such that G(p) is globally rigid in R
d . Then either G(p) is a simplex

or there is an equilibrium stress where the rank of the associated stress matrix Ω is
|V | − d − 1.

These results and their corollaries provide us with the basic tools for the analysis
which follows.

3 Computing Global Rigidity

The results of Sect. 2 are stated for configurations p that are generic. Although the no-
tion of being generic means that there is a (countably) infinite number of constraints
to avoid, it turns out that there only is a finite number of polynomial conditions on
the coordinates of p that must be avoided for G(p) to be globally rigid. But for in-
finitesimal rigidity, a description of what these conditions are turns out to be difficult
and particularly for global rigidity, a description of what these conditions are turns
out to be almost impossible to determine in a useful way. Implicitly in [7] and more
explicitly in [10], the following results can be used to determine generic rigidity and
generic global rigidity.

Recall that a function f : R
d → R is lower semi-continuous at p ∈ R

d if, for every
ε > 0, there is a δ > 0 such that, for all |q − p| < δ, f (q) ≥ f (p)− ε. Loosely speak-
ing, lower semi-continuity means that the function f can jump up, but not down, near
a given point p. The following is an easy consequence of the basic properties of the
rank of a matrix.

Lemma 4 The rank of a finite matrix is lower semi-continuous in its coordinates.

We can now use nongeneric configurations to determine rigidity and global rigidity
at generic configurations.

Theorem 5 If p is a configuration in R
d such that G(p) is infinitesimally rigid and

if there is an equilibrium stress where the rank of the associated stress matrix Ω is
|V | − d − 1, then G is generically globally rigid in R

d .

Proof Infinitesimal rigidity of a framework is determined when the rank of the rigid-
ity matrix R(p) is maximal for configurations p in R

d . By Lemma 4, for any configu-
ration q sufficiently close to p, G(q) will also be infinitesimally rigid in R

d . In other
words, the rank of R(q) remains constant in a neighborhood U of p. So a basis for
the stresses ω for R(q) can be written so that the coordinates of each basis element
of ω are rational functions of q defined on U . Thus there is a stress for G(q) whose
stress matrix Ω ′ has its coefficients arbitrarily close to the stress matrix Ω for G(p),
which had rank |V | − d − 1. By Proposition 1.2 of [7], since the dimension of the
affine span of q is d , the rank of Ω ′ is at most |V | − d − 1. Again by Lemma 4,
for q, the rank of Ω ′ is |V | − d − 1 as well. We may choose q generic, and so by
Theorem 2, G(q) is globally rigid. By Corollary 1.14 in [10], G(q) is globally rigid
at all generic configurations q. �
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With this in mind we say that a configuration p with a stress ω for a graph G

is a certificate for generic global rigidity if the rank of the rigidity matrix R(p) is
d|V | − d(d + 1)/2 and the corresponding stress matrix Ω has rank |V | − d − 1.
So Theorem 5 says that if a graph has a certificate for generic global rigidity, it is
generically globally rigid. Bear in mind, though, that if p and ω form a certificate for
generic global rigidity for the graph G, G(p) itself may not be globally rigid. See the
examples of Sect. 8.

The problem remains to find a combinatorial, or at least a discrete, calculation to
determine generic rigidity and generic global rigidity. The following result and the
resulting algorithm is one case of a result in [10], where it is shown not just for the
field Zp but also for the integers Z.

Corollary 6 (Gortler–Healy–Thurston [10]) Let a real prime number p be given. If p
is a configuration in Z

n
p such that G(p) is infinitesimally rigid (i.e., the rigidity matrix

has rank |V |d − (
d+1

2

)
for |V | ≥ d + 2) and if there is an equilibrium stress where

the stress matrix Ω (mod p) has rank |V | − d − 1, then G is generically globally
rigid in R

d .

Proof Let p̃ be a configuration with integer entries, where each coordinate is con-
gruent to the corresponding entry of p (mod p). The rank of the rigidity matrix R(p̃)

is also maximal, since a [dn − d(d + 1)/2]-dimensional sub-determinant is nonzero
(mod p) and thus it is nonzero in R. Consider the rational stresses for the framework
G(p̃). They are solutions to a system of linear equations with integer coefficients,
and the rank of this linear system is the same as the rank of the corresponding linear
system in the field Zp , since the rank is again determined by a sub-determinant. If
some appropriate subset of the stresses is fixed, then there is a unique solution for the
remaining stresses (mod p). By multiplying all the stresses by an appropriate integer,
which is nonzero (mod p), we get an integer solution for the stresses, and up to the
nonzero (mod p) scaling factor, this integer solution Ω̃ yields the same stress matrix
(mod p) as Ω , since both solutions are given by Cramer’s Rule, for example. Thus
the rank of Ω̃ is |V | − d − 1, the same as the rank of Ω . Finally, G(p̃) satisfies the
conditions of Theorem 2, and p̃ and the integral stress ω̃ are a certificate for G being
generically globally rigid in R

d . �

This leads to the following algorithm to determine generic global rigidity in R
d

for an abstract graph G.

1. Choose a prime number p. (This should be such that pd is sufficiently larger than
|V |.)

2. Choose a random integer configuration p (mod p) in Z
n
p .

3. Solve the equilibrium equations (mod p) for the linear system of stresses for G(p)

(mod p). If the dimension of this system is not [|E| − d|V | − d(d + 1)/2 ≥ 1]-
dimensional, where |E| is the number of edges of G, either, go back to 1. or
declare that G is probably not even redundantly rigid.

4. Choose a random stress matrix Ω (mod p) from the system of stresses for G(p). If
the rank of Ω = |V | − d − 1, stop and declare that G is generically globally rigid
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in R
d . If not, then either go back to 2. or declare that G is probably not generically

globally rigid in R
d .

The following are some examples, where this algorithm has been applied:

Example 3.1 The complete bipartite graph K5,5 in R
3: The rank of Ω turns out to

be 2, which suggests that K5,5 is not globally rigid in R
3 even though it is redundantly

rigid and vertex 4-connected. Indeed, an application of the results in [2] shows that
this is the case for a generic configuration. So by Theorem 3, K5,5 is not globally
rigid in R

3. In [6], Theorem 3 was not available, and another method was used to
show that K5,5 is not generically globally rigid R

3.

Example 3.2 The complete bipartite graph K5,5 in R
3 with an edge removed and

replaced by an edge between two vertices in one of the partitions: The rank of Ω

turns out to be 6 = 10 − 3 − 1 = |V | − d − 1, and the graph is infinitesimally rigid.
Thus this graph is generically globally rigid in R

3.

Example 3.3 K5,5 in R
3 with one edge split: This subdivides an edge, adding a new

vertex and connecting it to two other vertices. |V | = 11, and the rank of the stress
matrix is 7 = 11 − 3 − 1. Thus this graph is generically globally rigid in R

3.

Example 3.4 The cone K5,5 ∗ {v} in R
4. Here it seems that the rank of the stress

matrix remains 2, and thus it appears that {v} ∗ K5,5 in R
4 is not generically globally

rigid, although it is infinitesimally rigid. Indeed, it is not generically globally rigid,
and this is described in Sect. 5.

4 Projective Transformations

One of the fundamental operations on the configuration of a framework, which pre-
serves its infinitesimal rigidity, is a projective transformation. Here we show that a
projective transformation also preserves the rank of a stress matrix that is associated
to configuration p in R

d . In the process, we will set up the tools that we will need in
the next section to study the effects of coning.

For any configuration p in R
d , define the d-by-|V | configuration matrix P =

[p1, . . . ,p|V |], where each pi is regarded as a column vector. Similarly define the
(d + 1)-by-|V | augmented configuration matrix P̂ = [p̂1, . . . , p̂|V |], where each p̂i

is pi with an additional bottom entry 1. It is easy to show (see [7]) that the equilib-
rium condition (1) holds for the stress associated to a stress matrix Ω if and only if
P̂Ω = 0.

With this terminology, we see that a configuration with corresponding augmented
configuration matrix Q̂ is projectively equivalent to the configuration corresponding
to the augmented configuration matrix P̂ if and only if there is a (d + 1)-by-(d + 1)

matrix A such that AP̂ = Q, where the columns of P̂ and Q correspond to the con-
figurations in homogeneous coordinates. The bottom row of Q may not be all 1’s, so
Q may not be an augmented configuration matrix. So let λ1, . . . , λ|V | be the bottom
row of Q. We assume that none of these λi are zero. (Any 0 entry corresponds to
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a vertex at infinity.) Let D be the |V |-by-|V | diagonal matrix with diagonal entries
λ1, . . . , λ|V |. Then QD−1 = Q̂ is an augmented configuration matrix correspond-
ing to a configuration that is the projective image of the configuration corresponding
to P̂ . Thus we get the following:

Proposition 7 Suppose that the configuration q is a projective image of the config-
uration p in R

d and that Ω is a stress matrix corresponding to a stress for p. Then
DΩD is a stress matrix for the configuration q, for an appropriate invertible diago-
nal matrix D.

Proof Following the discussion above, since P̂Ω = 0,

Q̂DΩD = AP̂D−1DΩD = AP̂ΩD = 0. �

From this result and from the classical results for infinitesimal rigidity, we have
a key, but subtle, invariance. By this result, the rank of the stress matrix is invariant
under projective transformation, as is the rank of the rigidity matrix. So if G(p),ω is a
certificate for generic global rigidity, then so is G(p̂), ω̂. However, the global rigidity
of a specific configuration is not an invariant even under affine transformations. See
Example 8.3 for further refinements of this invariance.

5 Coning

Coning is well recognized as a method for preserving infinitesimal rigidity and
generic rigidity, between dimensions [20]. Recall that coning a graph G adds a new
vertex v, and adds edges from v to all the original vertices in G, creating the cone
graph G ∗ {v}. Given a configuration p∗ for the cone graph in R

d+1 such that the
cone vertex u is distinct from the vertices of G and such that the line through u and
pi intersects a hyperplane H ∼= R

d , then pH is the projection of p∗ from the cone
vertex u into H (Fig. 2). We call p∗,pH a projection pair of configurations.

The following basic result confirmed a piece of the engineering folklore in rigidity
theory which was passed into our mathematical community by the geometer and
engineer Janos Baracs.

Fig. 2 Moving vertices radially
in and out on the cone does not
change infinitesimal rigidity or
global rigidity
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Theorem 8 (Infinitesimal Rigidity Coning [20]) Given a graph G, a cone graph G ∗
{v}, and a projection pair of configurations p∗,pH , then G∗{v}(p∗) is infinitesimally
rigid (resp. independent) in R

d+1 if and only if G(pH ) is infinitesimally rigid (resp.
independent) in R

d .

We now prove the following, which is the main result about coning.

Theorem 9 Given a graph G, a cone graph G ∗ {v}, and a projection pair of con-
figurations, then the maximum rank of a stress matrix of G(pH ) in H is equal to
|V | − d − 1 if and only if the maximum rank of the stress matrix of G ∗ {v}(p∗) in
R

d+1 is also |V | − d − 1, where |V | is the number of vertices of G, and d is the
dimension of the affine span of the vertices V .

Proof Without loss of generality we assume that pH is a configuration in R
d = H ,

that the cone point u is in R
d+1 − R

d , and that the affine span is R
d+1. Using the

notation of Sect. 4, let P̂H be the augmented configuration matrix for pH , and sup-
pose that Ω is a stress matrix for a stress for pH . Then P̂H Ω = 0. Transform the
configuration for p in R

d+1 so that the cone point u goes to the point [1,0, . . . ,0], a
point at infinity in homogeneous coordinates (with (d + 2) coordinates) as in Sect. 4.

Let γ be the 1-by-|V | row vector whose coordinates are the coordinates of the
vectors pi of p in the extra homogeneous coordinate, and let O be the 1-by-d column
vector of zeros. Then, in this homogeneous form, the configuration matrix Q that
includes the extra point at infinity is

Q =
[

γ 1
P̂H O

]
, (2)

where the last column of Q corresponds to the image of the cone point u. So Q =
AP̂ , and P̂ Ω̃ = 0, where Ω̃ is a stress matrix for the configuration p, and A is a
nonsingular (d + 2)-by-(d + 2) matrix.

It is clear from (2) that the rank(Q) = rank(P̂H ) + 1. If rank(P̂H ) = d + 1, then
the rows of P̂H are a basis for the kernel of Ω , and rank(Ω) = |V | − (d + 1), the
maximum possible. Similarly, if rank(Q) = d + 2, then the rows of Q are a basis for
the kernel of Ω̃ , and rank(Ω̃) = |V | + 1 − (d + 2) = |V | − (d + 1), the maximum
possible. So if either the rank of Ω or Ω̃ is |V | − (d + 1), we can choose P̂H or Q to
have maximal rank, and both Ω and Ω̃ will have rank |V | − (d + 1). �

This confirms the following result which was conjectured in [4].

Corollary 10 (Global Rigidity Coning) A graph G is generically globally rigid in
R

d if and only if the cone graph G ∗ {v} is generically globally rigid in R
d+1.

Proof Choose a configuration p∗ for G ∗ {v} that is generic in R
d+1 and G ∗ {v}(p∗)

is infinitesimally rigid, either in R
d+1, such that its projection G(pH ) in R

d is in-
finitesimally rigid in R

d . Theorem 8 implies that they are both infinitesimally rigid.
Then apply Theorem 9 and Theorem 5. �
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Fig. 3 Different frameworks on the sphere can share the same lines from the center, the same projection,
and have the same global rigidity

6 Global Rigidity on the Sphere

For this section, we assume that the cone vertex is the origin 0 and that the other
points are distinct, with no edge on a line through the origin. There is a connection
between the behavior of cone frameworks G ∗ {v}(p∗) in R

d+1 and the behavior
of the associated framework G(ps) on the sphere where all vertices of p have been
projected from 0 onto the unit sphere S

d centered at u. (Geometrically, we extend the
line 0pi and intersect this with the sphere (Fig. 3).)

We already know that this projection from R
d+1 to the sphere S

d takes infinites-
imally rigid frameworks to infinitesimally rigid frameworks on the sphere [17, 20].
We now show that this projection to the sphere also takes globally rigid frameworks
to globally rigid frameworks.

Of course, such configurations on the sphere are not generic, as frameworks in
R

d+1, and we will give a geometric argument for the key equivalence. That is, if any
cone with the cone vertex at 0 is globally rigid, then the cone with all cone lengths of
size one is globally rigid (and vice versa) (see below).

Proposition 11 A cone framework with cone vertex at the origin G∗ {v}(p∗) is glob-
ally rigid in R

d+1 if and only if the spherical framework G(pS) is globally rigid in S
d .

Proof We note that any congruence of the d-sphere is also a restriction of a unique
congruence of R

d+1, which fixes the origin (the center of the sphere). Conversely, any
congruence of R

d+1 which fixes the origin (the center of the sphere) is automatically
a congruence of the sphere, when restricted to points on the sphere.

Assume that G∗{v}(p∗) is not globally rigid, with a second noncongruent realiza-
tion G ∗ {v}(q∗), with the same cone vertex. Then qs and ps are also noncongruent,
and the radial bars 0pi , 0pj , and 0qi , 0qj have equal lengths. The third sides of the
triangle pipj , qiqj also have equal length bars (ps)i(ps)j , (qs)i(qs)j . This then gen-
erates equal lengths for any bar on the sphere. We conclude that G(ps) and G(qs)

are bar-equivalent and are not congruent. Therefore G(ps) is not globally rigid on the
sphere.

Conversely, assume that G(ps) is not globally rigid on the d-sphere, with a non-
congruent bar-equivalent G(qs). Moving vertices along rays to G ∗ {v}(p∗) specifies
new distances to the cone point (center of the sphere) that are also bar-equivalent to
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G ∗ {v}(q∗). Any congruence of p∗ and q∗ will give a corresponding congruence of
ps and qs . We conclude that G ∗ {v}(p∗) is not globally rigid. �

From this geometric result, we have a generic result. We have the technical diffi-
culty that if any two points (or any one point on the unit sphere) of any configuration
lie on any sphere through the origin, the configuration is not generic. This is inconve-
nient. So we say that any configuration in S

d that is the central projection of a generic
configuration in R

d+1 is quasi-generic in S
d .

From Proposition 11, we also note that if a configuration p is generic in R
d+1, then

ps is quasi-generic on the d-sphere. The converse is not quite true, but if ps is quasi-
generic on the d-sphere, then some of the cones over p are generic. In particular,
without any additional work, we know that global rigidity in S

d is also a quasi-generic
property.

Combining this with Corollary 10, we have the desired transfer between Euclidean
space and spherical space of the same dimension.

Theorem 12 (Spherical Transfer of Generic Global Rigidity) A graph G is generi-
cally globally rigid in R

d if and only if G is quasi-generically globally rigid in the
sphere S

d .

7 The Pogorelov Map

Note that Examples 8.3 and 8.6 show that for nongeneric configurations, a frame-
work may be globally rigid in the plane, but not when lifted up to the sphere, and a
framework may be globally rigid on the sphere with the projection not globally rigid
in the plane. The generic form of this result is the best possible.

It is interesting to observe that Theorem 12 can be shown by methods of Pogorelov
[16], and these methods also show how to do a similar transfer to hyperbolic space.
The idea is that there is a function T̃ : S

|V |d
+ ×S

|V |d
+ → R

|V |d ×R
|V |d that takes a pair

of edge-equivalent configurations p,q in S
|V |d
+ , the half sphere, to a corresponding

pair of edge-equivalent configurations in R
|V |d such that G(p) is equivalent to G(q)

if and only if the corresponding image configurations are equivalent in R
|V |d . This

can be used to show Theorem 12, which we outline here.
Let n be the vector n = (0,1) in R

d × R
1 = R

d+1, the north pole of the sphere
S

d , and define S
d+ = {v ∈ S

d | 〈v,n〉 > 0}, where 〈·, ·〉 is the standard inner product in
R

d+1. Then define T : S
d+ × S

d+ → R
d by

T (p1,q1) = (p1 − 〈n,p1〉n)/〈n,p1 + q1〉 (3)

for (p1,q1) ∈ S
d+ × S

d+, where R
d = R

d × 0 ⊂ R
d+1. Then the map T̃ is defined by

T̃ (p,q) = (T1(p,q), T2(p,q)) = (T1(p,q), T1(q,p)), where

T1(p,q) = (T (p1,q1), . . . , T (p|V |,q|V |)), (4)

and T is defined by (3). For a single pair of vertices (p1,q1), T̃ is a central projec-
tion into a 2d-dimensional hyperplane orthogonal to (n,n), followed by projection
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parallel to (n,0) or (0,n) into R
d × R

d . It is a straightforward, but tedious, exer-
cise to verify that ‖T (pi ,qi ) − T (pj ,qj )‖ = ‖T (qi ,pi ) − T (qj ,pj )‖ if and only if
‖pi −pj‖ = ‖qi −qj‖, where ‖·‖2 = 〈·, ·〉. Thus, for any graph G and configurations
p,q in S

d+, G(p) is edge equivalent to G(q) if and only G(T1(p,q)) is edge equiva-
lent to G(T2(p,q)). It is also straightforward to verify that T̃ is a homeomorphism.
Namely it is one-to-one and onto.

Suppose that p is a generic configuration in R
d and G is not generically globally

rigid in R
d . By the results of [6] and [10], for an open neighborhood of U of p in

R
d|V |, there is an injection f : U → R

d|V | such that G(p) is edge-equivalent but not
congruent to G(f (p)) for all p ∈ U . Then by the remarks above, T̃ −1(p, (f (p)) ∈
S

d+ × S
d+ consists of two G edge-equivalent but not congruent configurations in S

d+.
It is also easy to verify that projection onto the first coordinate of T̃ −1({p, f (p)) |
p ∈ U}) is open in S

d+. This means that quasi-generic configurations in S
d+ are not

globally rigid for the graph G.
Similarly, for any quasi-generic configuration p in S

d , by replacing some ver-
tices by their antipodes, we can assume that the configuration lies in S

d+. If it is not
globally rigid in S

d+, an argument similar to the one in [6] shows that there is a home-
omorphism from an open neighborhood U of p to another open subset of S

d|V | as
in the Euclidean case. We can then use the Pogorelov map T̃ in the opposite direc-
tion, to show that G is not generically globally rigid in R

d , finishing this proof of
Theorem 12.

It is also possible to use this idea to prove that a graph G is generically globally
rigid in R

d if and only if G is quasi-generically globally rigid in the hyperbolic space
H

d . Here one uses the same formulas (3) and (4), but the inner product 〈·, ·〉 is given
by the indefinite inner product where H

d = {v | 〈v,v〉 = −1} and ‖v − w‖2 = 〈v −
w,v − w〉 defines the distance between v and w in H

d .
This completes a circle of ideas, concerning cones, projections, and averaging as

in Sect. 8, which were used in [17] and [18] to understand Pogorelov’s map.

8 Examples and a Further Criterion

We present some examples that are illustrative or provide counterexamples to natural
conjectures one might be inclined to make. Figure 4 will be used for several examples.
Consider the cone over a cycle, as in Fig. 4. Let θi for i = 1, . . . , n be the directed
internal angle between successive edges adjacent to the cone point, indices modulo n.
The plane configuration is globally rigid if and only if, for all εi = ±1, i = 1, . . . , n,
such that

∑n
i εiθi = 0 (mod 2π), all the εi are equal.

Example 8.1 The cone on the rectangle in Fig. 4 is infinitesimally rigid in the plane,
and it has a stress matrix with rank 2 = 5 − 3. This is a certificate showing that the
underlying graph is generically globally rigid in the plane, but not in that configura-
tion.

Example 8.2 It is easy to see that the cone in Fig. 4 projects to a configuration in the
line. The configuration in the line is globally rigid in the line, but again the cone is
not globally rigid in the plane.
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Fig. 4 (a) This is a cone in the plane that is not globally rigid, although the projection is globally rigid on
the line. Here α = 60◦ , β = 120◦ , and the other two angles at the cone vertex are 90◦ . (b) This is a second
realization with the same edge lengths

Fig. 5 (a) The four horizontal vertices form a cycle in a line. The long edge in that cycle is shown as an arc,
so that the different bars will be visible. This is not globally rigid, though the graph is generically globally
rigid. (b) The five horizontal vertices form a cycle on the line, and its stress matrix has lower rank. The
framework is isostatic and globally rigid, and this guarantees that the graph is generically globally rigid

Example 8.3 Suppose that the configuration of the cone in Fig. 4 is perturbed slightly
in the plane, say to a generic configuration. That generic configuration will be glob-
ally rigid in the plane. However, by applying an affine shear that only stretches or
shrinks in the vertical direction it is possible to increase or decrease the angles α and
β together so that α +β = 180◦ again, and thus the cone returns to being not globally
rigid in the plane in the new, nongeneric configuration.

This shows that global rigidity, even starting at a generic configuration which is
not an affine invariant. By way of contrast, at a generic configuration, rigidity (and
equivalently infinitesimal rigidity) is an affine invariant, and more strongly, a projec-
tive invariant.

Example 8.4 One must be careful about how to apply Theorem 5. Just because a
given configuration is infinitesimally rigid and the graph is generically globally rigid,
it does not mean that there is necessarily a stress matrix of maximal rank. Nongeneric
configurations can sneak in unexpected ways. Figure 5a shows an example of an
infinitesimally rigid framework in the plane that is generically globally rigid with
a one-dimensional stress space, where the nonzero stress matrices are all of rank
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2 < 6 − (2 + 1) = |V | − (d + 1). This is because the members adjacent to the top
and bottom vertices all have 0 stress, and because the middle degree three vertices in
the line segment are adjacent to two collinear bars, and so the bar going to the top or
bottom vertex must have 0 stress. Since the other bars at the top and bottom vertices
are not collinear, their stresses must be 0 as well. So the rank of the stress matrix
Ω must be the same as the rank of the 4-by-4 submatrix corresponding to the four
vertices on the horizontal line. That rank is 2.

Example 8.5 The framework in Fig. 5b also has only the stress on the collinear
polygon—which gives a stress matrix of rank 3 < 7 − (2 + 1) = |V | − (d + 1). How-
ever, the framework is infinitesimally rigid and globally rigid. We will see below that
these properties are sufficient to prove that the graph is generically globally rigid.

Example 8.6 One might ask if there is a framework, G(p), where there is a generic
configuration with some stress matrix of not maximal rank. Such a simple example is
when G is the complete graph K5 in the plane. Generically K5 has a stress in three-
space. A generic configuration in three-space projects to a generic configuration in
the plane, and since the affine span of the K5 in three-space is three-dimensional, the
rank of the associated stress matrix will not be maximal for this stress. Of course, by
Theorem 3, there is another stress which has a stress matrix of maximal rank.

Example 8.7 It is possible to provide an example of a cone that is globally rigid in
the plane that projects to a cycle of four points in the line, which are not globally
rigid in the line. For example, permute the cyclic graph whose configuration is P =
[0,2,3,1] to [1,3,2,0] on the line. If the cone point is chosen generically, the cone
will not be globally rigid in the plane. Figure 6 shows this.

Example 8.8 The framework on K3,3 in Fig. 6b is globally rigid in this special con-
figuration, but it is not infinitesimally rigid when it has a stress. The graph is not

Fig. 6 (a) A cycle in the line that is not globally rigid in the line. But the cone over this graph is globally
rigid in the plane. The two thick edges are the same length and must connect q1 with q2 to complete the
alternate realization, and they do not meet. (b) K3,3 on an ellipse has one stress with tension on boundary
hexagon and compression on the three interior bars. In this configuration, the framework is globally rigid
in all dimensions
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generically globally rigid because it is generically isostatic and thus not redundantly
rigid.

As suggested by Example 8.5, there is one further connection to explore. Given
a framework G(p) which is infinitesimally rigid and globally rigid in R

d but does
not have a stress of rank |V | − (d + 1) (Example 8.8), do we know that the graph is
generically globally rigid in R

d? The following result answers this in a strong way.

Theorem 13 Given a framework G(p) which is globally rigid and infinitesimally
rigid in R

d , there is an open neighborhood Np such that for q ∈ Np. G(q) are all
globally rigid and infinitesimally rigid.

Proof If there are fewer than d vertices, the assumption of infinitesimal rigid guar-
antees that this is a complete graph, with joints affinely independent. The theorem is
clearly true for such complete graphs.

Assume that G(p) does not have an open neighborhood Np in which all frame-
works are globally rigid, |V | ≥ n. Then there is a convergent sequence G(pk) of
nonglobally rigid frameworks, converging to G(p).

For each of the frameworks in this sequence, take one of the other bar-equivalent
realizations: G(qk). We can select one vertex v0, and by translation, bring each G(qk)

to have qk
0 = p0. Then, by compactness, there is a convergent subsequence G(qm)

converging to G(q). G(q) must be bar-equivalent to the limit of the corresponding
G(pm), which means bar-equivalent to G(p).

If G(q) is not congruent to G(p), it contradicts the assumption that G(p) was
globally rigid. Therefore G(q) is congruent to G(p). If we apply this same congru-
ence to all the G(qm), we have two sequences G(rm) and G(pm), both converging to
G(p). Moreover, for each pair, G(rm) and G(pm) are bar-equivalent.

The general averaging technique shows that pm − rm is an infinitesimal motion of
the average framework: G(

pm+rm

2 ). Specifically, for each edge {i, j}:
(

pm
i + rm

i

2
− pm

j + rm
j

2

)
· [(pm

i − rm
i

) − (
pm

j − rm
j

)]

= 1

2

[(
pm

i − pm
j

) + (
rm
i − rm

j

)] · [(pm
i − pm

j

) − (
rm
i − rm

j

)]

= 1

2

[(
pm

i − pm
j

)2 − (
rm
i − rm

j

)2] = 0.

The conclusion that this is 0 follows because of the bar-equivalence of the two
frameworks.

Now, since G(p) is infinitesimally rigid, p affinely spans the space, as do the pm,
rm, and pm+rm

2 for sufficiently large m. If we repeat this calculation for pairs that are
not edges, then the fact that pm and rm are not congruent means that some distance is
being changed and that some pair has a nonzero strain (dot product) for this motion.
When pm and rm are not congruent, then pm −rm is a nontrivial infinitesimal motion.

This means that the rank of the rigidity matrix for each of the frameworks
G(

pm+rm

2 ) is lower than required for infinitesimal rigidity. Since both pm and rm
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converge to p, so does pm+rm

2 . We conclude that G(p) is the limit of frameworks
which are not infinitesimally rigid, and therefore is not infinitesimally rigid. This
contradiction completes the proof. �

Since every open neighborhood contains generic configurations, we have the
following corollary, which gives an additional certificate which guarantees generic
global rigidity.

Corollary 14 If G(p) is globally rigid and infinitesimally rigid in R
d , then G is

generically globally rigid in R
d .

We call any framework G(p) which provides this certificate (is infinitesimally
rigid and globally rigid) strongly rigid.

Corollary 15 If there is one strongly rigid framework G(p) in R
d , then the set of all

configurations q making G(q) strongly rigid is open and dense in R
d , and includes

all generic configurations.

Suppose that a graph G has no configuration p where G(p) is strongly rigid. In
this case, the set of globally rigid frameworks is thin—of co-dimension at least 1.
Provided that the graph is at least 2-connected, there will be some globally rigid
frameworks, for example, putting all the vertices in a line. However, none of these
globally rigid frameworks can be infinitesimally rigid. They must also have a stress,
by the original results of Hendrickson.

The concept of strongly rigid frameworks applies to spherical frameworks, as a
guarantee of an open dense subset, and of generic global rigidity, since it applies to
the cones to the origin.

The proof of Theorem 13 applies in all projective metrics, such as hyperbolic
geometry, since the averaging process works in all these metrics [18]. So the concept
of strong rigidity extends to these other metrics. We also know that infinitesimal
rigidity transfers for projectively equivalent configurations, and therefore generically,
to these other metrics [17].

From these results, examples, and observations for cones and spherical frame-
works, we have the following:

1. By Theorems 8 and 9, a cone framework G ∗ {v}(p∗) is a certificate for generic
global rigidity of G ∗ {v} in R

d+1 if and only if G(pH ) is a certificate for generic
global rigidity of G in R

d if and only if G(pS) is a certificate for generic global
rigidity of G in S

d . The concept and properties of a certificate for generic global
rigidity in S

d are well defined.
2. By Theorems 8 and 11, G ∗ {v}(p∗) is strongly rigid in R

d+1 if and only if G(pS)

is strongly rigid in S
d .

3. G ∗ {v}(p∗) may be globally rigid in R
d+1 (equivalently G(pS) is globally rigid

S
d ) even if G(pH ) is not globally rigid R

d (Example 8.2).
4. G(pH ) may be globally rigid R

d even if G ∗ {v}(p∗) is not globally rigid in R
d+1

(equivalently G(pS) is not globally rigid S
d ) (Example 8.7).
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For a general graph G, we have the following breakdown of possibilities at partic-
ular frameworks.

Case 8.1 For generic configurations p, there are three possibilities:

(a) G(p) is not infinitesimally rigid and thus not rigid and not globally rigid.
(b) The framework G(p) has a stress with rank of the stress matrix equal to

|V | − (d + 1). The framework G(p) is globally rigid in R
d , and all generic con-

figurations are globally rigid in R
d .

(c) All stress matrices have a rank |V | − (d + 2) or less. This framework is not
globally rigid in R

d , and no generic configuration makes G globally rigid in R
d .

Case 8.2 For nongeneric realizations p in R
d , there are many possibilities:

(a) The framework G(p) is a certificate for generic global rigidity (has a stress matrix
with rank |V | − (d + 1) and is infinitesimally rigid). In this case, the graph G is
generically globally rigid in R

d (Theorem 5).
(b) The framework G(p) is strongly rigid (is infinitesimally rigid and globally rigid).

The configuration has an open neighborhood of globally rigid frameworks, and
the graph G is generically globally rigid in R

d (Theorem 13 and Corollary 14).
(c) The framework G(p) is not infinitesimally rigid. We learn nothing about the

generic global rigidity of G, regardless of whether G(p) is globally rigid or
not, and regardless of whether G(p) has a stress with a stress matrix of rank
|V | − (d + 1) or not (Examples 8.1–8.8).

9 Other Conjectures

This analysis brings up a further question: Is there an easily calculated quantity that
will determine global rigidity of G(p) at the given configuration with probability
1? By way of contrast, for rigidity, such a quantity is infinitesimal rigidity, and the
calculation of the rank of the rigidity matrix for the given configuration. For global
rigidity, the examples show that even having infinitesimal rigidity and a stress with
stress matrix rank |V | − (d + 1) is not sufficient for that configuration, though it is
a certificate for generic global rigidity of the graph, as discussed in Sect. 4. More
generally, the Tarski–Seidenberg elimination theory shows that there must exist a
finite list of polynomial equations [7]—but this does not provide any constructive
process for identifying them.

Vertex-splitting is another general technique for extending generically rigid frame-
works to larger generically rigid frameworks, in each dimension [21, 22]. Recently,
Jordán and Szabadka [15] have proven that vertex splitting with both vertices of de-
gree ≥ 3 preserves global rigidity for all graphs in the plane. The following was
conjectured in [4].

Conjecture 16 (Global Rigidity and Vertex Splitting) If G is a generically globally
rigid graph in R

d , n ≥ 3, and G′ is generated from G by vertex-splitting for d-space,
so that each of the split vertices has valence at least d + 1, then G′ is generically
globally rigid in R

d .
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One difficulty with replicating the edge-splitting proof in [7] is to show that vertex-
splitting on a redundantly rigid graph generates a redundantly rigid graph. In partic-
ular, what is missing is that the edge joining the two split copies of the vertex is
redundant!

In the following, we go out on a limb.

Conjecture 17 In dimension 3, K5,5 is the only vertex 4-connected generically re-
dundantly rigid graph that is not generically globally rigid.

More generally, we conjecture that, for any dimension n ≥ 3, the set of redun-
dantly rigid, (d + 1)-connected graphs which are not generically globally rigid is
finite. Related to this is whether there is such a generically redundantly rigid, vertex
(d +1)-connected, but not generically globally rigid graph, that has a complete graph
Kd+1 as a subgraph. If such a graph exists, then there might be a way of building sev-
eral such examples.
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