
Discrete Comput Geom (2010) 43: 179–186
DOI 10.1007/s00454-009-9218-7

Generalized D-Forms Have No Spurious Creases
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Abstract A convex surface that is flat everywhere but on finitely many smooth
curves (or seams) and points is a seam form. We show that the only creases through
the flat components of a seam form are either between vertices or tangent to the
seams. As corollaries we resolve open problems about certain special seam forms:
the flat components of a D-form have no creases at all, and the flat component of a
pita-form has at most one crease, between the seam’s endpoints.

Keywords Convex bodies · Alexandrov’s theorem · Paper folding · Gluing

1 Introduction

Given any metric space S with the topology and local geometry required of the sur-
face of a convex three-dimensional body, there is exactly one convex body up to
isometry whose surface has the intrinsic geometry of S. This is the endpoint of a line
of research pursued in the middle of the last century by Alexandrov and Pogorelov
[1], and it implies a strong correspondence between the geometry of a convex body
and the intrinsic geometry of its surface. On the other hand, the exact nature of this
correspondence is not yet well understood—which properties in the surface geometry
imply what properties in the body geometry, and vice versa.
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For example, if S is a D-form, obtained by sewing together two smooth convex
shapes of the same perimeter, then even for this special case the most basic questions
are open. These forms were invented by an artist [8, 9] and introduced into the litera-
ture in [6]. The latter study poses three problems: (1) when is the D-form the convex
hull of a space curve, (2) when are the two pieces free of creases, and (3) how can one
compute the D-form numerically from the two shapes. A later treatment [3] suggests
an informal argument for Problem 1 (arguing that the D-form is always the convex
hull of its seam) and leaves Problems 2 and 3 open. The same book [3] introduces
also a related special case where S is obtained by sewing up a single smooth convex
shape along its boundary in one seam, calling these pita-forms and suggesting, based
on paper experiments, that pita-forms might never have creases.

We resolve Problems 1 and 2: both D-forms and pita-forms are always the convex
hull of their seams, and (excluding the seam) D-forms are always free of creases but
a pita-form may have one crease. Our results apply to a natural generalization of both
D-forms and pita-forms, the seam form, which roughly consists of intrinsically flat
pieces joined along finitely many seams. Because the original sources of the problem
are stated informally, we first introduce precise definitions of D-form, crease, etc.,
that we believe capture the intuitive picture. Then we show the following theorems:

Theorem 1 Every three-dimensional convex body is the convex hull of the nonflat
points on its surface.

Corollary 2 Every seam form is the convex hull of its seams and vertices.

Theorem 3 In a flat component of a seam form, every crease lies on a line segment
composed of creases, and each endpoint of such a segment is either a strict vertex or
a point of tangency to a seam.

Corollary 4 The flat components of a D-form are without creases; in the flat compo-
nent of a pita-form, the only crease(s), if any, make up the line segment between the
endpoints of the seam.

Intuitively the line segment between a pita-form’s endpoints in Corollary 4 should
be thought of as one “crease”; it is a consequence of our definitions, below, that this
segment may be arbitrarily subdivided into several segments we call creases.

Problem 3, to efficiently compute the three-dimensional shape of a D-form or seam
form from its two-dimensional intrinsic geometry, has now been largely resolved. To
make this problem well posed, one needs a finite representation of the input geome-
try, which is most naturally done by a piecewise-linear or polyhedral approximation.
With considerable effort, the problem of reconstructing a three-dimensional convex
polyhedron from its intrinsic geometry can be reduced to the solution of a high-
dimensional ordinary differential equation [2]. The numerical solution of this equa-
tion appears to be achievable efficiently in practice, and is provably achievable within
pseudopolynomial time [5].

We introduce terminology in Sect. 2, prove Theorem 1 and its Corollary 2 in
Sect. 3, and prove Theorem 3 and its Corollary 4 in Sect. 4. In Sect. 5, we describe
counterexamples that show the necessity of some of the hypotheses in our results.
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Fig. 1 A D-form, constructed
by sewing together two ellipses
(at left). The solid line is the
seam, and the dotted lines are
the false edges from projection
into the page

2 Background and Notation

For us a surface is a metric 2-manifold embedded in R
3. The surface is Ck if the man-

ifold and its embedding are Ck . The surface is piecewise-Ck if it can be decomposed
as a complex of vertices, Ck open edges, and Ck open regions.

A good surface is a piecewise-C2 surface. A good surface S therefore decomposes
into a union of C2 surfaces Si , called pieces, C2 edges γj , which we call semicreases,
and vertices. If S is itself C1 everywhere on a semicrease, we call it a proper semi-
crease; otherwise it is a crease. (This conservative definition of crease, where some
parts may be C1 but not C2, only broadens our characterization of creases in seam
forms.) Note that this definition is not intrinsic, because it relies on the decomposition
of S into C2 pieces; by describing a surface by a different decomposition it is pos-
sible to add proper semicreases or to subdivide creases. This reliance on a piecewise
C2 decomposition avoids irrelevant issues from real analysis.

A point on a surface is flat if it has a neighborhood isometric to a region in the
plane. A surface or part of a surface is called flat if all of its points are flat.

A surface S is convex if S ⊆ ∂X for some bounded convex body X in R
3. A normal

to a convex body X at a point x is a unit vector n with n · x = supx′∈X n · x′. The
relation between points on the boundary of X and their normals is traditionally called
the Gauss map, though it need not be a map—one point may have many normals. We
write G(x) for the normals at x, and G(U) for all the normals to any point in U ⊂ X.
Observe that G(x) is always a convex subset of the sphere.

A consequence of Gauss’ celebrated Theorema Egregium [4] is that a convex sur-
face U is flat just if G(U) has zero area. If G(x) has positive spherical area, then
we call x a strict vertex. The C2 condition prevents a strict vertex x from being on a
semicrease or piece, so for good surfaces, strict vertices are indeed vertices.

A seam form S is a good convex surface in which each piece Si is flat. It is simple
to verify that such a surface decomposes uniquely into maximal connected flat open
subcomplexes, which we call flat components, and some leftover semicreases and
vertices, the connected components of which we call seams.

A convex seam form is a seam form in which each flat component is isometric to a
convex plane region, and a convex smooth seam form is a convex seam form in which
these regions have smooth (C∞) boundary. A convex smooth seam form with one
flat component is called a pita form, and with two flat components is called a D-form.
See Figs. 1 and 3.

Given a convex body X and a point x ∈ X, we say that a line � traverses x if x ∈ �

and some open neighborhood of x on � is contained in X. An extreme point of X is a
point x ∈ X not traversed by any line.
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3 Convex Hull

In this section, we prove Theorem 1, that every three-dimensional convex body is the
convex hull of the nonflat points on its surface.

From convex geometry we have the following characterization of the minimal set
from which a convex body can be recovered as the convex hull: we need only the
extreme points.

Theorem 5 (Minkowski’s Theorem) Every convex body in R
n is the convex hull of

its extreme points.

The proof is a straightforward induction on the dimension of the body and can be
found as Corollary 1.4.5 in Schneider’s textbook [7].

It remains to describe the extreme points of a seam form. To do so, we begin with
the following proposition:

Proposition 6 If p is an extreme point of the convex body X, then for every open
neighborhood U of p in R

n, some hyperplane has p strictly on one side and all of
X \ U strictly on the other.

Proof This is Lemma 1.4.6 in [7]. For completeness we give the proof.
Because p is an extreme point, it cannot by definition be the convex combination

of any two other points in X. Therefore, it is not the convex combination a1x1 +· · ·+
akxk , with all ai > 0, of any k other points in X, because otherwise we would have
p = (1−ak)(

a1
1−ak

x1 +· · ·+ ak−1
1−ak

xk−1)+akxk , and certainly the convex combination
a1

1−ak
x1 + · · · + ak−1

1−ak
xk−1 is a point in X. In other words, p lies outside the convex

hull of X \ {p}, and consequently outside the convex hull Y of X \ U .
Now Y is itself a convex body, and p a point outside it. By the Separating Hyper-

plane Theorem, some hyperplane strictly separates them, and because X \ U ⊂ Y , it
strictly separates p and X \ U as required. �

Proposition 7 On the surface of a convex body, there are no flat extreme points.

Proof Suppose some extreme point p of a convex body X was flat, with a neighbor-
hood S ⊂ ∂X isometric to a plane region. Let U be an open neighborhood of p in X

with U ∩ ∂X ⊂ S. Let the hyperplane H guaranteed by Proposition 6 separate X into
convex bodies C and Y with p ∈ C, and let D = C ∩ ∂X. Because C ⊂ U , we have
D ⊂ S so that D is flat.

Now consider the normals to X along the portion D of its surface. Let d be the
distance from p to H , and let r be the maximum distance from the projection of p

onto H to any point in H ∩ X. Then any plane through p and making an angle at
most θ = tan−1(d/r) to H fails to intersect H ∩ X and therefore fails to intersect Y .
Therefore, the normals to these planes, covering a spherical area of 2π(1−cos θ) > 0,
all are normals to X somewhere on D. This gives G(D) a positive area, contradicting
that D ⊂ S is flat. �
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Theorem 1 is now immediate from Theorem 5 and Proposition 7, and Corollary 2
follows.

4 Creases

In this section, we prove Theorem 3, characterizing the possible creases of a seam
form.

Proposition 8 Let γ be a crease in a flat component of a seam form S. Then γ lies
on a line segment [p,q] between endpoints p and q that lie on seams, and the whole
segment is composed of creases and vertices.

Proof Let S1 and S2 be the open pieces bordered by γ in the decomposition of the
good surface S, and let x ∈ γ be a point at which S is not C1. Then S1 and S2 are C2

surfaces, so they have normals n1 and n2 at x, and because S is not C1 at x, these
normals are distinct. Therefore, G(x) contains at least two distinct vectors.

By Proposition 7, x must be traversed by some line �, so that � ∩ S = [p,q] for
some p and q . Necessarily � is perpendicular to all of G(x), so for each y ∈ [p,q] and
each normal n ∈ G(x), n ·y = n ·x = supx′∈X n ·x′ and n is a normal of y. Therefore,
each G(y) contains G(x), and so like G(x) has at least two distinct vectors.

The multiple normals in G(x) and hence in each G(y) determine a unique per-
pendicular line, so that no other line may traverse any point of [p,q]. In particular,
no line traverses p or q , so by Proposition 7, these points are not flat and must lie on
seams or vertices.

At the same time, because a C1 surface has only one normal at each point, no
point of [p,q] can be on a C2 piece or a semicrease. The whole segment is therefore
made up of creases and (nonstrict) vertices. Because a crease is defined from a cell-
complex decomposition, only one crease runs through a given point, so because γ

runs through x it must be one of the creases making up [p,q]. �

In order to analyze the Gauss map at seam and vertex points, we introduce some
additional notation. Let x ∈ S be incident to a 1- or 2-cell C, a (semi)crease or piece.
Then we define

GC(x) =
⋂

x∈Uopen

closure
(
G(C ∩ U)

)

as the Gauss map at x on C. For comparison, observe that

G(x) =
⋂

x∈Uopen

closure(G(U))

because the relation G is closed, and in particular GC(x) ⊆ G(x).

Proof of Theorem 3 Let γ be a crease in a flat component of a seam form S. By
Proposition 8, γ lies on a segment [p,q] composed of creases and vertices and whose
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endpoints lie on seams. It remains to prove that if an endpoint, say p, lies on a seam
and is not a strict vertex, then the seam is tangent to [p,q].

Let Gγ (p) be the great circular arc mn, and let the pieces of S bordering γ be S1

and S2. By continuity, GS1(p) � m and GS2(p) � n (possibly after exchanging the
names m,n), and because m 	= n the Gauss map at p on at least one of the cells C

surrounding p from S1 to S2 apart from γ must be a positive-length spherical curve
in order to complete the path from m to n. If p is not a strict vertex, then G(p) is a
convex spherical shape of zero area, so it is a great circular arc, and GC(p) ⊆ G(p)

is also a great circular arc. If C is a piece, then GC(p) is either a singleton or a curve
not lying on a great circle, because a great-circle Gauss map makes parallel rule lines
that cannot converge at p. Therefore, C is a semicrease. Because G(C) must be more
than a single point, C is a crease, and to make the Gauss map lie within the arc G(p),
C must be tangent to [p,q] as required. Finally, because p is the endpoint of the
intersection of the line pq with S, the crease C must not be a line segment, so by
Proposition 8, it is actually part of the seam and the proof is complete. �

Of course, in a convex plane region, no line segment in the interior is tangent to
the boundary, from which follows a corollary about convex seam forms.

Corollary 9 In a convex seam form, every crease in a flat component is on a line
segment between two strict vertices.

Finally, in a convex smooth seam form such as a pita-form or a D-form, the re-
quirement of smoothness sharply limits the possible configurations. By (local) con-
vexity, no vertex can be incident to three or more semicreases as part of its seam,
and a vertex through which a seam passes cannot be a strict vertex. Consequently, a
pita-form must have a single path for its seam and just two strict vertices located at
the seam’s endpoints, and a D-form must have a single cycle for its seam and no strict
vertices. Corollary 4 follows.

5 Counterexamples

We have required the flat components of a D-form to be convex. We could relax this
requirement, requiring instead only that the metric space resulting from joining the
two components be locally convex, and the Alexandrov–Pogorelov theorem would
still guarantee a unique convex embedding in three-dimensional space. Of course,
Corollary 2 would still guarantee that the resulting body would be the convex hull
of its seam, but it turns out that Corollary 4, whose conditions would no longer be
satisfied, really would fail in its conclusion: one can construct a “D-form” under this
relaxed definition which contains creases in its flat components. Indeed, it is not hard
to construct such an example, if one keeps in mind Theorem 3 that the offending
crease must be tangent to a seam; see Fig. 2. It would be interesting to determine
under exactly what conditions a seam form whose flat components do not correspond
to convex plane regions has a crease.
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Fig. 2 A “D-form” with a
relaxed convexity condition. The
solid dark line is the seam, the
dotted lines are false edges from
projection onto the page, and the
solid light lines are the creases
through a flat component. Actual
D-forms have no such creases

Fig. 3 A typical pita-form.
A crease runs between the
endpoints of the seam

For pita-forms, we have concluded in Corollary 4 that a pita-form may have at
most one crease. Indeed this is tight, and it is easy to construct an example pita-
form with a crease; see Fig. 3. This possibility of creases therefore represents a real
difference from D-forms. It represents also a contrast from the appearance of the
natural paper experiments, which led the authors first introducing pita-forms ([3]) to
suggest that pita-forms might never have creases. In fact, by applying Corollary 2, it is
not difficult to see that the pita-form depicted in Fig. 23.14 of [3] must have a crease.
In our reproduction, the physical paper indeed does not crease, and the seam has gaps
at the endpoints that in retrospect explain the divergence between this experiment’s
behavior and the mathematical pita-form.

On the other hand, we do not know of a construction for a pita-form without a
crease. It appears to be an open problem to find such a construction, or to prove that
in every pita-form the line segment between the endpoints is, in fact, a crease.

For some theorems of the same flavor as our results here, one might hope to obtain
proofs by showing that the desired properties hold of convex polyhedra, which are
relatively concrete and amenable to reasoning, and then that they carry over to general
convex bodies as limits of polyhedra. Indeed, this is the approach taken in [3] to
argue for Corollary 2 for the case of D-forms. Unfortunately, this approach does not
hold as widely as one might like. In particular, Corollary 9 cannot be proven by
a limiting argument of the obvious form, even when restricted to D-forms. When
each flat component of the D-form is approximated by a sequence of polygons, it is
possible for the dihedral angles inside the components to approach positive limits,
even when the angles of the polygonal approximations are required to converge to
zero. For example, in the D-form obtained from two circular disks (which is just the
double cover of a disk), the components may be approximated by regular n-gons for
increasing n, and the resulting approximations to the D-form may be antiprisms of
two smaller n-gons and 2n triangles. In this approximation sequence, the dihedral
angles between each n-gon and its n neighboring triangles approach π/3, not zero,
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even though they lie inside the flat components. For this and other reasons, we have
chosen direct proofs that attack the general case of convex bodies.

Acknowledgements We thank Jonathan Kelner, Joseph O’Rourke, and Johannes Wallner for helpful
discussions, and the anonymous referees for helpful comments.

References

1. Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005). See especially note 21, p. 189
2. Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed vol-

umes. Ann. Inst. Fourier 58(2), 447–505 (2008). arXiv:math.DG/0609447
3. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms. Cambridge University Press, Cambridge

(2007). pp. 352–354
4. Gauss, C.F.: General Investigations of Curved Surfaces (1827). Morehead and Hiltebeitel, tr. Princeton

(1902)
5. Kane, D., Price, G.N., Demaine, E.D.: A pseudopolynomial algorithm for Alexandrov’s theorem. In:

Algorithms and Data Structures Symposium (WADS) (2009). arXiv:0812.5030
6. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001). p. 418
7. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cam-

bridge (1993)
8. Sharp, J.: D-Forms: Surprising New 3-D Forms from Flat Curved Shapes. Tarquin Publications, St.

Albans (2009)
9. Wills, T.: DForms: 3D forms from two 2D sheets. In: Sarhangi, R., Sharp, J. (eds.) Bridges: Mathemat-

ical Connections in Art, Music, and Science, pp. 503–510. London

http://arxiv.org/abs/arXiv:math.DG/0609447
http://arxiv.org/abs/arXiv:0812.5030

	Generalized D-Forms Have No Spurious Creases
	Abstract
	Introduction
	Background and Notation
	Convex Hull
	Creases
	Counterexamples
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


