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Abstract Let S be a set system of convex sets in R
d . Helly’s theorem states that

if all sets in S have empty intersection, then there is a subset S ′ ⊂ S of size d + 1
which also has empty intersection. The conclusion fails, of course, if the sets in S
are not convex or if S does not have empty intersection. Nevertheless, in this work
we present Helly-type theorems relevant to these cases with the aid of a new pair of
operations, affine-invariant contraction, and expansion of convex sets.

These operations generalize the simple scaling of centrally symmetric sets. The
operations are continuous, i.e., for small ε > 0, the contraction C−ε and the expansion
Cε are close (in the Hausdorff distance) to C. We obtain two results. The first extends
Helly’s theorem to the case of set systems with nonempty intersection:

(a) If S is any family of convex sets in R
d , then there is a finite subfamily S ′ ⊆ S

whose cardinality depends only on ε and d , such that
⋂

C∈S ′ C−ε ⊆ ⋂
C∈S C.

The second result allows the sets in S a limited type of nonconvexity:
(b) If S is a family of sets in R

d , each of which is the union of k fat convex sets,
then there is a finite subfamily S ′ ⊆ S whose cardinality depends only on ε, d , and k,
such that

⋂
C∈S ′ C−ε ⊆ ⋂

C∈S C.
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1 Introduction

Helly’s theorem is one of the fundamental results in discrete geometry [12]. It states
that if every � d + 1 sets in a set system S of compact convex sets in R

d have non-
empty intersection, then all of the sets in S have nonempty intersection. Equivalently,
if the entire family S has empty intersection, then there is a subset S ′ ⊂ S (a witness)
of size � d +1 which also has empty intersection. Over the years the basic Helly the-
orem has spawned numerous generalizations and variants (e.g., [7, 21]). These have
the following local–global format: If every m members of a family have property P ,
then the entire family has property P (or sometimes a weaker property P ′). Equiva-
lently, if the entire family has property P ′c, then there is a witness subfamily of size
m having the (possibly weaker) property P c .

The conclusion of Helly’s theorem fails, of course, if the sets in S are not convex;
also if one changes the property “empty intersection” to notions of “small intersec-
tion.” Nevertheless, we present Helly-type theorems that apply to cases of these sorts.
We do so by allowing in the local-global transition not a weakening of the property
P but arbitrarily slight changes in the sets themselves. We use a pair of operations,
the contraction C−ε , and expansion Cε of a convex set C. For centrally symmetric
convex sets, these are simply homothetic scalings with respect to the center by factor
(1 + ε) and (1 − ε), respectively; for general convex sets, the definitions are very nat-
ural and seem not to have been used before. Our operations and Helly-type theorems
are described below.

1.1 Expansion and Contraction of Convex Sets

Throughout the main body of the paper all sets are subsets of R
d , and the convex sets

we consider are compact (i.e., closed and bounded). Unbounded sets and sets that are
not necessarily closed will be discussed in Sect. 6. For two points x and y in R

d , the
line segment between x and y is denoted by xy, and its length by |xy|. Let Sd−1 be
the unit sphere in R

d . For a set A ⊆ R
d and c ∈ R, the set cA is {cx|x ∈ A}. Given

two sets A and B , define the binary operations “+” and “−” (Minkowski sum and
difference) by A + B = {x + y|x ∈ A,y ∈ B} and A − B = A + (−B). For a unit
vector u, a u-hyperplane is a (d − 1)-dimensional affine subspace perpendicular to u.
A slab is the Minkowski sum of a hyperplane and a finite segment, and a u-slab is
one bounded by u-hyperplanes. The u-slab of a set A is the closed u-slab of minimal
width containing A; it is denoted su(A).

Let us recall the standard definition of contraction and expansion for centrally
symmetric sets. A convex set C ⊆ R

d is centrally symmetric if it has a center p such
that C = 2p − C. For a centrally symmetric convex set C, let ‖x‖C be the norm of
x with respect to C: ‖x‖C = inf{r > 0 | x−p

r
+ p ∈ C}. Now, for any ε � −1, define

Cε = {x | ‖x‖C � 1 + ε}. Namely, for positive ε, the set Cε is a blown-up version of
C and is referred to as the expansion of C; and for negative ε, the set Cε is a shrunken
version of C and is referred to as the contraction of C (see Fig. 1). As ε tends to 0,
the set Cε tends to C. It is not hard to verify that Cε is convex. Notice the distinction
between Cε and the Minkowski sum C + εB, where B is the unit ball centered at the
origin; the first definition commutes with affine transformations, the second does not.
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Fig. 1 An illustration of the contraction and expansion of a centrally symmetric convex set C. The set C

with center p is given by a solid line. For positive ε, the expansion Cε and the contraction C−ε of C are
given by dashed lines. The point x is outside C. The points y and z are on the boundary of C and the line

passing through x and p. It can be seen that ‖x‖C = |px|
|pz|

Fig. 2 An illustration of Definition 1.1 applied to a triangle C (which is not centrally symmetric).
Here ε > 0. In the presentation of Cε and C−ε , the set C is drawn with a dotted line, and its expan-
sion/contraction is drawn with a solid line. Notice that the expansion Cε of C is no longer a triangle

We are now ready to define contraction and expansion of general compact convex
sets C. First notice that we cannot use a direct analog to the definition for centrally
symmetric bodies as a general convex set lacks a center point p. We thus consider an
alternative definition to Cε for centrally symmetric C which is independent of p, and
then extend it to general convex sets. Let C be centrally symmetric around the origin.
Let u be any unit vector in R

d . Consider the u-slab su(C) of C. Clearly, C ⊆ su(C).
Moreover, C = ⋂

u∈Sd−1 su(C). Finally, it is not hard to verify that Cε as defined
above is equal to

⋂
u sε

u(C). Thus we conclude an alternative equivalent definition
for contraction and expansion of centrally symmetric convex sets: Cε = ⋂

u sε
u(C).

Namely, a definition which relies solely on the notion of contraction and expansion
of slabs. This is the definition we shall use for general convex sets.

Definition 1.1 (Contraction and Expansion) Let C be a compact convex set, and let
ε � −1 be any real (positive, negative, or zero). Let Cε = ⋂

u∈Sd−1 sε
u(C). For any

x ∈ R
d , let ‖x‖C be 1+ ε for the minimum ε such that x ∈ Cε . We stress (as opposed

to the case that C is centrally symmetric about the origin) that ‖ ·‖C is not necessarily
a norm. The definition above is illustrated in Fig. 2.

We are now ready to present our Helly-type theorems that rely on the definitions
above. The theorems have the following structure: if a given set family S has prop-
erty P , then there is a witness subfamily S ′ of size s whose contraction also has
property P .
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1.2 Finding a Witness for Small Intersection

Consider the case in which the given set system S consists of convex sets, however
their intersection is not empty. In this case, as an analog to Helly’s theorem, one may
seek a witness of small cardinality S ′ ⊆ S whose intersection is contained in the in-
tersection of the sets of S . It is not hard to verify that finite witnesses do not exist even
for systems of convex sets in R

2. For example, for every unit vector u ∈ R
2, let Cu

be the strip of width 2 consisting of vectors v with 〈v,u〉 ∈ [−1,1]. The intersection
of the family S = {Cu} is the closed unit ball B centered at the origin, and any finite
subset S ′ of this family has intersection which strictly includes B. Namely, no finite
witness for the intersection of S exists. We show:

Theorem 1.1 Let ε > 0. Let S = {Ci} where each Ci is compact and convex in R
d .

There exists a subset S ′ of S of size at most s(d, ε) = (cd)d

ε
d
2

such that
⋂

C∈S ′ C−ε ⊆
⋂

C∈S C. Here c > 0 is a universal constant.

We note that s(d, ε) in Theorem 1.1 is close to tight as a function of ε (see Sect. 4).

1.3 Sets that are not Necessarily Convex

Now, consider the case in which the set system S does not consist of convex sets, but
rather of sets that are the union of a bounded number of convex sets. Does the natural
analog of Helly’s theorem hold for such systems S ? Namely, if

⋂
C∈S C is empty, is

there a small witness S ′ ⊆ S for this fact? As before, it is not hard to verify that the
answer is no—even in the simplest case where all sets in S consist of the union of
two convex sets in R. For example, consider the family S = {C1, . . . ,Cn−1} in which
Ci is the closure of [0,1] \ [ i−1

n
, i+1

n
]. Set difference is denoted “\". Each Ci is the

union of at most two closed intervals, and
⋂

Ci = ∅. However, any strict subfamily
S ′ of S has a nonempty intersection.

For real f � 1, a bounded convex set C is f -fat if the ratio between the radii of
the minimum radius ball containing C and the maximum radius ball contained in C

is at most f (see, e.g., [8]; this is essentially inverse to other definitions, e.g., [20]).
For a set C consisting of the union of k convex sets {C1, . . . ,Ck}, define C−ε to be⋃k

i=1 C−ε
i . Observe that the definition depends on the constituents Ci and not only

on their union. We show:

Theorem 1.2 Let ε > 0. Let S = {Ci} where each Ci is the union of at most k f -fat
compact convex sets in R

d . There exists a subset S ′ of S of size at most s(k, d, ε, f ) =
k!( ckdf k−1

ε
k− 1

2
)d such that

⋂
C∈S ′ C−ε ⊆ ⋂

C∈S C. Here c > 0 is a universal constant.

A few remarks are in order. First notice that if
⋂

C∈S C = ∅, then Theorem 1.2
states the existence of a small witness S ′ for empty intersection (extending Helly’s
theorem). Secondly, in R, all bounded convex sets are 1-fat, so the fatness condition
is not a restriction in d = 1. We conjecture that the fatness condition is unnecessary
also in higher dimension (Conjecture 1.1). Finally, in R we are able to improve the
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value s(k,1, ε,1) to approximately (c/ε)k/2 logk/2(1/ε) for some constant c > 0.
This value of s(k,1, ε,1) can be shown to be nearly tight as a function of ε (see
Sects. 3 and 4).

Conjecture 1.1 Let S = {Ci} where each Ci is the union of at most k compact convex
sets in R

d . There exists a subset S ′ of S whose size depends only on k, d , and ε such
that

⋂
C∈S ′ C−ε ⊆ ⋂

C∈S C.

1.4 Related Work

To the best of our knowledge, these contraction and expansion operations for convex
sets (except in the centrally symmetric case) have not previously been considered.
Also, we are not aware of other Helly-type theorems which apply to the case of
nonempty intersection.

We note that Minkowski difference with a unit ball differs substantially from our
definition of contraction and cannot be used as an alternative notion of contraction in
Theorems 1.1 and 1.2. Namely, our definition commutes with affine transformations,
while the Minkowski difference with εB does not. More specifically, notice that for
“large” convex sets C, the set C − εB may be very “close” to C, while for “small”
C, C − εB may differ significantly from C (C − εB may even be empty). Thus
using C − εB instead of C−ε in our theorems will not allow one to define a witness
size s(ε, d) which is independent of the family S at hand. Our notion of contraction
overcomes this difficulty.

There is an interesting literature on Helly-type theorems for unions of convex
sets. (For a nice survey on Helly-type theorems in general, see Eckhoff [7] or
Wenger [21].) Let Cd

k be the family of all sets in R
d that are the union of at most

k convex sets. The intersection of members in Cd
k are not necessarily in Cd

k , and in
general, as we have noted, subfamilies of Cd

k do not have finite Helly number (i.e.,
there is not a finite witness for empty intersection). Nevertheless, it was shown inde-
pendently by Matoušek [16] and Alon and Kalai [1] that if S is a finite subfamily of
Cd

k such that the intersection of every subfamily of S is in Cd
k , then S has finite Helly

number. Let Kd
k be the family of all sets in R

d that are the union of at most k pairwise
disjoint convex sets. As before, Kd

k does not have finite Helly number. Helly-type the-
orems for subfamilies S of Kd

k such that the intersection of every subfamily of S is in
Kd

k have been studied. Grunbaum and Motzkin [11] showed that for k = 2, the Helly
number of such S is 2(d + 1), and for general k, conjectured it to be k(d + 1) (which
is tight). The case k = 3 was proven by Larman [15], and the general case by Mor-
ris [17]. An elegant proof (based on the notion of LP-type problems) was presented
by Amenta [2] and recently generalized to a topological setting in [14] . Differently
from this literature, our results do not depend on a restriction on the intersections of
subfamilies of S .

Let S = {Ci} be a family of convex sets in R
d . In [3], it is shown for a certain

function v(d) 
 d−d/2, that if the intersection of any 2d or fewer members of S has
volume at least 1, then the volume of

⋂
S Ci is at least v(d). This statement has a

similar quantitative flavor to the following immediate consequence of Theorem 1.1:
If for every S ′ of size s(d, ε), the intersection

⋂
C∈S ′ C−ε has volume at least v, then
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⋂
C∈S C has volume at least v. Despite this similarity, the results of this work (and

our proof techniques) differ substantially from those of [3].
Finally, in a recent and independent paper [5], the problem of approximately cov-

ering a given convex set U by a small subset F ′ of a convex set system F was studied.
In [5], a family of sets approximately covers a set U if it covers all but an ε fraction
of its volume. Bounds on the size of F ′ which depend only on ε and the fatness of
the sets in F are presented. Although the problems studied in [5] differ from the ones
studied in this work, one may find some resemblance between their proof techniques.

1.5 Algorithmic Motivation

Jie Gao and the authors of this work have recently used a variant of Theorem 1.2 in
the design of an efficient approximation algorithm for clustering [9]. Approximation
algorithms lend themselves naturally to the notion of ε contraction and expansion
because a quantified slackness of ε is allowed.

More specifically, in [9] we prove a variant of Theorem 1.2 for sets that consist of
unions of axis-parallel slabs (which is a special case of Conjecture 1.1). Our theorem
is then applied in the design of an efficient dynamic data structure which manages
the intersection of such sets. The data structure, in turn, is used as a key element in a
(1 + ε)-approximation algorithm for the k-center clustering of incomplete data. It is
plausible that the theorems and definitions presented in this paper will find algorith-
mic applications other than those presented in [9].

A well-known application of Helly’s theorem [4, 18, 19] is in the theory of uniform
approximation: Let X be any finite set, let F be a d-dimensional vector space of
functions F : X → R, let g : X → R, and let r be a nonnegative function on X. If for
every x1, . . . , xd+1 ∈ X, there is an f ∈ F such that |f (xi) − g(xi)| � r(xi) for all
1 � i � d + 1, then there is an f ∈ F such that |f (x) − g(x)| � r(x) for all x ∈ X.
The contrapositive is that there is a short witness for inapproximability: if g cannot be
approximated within the function r on X, then there are some d + 1 points at which
it already cannot be approximated within r .

In case g is approximable within r , Theorem 1.1 can be applied in a similar spirit,
and we obtain a short witness tightly constraining the set of approximations. Specif-
ically: for X,F,d , and r as above and for ε > 0, there is for every g : X → R a
finite set Y ⊆ X of cardinality |Y | � s(d, ε) such that if |f (x) − g(x)| � (1 − ε)r(x)

for all x ∈ Y , then |f (x) − g(x)| � r(x) for all x ∈ X. (Apply Theorem 1.1 with
Cx = {f : |f (x) − g(x)| � r(x)}, S = {Cx}x∈X , and S ′ = {Cx}x∈Y .)

1.6 Proof Techniques

In Theorem 1.1, we wish to find a small witness for the intersection A = ⋂
i Ci of

elements in S = {Ci}. Namely, we are interested in a subset S ′ of S such that the
intersection of the contracted elements in S ′ is contained in A. Roughly speaking, we
show that for any point x on the boundary of A, there exists a set Ci ∈ S such that the
contraction C−ε

i of Ci does not include x together with a significant portion of the
boundary of A. Finding such sets Ci iteratively, we are able to cover the boundary
of A, resulting in the desired collection. As we are dealing with general convex sets,
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Fig. 3 An illustration of the proof of Theorem 1.1. Here x is on the boundary of A, H is the hyperplane
tangent to A at x, nx is of distance 1 from x in the direction of the normal to H , and x′ is the intersection of
the boundary of B(d + 1) and the extension of the line passing through x and nx . We denote by Sx = Snx

the half-space corresponding to x. The point y is in Sx ∩ ∂A, and both ny and y′ are defined as above
(with respect to y). If the distance between H and the point y is at least ε, then the distance between x′
and y′ is greater than

√
ε

giving a precise quantification of our progress towards covering the boundary of A

is the primary technical difficulty in our proof. The proof of Theorem 1.1 somewhat
resembles the proof of Dudley for convex shape approximation by a polytope with
few vertices [6].

In Theorem 1.2 we wish to find a small witness for the intersection A of S = {Ci}
when the sets Ci are not necessarily convex; rather they are the union of k convex
sets. In a nutshell, the theorem is proven by induction on k, where Theorem 1.1 acts
as the base case. The inductive step strongly uses the f -fatness of the sets in Ci .

1.7 Organization

The rest of the paper is organized as follows. In Sect. 2 we prove Theorems 1.1 and
1.2. In Sect. 3 we refine the analysis of Theorem 1.2 and obtain tighter bounds on the
Helly number for the special case of sets in R (i.e., for the case d = 1). In Sect. 4 we
present lower bounds on the Helly numbers obtained throughout the paper. Finally,
in Sect. 5 we present a few equivalent definitions to our notion of contraction and
expansion, and prove some basic properties of these operations.

2 Proof of our Helly Type Theorems

We now present the proofs of Theorems 1.1 and 1.2. The reader may find it helpful
to follow the proof of Theorem 1.1 using Fig. 3. The proof of Theorem 1.1 somewhat
resembles the proof of Dudley for convex shape approximation by a polytope with
few vertices [6].
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2.1 Proof of Theorem 1.1

Let A = ⋂
C∈S . If A is empty, then our theorem follows from Helly’s theorem (with-

out the need for contractions). Otherwise assume that A has full dimension. We
will address the case in which A has dimension � d − 1 at the end of the proof.
By John’s Theorem [13], there exists a point p ∈ A and an ellipsoid E such that
E ⊆ A ⊆ d(E − p) + p. Here we use the fact that A is bounded. Recalling that the
hypotheses and conclusion of our theorem commute with affine transformations, we
may assume w.l.o.g. that p is the origin and that E is the unit ball.

Let B(r) be the ball centered at the origin with radius r . By the assumptions above,
B(1) ⊆ A ⊆ B(d). We will now iteratively find the subset S ′ stated in the theorem.
Before we start, we give a rough overview of our iterative procedure. We start out with
an empty family S ′. Let x be a point on the boundary of A. We show the existence of
a set Cx ∈ S such that the contraction C−ε

x does not include x together with any other
point in A within distance ε from x. Adding Cx to S ′, we now seek a point y on the
boundary of A that is included in

⋂
C∈S ′ C−ε = C−ε

x . We add the corresponding set
Cy to S ′ and stress that y is far from the point x. We continue this process iteratively,
and in each step we seek a point z on the boundary of A that is included in the set⋂

C∈S ′ C−ε . If such a point z is found, we add the corresponding set Cz to S ′ and
progress in an additional iteration. If no such z exists, we terminate our procedure. To
bound the size of the resulting set S ′, we notice that for any two sets Cx and Cy in S ′,
the corresponding points x and y on the boundary of A are far apart. This fact allows
us to use a certain packing argument that bounds the size of S ′. Our packing argument
will involve the lifting of the points x on the boundary of A onto the boundary of the
ball B(d + 1).

We start with the following technical lemma whose proof is based on the proof
of a similar lemma presented in [10, p. 324]. The proof is illustrated in Fig. 3. For
a point x on the boundary of A, let Nx be the set consisting of points n at distance
1 from x in the direction of the normal to a tangent hyperplane of A at x (directed
away from A). Notice that |Nx | may be larger than 1 (as there may be many tangent
hyperplanes to A at x if A is not smooth at x).

Lemma 2.1 Let ε ∈ [0,1]. Let x and y be two points on the boundary of A. Let
nx ∈ Nx and ny ∈ Ny . If the distance between y and the hyperplane tangent to A at
x with normal nx − x is at least ε, then ‖nx − ny‖ � √

ε.

Proof Let θ be the angle between nx −x and ny −y. Consider the plane P including
the points x, y, and nx . It may be the case that ny does not lie on this plane. Let
n′

y be the projection of ny onto P . Let θ ′ be the angle between nx − x and n′
y − y.

Notice that θ ′ � θ . Let z be the point closest to y on the hyperplane tangent to A

at x (with normal nx − x). Namely, |yz| � ε. We first assume that θ < π/2. Let
f be the point on P in the intersection of the hyperplane tangent to A at x (with
normal nx − x) and the hyperplane tangent to A at y (with normal ny − y). It holds
that ‖x − y‖ � ‖y − f ‖ = |yz|/ sin θ ′. We now consider two cases. If sin θ ′ � √

ε,
then ‖nx − ny‖ � ‖x − y‖ � |yz|/ sin θ ′ � √

ε. The first inequality follows from the
convexity of A (namely, by the fact that 〈nx − x, x − y〉 � 0 and 〈ny − y, y − x〉 � 0
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and by squaring ‖nx − ny‖ = ‖x + (nx − x) − y − (ny − y)‖). If sin θ ′ >
√

ε, we
show that ‖nx − ny‖ � ‖(nx − x) − (ny − y)‖ � 2 sin(θ/2) � sin θ � sin(θ ′) >

√
ε.

Here, the first inequality follows from the convexity of A as above, and the second
inequality follows from considering the triangle y,ny, (y + nx − x). Now, for the
case θ � π/2, it is not hard to verify that ‖nx − ny‖ � 1. �

We continue with a few additional definitions that are central to the remainder
of the proof (the definitions and proof are illustrated in Fig. 3). Let x be any point
on the boundary of A. For a special point nx ∈ Nx (to be implied in the upcoming
Claim 2.1), let snx−x(A) be the minimal d-dimensional slab containing A with nor-
mal nx − x (i.e., the boundary of snx−x(A) is tangent to A at the point x). In what
follows, to simplify notation, we denote snx−x(A) by sx(A). Let Sx be the closed
half-space that does not include x whose boundary equals the boundary of s−ε

x (A)

closest to x. Roughly speaking, we will now show that for any x ∈ ∂A: (a) a signif-
icant portion of ∂A is not in Sx , and (b) there is a set Cx ∈ S such that C−ε

x ⊆ Sx .
Thus, taking enough points x and their corresponding sets Cx to be in S ′, we will
cover ∂A and conclude our proof.

Claim 2.1 Let x be any point on the boundary of A. There exist a point nx ∈ Nx and
a set Cx ∈ S such that C−ε

x ⊆ Sx . Here, Sx is the closed half-space (that does not
include x) defined by the boundary of s−ε

nx−x(A) closest to x.

Proof As x ∈ ∂A, there exists C ∈ S such that x ∈ ∂C. Let H be a support hyperplane
to C at x. As A ⊆ C, A is also included in one of the two half-spaces defined by H ,
which implies that H is tangent to A at x.

Let u ∈ Sd−1 be the normal of H (directed away from A). Let nx = x + u. Now,
we have that C−ε ⊆ s−ε

u (C). So it is left to show that s−ε
u (C) ⊆ Sx . It holds that

(a) A ⊆ C, and thus su(A) ⊆ su(C); and (b) the boundary of su(A) which includes
x and the boundary of su(C) which includes x are both equal to H . Thus we may
conclude by our definition of Sx that s−ε

u (C) ⊆ Sx . �

Let x be any point on the boundary of A. Claim 2.1 specifies a special point
nx ∈ Nx and a special set Cx , both corresponding to x. From this point on in our
proof, nx and Cx will refer to this point and set, respectively. Moreover, the sets
sx(A) and Sx are defined according to this special nx . We will now construct the
set S ′. Initially S ′ is empty. Let Cx be the set suggested in Claim 2.1 and add it to
the set S ′. It holds that

⋂
Cx∈S ′ C−ε

x ⊆ ⋂
Cx∈S ′ Sx . In what follows we will add sets

to S ′ that will satisfy the above inclusion. Each set will be associated with a point
on the boundary of A. We will show that after adding a sufficient number of spe-
cially chosen sets, the intersection

⋂
Cx∈S ′ Sx will be included in A, implying that

⋂
Cx∈S ′ C−ε

x ⊆ A.
Consider the ball B(d + 1). By our discussion, it holds that for any point x on the

boundary of A, the distance between x and the boundary of B(d + 1) is at least 1.
For each point x on the boundary of A, we will define a corresponding point x′ on
the boundary of B(d + 1): x′ is the intersection of the boundary of B(d + 1) and the
line passing through x and nx (in the direction opposite to A). We will call x′ the
projection of x up to B(d + 1). See Fig. 3.
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We now return to the first point x chosen and its corresponding set Cx in S ′. Let
y be any point on the boundary of A that is included in Sx . If no such y exists, then
A ∩ Sx = ⋂

C∈S C ∩ Sx = ∅. By Helly’s theorem there exist at most d + 1 sets in
S such that their intersection with Sx is empty. Adding these sets to S ′, we obtain⋂

Cx∈S ′ C−ε = ∅ ⊆ A. Otherwise:

Lemma 2.2 The distance between y′ and x′ must be at least
√

ε.

Proof Let H be the tangent hyperplane at x (with normal nx − x). We first claim
that the distance between y and H is at least ε. Indeed, this follows as B(1) ⊆ A ⊆
sx(A) and y ∈ Sx . Thus, by Lemma 2.1, the distance between nx and ny is at least√

ε. Notice that nx is in B(d + 1), thus x′ is on the line passing through x and nx

after the point nx . The same holds respectively for y′. Namely, x′ = nx + α(nx − x)

and y′ = ny + β(ny − y) for some α > 0 and β > 0. We would like to show that
‖x′ − y′‖ � ‖nx − ny‖. This follows from the fact that 〈nx − x,nx − ny〉 � 0 and
〈ny − y,ny − nx〉 � 0 (which in turn follows from the convexity of A). Specifically,
‖x′ − y′‖2 = ‖nx + α(nx − x) − ny − β(ny − y)‖2 = ‖nx − ny‖2 + ‖α(nx − x) −
β(ny − y)‖2 + 2〈α(nx − x),nx − ny〉 + 2〈β(ny − y),ny − nx〉 � ‖nx − ny‖2. �

We are now ready to complete the proof of Theorem 1.1. After choosing x, we
have shown that any y ∈ Sx that remains on the boundary of A has projection y′ which
is far from the projection x′ of x. Now consider taking any such y and adding its cor-
responding set Cy as defined in Claim 2.1 to S ′. If (∂A) ∩ (

⋂
Cx∈S ′ C−ε) is empty,

then either
⋂

Cx∈S ′ C−ε ⊂ A and we are done, or A ∩ (
⋂

Cx∈S ′ C−ε) = ∅. In the sec-
ond case, we proceed as we did before by noticing that

⋂
C∈S C∩(

⋂
Cx∈S ′ C−ε) = ∅.

Hence, using Helly’s theorem, we may add at most d + 1 sets to S ′ to obtain⋂
C∈S ′ C−ε = ∅ ⊆ A. Here we use the fact that for convex C, C−ε is also convex.
Otherwise, let z be any point on the boundary of A that is included in

⋂
Cx∈S ′ Sx .

By Lemma 2.2, z′ is far from both x′ and y′. We now continue by adding to S ′ the
set Cz corresponding to z.

Continuing this line of argument, it is not hard to verify that at any given stage
in this process the set {x′|Cx ∈ S ′} is a set of points on the boundary of B(d + 1),
and any two points in {x′|Cx ∈ S ′} are of distance at least

√
ε. Standard packing

arguments show that this implies that |S ′| � (cd)d

ε
d
2

for a universal constant c > 0. This

concludes our proof for sets A of full dimension.
We now address the case in which A does not have full dimension. Namely A

is included in a k-dimensional hyperplane H for some k ∈ {0,1, . . . , d − 1}. Let x

be a point in A which is not on the k-dimensional boundary of A. As mentioned in
Claim 2.1, there exists a set C such that x ∈ ∂C. If C ⊆ H , we may add C to S ′ and
reduce the dimension of the problem. Otherwise, C−ε ∩ A ⊆ C−ε ∩ H = ∅, and we
can add at most d + 1 additional sets to S ′ to obtain

⋂
C∈S ′ C−ε = ∅ ⊆ A (as done

above).

2.2 Proof of Theorem 1.2

Recall that for f � 1, a convex set C is f -fat if the ratio between the radii of the
minimum radius ball containing C and the maximum radius ball contained in C is
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at most f (see, e.g., [8]). Also, recall that for a set C consisting of the union of k

convex sets {C1, . . . ,Ck}, C−ε �
⋃k

i=1 C−ε
i . For a convex set C, let w(C) denote

its width. Here w(C) = infu∈Sd−1 w(su(C)), where the width w(su(C)) of the u-slab
su(C) is defined to be the maximum length line segment in the direction u contained
in su(C). As the width of C is larger than twice the radius of the any ball contained
in C, it follows that for f -fat sets C, vol(C) is at most the volume of a ball of radius
f w(C)/2. We now restate (an equivalent version of) Theorem 1.2 and present its
proof.

Theorem 2.1 (Restatement of Theorem 1.2) Let S = {Ci} where each Ci is the union
of at most k compact convex sets in Rd each of which has fatness at most f . Let
I be any convex set. There exists a subset S ′ of S of size at most s(k, d, ε, f ) =
k!( ckdf k−1

ε
k− 1

2
)d such that I ∩ (

⋂
C∈S ′ C−ε) ⊆ I ∩ (

⋂
C∈S C) (here c > 0 is a universal

constant).

Proof The proof is by induction on k. The base case, k = 1, is implied by Theo-
rem 1.1. For general k, we will suppose that every Ci consists of exactly k nonempty
sets Ci,1, . . . ,Ci,k . This is true without loss of generality: simply duplicate one of the
nonempty constituents. If some Ci is empty, of course, the theorem follows trivially.

Recall that w(A) is defined to be the width of a set A in R
d . For a collection Ci ,

let w(Ci) = maxj w(Ci,j ). Let w(S) = infi w(Ci); we wish to pick an i for which
w(Ci) = w(S). Strictly speaking, the infimum might not be achieved, but we will
assume that w(C1) = w(S) (otherwise slight changes are to be made in the proof).

We include C1 in our collection and achieve the required intersection separately
within I ∩ C1,j for each 1 � j � k. Because C1,j is f -fat, it can be covered by at
most (

4f
ε

)d balls of radius ε
4w(S). We achieve the required intersection separately

within each of these balls. Let B be one of the balls.
Let S B = {Ci | B ∩I �⊆ Ci} and observe that I ∩ B ∩(

⋂
S B Ci) = I ∩ B ∩(

⋂
S Ci).

For each Ci , form a collection Ĉi of k − 1 sets by omitting from Ci a set of greatest
width (which without loss of generality we label Ci,1).

Observe that Ĉi is a family of type k − 1 and that (I ∩ B)∩ (
⋂

S B Ĉi) ⊆ (I ∩ B)∩
(
⋂

S B Ci). So there is a set of indices IB of cardinality at most s(k − 1, d, ε, f ) for
which (I ∩ B) ∩ (

⋂
i∈IB Ĉ−ε

i ) ⊆ (I ∩ B) ∩ (
⋂

S B Ci).
Now since w(Ci,1) � w(S), it is not hard to verify that (I ∩ B) ∩ C−ε

i,1 = ∅ for
every i ∈ IB . This follows from the fact that (a) for any unit vector u, the width
wu(C) of su(C) is at least w(S), and (b) C−ε

i,1 = ⋂
s−ε
u (Ci,1). Therefore

(I ∩ B) ∩
( ⋂

i∈IB

(Ci)
−ε

)

= (I ∩ B) ∩
(⋂

IB

Ĉ−ε
i

)

⊆ (I ∩ B) ∩
(⋂

S B

Ci

)

= I ∩ B ∩
(⋂

S
Ci

)

.

Therefore s(k, d, ε, f ) � 4dkf d

εd s(k − 1, d, ε, f ), which suffices to prove our asser-
tion. �
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3 Improved Bounds for d = 1

In this section we improve on the bound for s(k, d, ε, f ) presented in Theorem 1.2
when d = 1. Notice that convex sets C ∈ R are f -fat for f = 1. Thus, for d = 1,
Theorem 1.2 implies a bound on s(k, d, ε, f ) = s(k,1, ε) which is proportional to
ε−k . In what follows we present a proof implying a bound approximately proportional

to ε− k
2 . The line of proof is very similar to that of Theorem 2.1.

Theorem 3.1 Let S = {Ci} where each Ci is the union of at most k (k = 2�

or k = 2� + 1) compact convex sets in R. Let I be a convex set in R. Then,
there is a universal constant c such that there is a subset S ′ of S of size at most
s(2�,1, ε) = (c/ε)� log�−1(1/ε) or s(2� + 1,1, ε) = 2(c/ε)� log�(1/ε) such that
I ∩ (

⋂
C∈S ′ C−ε) ⊆ I ∩ (

⋂
C∈S C).

Proof The proof is by induction on k; there are two base cases: k = 0, for which we
may formally take s(0,1, ε) = 1, and k = 1, for which s(1,1, ε) = 2 (a version of
Helly’s theorem in R).

Write Ci = {[Aj
i ,B

j
i ]}j∈{1,...,k}. Set A(S) = maxCi∈S minj A

j
i and B(S) =

minCi∈S maxj B
j
i . Use two elements of the family to form an intersection in-

cluded in [A(S),B(S)], and let [α,β] = I ∩ [A(S),B(S)]. By hypothesis, [α,β] ∩
(
⋂

C∈S C) = I ∩ (
⋂

C∈S C). Observe that if a set Ci does not contain some point

x ∈ [α,β], then Ci has an interval [Aj
i ,B

j
i ] for which A

j
i � α and B

j
i < x, and

another interval [Aj
i ,B

j
i ] for which x < A

j
i and β � B

j
i .

We show separately how to obtain the desired intersection in each of the four
closed intervals (whose union is [α,β]) that are demarcated by the five points α,
(1 − ε

2 )α + ε
2β , (1/2)α + (1/2)β , ε

2α + (1 − ε
2 )β , β . The first and fourth intervals

can be treated in the same way, as can the second and third, so we consider only the
first and second.

The interval [α, (1 − ε
2 )α + ε

2β]: Modify the collection S by (a) omitting sets Ci

that include the interval [α, (1 − ε
2 )α + ε

2β] and (b) omitting from each Ci every

interval [Aj
i ,B

j
i ] for which B

j
i � β . At least one interval is omitted from each Ci ,

so in the modified collection, every set is the union of at most k − 1 intervals. By
induction, s(k−1,1, ε) members of S suffice (after contraction) in order to obtain the
desired intersection with [α, (1 − ε

2 )α + ε
2β]. Restoring the omitted intervals of each

of these members does not change this, because after contraction those are disjoint
from [α, (1 − ε

2 )α + ε
2β].

The interval [(1 − ε
2 )α + ε

2β, (1/2)α + (1/2)β]: Partition this interval into the
t = log1− ε

2
ε intervals demarcated by the following points (for simplicity, we assume

that (1 − ε
2 )t = ε):

x1 =
(

1 − ε

2

)

α + ε

2
β,

x2 =
(

1 −
ε
2

1 − ε
2

)

α +
ε
2

1 − ε
2

β,
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x3 =
(

1 −
ε
2

(1 − ε
2 )2

)

α +
ε
2

(1 − ε
2 )2

β, . . . ,

xt+1 = (1/2)α + (1/2)β.

Consider any one of these intervals, [xm,xm+1]. Form a collection S m by omit-
ting from S any set Ci containing [xm,xm+1]. The collection S m has the property
that [xm,xm+1] ∩ (

⋂
C∈S m C) = [xm,xm+1] ∩ (

⋂
C∈S C). Moreover, each Ci in S m

has at least one interval [Aj
i ,B

j
i ] for which A

j
i � α and B

j
i < xm+1, and a differ-

ent interval [Aj
i ,B

j
i ] for which A

j
i > xm and B

j
i � β . Modify S m by omitting from

each Ci any interval satisfying one of these conditions. In the modified collection,
every set is the union of at most k − 2 intervals. By induction, s(k − 2,1, ε) mem-
bers of the modified S m suffice (after contraction) in order to obtain the desired in-
tersection with [xm,xm+1]. Restoring the omitted intervals of each of these mem-
bers does not change this, because after contraction those intervals are disjoint from
[xm,xm+1].

We have shown that for k � 2, s(k,1, ε) � 2 + 2s(k − 1,1, ε) + 2(log1− ε
2
ε)s(k −

2,1, ε). This implies the stated bound for a suitable value of c. �

4 Lower Bounds

We now sketch some lower bounds on the size of s(d, ε) and s(k,1, ε) from The-
orems 1.1 and 3.1, respectively. Roughly speaking, we show in these cases that our
analysis as a function of ε is nearly tight. For Theorem 1.1, consider the set sys-
tem S = Cu indexed by all unit vectors u ∈ Sd−1. Cu is defined to be the centrally
symmetric d-dimensional slab around the origin, with width 2 and normal u. The
intersection

⋂
C∈S C is the unit ball B. Every contracted set C−ε

u is the centrally
symmetric d-dimensional slab around the origin with width 2 − 2ε. Standard calcu-

lations show that B \ C−ε
u consists of two caps, each of area at most (2ε)

d−1
2 times

the surface area of B. Thus, a set S ′ of at least 
 (2ε)− d−1
2 sets Cu are required to

obtain
⋂

C∈S ′ ⊆ B.

Following the proof of Theorem 3.1, a lower bound of ( 1
cε

)� k
2 � for s(k,1, ε) can

be obtained (for a universal constant c). Specifically (using the notation of Theo-
rem 3.1), for α = 0 and β = 1, we sketch our proof. For i = 0, . . . , 1

2ε
− 1, consider

the intervals [2iε,2(i + 1)ε]. We define a set system Si corresponding to each inter-
val inductively. The resulting family S will be the union of the set systems Si and
will have empty intersection. By our construction, after contraction, all sets in Si will
include all but the ith interval. For i = 1, . . . , 1

2ε
− 2, let x = 2iε and y = 2(i + 1)ε.

The required set system Si for [x, y] will consists of sets C = C1 ∪ · · ·∪Ck which all
have the following structure: C1 = [− xε

2−2ε
, x + xε

2−2ε
], C2 = [y − (1−y)ε

2−2ε
,1 + (1−y)ε

2−2ε
]

(notice that C−ε
1 = [0, x] and C−ε

2 = [y,1]), and C3, . . . ,Ck are taken from a family

Ŝi constructed inductively. Each element Ĉ in the family Ŝi is the union of k − 2
convex sets, all included in the interval [x + xε

2−2ε
, y − (1−y)ε

2−2ε
]. The inductive as-

sumption is that the family of sets in Ŝi has empty intersection, and any subset of
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them of size less than ( 1
cε

)� k−2
2 � will not have empty intersection even after the sets

are contracted. The base of the induction is either the set system consisting of an
empty set (k = 0) or a set system consisting of two disjoint intervals (k = 1). For
i = 0 or i = 1

2ε
− 1, the set system Si is constructed analogously. The set system S

consists of all sets systems Si defined above. It is not hard to verify that to obtain a
subset S ′ such that

⋂
C∈S ′ C−ε = ∅, for the ith interval defined above, we need to

use sets C corresponding to Si .

5 Contraction and Expansion of Convex Sets: Properties and Equivalent
Definitions

In the upcoming sections, we elaborate on the properties of Cε . Specifically, in
Sects. 5.1 and 5.2 we discuss a few additional natural definitions for contraction and
expansion. Some of these definitions are equivalent to the one presented in the In-
troduction (Sect. 5.1) and others differ but are related (Sect. 5.2). As we will see in
Sect. 6, these equivalent definitions will help us to extend Theorems 1.1 and 1.2 to
the case of set systems S with unbounded sets C. It is not hard to verify that ‖ · ‖C

as defined in Definition 1.1 is not necessarily a norm, even in cases where there is an
obvious point in C to try placing the origin. Primarily, it is not hard to verify that for
certain C, such as triangles, the value of ‖x‖C is strictly positive on R

d . Neverthe-
less, we start by noticing that ‖ · ‖C is convex.

Claim 5.1 (Convexity of ‖ · ‖C ) For a convex set C, points x1 and x2 in R
d , and

λ ∈ [0,1], it holds that ‖λx1 + (1 − λ)x2‖C � λ‖x1‖C + (1 − λ)‖x2‖C .

Proof Let ‖x1‖C = 1+ε1 and ‖x2‖C = 1+ε2. For i = 1,2, this implies that xi ∈ Cεi ,
which in turn implies for every u ∈ Sd−1 that xi ∈ s

εi
u (C). As su(C) is a slab, it is not

hard to verify that the above implies that λx1 + (1 −λ)x2 ∈ s
λε1+(1−λ)ε2
u (C). We con-

clude that λx1 + (1 − λ)x2 ∈ Cλε1+(1−λ)ε2 , which suffices to prove our assertion. �

5.1 Equivalent Definitions

We now present some definitions equivalent to Definition 1.1. For a set C ⊆ R
d , let

∂C denote its boundary with respect to R
d . For ε > 0, let ∂εC = ∂C + ε(C − C).

Consider again a centrally symmetric convex set C centered at p and let x be
a point outside C. Consider the line � passing through x and p. This line and its
intersection with C define the value ‖x‖C . Namely, let z be the intersection of � and
the boundary of C closest to x, and let y be the intersection of � and the boundary
of C furthest from x (see Figs. 1 and 4). The value of ‖x‖C as defined previously is
a function of the distance |xz| and the distance |xy|. Specifically, let r = |xz|/|xy|.
It is not hard to verify that ‖x‖C = |px|

|pz| = 1+r
1−r

. Similarly, for x ∈ C and y and z

as defined previously, it can be verified that ‖x‖C = |px|
|pz| = 1−r

1+r
. This leads to the

following definition for general convex sets.
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Fig. 4 An illustration of the definition of C(ε) . In (a), for ε > 0, x ∈ C(ε) iff there exist y, z ∈ ∂C as
above such that the ratio between |xz| and |xy| is at most ε

2+ε
. In that case, r(x,C) � ε

2+ε
, which

implies that nC(x) = 1+r(x,C)
1−r(x,C)

� 1 + ε. Similarly, in (b), for ε < 0, x ∈ C(ε) iff for all y, z ∈ ∂C as

above, the ratio between |xz| and |xy| is at least −ε
2+ε

. In that case, r(x,C) � ε
2+ε

, which implies that

nC(x) = 1+r(x,C)
1−r(x,C)

� 1 + ε

For C that is compact and convex, let r(x,C) ∈ [−1,1] be the closest point to 0
in the closure of the set

{ 〈z − x, y − x〉
〈y − x, y − x〉

}

z∈∂C,y∈∂C x,y,z colinear
.

Let nC(x) = 1+r(x,C)
1−r(x,C)

. Let C(ε) = {x | nC(x) � 1 + ε}.
A few remarks are in order. Notice that nC(x) is greater than 1 for x /∈ C and less

than or equal to 1 for x ∈ C. Moreover, nC(x) = 1 iff x ∈ ∂C. This follows from
the definition of r(x,C), which is negative for x ∈ C \ ∂C, has value 0 for x ∈ ∂C

and positive for x /∈ C. As an example, for the interval C = [−1,1], it holds that
C(ε) = [−1 − ε,1 + ε].

Theorem 5.1 (Equivalent definitions) Let ε � 0. Let ∂εC = ∂C + ε(C − C).

(i) Cε �= ⋂
u sε

u(C) = C(ε) = C ∪ ∂ ε
2
C.

(ii) C−ε �= ⋂
u s−ε

u (C) = C(−ε) = C \ (∂ ε
2
C)◦.

Here (A)◦ denotes the interior of A.

Proof As a warm up exercise, it is not hard to verify that the assertions hold if C

is centrally symmetric. We now present the proof for general C. First notice that for
ε � 0, x ∈ C(ε) iff r(x,C) � ε

2+ε
, and x ∈ C(−ε) iff r(x,C) � −ε

2−ε
. These inequali-

ties will be used throughout the following proof. Moreover, the set C is included in all
the expressions in (i) and includes all expressions in (ii). Hence, to prove (i), it suffices
to show that (a) x ∈ ⋂

u sε
u(C) \ C ⇒ x ∈ C(ε), (b) x ∈ C(ε) \ C ⇒ x ∈ C ∪ ∂ ε

2
C,
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and (c) x ∈ ∂ ε
2
C \ C ⇒ x ∈ ⋂

u sε
u(C). An analogous series of inclusions for (ii)

assuming x ∈ C also suffices.
(i): Let x ∈ ⋂

sε
u(C) \ C. We first show that x ∈ C(ε) by proving that x ∈⋂

su(C
(ε)). This suffices as it is not hard to verify that C(ε) is convex (this fol-

lows directly from its definition) and thus
⋂

su(C
(ε)) = C(ε). Consider a vector

u ∈ Sd−1 and any x ∈ sε
u(C). We now show that x ∈ su(C

(ε)). If x ∈ su(C), then
clearly x ∈ su(C

(ε)). Otherwise, let y′, z′ be the points on ∂C that define su(C) (take
z′ to be closer to x than y′ once all three are projected on u). Consider the line �

passing through x, in the direction y′ − z′. Let y, z be the intersection points of �

and the boundary of su(C) (take z to be closer to x). As x ∈ sε
u(C) \ su(C), it holds

that |xz|/|xy| = ε′
2+ε′ for some ε′ � ε. Let x′ be on the line passing through y′ and z′

such that |x′z′|/|x′y′| = ε′
2+ε′ . It holds that x′ ∈ C(ε) ⊆ su(C

(ε)). By our construction

x′ − x is orthogonal to u, thus x ∈ su(C
(ε)).

Now let x ∈ C(ε) \ C. Let u ∈ Sd−1 be any direction. Consider the line �u passing
through x in the direction of u. Let zu be the intersection point of �u and C closest
to x, and let yu be the intersection point farthest from x (if such exists). It holds that
r(x,C) = minu |xzu|/|xyu| � ε

2+ε
. Let r(x,C) be obtained at u, and denote z = zu,

y = yu. As z − y ∈ C − C, it holds that x ∈ z + ε
2 (C − C) ⊆ C ∪ ∂ ε

2
C.

Finally, consider x ∈ ∂ ε
2
C \ C. This implies that x = c + ε′

2 (y − z) for ε′ � ε,

y, z ∈ C and c on ∂C. Let u ∈ Sd−1; we will show that x ∈ sε
u(C). If x ∈ su(C), then

we are done. Let � be the line passing through x in the direction y −z and intersecting
su(C) at z′ and y′. It holds that |z′y′| � |zy|. As z′y′ ⊆ su(C) and c ∈ su(C), we
conclude that x ∈ sε

u(C).
(ii): Assume that x ∈ C but x /∈ C(−ε). Let z and y be in ∂C such that z, x, y are

co-linear and |zx|/|xy| < ε
2−ε

. Let u be the normal to the hyperplane tangent at z

(directed away from C) and consider su(C). Let y′ be the point “opposite” to z on
the boundary of su(C) (namely y′ is obtained by going in direction −u from z until
we leave the set su(C)). Let x′ be the projection of x to the line zy′. It now holds that
|zx′|/|y′x′| � |zx|/|xy| < ε

2−ε
. This implies that x /∈ s−ε

u (C).
Assume that x ∈ C but x /∈ C \ (∂ ε

2
C)◦. Let y and z be in C and c ∈ ∂C such

that |xc| < ε
2 |yz|. Assume that c − x is in the same direction as z − y. Consider the

segment originating at y, passing through x and terminating on ∂C at z′. We show
that |z′x| < ε

2 |yz′|. Let α be the intersection of the line passing through z, c and the
line passing through y, x (here we assume that the points z, y, x, c are not all on the
same line; otherwise a similar and simpler proof may be given). Notice that the point
α is not in Co (follows from the convexity of C). It holds that z′x

z′y � αx
αy

= cx
zy

< ε
2 .

We conclude that x /∈ C(−ε).
Finally, assume that x ∈ C but x /∈ s−ε

u (C) for some u. Let y and z be the tangent
points in ∂C defining su(C), and let Hy and Hz be the corresponding hyperplanes.
Assume that z is closer to x than y when all three points are projected onto the
direction u. Consider the segment originating at y, passing through x, and terminating
at z′ ∈ ∂C. We now show that |xz′| < ε

2−ε
|xy|, which implies that x /∈ C \ ∂ ε

2
C. This

follows by considering the triangle yz′α where α is the projection of z′ onto Hy . In
this triangle, let x′ be the projection of x onto z′α. By our assumption, |x′z′|/|x′α| <
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ε
2−ε

. This implies that |z′x|/|xy| < ε
2−ε

, which in turn implies x = z′ + ε′
2 (y − z′) for

ε′ < ε. �

Remark 5.1 In the proofs that follow we will use the equivalence stated in Theo-
rem 5.1 without referring explicitly to Theorem 5.1.

5.2 Contraction and Expansion w.r.t. Points p ∈ C

For a general convex set C, one may consider an alternative definition for ‖x‖C and
Cε in which the contraction and expansion are done with respect to a center point p

in C. Namely, as in the case of centrally symmetric sets, for p ∈ C, define ‖x‖(C,p) =
inf{r > 0 | x−p

r
+ p ∈ C} and Cε

p = {x | ‖x‖(C,p) � 1 + ε}. Clearly, as this definition
depends on the point p chosen, it is not equivalent to our original definition given in
Definition 1.1. For this reason, we prefer to use our original definition which depends
solely on the set C.

Nevertheless, for specific values of p, one can find connections between our origi-
nal definition and that given above. For α � 1, a point p ∈ C is referred to as α-central
if for any line � passing through p, the distance between p and the two intersection
points of � with ∂C, z and y, satisfy |zp|

|yp| ∈ [ 1
α
,α]. For example, if C includes a point

p which is 1-central (i.e., α = 1), then C is centrally symmetric. Also, as we show
below, the center of mass of C is a “d-central” point. The same holds for points im-
plied by John’s theorem [13], which states the existence of an ellipsoid E centered at
p ∈ C such that E ⊆ C ⊆ d(E − p) + p.

Lemma 5.1 Let α � 1. Let p be an α-central point of C. For ε � 0, it holds that

C
(1+1/α)ε

2
p

(a)⊆ Cε
(b)⊆ C

(α+1)ε
2

p ; and for ε > 0 sufficiently small (ε < 2
α+1 ), it holds that

C
− (α+1)ε

2
p

(c)⊆ C−ε
(d)⊆ C

− (1+1/α)ε
2

p .

Before we prove Lemma 5.1, we address the following claim:

Claim 5.2 Let C ⊂ R
d be a compact convex set. Let p be an α-central point of C.

Let � be any line passing through p, and let z and y be the intersection points of �

with ∂C. Then for any two points β1 and β2 in C such that β1 − β2 is parallel to
p − z, it holds that |β1β2| � (1 + α)|pz|.

Proof of Claim 5.2 Assume that |β1β2| � 2|pz| (otherwise we are done) and that β1

and β2 are in ∂C. Consider the line passing through β1 and p, and the line passing
through β2 and z. Denote their intersection by w (the fact that |β1β2| � 2|pz| assures
that such an intersection exists). It is not hard to verify that w /∈ Co. We have that
|β1β2||pz| = |β1w|

|pw| � α+1, where the last inequality follows from the fact that p is central
and from the properties of our construction. This suffices to prove our assertion. �

Now we are ready to prove our lemma.
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Proof of Lemma 5.1 Notice that C is included in C
(1+1/α)ε

2
p , Cε , and C

(α+1)ε
2

p . For (a),

let z be the intersection of ∂C and the line passing through p and x ∈ C
(1+1/α)ε

2
p \ C

(here z is the intersection point closest to x). We have that |xz| � (1+1/α)ε
2 |pz| and

that both p and z are in C, thus x ∈ C ∪ ∂ ε
2
C = Cε . For (b), as before, let z be the

intersection of ∂C and the line passing through p and x ∈ Cε \C = (C∪∂ ε
2
C)\C. Let

c ∈ ∂C, and β1 and β2 in C such that x = c + ε
2 (β1 − β2). Consider the intersection

point w between the line passing through c and z and the line passing through p in
the direction β1 − β2. These lines intersect as all points p, c, z, and x lie on a two-
dimensional plane. Both c and z are on ∂C, which implies that the point w is not
in Co. Thus by Claim 5.2, it holds that |pw| � |β1β2|/(1 + α). Now |zx|

|pz| = |cx|
|pw| �

(1+α)ε
2 , which implies that x ∈ C

(1+α)ε
2

p .

For assertion (c), let x ∈ C
−(α+1)ε/2
p . Let y, z be the intersection points of ∂C

and the line passing through x and p (where z and x are on the same side of p). It
holds that |xz|/|pz| � (α + 1)ε/2. We now show that x + ε

2 (C − C) ⊆ C; this will
suffice for our proof. For any vector β1 − β2 in C − C, let w be the intersection of
the line passing through p in direction β1 −β2 with the boundary of C. By Claim 5.2
we have that |β1β2| � (α + 1)|pw|. Thus, ε

2 |β1β2| � ε(α+1)
2 |pw|. This implies that

x + ε
2 (β1 − β2) is in the triangle zwp (here we use the fact that |xz|/|pz| � (α +

1)ε/2), and thus in C. Finally, for (d), let x ∈ C−ε = C \ (∂ ε
2
C)o. Let y and z be the

intersection of ∂C and the line passing through p and x (as usual, z is on the same
side of p as x). It holds that x /∈ (z + ε

2 (C − C))o. Thus, the point w = z + ε
2 (y − z)

is on the line segment xz. Namely, |xz| � |wz| = ε
2 |yz| � (1+1/α)ε

2 |pz|. We conclude

that x ∈ C
− (1+1/α)ε

2
p . �

We now show that the center of mass of C and points of C implied by John’s
theorem are d-central. We note that Theorems 1.1 and 1.2 can be proven (with slight
modifications) when one considers the contraction C−ε

p for the points p which are
α-central.

Claim 5.3 Let C ⊂ R
d be a compact convex set. Let p be the center of mass of C,

or alternatively let p be a center point from John’s theorem [13]. Let � be any line
passing through p, and let z and y be the intersection of � with ∂C. It holds that
|zp|
|yp| ∈ [ 1

d
, d].

Proof The proof is immediate for a point p from John’s theorem. We consider the
center of mass p. Let z and y be the points that minimize the fraction |zp|

|yp| (here we
assume w.l.o.g. that |zp| � |yp|), and let � be the line connecting y and z. Let u be a
vector such that z is on the boundary of the slab su(C). We will show that |zp|

|yp| � 1
d

.

Let p′ be the point on � such that |zp′|
|yp′| = 1

d
. Let Hp′ be the u-hyperplane passing

through p′, and let Cp′ be the intersection of C and Hp′ . Let Hz be the u-hyperplane
passing through z. Let Cz be the set on Hz obtained by a linear extension of Cp′ with
respect to y. Namely, for each point αp′ in Cp′ , let αz be the point (in Hz) obtained by
the intersection of Hz with the line passing through y and αp′ . The set Cz is defined
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to consist of all such points αz. Consider the minimum convex body C∗ consisting of
the point y and the set Cz. It is not hard to verify that the center of mass of C∗ lies
on the hyperplane Hp′ . Moreover, C includes the portion of C∗ that lies on the same
side of Hp′ as y and is included in the portion of C∗ that lies on the same side of Hp′
as z. We conclude that the center of mass p of C must lie in the line segment p′y.
This implies that |zp|

|yp| � |zp′|
|yp′| = 1

d
. �

5.3 Properties of Our Operations

Lemma 5.2 (Continuity of contraction and expansion) Let C be a compact convex
set. For ε > 0, (Cε)−

ε
1+ε = C. If ε > 0 is sufficiently small (namely ε < 2

d+1 ), then

C ⊆ (C−ε)
(d+1)ε

2−(d+1)ε .

Proof For the first claim, let δ = ε
1+ε

. We first prove that su(C
ε) = sε

u(C). Notice that
su(C) is included in both su(C

ε) and sε
u(C). For one direction, let x ∈ sε

u(C) \ su(C).
Let y′, z′ be the points on ∂C that define su(C) (take z′ to be closer to x than y′ once
all three are projected on u). Consider the line � passing through x, in the direction
y′ − z′. Let y, z be the intersection points of � and the boundary of su(C) (take z to
be closer to x). As x ∈ sε

u(C) \ su(C), it holds that |xz|/|xy| = ε′
2+ε′ for some ε′ � ε.

Let x′ be on the line passing through y′ and z′ such that |x′z′|/|x′y′| = ε′
2+ε′ . It holds

that x′ ∈ C(ε) = Cε ⊆ su(C
ε).

It remains to prove su(C
ε) ⊆ sε

u(C). Assume that x ∈ su(C
ε) \ su(C). Thus there

exists x′ ∈ Cε such that x − x′ is orthogonal to u. Namely, there are y and z in C

colinear with x′ such that |x′z|/|x′y| � ε
2+ε

. But then, if we consider the intersec-
tion of the line passing through y and z with su(C), say at points y′ and z′ (with
y′ close to y), then |z′x′|/|x′y′| � |x′z|/|x′y| � ε

2+ε
. This implies that x′ ∈ sε

u(C).
However, as x − x′ is orthogonal to u, this also implies that x ∈ sε

u(C). Now,
(Cε)−δ = ⋂

u(su(C
ε))−δ = ⋂

u((su(C))ε)−δ = ⋂
u su(C) = C.

For the second claim, by John’s theorem [13], there exists an ellipsoid E cen-
tered at p ∈ C such that E ⊆ C ⊆ d(E − p) + p. Assume w.l.o.g. that p is the
origin. Consider the contraction C−ε

p of C with respect to p (as defined in Sect. 5.2).

Recall, by Lemma 5.1 and Claim 5.3, that C
−(d+1)ε/2
p ⊆ C−ε (for ε < 2

d+1 ). Now,

as A ⊆ B implies Aε ⊆ Bε (for ε > 0), we have C = 1
1−(d+1)ε/2 (C

−(d+1)ε/2
p ) =

(C
−(d+1)ε/2
p )

(d+1)ε/2
1−(d+1)ε/2 ⊆ (C−ε)

(d+1)ε/2
1−(d+1)ε/2 . �

Remark 5.2 The bound on ε in the second part of Lemma 5.2 may seem unnatural.
However, it is necessary as for certain convex sets C, the contraction C−ε is empty
once ε is larger than 2

d+1 . Thus, any expansion of C−ε in this case remains empty.

For example, consider the d-dimensional simplex C = {(x1, . . . , xd+1) ∈ R
d+1 |∑d+1

i=1 xi = 1}. For x ∈ C, it holds that x has a coordinate of value at most 1
d+1 .

It is not hard to verify that this implies that for ε > 2
d+1 , C−ε = ∅. We note that if

ε � 2/(d +1) and C−ε is not empty (and of full dimension), there exists an expansion
parameter δC > 0 such that C ⊆ (C−ε)δC .
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Using Theorem 5.1, we now obtain the following corollary of Lemma 5.2.

Corollary 5.1 (Continuity of contraction and expansion) For any sufficiently small
ε > 0, there exists δ > 0 such that for every positive ε′ < δ: C ⊆ (Cε)−ε′

, (Cε′
)−ε ⊆

C, C ⊆ (C−ε′
)ε , and (C−ε)ε

′ ⊆ C.

6 Concluding Remarks

In this work we have defined a notion of contraction and expansion of general convex
sets and applied them in the proof of two Helly-type theorems. Our theorems are
not constructive, as their proofs include points that may involve an exhaustive search
over the set S . The convex sets studied throughout were assumed to be compact (i.e.,
closed and bounded). For convex sets C which are not closed, one may define the
notion of contraction and expansion with respect to the closure of C. For convex sets
C which are unbounded, we extend the definition of one of the variants of Cε from
Sect. 5 to the following:

Definition 6.1 Let C be closed and convex, and let ε be any real (positive, negative,
or zero). If |C| � 1 or C = R

d , let Cε = C. Otherwise, let r(x,C) ∈ [−1,1] be the
closest point to 0 in the closure of the set

{ 〈z − x, y − x〉
〈y − x, y − x〉

}

z∈∂C,y∈C x,y,z colinear
.

Let ‖x‖C = 1+r(x,C)
1−r(x,C)

(if r(x,C) = 1, define ‖x‖C to be ∞). Let Cε = {x | ‖x‖C �
1 + ε}.

The above definition differs from that presented in Sect. 5 in the restriction that
y ∈ C instead of y ∈ ∂C. In general, for convex sets C with the property that any
infinite line in R

d either intersects ∂C in two points, is tangent to C, or does not
intersect ∂C at all, the definition above and that of Sect. 5 are equivalent. We refer
to such sets as proper. For example, bounded convex sets are proper. Sets C that are
not proper are sets which are in essence similar to half spaces—roughly speaking,
they consist of the (Minkowski) sum C′ + � for some convex set C′ and an infinite
(one-dimensional) ray �; or alternatively, they are contained in a half-space H and
contain points arbitrarily far from ∂H .

The proof of Theorem 1.1 can be altered to deal with sets C in S that may be
unbounded and proper. Namely, one needs to consider an unbounded and proper set
A = ⋂

C∈S C. Such A includes an infinite line �, which is also included in C for
each C ∈ S . As the sets considered are all proper, this implies that C = � + C′ where
C′ is a (d − 1)-dimensional convex set in the hyperplane orthogonal to � passing
through the origin. We may thus reduce the dimension of the problem by considering
the collection S = {C′}C∈S .

It is now simple to verify that our theorems hold for all convex sets C (proper
or not). This follows by the fact that Cε = ∅ for any ε < 0 when C is not proper.
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Specifically, Theorem 1.1 holds trivially when S contains a set which is not proper,
and in Theorem 1.2 one can discard of sets that are not proper and only consider the
sets in each Ci that are proper (for the latter, unbounded sets C are not considered to
be f -fat for any value of f ).
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