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Abstract Ulam asked in 1945 if there is an everywhere dense rational set, i.e., 1 a
point set in the plane with all its pairwise distances rational. Erdős conjectured that
if a set S has a dense rational subset, then S should be very special. The only known
types of examples of sets with dense (or even just infinite) rational subsets are lines
and circles. In this paper we prove Erdős’ conjecture for algebraic curves by showing
that no irreducible algebraic curve other than a line or a circle contains an infinite
rational set.

Keywords Rational distances · Erdős problems in discrete geometry · Rational
points

1 Introduction

We define a rational set to be a set S ⊂ R
2 such that the distance between any two

elements is a rational number. We are interested in the existence of infinite rational
distance sets on algebraic curves.

On any line, one can easily find an infinite rational set that is in fact dense. It is
also an easy exercise to find an everywhere dense rational subset of the unit circle.
On the other hand, it is not known if there is a rational set with 8 points in general
position, i.e., no 3 on a line, no 4 on a circle. In 1945, Anning and Erdős [1] proved
that any infinite integral set, i.e., where all distances are integers, must be contained
in a line. Problems related to rational and integral sets became one of Erdős’ favorite
subjects in combinatorial geometry [6–9, 11, 12].
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In 1945, when Ulam heard Erdős’ simple proof [5] of his theorem with Anning,
he said that he believed there is no everywhere dense rational set in the plane, see
Problem III.5 in [22] and also [10]. Erdős conjectured that an infinite rational set must
be very restricted, but that it was probably a very deep problem [10, 11]. Not much
progress has been made on Ulam’s question. There were attempts to find rational sets
on parabolas [3, 4], and there were some results on integral sets, in particular bounds
were found on the diameter of integral sets [15, 21]. Very recently Kreisel and Kurz
[18] found an integral set with 7 points in general position.

In this paper, we prove that lines and circles are the only irreducible algebraic
curves that contain infinite rational sets. Our main tool is Faltings’ Theorem [13].
We will also show that if a rational set S has infinitely many points on a line or on a
circle, then all but 4 resp. 3 points of S are on the line or on the circle. This answers
questions of Guy, Problem D20 in [14], and Pach, Sect. 5.11 in [2].

2 Main Result

Our main result is the following.

Theorem 2.1 Every rational set of the plane has only finitely many points in common
with an algebraic curve defined over R, unless the curve has a component which is a
line or a circle.

The two special cases, line and circle, are treated in more detail in the next theorem.

Theorem 2.2 If a rational set S has infinitely many points on a line or on a circle,
then all but 4 resp. 3 points of S are on the line or on the circle.

Note that there are infinite rational sets with all but 4 points on a line, and there are
infinite rational sets with all but 3 points on a circle. The circle case follows from the
line case by applying an inversion with rational radius and center one of the 4 points
not on the line. A construction of Huff [16, 19] gives an infinite rational set with all
but 4 points on a line.

We can formulate our Theorem 2.1 in a different way by using the term curve-
general position: we say that a point set S of R

2 is in curve-general position if no
algebraic curve of degree d contains more than d(d + 3)/2 points of S. Note that
d(d + 3)/2 is the number of points in general position that determine a unique curve
of degree d .

Corollary 2.3 If S is an infinite rational set in general position, then there is an
infinite S′ ⊂ S such that S′ is in curve-general position.

Proof Let S5 consist of any five points in S, and let T5 be the set of finitely many
points on the unique conic through those five points. Continue recursively; at step n,
add a point from S\Tn−1 to Sn−1 to get Sn. For each d such that d(d + 3)/2 ≤ n,
let Tn be the union of Tn−1 and the set of points of S that are on a curve of degree
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d through any d(d + 3)/2 points in Sn. Since each Tn is finite, we can always add
another point. Then the infinite union of the sets Sn is an infinite subset of S with the
required property. �

3 Proof of Theorem 2.1

3.1 General Approach

We will use the following theorem of Faltings [13].

Theorem (Faltings) A curve of genus ≥ 2, defined over a number field, contains only
finitely many rational points.

In this paper by curve (defined over a field K ⊂ R) we usually mean the zero set
in R

2 of a polynomial in two variables with coefficients from K . However, when we
consider the genus of a curve, we are actually talking about the projective variety
defined by the polynomial. For definitions, see [20].

First suppose that we have an infinite rational set S contained in a curve C of
genus ≥ 2, defined over R. We can move two points in S to (0,0) and (0,1), so
that by Lemma 3.2 below the elements of S are of the form (r1, r2

√
k). Then by the

remark after Lemma 3.2, the curve is defined over Q(
√

k). By Faltings’ theorem, S

must be finite.
Below we will show that if we have an infinite rational set S on a curve C1 of

genus 0 or 1, then all but finitely many of the points in S will in fact give points on
a curve C2 in R

3 of genus ≥ 2. More precisely, assuming that (0,0) and (0,1) are
in S, a point (r1, r2

√
k) will give a point (r1, r2

√
k, r3) on a curve C2, with all the

ri rational. Again we conclude by Faltings’ theorem that the original set S could not
have been infinite.

3.2 Two Lemmata

Rationality of distances in R
2 is clearly preserved by translations, rotations, and uni-

form scaling ((x, y) �→ (λx,λy) with λ ∈ Q). More surprisingly, rational sets are
preserved under certain central inversions. This will be an important tool in our proof
below.

Lemma 3.1 If we apply inversion to a rational set S, with center a point x ∈ S and
rational radius, then the image of S\{x} is a rational set.

Proof We may assume the center to be the origin and the radius to be 1. The proper-
ties of inversion are most easily seen in complex notation, where the map is z �→ 1/z.
Suppose that we have two points z1, z2 with rational distances |z1|, |z2| from the
origin and with |z2 − z1| rational. Then
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is also rational. �

A priori, points in a rational set could take any form. However, after moving two
of the points to two fixed rational points by translating, rotating, and scaling, the
points are almost rational points. The following simple lemma is well known among
researchers working with integer sets. As far as we know, it was proved first by Kem-
nitz [17].

Lemma 3.2 For any rational set S, there is a square-free integer k such that if a
similarity transformation T transforms two points of S into (0,0) and (1,0), then
any point in T (S) is of the form

(

r1, r2
√

k
)

, r1, r2 ∈ Q.

Note that this implies that any curve of degree d containing at least d(d + 3)/2
points from T (S) is defined over Q(

√
k).

3.3 Curves of Genus 1

Let C1 : f (x, y) = 0 be an irreducible algebraic curve of genus g1 = 1 and degree
d ≥ 3. Suppose that there is an infinite set S on C1 with pairwise rational distances.
Assume that the points O = (0,0) and (1,0) are on C1 and in S and that O is not a
singularity of C1. Below we will be allowed to make any other assumptions on C1
that we can achieve by translating, rotating, or scaling it, as long as we also satisfy
the assumptions above. In particular, we can use any of the infinitely many rotations
about the origin that put a different point of S on the x-axis.

We wish to show that the intersection curve C2 of the surfaces

X : f (x, y) = 0,

Y : x2 + y2 = z2,

has genus g2 ≥ 2.
Consider C1 as a curve in the z = 0 plane, and define the map π : C2 → C1

by (x, y, z) �→ (x, y), i.e., the restriction to C2 of the vertical projection from the
cone Y to the z = 0 plane. The preimage of a point (x, y) consists of the two points
(x, y,±√

x2 + y2), except when x2 + y2 = 0, which in C
2 happens on the two lines

x + iy = 0 and x − iy = 0. Then we can determine (or at least bound from below)
the genus of C2 using the Riemann–Hurwitz formula [20] applied to π ,

2g2 − 2 ≥ degπ · (2g1 − 2) +
∑

P∈C2

(eP − 1).

This is usually stated with equality for smooth curves, but we are allowing C1 and C2
to have singularities. To justify our use of it, observe that the map π corresponds to
a map π̃ : C̃1 → C̃2 between the normalizations of the curves, for which Riemann–
Hurwitz holds. The normalizations have the same genera as the original curves, and
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π̃ has the same degree. Furthermore a ramification point of π away from any sin-
gularities gives a ramification point of π̃ . It is enough for our purposes to have this
inequality, but there could be more ramification points for π̃ , above where the singu-
larities used to be.

Applying this formula with g1 = 1, d = 2, we have

g2 ≥ 1 + 1

2

∑

P∈C2

(eP − 1),

so to get g2 ≥ 2, we only need to show that π has some ramification point.
The potential ramification points are above the intersection points of C1 with the

lines x ± iy = 0, of which there are 2d by Bézout’s theorem, counting with multi-
plicities. Such an intersection point P can only fail to have a ramification point above
it if the curve has a singularity at P or if the curve is tangent to the line there. We
will show that there are only finitely many lines through the origin on which one of
those two things happens. Then certainly one of the infinitely many rotations of C1
that we allowed above will give an intersection point of C1 with x ± iy = 0 that has
a ramification point above it.

The intersection of a line y = ax with f (x, y) = 0 is given by pa(x) = f (x, ax) =
0, and if the point of intersection is a singularity or a point of tangency, then pa(x)

has a multiple root. We can detect such multiple roots by taking the discriminant
of pa(x), which will be a polynomial in a that vanishes if and only if pa(x) has
a multiple root. Hence for all but finitely many values of a, the line y = ax has d

simple intersection points with f (x, y) = 0. So indeed there is an allowed rotation
after which π is certain to have a ramification point.

3.4 Curves of Genus 0, d ≥ 4

Let C1 : f (x, y) = 0 be an irreducible algebraic curve of genus g1 = 0, and again
assume that it passes through the origin but does not have a singularity there. Then
Riemann–Hurwitz with the same map π as above gives

g2 ≥ −1 + 1

2

∑

P∈C2

(eP − 1),

so to get g2 ≥ 2 we need to show that there are at least 5 ramification points. As
above, we can ensure that the lines x ± iy each have d simple points of intersection.
Discounting the intersection point of the two lines, this gives 2d − 2 ramification
points. Hence if the degree of f is d ≥ 4, we are done.

3.5 Curves of Genus 0, d = 2,3

Let d = 3 and assume that f (x, y) = 0 is not a line or a circle. Consider applying
inversion with the origin as center to the curve. This is a birational transformation, so
does not change the genus. Therefore, when inversion increases the degree of f to
above 4, we are done.
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Algebraically, inversion in the circle around the origin with radius 1 is given by

(x, y) �→
(

x

x2 + y2
,

y

x2 + y2

)

,

and since this map is its own inverse, the curve f (x, y) = 0 is sent to the curve

C3 : (x2 + y2)k · f
(

x

x2 + y2
,

y

x2 + y2

)

= 0,

where k ≤ d is the lowest integer that makes this a polynomial. This curve is ir-
reducible if and only if the original curve is irreducible. Since f does not have a
singularity at the origin, it has a linear term ax + by with a, b not both zero. After
inversion this gives a highest-degree term

(ax + by)
(

x2 + y2)k−1
.

In our situation, d = 3, so if k = 3, the curve C3 has degree 2k − 1 = 5, and we are
done.

The only other possibility is that k = 2, which happens if x2 + y2 divides the
leading terms of f . We will treat these cases in a completely different way.

If d = 2, then applying inversion will give a curve of degree 3, unless its leading
terms are x2 + y2, which exactly means that it is a circle! So we treat this case by
reducing it to the d = 3 case.

Since f has degree 3 and genus 0, it must have a singularity. The singularity need
not be in our rational set, but it is always a rational point, so we can move it to the
origin, while maintaining the almost-rational form of the points in our rational set.
Then f must have the form

(ax + by)
(

x2 + y2) + cx2 + dy2 + exy.

Note that this is exactly what we get if we apply inversion to a quadratic that is not a
circle and goes through the origin.

In fact, we can ensure that (1,0) is on the curve again, so that a + c = 0. Then if
we divide by c, f is of the form

(−x + by)
(

x2 + y2) + x2 + dy2 + exy.

We can parameterize this curve using lines x = ty, giving the parameterization

y(t) = t2 + et + d

(t − b)(t2 + 1)
=: p(t)

q(t)
, x(t) = t · y(t).

If we let tj be a value of t that gives one of the points from our rational distance set,
it follows that for infinitely many t ,

(

y(t) − y(tj )
)2 + (

x(t) − y(tj )
)2 =

(
p(t)

q(t)
− p(tj )

q(tj )

)2

+
(

t · p(t)

q(t)
− tj · p(tj )

q(tj )

)2
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is a square. Then we can multiply by q(t)2q(tj )
2 to get infinitely many squares of the

form
(

p(t)q(tj ) − p(tj )q(t)
)2 + (

tp(t)q(tj ) − tjp(tj )q(t)
)2

.

This polynomial has degree 6 in t . It has a factor (t − tj )
2 and a factor t2 + 1, since

taking t = ±i gives (using q(±i) = 0)

(

p(±i)q(tj )
)2 + (±i · p(±i)q(tj )

)2 = 0.

Factoring these out, we get a quadratic polynomial Qj(t) in t . Its leading coefficient
is

(

t2
j + 1

)((

d2 + b2)t2
j + 2

(

b2e + db − d2b
)

tj + b2e2 + b2d2 + d2 + 2ebd
)

,

and its constant term is

(

t2
j + 1

)((

1 + (e + b)2)t2
j + 2(bd − b + de)tj + d2 + b2).

These polynomials in tj are not identically zero (if b and d were both 0, then f would
be reducible), hence we can pick tj so that they are not zero. Then in turn Qj(t) is a
proper quadratic polynomial, and since it is essentially a distance function in the real
plane, it cannot have real roots, so it has two distinct imaginary roots.

Therefore our infinite rational set gives infinitely many solutions to the equations

z2
j = (

t2 + 1
) · Qj(t).

Multiplying three of these together, and moving (t2 + 1)2 into the square on the left,
we get infinitely many solutions to

z2 = (

t2 + 1
)

Q1(t)Q2(t)Q3(t).

If there are no multiple roots on the right, then this is a hyperelliptic curve of degree 8,
so it has genus 3, hence cannot have infinitely many solutions, a contradiction.

The one thing we need to check is that we can choose the tj so that the Qj do not
have roots in common. We need some notation: write

Qj(t) = c2(tj )t
2 + c1(tj )t + c0(tj ),

where

c2(tj ) = (

1 + (e + b)2)t2
j + 2(bd + de − b)tj + d2 + b2

c1(tj ) = 2(bd + de − b)t2
j + 2

(

b2 + d2 − bed − bd − be − d
)

tj

+ 2
(

bd + b2e − bd2)

c0(tj ) = (

d2 + b2)t2
j + 2

(

b2e + db − d2b
)

tj + b2e2 + b2d2 + d2 + 2ebd.
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Suppose that for infinitely many tj , the polynomial Qj(t) has the same roots x1

and x2. Then for each of those tj , we have

c1(tj ) = −(x1 + x2) · c2(tj ), c0(tj ) = x1 · x2 · c2(tj ).

If we look at the coefficients of the tj terms in these equations, we see that

−x1 − x2 = 2(b2 + d2 − bed − bd − be − d)

2(bd − b + de)
= −b − be + d − d2

bd + de − b
,

x1 · x2 = 2(b2e + db − d2b)

2(bd + de − b)
= b · be + d − d2

bd + de − b
.

Here we can read off that the roots are x1 = b and x2 = be+d−d2

bd+de−b
, which is a contra-

diction, since the roots had to be imaginary.

4 Proof of Theorem 2.2

We will prove that if a rational set has infinitely many points on a line, then it can
have at most 4 points off the line. The corresponding statement for 3 points off a
circle then follows by applying an inversion. More precisely, suppose that we have a
rational set S with infinitely many points on a circle C and at least 4 points off that
circle. Assume that the origin is one of the points in S ∩ C, and apply inversion with
the origin as center and with some rational radius. That turns C into a line L, and we
get a rational set with infinitely many points on L and 4 other points. Moreover, the
new origin can be added to S, so that we get 5 points off the line, contradicting what
we will prove below. To see that the new origin has rational distance to all points in
S, observe that in complex notation the distances |z| to the old origin were rational
for all z ∈ S and that the distances to the new origin are 1/|z|.

To prove the statement for a line, our main tool will again be Faltings’ theorem,
but now applied to the hyperelliptic curve

y2 =
6

∏

i=1

(x − αi),

which has genus 2 if and only if the αi are distinct.
Suppose that we have a rational set S with infinitely many points on a line, say

the x-axis, and 5 or more points off that line. Then we can assume that 3 of those
points are above the x-axis and that one of them is at (0,1). Let the other two points
be at (a1, b1) and (a2, b2). Note that we are taking 3 points on one side of the line,
because we want to avoid having one point a reflection of another. If we had, say,
(a1, b1) = (0,−1), the argument below would break down.

Take a point (x,0) of S on the x-axis with x �= 0, a1, a2. Then we have that

x2 + 1, (x − a1)
2 + b2

1, and (x − a2)
2 + b2

2
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are rational squares, so that we get a rational point (x, y) on the curve

y2 = (

x2 + 1
)(

(x − a1)
2 + b2

1

)(

(x − a2)
2 + b2

2

)

.

This is a curve of genus 2, since the roots on the right-hand side are distinct: they

are ±i and x = ai ±
√

−b2
i for i = 1,2, which are distinct by the assumptions on the

points (ai, bi).
Therefore the curve has genus 2 and cannot contain infinitely many rational points,

contradicting the fact that S has infinitely many points on the line.
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