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Abstract It is a well-established fact that the witness complex is closely related to
the restricted Delaunay triangulation in low dimensions. Specifically, it has been
proved that the witness complex coincides with the restricted Delaunay triangula-
tion on curves, and is still a subset of it on surfaces, under mild sampling conditions.
In this paper, we prove that these results do not extend to higher-dimensional mani-
folds, even under strong sampling conditions such as uniform point density. On the
positive side, we show how the sets of witnesses and landmarks can be enriched, so
that the nice relations that exist between restricted Delaunay triangulation and wit-
ness complex hold on higher-dimensional manifolds as well. We derive from our
structural results an algorithm that reconstructs manifolds of any arbitrary dimension
or co-dimension at different scales. The algorithm combines a farthest-point refine-
ment scheme with a vertex pumping strategy. It is very simple conceptually, and it
does not require the input point sample to be sparse. Its running time is bounded by
c(d)n2, where n is the size of the input point cloud, and c(d) is a constant depending
solely (yet exponentially) on the dimension d of the ambient space. Although this
running time makes our reconstruction algorithm rather theoretical, recent work has
shown that a variant of our approach can be made tractable in arbitrary dimensions,
by building upon the results of this paper.
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1 Introduction

A number of areas of Science and Engineering deal with point clouds lying on or
near submanifolds of Euclidean spaces. Such data can be either collected through
measurements of natural phenomena or generated by simulations. Given a finite set
of sample points W , presumably drawn from an unknown manifold S, the goal is to
retrieve some information about S from W . This manifold learning process, which
is at the core of nonlinear dimensionality reduction techniques [31, 33], finds ap-
plications in many areas, including machine learning [6], pattern recognition [32],
scientific visualization [34], image or signal processing [28], and neural computa-
tion [19]. The nature of the sought-for information is very application-dependent,
and sometimes it is enough to inquire about the topological invariants of the mani-
fold, a case in which techniques such as topological persistence [9, 16, 23] offer a
nice mathematical framework. However, in some situations it is desirable to build
faithful approximations to the manifold, both in terms of topology and geometry.

This problem has received a lot of attention from the computational geometry
community, which proposed elegant solutions in low dimensions, based on the use
of the Delaunay triangulation D(W) of the input point set W , see [8] for a survey. In
these methods, the approximation takes the form of a simplicial complex extracted
from D(W). This complex is equal or close to DS(W), the Delaunay triangulation of
W restricted to the manifold S. What makes the Delaunay-based approach attractive
is that, not only does it behave well on practical examples, but its performance is
guaranteed by a sound theoretical framework. Indeed, the restricted Delaunay trian-
gulation is known to provide good topological and geometric approximations of sam-
pled planar curves or surfaces in 3-space, under mild sampling conditions [1, 2, 7].
The analysis on curves extends in fact beyond the planar case, to Euclidean spaces
of arbitrary dimensions [20]; yet, the corresponding reconstruction algorithms use
the prior knowledge that the object underlying the input data is one-dimensional, and
they are therefore unable to deal with higher-dimensional sampled objects.

Generalizing the above ideas to tackle the reconstruction of manifolds of (un-
known) arbitrary dimensions and co-dimensions seems difficult, mainly because a
given point set W may well-sample various objects with different topological types.
For instance, in the scenario depicted in Fig. 1, any dense point sample of the helical
curve is also a dense point sample of the torus on which the curve is drawn, thus
making the dimension of the object underlying the data uncertain. Another source of
uncertainty is noise, which makes it difficult to distinguish between sampling arte-
facts and small topological features of the underlying object, and which becomes
all the more problematic when the intrinsic dimensionality of the data remains un-
known. To overcome these issues, it has been suggested to strengthen the sampling
conditions, so that they can be satisfied by only one class of manifolds sharing the
same topological invariants [14, 21, 26]. In some sense, this is like choosing arbi-
trarily between the possible reconstructions and ignoring the rest of the information



Discrete Comput Geom (2009) 42: 37–70 39

Fig. 1 Helical curve drawn on a torus (top). Any dense sampling of the curve is also a dense sampling
of the torus. To deal with this ambiguity, the algorithm of [27] builds a sequence of complexes (bottom)
approximating the input at various scales, and maintains their Betti numbers (top)

carried by the input. Moreover, the new sets of conditions on the input are so strict
that they are hardly satisfiable in practice, thereby making the contributions rather
theoretical. Yet [14, 21, 26] contain a wealth of relevant ideas and results, some of
which are exploited in this paper.

A different and very promising approach [10, 12, 27, 30], reminiscent of topo-
logical persistence, builds a one-parameter family of complexes that approximate S

at various scales. The claim is that, for sufficiently dense W , the family contains a
long sequence of complexes carrying the same homotopy type as S. In fact, there can
be several such sequences, each one corresponding to a plausible reconstruction, see
Fig. 1. Therefore, performing a reconstruction on W boils down to finding the long
stable sequences in the one-parameter family of complexes. This approach to re-
construction stands in sharp contrast with previous work in the area. In [10, 12, 30],
the family of complexes is derived from the α-offsets (or, equivalently, from the α-
shapes) of the input W , where α ranges from zero to infinity. The theoretical guaran-
tees of [12] hold in a very wide setting, since W is assumed to be a sufficiently dense
sampling of a general compact set. In [27], the family is given by the witness com-
plex of L relative to W , or CW(L) for short, where L ⊆ W is a subset of landmarks
constructed iteratively, starting with L = ∅ and inserting each time the point of W

lying furthest away from L. Here, the points of W \ L do not belong to the simplicial
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complex, but they are used as witnesses, to drive the construction of the complex. It
is known that CW(L) coincides with DS(L) on smooth curves and is still included in
it on smooth surfaces [5, 27]. The assumptions on L in [27] are more stringent than
the ones on W , but this is not an issue since L is generated by the algorithm.

Pursuing the work initiated in [5, 14, 27], this paper studies the behavior of the re-
stricted Delaunay triangulations and witness complexes of points sampled from man-
ifolds of arbitrary dimensions (in particular, manifolds of dimensions 3 and higher).
Our first structural results (Sect. 3) are negative, namely: the structural properties of
restricted Delaunay triangulations and witness complexes on curves and surfaces do
not hold on manifolds of dimensions 3 or higher. The underlying intuition is that
the normals of DS(L) can be arbitrarily wrong if DS(L) contains badly-shaped sim-
plices, called slivers [14]. As a consequence, CW(L) may not be included in DS(L),
which may not be homeomorphic nor even homotopy equivalent to S (see Theo-
rem 2.4 below). This is true even if W and L satisfy strong sampling conditions, such
as being arbitrarily dense uniform samples of S. A direct consequence of these neg-
ative results is that the algorithm of [27] cannot work on manifolds of dimensions 3
or more.

On the positive side, we show how W and L can be enriched, so as to make the
structural results of [5, 27] hold on higher-dimensional manifolds (Sect. 4). To this
end, we assign a nonnegative weight ω(p) to each point p ∈ L, such that DS(L)

and CW(L) are now replaced by their weighted versions, DS
ω(L) and CW

ω (L). The
idea of assigning weights to the vertices comes from [13], where it was used to re-
move slivers from three-dimensional Delaunay triangulations. This sliver removal
technique was extended to higher dimensions by Cheng et al. [14], who showed that,
under sufficient sampling conditions on L, there exists a distribution of weights ω

such that DS
ω(L) is homeomorphic to S. Our main result is that, for the same distri-

bution of weights and under similar conditions on L, CW
ω (L) is included in DS

ω(L)

for all W ⊆ S. Since this is true in particular for W = S, combined with the fact
that CS

ω(L) contains DS
ω(L), we get that CS

ω(L) = DS
ω(L), which is homeomorphic

to S. This is a generalization of the result of [5] to higher-dimensional manifolds.
It is not quite practical since W has to be equal to S. In the more realistic case
where W is a finite subset of S, we enlarge it by replacing its points by balls of
same radius ζ : for sufficiently large values of ζ , this enlarged set Wζ contains S, and
hence DS

ω(L) ⊆ CWζ

ω (L). And if ζ is not too large, then CWζ

ω (L) is still included in

DS
ω(L). Thus, we obtain CWζ

ω (L) = DS
ω(L) under sufficient conditions on W,L, ζ .

Here again, the condition on L is stringent, but the one on W is mild.
Our positive structural results suggest combining the method of [27] with the

sliver exudation technique of [13], in order to make the approach work on higher-
dimensional manifolds (Sect. 5). Our combination is the simplest possible: at each
iteration of the algorithm, we insert a new point p in L, compute its best possible
weight, and update CWζ

ω (L). This algorithm is very simple conceptually, and to some
extent it can be viewed as a dynamic version of the algorithm of [14], where the De-
launay triangulation of W would be constructed progressively as the weights of the
points of W are computed. This raises the question of whether the weight assign-
ment process removes all the slivers from the vicinity of DS

ω(L), since some of the
weights are assigned in early stages of the course of the algorithm. We prove that all
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slivers are eventually removed at some point (Theorem 5.2) and that consequently
CWζ

ω (L) is homeomorphic to S, provided that W is a dense enough sampling of S.
The resulting algorithm has a running time bounded by c(d)|W |2, where c(d) is some
constant depending solely (yet exponentially) on d . This bound is comparable to the
ones obtained in previous work [14], as will be discussed in Sect. 6.

2 Background and Definitions

The ambient space is R
d , d ≥ 3, equipped with the usual Euclidean norm ‖p‖ =√∑d

i=1 p2
i .

2.1 Manifolds and Samples

All manifolds considered in this paper are compact closed submanifolds of R
d , of

dimension two or higher. The case of curves has already been addressed1 in [27].
The reach of a manifold S, or rch(S) for short, is the minimum distance of a point on
S to the medial axis of S. All manifolds in this paper are assumed to have a positive
reach. This is equivalent to saying that they are C1-continuous and that their normal
vector field satisfies a Lipschitz condition [24].

Given a (finite or infinite) subset L of a manifold S and a positive parameter ε, L

is an ε-sample of S if every point of S is at Euclidean distance at most ε to L. This
sampling condition amounts to saying that L achieves some minimal local density
everywhere on the manifold S. Note however that L does not have to be uniformly
sampled, although the bound ε is uniform. To make the density of L uniform, one
can add the constraint that L is ε-sparse, that is, the pairwise Euclidean distances
between the points of L are all at least ε. Note that an ε-sparse sample of a compact
set is always finite.

2.2 Simplex Shape

Given k + 1 points p0, . . . , pk ∈ R
d , [p0, . . . , pk] denotes the k-simplex of vertices

p0, . . . , pk . The geometric realization of this simplex is the convex hull of p0, . . . , pk ,
which has dimension k if the vertices are affinely independent. Following [15, 29],
we call sliver measure of [p0, . . . , pk] the ratio2

�
([p0, . . . , pk]

) = vol([p0, . . . , pk])
min{‖pi − pj‖, 0 ≤ i < j ≤ k}k ,

where vol([p0, . . . , pk]) denotes the volume of the convex hull of p0, . . . , pk in R
k .

In the special case where k = 1, we have �([p0,p1]) = 1 for any edge [p0,p1].

1The results of [27] apply to Lipschitz curves in the plane, but they can be extended to smooth curves in
higher dimensions in a straightforward manner.
2The definition of [15, 29] generalizes the one of [13] to higher-dimensional simplices. It departs from the
definition of [14], which introduced a bug in the proof of Lemma 10 of the same paper.
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We extend the notion of sliver measure to the case k = 0 by imposing �([p0]) =
1 for any vertex p0. Given �̄ ≥ 0, simplex [p0, . . . , pk] is said to be a �̄-sliver if
�([p0, . . . , pk]) < �̄k/k!. For sufficiently small �̄, this means that the volume of the
simplex is small compared to the volume of the diametral k-ball of its shortest edge.
As a result, the simplex is badly-shaped. Note however that having a good sliver
measure does not always mean being well-shaped [13]. Parameter �̄ is called the
sliver bound in the sequel.

2.3 Weighted Points, Delaunay Triangulation, and Witness Complex

Given a finite point set L ⊂ R
d , a distribution of weights on L is a nonnegative real-

valued function ω : L → [0,∞). The quantity maxu∈L,v∈L\{u} ω(u)
‖u−v‖ is called the

relative amplitude of ω. Given an unweighted point u ∈ R
d , the weighted distance

of u to some weighted point v ∈ L is ‖u − v‖2 − ω(v)2. Similarly, the weighted
distance between two points u,v ∈ L is ‖u − v‖2 − ω(u)2 − ω(v)2. This is actually
not a metric, since it satisfies neither the nonnegativity condition nor the triangle
inequality.

Given a finite point set L ⊂ R
d and a distribution of weights ω on L, we denote

by Dω(L) the weighted Delaunay triangulation of L, which is the dual complex of
the Voronoi diagram of L in the weighted metric. For any simplex σ of Dω(L), we
denote by Vω(σ ) the face of the weighted Voronoi diagram of L that is dual to σ .
Whenever the relative amplitude of ω is less than 1

2 , the points of L have nonempty
cells in the weighted Voronoi diagram of L, and in fact each point of L belongs to its
own cell [13]. As a consequence, every point of L is a vertex of Dω(L).

Given any subset W of R
d , we call DW

ω (L) the weighted Delaunay triangulation
of L restricted to W . In the special case where all the weights are equal, Dω(L) co-
incides with the standard Euclidean Delaunay triangulation and is therefore denoted
D(L). Similarly, Vω(σ ) becomes V(σ ), and DW

ω (L) becomes DW(L).

Definition 2.1 Let W,L be two arbitrary subsets of R
d such that L is finite, and let

ω : L → [0,∞) be a distribution of weights on L.

• Given a point w ∈ W and a simplex σ = [p0, . . . , pk] with vertices in L, w is a
ω-witness of σ (or simply w ω-witnesses σ ) if p0, . . . , pk are among the k + 1
nearest neighbors of w in the weighted distance, that is, ∀i ∈ {0, . . . , k}, ∀q ∈ L \
{p0, . . . , pk}, ‖w − pi‖2 − ω(pi)

2 ≤ ‖w − q‖2 − ω(q)2.
• The ω-witness complex of L relative to W , or CW

ω (L) for short, is the maximum
abstract simplicial complex with vertices in L, whose faces are ω-witnessed by
points of W .

This definition comes from [17, 18]. From now on, W will be referred to as the set
of witnesses, and L as the set of landmarks. In the special case where all the weights
are equal, CW

ω (L) coincides with the witness complex in the standard Euclidean norm
and is therefore denoted CW(L).

Given a distribution of weights ω on L, for any simplex σ = [p0, . . . , pk] of
DW

ω (L) and any point w ∈ W lying on the weighted Voronoi face dual to σ , we
have ‖w − pi‖2 − ω(pi)

2 = ‖w − pj‖2 − ω(pj )
2 ≤ ‖w − q‖2 − ω(q)2 for all
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i, j ∈ {0, . . . , k} and all q ∈ L \ {p0, . . . , pk}. Hence, w is a ω-witness of all the
subsimplices of σ , which therefore belong to CW

ω (L). As a result,

Corollary 2.2 For any subsets W,L ⊆ R
d with L finite, for any ω : L → [0,∞),

DW
ω (L) ⊆ CW

ω (L).

DW
ω (L) is sometimes called the strong witness complex of L relative to W in the

literature [18]. The following result, due to de Silva [17], relates the weighted witness
complex CW

ω (L) to the full weighted Delaunay triangulation Dω(L):

Theorem 2.3 (Corollary 7.6 of [17]) For any subsets W,L ⊆ R
d with L finite, for

any ω : L → [0,∞), we have CW
ω (L) ⊆ Dω(L). Moreover, for any simplex σ of

CW
ω (L), the weighted Voronoi face dual to σ intersects the convex hull of the ω-

witnesses (among the points of W ) of σ and of its subsimplices.

On one- and two-dimensional manifolds, the unweighted witness complex is
closely related to the unweighted restricted Delaunay triangulation [5, 27], which
provides good topological and geometric approximations [1, 2]. Unfortunately, these
properties do not extend to higher-dimensional manifolds, even under stronger sam-
pling conditions:

Theorem 2.4 For any positive constant μ < 1/3, there are a closed compact hy-
persurface S of positive reach in R

4 and an Ω(ε)-sparse O(ε)-sample L of S, with
ε = μrch(S), such that DS(L) is not homotopy equivalent to S. The constants hidden
in the Ω and O notations are absolute and do not depend on μ. In addition, for any
δ > 0, there is a δ-sample W of S such that CW(L) neither contains nor is contained
in DS(L). Here, W can be made indifferently finite or infinite.

The proof of this theorem, detailed in Sect. 3 of the paper, builds on an exam-
ple of [14, §11]. The intuition is that, when DS(L) contains slivers, it is possible to
make its normals turn by a large angle (say π/2) by perturbing the points of L in-
finitesimally. Then, the combinatorial structure of DS(L) can be changed arbitrarily
by small perturbations of S. The consequence is that DS(L) may not be homotopy
equivalent to S, and it may not contain all the simplices of CW(L) either. In addition,
as emphasized in [27], for any k ≥ 2, the k-simplices of DS(L) may have arbitrarily
small cells in the restricted Voronoi diagram of L of order k + 1, which implies that
they may not be witnessed in W if ever W � S.

2.4 Weighted Cocone Complex

Our proofs make use of the so-called cocone complex, which was first introduced
by Amenta, Choi, Dey, and Leekha [3] in the context of 3d surface reconstruction
from point samples, and which was later on adapted by Cheng, Dey, and Ramos [14]
to the case of weighted point sets lying on manifolds of arbitrary dimensions and
co-dimensions.

Given a finite subset L of R
d and a distribution of weights ω on L, we say that the

weighted points of L lie in general position if no point of R
d is equidistant to d + 2
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points of L in the weighted distance and if no d +1 points on the convex hull of L are
coplanar. Under this assumption, every simplex of Dω(L) has dimension at most d .
It is always possible to perturb the points of L or their weights infinitesimally, so that
the weighted point set L lies in general position. Therefore, in the rest of the paper
we will assume implicitly that the weighted points of L lie in general position.

At any point p on a manifold S, there exist a tangent space T (p) and a nor-
mal space N(p). These two subspaces of R

d are orthogonal, and their direct sum
is R

d . For any angle value θ ∈ [0,π/2], we call θ -cocone of S at p, or Kθ (p) for
short, the cone of semi-aperture θ around the tangent space of S at p: Kθ (p) = {q ∈
R

d | ∠(pq,T (p)) ≤ θ}. The name cocone refers to the fact that Kθ (p) is the com-
plement of a cone of semi-aperture π

2 − θ around the normal space of S at p.
Given an angle θ ∈ [0,π/2], a manifold S, a finite point set L ⊂ S, and a dis-

tribution of weights ω : L → [0,∞), the weighted θ -cocone complex of L, denoted
Kθ

ω(L), is the subcomplex of Dω(L) made of the simplices whose dual weighted
Voronoi faces intersect the θ -cocone of at least one of their vertices. This means that
a simplex [p0, . . . , pk] of Dω(L) belongs to Kθ

ω(L) if and only if its dual weighted
Voronoi face intersects Kθ (p0) ∪ · · · ∪ Kθ (pk). Note that the cones in [14] are de-
fined around approximations of the tangent spaces of S at the points of L. However,
the results of [14] hold a fortiori when the approximations of the tangent spaces are
error-free, which is the case here.

Theorem 2.5 (Lemmas 13, 14, 18 of [14]) For any sliver bound �̄ > 0, there exists
a constant c�̄ > 0 such that, for any manifold S, for any ε-sparse 2ε-sample L of S

with ε ≤ c�̄rch(S), for any distribution of weights ω : L → [0,∞) of relative ampli-

tude less than 1
2 , if Kπ/32

ω (L) has no �̄-sliver, then Kπ/32
ω (L) coincides with DS

ω(L),
which is homeomorphic to S.

It is also proved in [14] that, for any ω̄ ∈ (0,1/2), there exists a distribution of
weights ω on L, of relative amplitude at most ω̄, that removes all �̄-slivers from
Kπ/32

ω (L). This is true provided that �̄ is sufficiently small compared to ω̄ and that
ε ≤ c�̄rch(S) (as in Theorem 2.5, the choice of �̄ influences the bound on ε). Note
that the results of [14] hold in fact in the slightly more general setting where ε is a
(nonuniform) 1-Lipschitz function, everywhere bounded by a fraction of the distance
to the medial axis of S, see [14, §13].

2.5 Useful Results

We will make use of the following Lemma from [26], whose proof holds the same in
our context:

Lemma 2.6 (Lemma 6 of [26]) Let S be a manifold, and let p,q ∈ S be such that

‖p − q‖ < rch(S). Then, inf{‖q − q ′‖, q ′ ∈ T (p)} ≤ ‖p−q‖2

2rch(S)
, and ∠(pq,T (p)) ≤

arcsin ‖p−q‖
2rch(S)

.

We will also use the following results from [14], whose proofs have been adapted
to our context in Appendix:
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Lemma 2.7 (Lemma 2(ii) of [14]) Let S be a manifold and θ ∈ [0,π/2] an an-
gle value. Let v ∈ S and p ∈ Kθ (v) be such that ‖p − v‖ < 1

4 rch(S). Let q be the
orthogonal projection of p onto T (v), and q ′ the point of S closest to q . Then,
‖q ′ − p‖ ≤ (sin θ + 2‖p−v‖

rch(S)
)‖p − v‖.

Lemma 2.8 (Lemma 3 of [14]) Let S be a manifold and θ ∈ [0,π/2) an angle value.
Let L be an ε-sample of S with ε < 1

9 (1 − sin θ)2rch(S). For any distribution of

weights ω : L → [0,∞) of relative amplitude less than 1
2 , for any v ∈ L, and any

p ∈ Kθ (v) ∩ Vω(v), we have ‖p − v‖ ≤ 3ε
1−sin θ

.

3 Negative Structural Results

This section provides a series of counter-examples that prove the statement of Theo-
rem 2.4 correct. Our first example shows that DS(L) may not always be homeomor-
phic to S, even though L is an Ω(ε)-sparse O(ε)-sample of S for arbitrarily small ε

(Lemma 3.1). Our construction builds on an example of [14, §11], which deals with
hypersurfaces in R

4. The intuitive idea is that, when DS(L) contains badly-shaped
tetrahedra, it is possible to make its normals turn by a large angle (say π

2 ) by per-
turbing the points of L infinitesimally. It follows that the combinatorial structure
of DS(L) can be modified by small perturbations of S. We then extend our counter-
example to show that DS(L) may even not be homotopy equivalent to S (Lemma 3.2).
Finally, we show that CW(L) may not be included in DS(L), even for arbitrarily
dense sets W ⊆ S (Lemma 3.3). The fact that CW(L) may not contain DS(L) either
if W � S has already been proved in [27].

Lemma 3.1 For any positive constant μ < 1
3 , there exist a compact closed hypersur-

face S in R
4 and an Ω(ε)-sparse O(ε)-sample L of S, with ε = μrch(S), such that

DS(L) is not homeomorphic to S. The constants hidden in the Ω and O notations
are absolute and do not depend on μ.

Proof Let � = 2
μ

. In R
4, endowed with an orthonormal frame (x, y, z, t), we con-

struct a hypersurface S of reach �
2 = 1

μ
. Consider the Minkowski sum of hypercube

[−�
2 , �

2 ]4 with the ball of radius �
2 centered at the origin. The result is a smoothed-

out version of hypercube [−�,�]4, as illustrated in Fig. 2 (left). Let S be its bound-
ary. The reach of S is �

2 , as shown in Fig. 2 (right). Let ε = μrch(S) = 1, and let δ > 0
be an arbitrarily small parameter. Consider points u = (1,0,0,�), v = (1,1,0,�),
w = (0,1,0,�), and p0 = (0,0, δ,�). Let c0 = ( 1

2 , 1
2 , δ

2 ,�). It is easily seen that
c0 is the circumcenter of [u,v,w,p0]. Moreover, all these points belong to S, which
coincides with hyperplane t = � in their vicinity. Let r0 = ‖c0 − u‖ = ‖c0 − v‖ =
‖c0 − w‖ = ‖c0 − p0‖. We generate an ε-sparse 2ε-sample L0 of S by an iterative
process, starting with L0 = {u,v,w,p0} and inserting at each iteration the point of
S lying furthest away from the current point set L0, until the farthest point of S is
no farther than 2ε from L0. Since S is compact, the process terminates, and the out-
come is a 2ε-sample of S. Moreover, since u,v,w,p0 lie at least ε away from one
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Fig. 2 Left: 2-d version of hypersurface S (bold), defined as the boundary of the Minkowski sum of
hypercube [−�

2 , �
2 ]2 (solid) with the ball of radius �

2 centered at the origin (copies of this ball are

dashed). Hypercube [−�,�]2 is marked by dotted lines. Right: S and its medial axis

Fig. 3 Left: tetrahedron [u,v,w,p0] and its dual Voronoi edge. Right: after perturbation of S

another and since every point inserted in L0 lies at least 2ε away from L0 at the time
of its insertion, L0 is ε-sparse. Finally, no point of ball B(c0, r0) lies farther from

{u,v,w,p0} than 2r0 = 2
√

1
2 + δ2

4 , which is less that 2ε since δ is arbitrarily small.
It follows that the interior of B(c0, r0) contains no point of L0, which implies that
[u,v,w,p0] belongs to DS(L0), its dual Voronoi edge intersecting S at c0. Observe
also that, since u,v,w,p0 belong to hyperplane t = �, the normal of [u,v,w,p0] is
aligned with vector (0,0,0,1), as shown in Fig. 3 (left).

We now deform S slightly and create a small bump at c0 such that the top of
the bump is moved by δ

2 into the t-dimension, outward the hypercube. This bump
changes the local feature size of S. However, since δ is arbitrarily small, the radius
of curvature of the bump can be forced to be at least �

2 , which implies that the reach
of S remains equal to �

2 = 1
μ

. Furthermore, since c0 is the center of a Delaunay ball
of radius greater than 1, we can assume that δ is small enough for the points of L0
to remain on S. Let c = ( 1

2 , 1
2 , δ

2 ,� + δ
2 ) be at the top of the bump. Since the points
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of L0 are located in hyperplane t = � in the vicinity of [u,v,w,p0], c is equidistant
to u,v,w,p0, and closer to these points than to any other point of L0. This implies
that the open ball Bc = B(c,‖c − u‖) contains no point of L0 and has u,v,w,p0

on its bounding sphere. Hence, Bc is a Delaunay ball circumscribing [u,v,w,p0],
and c belongs to the Voronoi edge dual to [u,v,w,p0]. Moreover, since u,v,w and
(0,0,0,�) are cocircular, ∂Bc passes also through (0,0,0,�).

We deform S further by creating another small bump, at point (0,0,0,�) this
time, so as to move this point by δ into the t-dimension, outward the hypercube. Let
p = (0,0,0,� + δ) be the top of the bump, see Fig. 3 (right). A quick computation
shows that ‖c − p‖ = ‖c − u‖, which implies that p ∈ ∂Bc . Here again, by choosing
δ sufficiently small, we can make sure that the radius of curvature of the bump is at
least �

2 , which means that the reach of the deformed hypersurface is still �
2 = 1

μ
.

We can also make sure that the bump of p is disjoint from the bump of c since
‖c − p‖ > 1√

2
, and that the points of L0 \ {p0} remain3 on S. It follows that Bc

is empty of points of L, where L is defined by L = L0 ∪ {p} \ {p0}. Since ∂Bc

contains u,v,w,p, Bc is a Delaunay ball circumscribing [u,v,w,p]. Equivalently,
c belongs to the Voronoi edge e dual to [u,v,w,p]. Note also that L is an (ε − δ)-
sparse (2ε + δ)-sample of S.

Since [u,v,w,p] is included in hyperplane z = 0, its dual Voronoi edge e is
aligned with (0,0,1,0), as illustrated in Fig. 3 (right). This edge is incident to four
Voronoi 2-faces, which are dual to the four facets of [u,v,w,p]. These 2-faces can
be seen as extrusions, into the z-dimension (0,0,1,0), of the edges of the Voronoi
diagram of {u,v,w,p} inside hyperplane z = 0. Among these Voronoi edges, two
lie above the plane t = � + δ

2 , and two lie below. As a result, in R
4, two Voronoi

2-faces incident to e lie above hyperplane t = � + δ
2 . These two Voronoi 2-faces do

not intersect S, except at c and possibly at the bump of p. Now, the circumradii of

the facets of [u,v,w,p] are at most ‖c − u‖ =
√

1+δ2√
2

< μrch(S), thus, inside hy-
perplane z = 0, Amenta and Bern’s normal lemma [1, Lemma 7] states that the edges

of the Voronoi diagram of {u,v,w,p} make angles of at most arcsin μ
√

3
1−μ

< π
3 with

vector (0,0,0,1). As a consequence, any Voronoi 2-face f incident to e in R
4 makes

an angle of at most π
3 with the plane passing through c, of directions (0,0,1,0) and

(0,0,0,1) (note that the affine hull aff(f ) intersects this plane along the line aff(e)).
Since p lies 1√

2
away from this plane and only δ

2 above c, for sufficiently small δ,

the Voronoi 2-faces incident to e lying above hyperplane t = � + δ
2 do not inter-

sect the bump of p. As a consequence, they intersect S only at c, and therefore their
dual Delaunay triangles are incident to exactly one tetrahedron of DS(L), namely
[u,v,w,p]. Hence, DS(L) is not a closed hypersurface, and for this reason, it cannot
be homeomorphic to S. �

Observe that the construction performed in the above proof leads to a degenerate
case, where the Voronoi edge e dual to tetrahedron [u,v,w,p] intersects S tangen-

3They lie at least ε away from p0 and hence at least ε − δ away from (0,0,0,�).
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tially at c. This degeneracy can be removed by inflating the bump of c infinitesimally,
so that it intersects e twice and transversally, but still no other Voronoi edge.

Note also that tetrahedron [u,v,w,p] is a sliver, since vertex p lies close to the
affine hull of [u,v,w]. The original counter-example of [14] was designed to high-
light the fact that the normals of slivers in the restricted Delaunay triangulation may
differ significantly from the normals of the underlying manifold. This is not true for
non-sliver simplices, as shown in Lemma 15 of [14]. In this respect, the fact that
[u,v,w,p] is a sliver is crucial for our counter-example to work.

Lemma 3.2 For any positive constant μ < 1
3 , there exist a compact closed hyper-

surface S in R
4 and an Ω(ε)-sparse O(ε)-sample L of S, with ε = μrch(S), such

that DS(L) is not homotopy equivalent to S. The constants hidden in the Ω and O

notations are absolute and do not depend on μ.

Proof Let � = 2
μ

, and let δ > 0 be an arbitrarily small parameter. We begin our
analysis with the example built in the proof of Lemma 3.1. We will modify S and L

in such a way that tetrahedron [p,u, v,w] will no longer belong to DS(L) while its
four facets will still. This will prevent DS(L) from being homotopy equivalent to S.

Consider point q = ( 1+√
2

2 , 1
2 , δ2,� + δ). The distance of q to hyperplane t = �

is δ, which is arbitrarily small. Hence, as explained in the proof of Lemma 3.1, it
is possible to deform S slightly by creating a small bump of radius of curvature at

least �
2 at point ( 1+√

2
2 , 1

2 , δ2,�), so that S now passes through q while its reach re-
mains �

2 = 1
μ

. Moreover, since q lies farther than 1
2 from {p,u, v,w}, we can assume

without loss of generality that its bump does not affect the positions of p,u, v,w.

The circumcenter of pentahedron [p,u, v,w,q] is c′ = ( 1
2 , 1

2 , δ2

2 ,� + δ
2 ), and its

circumradius r ′ is less than ε = 1 (for sufficiently small δ). It follows that every point
of S lying in the ball B(c′, r ′) is at distance O(ε) of {p,u, v,w,q}. In addition, q

is farther than ε
2 from {p,u, v,w}. Therefore, if we modify L by inserting q and

deleting all the points that lie in the interior of B(c′, r ′), L remains an Ω(ε)-sparse
O(ε)-sample of S. Moreover, [p,u, v,w,q] is now a Delaunay pentahedron, whose
dual Voronoi vertex is c′.

Note that line (c, c′) is the affine hull of the Voronoi edge e dual to [p,u, v,w]
and that c′ is an endpoint of e, see Fig. 4 (top). Recall that, among the four 2-faces
incident to e, two lie above hyperplane t = � + δ

2 . Let fpuv and fpvw denote these
two 2-faces. They are dual to triangles [p,u, v] and [p,v,w], respectively, since p

lies above hyperplane t = �, which contains [u,v,w]. Moreover, fpuv and fpvw are
convex polygons whose boundaries are two cycles of Voronoi edges that intersect
each other along e. In the cycle of ∂fpuv , one edge adjacent to e, denoted epuvq ,
is dual to tetrahedron [p,u, v, q]. Similarly, in the cycle of ∂fpvw , one edge adja-
cent to e, denoted epvwq , is dual to [p,v,w,q]. Note that c′ is an endpoint of both
epuvq and epvwq . Moreover, it can be easily checked that the line aff(epuvq) passes

also through point cpuvq = ( 1
2 + δ2(δ2+1)

1+√
2

, 1
2 ,− 1

2 ,� + δ
2 + δ(δ2+1)

1+√
2

), while the line

aff(epvwq) passes through cpvwq = ( 1
2 , 1

2 + δ2(δ2 + 1),− 1
2 ,�+ δ

2 + δ(δ2 + 1)). This
implies that epuvq and epvwq make angles of O(δ) with hyperplane t = �+ δ

2 . So, we
are in a situation where tetrahedron [p,u, v,w] has a horizontal dual edge, while two
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Fig. 4 Top: pentahedron [p,u, v,w,q] and the duals of [p,u, v,w], [p,u, v, q], and [p,v,w,q]. Bottom:
the bump of cpuvq and cpvwq (the bump of c has been slightly deflated)

of its adjacent tetrahedra, namely [p,u, v, q] and [p,v,w,q], have almost horizontal
dual edges, as illustrated at the top of Fig. 4.

Since ‖cpuvq − p‖ = ‖cpuvq − u‖ = ‖cpuvq − v‖ = ‖cpuvq − q‖ < ‖cpuvq − w‖,
which is less than ε = 1 for sufficiently small δ, we can modify4 L so that the ball
B(cpuvq,‖cpuvq − q‖) contains no point of L in its interior, while L still remains an
Ω(ε)-sparse O(ε)-sample of S. Similarly, we can assume without loss of generality
that B(cpvwq,‖cpvwq − q‖) is a Delaunay ball. It follows that cpuvq ∈ epuvq and
cpvwq ∈ epvwq . Since cpuvq and cpvwq lie O(δ) away from each other, O(δ) above
hyperplane t = �, and Ω(ε) away from L, we can deform S by creating a bump
passing through cpuvq and cpvwq , of height O(δ) and radius of curvature at least �

2 ,
while maintaining the points of L on S, see Fig. 4 (bottom). Moreover, since cpuvq

and cpvwq also lie Ω(ε) away from c, we can assume without loss of generality
that their bump does not touch the bump of c. It follows that tetrahedra [p,u, v,w],
[p,u, v, q], and [p,v,w,q] belong to DS(L), while S is still tangent at c to the
Voronoi edge e dual to tetrahedron [p,u, v,w]. We call S+ the current version of
hypersurface S, and DS+

(L) the Delaunay triangulation of L restricted to S+.

4For instance, we can simply delete the points of L that lie in the interior of the ball B(cpuvq ,‖cpuvq −
q‖).
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Our last operation consists in deflating slightly the bump of c, so that S no longer
intersects e, and thus [p,u, v,w] no longer belongs to DS(L), as illustrated at the
bottom of Fig. 4. Note however that [p,u, v, q] and [p,v,w,q] (and thus triangles
[p,u, v] and [p,v,w]) are still in DS(L), since the bump of cpuvq and cpvwq is
disjoint from the bump of c. Recall also that the Voronoi 2-faces dual to [p,u,w]
and [u,v,w] lie below hyperplane t = �+ δ

2 and that they make angles of at most π
3

with vector (0,0,0,1). Since the deflation of the bump of c is arbitrarily small, the
Voronoi 2-faces dual to [p,u,w] and [u,v,w] still intersect S. As a consequence,
the two triangles remain in DS(L). We call S− the current version of hypersurface S,
and DS−

(L) the Delaunay triangulation of L restricted to S−.
The result of these operations is that, although L is an Ω(ε)-sparse O(ε)-sample

of both hypersurfaces S+ and S−, whose homotopy types and reaches are the same as
the ones of S, DS+

(L) and DS−
(L) are different. Specifically, tetrahedron [p,u, v,w]

is contained in DS+
(L) but not in DS−

(L), whereas its facets belong to both com-
plexes. It follows that the Euler characteristics of DS+

(L) and DS−
(L) differ,5 which

implies that the complexes have different homotopy types. Therefore, at least one of
them is not homotopy equivalent to the 3-sphere S. �

Lemma 3.2 proves the first part of the statement of Theorem 2.4. We now turn our
focus to witness complexes and show the following result, which, combined with the
negative results of [27], proves the second part of the statement of Theorem 2.4:

Lemma 3.3 For any positive constants μ,ν < 1
3 , there exist a compact closed hy-

persurface S in R
4, an Ω(ε)-sparse O(ε)-sample L of S, and a δ-sample W of S,

with ε = μrch(S) and δ = νrch(S), such that CW(L) is not included in DS(L). The
constants hidden in the Ω and O notations are absolute and do not depend on μ

nor ν. Moreover, W can be made indifferently finite or infinite, and arbitrarily dense.

Proof Let S−, L, e, and c be defined as in the proof of Lemma 3.2. Recall that
tetrahedron [p,u, v,w] does not belong to DS−

(L), whereas its facets do. We assume
without loss of generality that c is not an endpoint of the Voronoi edge e, which means
that the bounding sphere of the Delaunay ball B(c,‖c − p‖) contains no point of L

other than p,u, v,w. This condition can be ensured by an infinitesimal perturbation
of the points of L \ {p,u, v,w}. Let dc = minp′∈L\{p,u,v,w} ‖c − p′‖. This quantity is
greater than ‖c − p‖ since ∂B(c,‖c − p‖) contains no point of L \ {p,u, v,w}.

Consider any (finite or infinite) set of witnesses W ⊆ S− such that, for each
facet σ of [p,u, v,w], W contains at least one point of S− ∩ V(σ ) (every such
point witnesses σ and its subsimplices). Assume further that W contains the top
point of the bump of c (call this point c′′). In the last stage of the perturbation
of S described in the proof of Lemma 3.2, we slightly deflated the bump of c,
so that c′′ lies strictly below c. Note that p is the vertex of [p,u, v,w] lying far-
thest away from c′′. Since the deflation is arbitrarily small, we can assume with-
out loss of generality that ‖c − c′′‖ < 1

2 (dc − ‖c − p‖). This implies that the ball

5Specifically, χ(DS+
(L)) = χ(DS−

(L)) − 1.
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B(c′′,‖c′′ − p‖) ⊆ B(c,‖c − p‖ + 2‖c − c′′‖) is included in the interior of B(c, dc).
As a result, B(c′′,‖c′′ − p‖) contains no point of L \ {p,u, v,w}. Since p,u, v,w

belong to B(c′′,‖c′′ −p‖), tetrahedron [p,u, v,w] is witnessed by c′′. And since the
facets of [p,u, v,w] and their subsimplices are witnessed by points of W , [p,u, v,w]
belongs to the witness complex CW(L). However, we saw in the proof of Lemma 3.2
that [p,u, v,w] does not belong to DS−

(L). �

4 Positive Structural Results

In this section, ω̄ ∈ (0,1/2) and �̄ > 0 are fixed constants. Moreover, for convenience,
we introduce the following quantities depending on integer k ≥ 0:

c1(k) = 4
(
1 + 2ω̄ + k(1 + 3ω̄)

)
, (1)

c2(k) = 4
(
3 + 6ω̄ + 2k(1 + 3ω̄)

)
. (2)

These quantities will be instrumental in our proofs, where k will stand for the dimen-
sion of a simplex, or a manifold, or the ambient space.

Let S be a manifold in R
d , W a (finite or infinite) δ-sample of S, and L a finite

ε-sparse ε-sample of W , for two parameters δ, ε to be specified later on. Note that L

is an (ε + δ)-sample of S. According to Theorem 2.4, CW(L) may not coincide with
DS(L), even under strong assumptions on δ, ε. Specifically:

• Some simplices of DS(L) may not belong to CW(L) if W does not span S entirely.
Our solution to this problem is to enlarge the set of witnesses, in order to make it
cover S. More precisely, we dilate W by a ball of radius ζ centered at the origin, so
that the set of witnesses is now Wζ = ⋃

w∈W B(w, ζ ). For ζ ≥ δ, this set contains

S, hence DS(L) ⊆ DWζ
(L) ⊆ CWζ

(L).
• Some simplices of CW(L) may not belong to DS(L) if the latter contains �̄-

slivers. To remedy this problem, we assign non-negative weights to the land-
marks, so that DS(L) and CWζ

(L) are now replaced by their weighted ver-
sions, DS

ω(L) and CWζ

ω (L). Given an angle value θ ∈ (0,π/2), our main struc-
tural result (Theorem 4.1) states that, under sufficient conditions on δ, ε, ζ , we
have CWζ

ω (L) ⊆ Kθ
ω(L) for any ω : L → [0,∞) of relative amplitude at most ω̄.

Therefore, CWζ

ω (L) ⊆ DS
ω(L) whenever θ ≤ π

32 and ω removes all �̄-slivers from

Kπ/32
ω (L), by Theorem 2.5.

Theorem 4.1 Let S be a manifold in R
d , W a (finite or infinite) δ-sample of S,

and L a finite ε-sparse ε-sample of W . Given three constants: an amplitude bound
ω̄ ∈ (0,1/2), a sliver bound �̄ > 0, and an angle parameter θ ∈ (0,π/2), if δ, ε, ζ

satisfy the following conditions:

H1 5
2(1−ω̄2) sin θ

δ ≤ ε ≤ 5(1−ω̄2) sin θ

(2(1−ω̄2) sin θ+5c2(d))2 rch(S)

H2 ζ ∈ [δ, 2(1−ω̄2) sin θ
5 ε]
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then DS
ω(L) ⊆ DWζ

ω (L) ⊆ CWζ

ω (L) ⊆ Kθ
ω(L) for any ω : L → [0,∞) of relative

amplitude at most ω̄. If in addition θ ≤ π/32, ε ≤ c�̄rch(S), and ω is such that

Kπ/32
ω (L) contains no �̄-sliver,6 then Theorem 2.5 implies that DWζ

ω (L) = CWζ

ω (L) =
Kπ/32

ω (L) = DS
ω(L), which is homeomorphic to S.

H1 requires that W is dense compared to L, which must be dense compared to
rch(S). This is very similar in spirit to the condition of [27]. H2 bounds the dilation
parameter ζ . The smaller the angle θ of semi-aperture of the cocones, the smaller ε

must be for Kθ
ω(L) to contain DS

ω(L), and the smaller ζ must be for Kθ
ω(L) to contain

CWζ

ω (L). Condition ζ ≥ δ ensures that DS
ω(L) ⊆ CWζ

ω (L).
In the special case where W = S (which implies δ = 0) and ζ = 0, H2 and the

left-hand side of H1 become void, and the theorem states that CS
ω(L) coincides with

DS
ω(L) for a suitable distribution of weights ω : L → [0,∞), provided that L is an ε-

sparse ε-sample of S for a small enough ε. This is an extension of the result of Attali
et al. [5] to higher dimensions, with an additional sparseness condition7 on L. The
general case of Theorem 4.1 allows us to have W � S, which is of practical interest.

Another useful property, stated as Theorem 4.2 below, is that the weighted wit-
ness complex actually includes the weighted cocone complex for any distribution of
weights of relative amplitude at most ω̄, provided that ζ is sufficiently large compared
to ε. Note that this condition on ζ is incompatible with H2: as a consequence, two
different values of ζ must be used to bound Kθ

ω(L), as emphasized in our algorithm,
see Sect. 5.

Theorem 4.2 If θ ≤ π
32 , and if δ, ε satisfy Condition H1 of Theorem 4.1, then, for

any ζ ≥ 6 sin θε, for any ω : L → [0,∞) of relative amplitude at most ω̄, Kθ
ω(L) ⊆

DWζ

ω (L) ⊆ CWζ

ω (L).

Overview of the Proofs The rest of Sect. 4 is devoted to the proofs of Theorems 4.1
and 4.2.

The proof of Theorem 4.1 is given in Sect. 4.1 below. Showing that DS
ω(L) ⊆

DWζ

ω (L) ⊆ CWζ

ω (L) is in fact easy: since W is a δ-sample of S, Wζ contains S

whenever ζ ≥ δ, which is guaranteed by H2; it follows immediately that DS
ω(L) ⊆

DWζ

ω (L), which by Corollary 2.2 is included in CWζ

ω (L) for any ω : L → [0,∞).

Showing that CWζ

ω (L) ⊆ Kθ
ω(L) requires more work, but the core argument is very

simple, namely: the Euclidean distances between a point of S and its k nearest land-
marks in the weighted distance are bounded (Lemma 4.4). From this fact we derive
some bounds on the Euclidean distances between the simplices of CWζ

ω (L) and their
ω-witnesses (Lemma 4.5). These bounds are then used to show that the ω-witnesses
of a simplex σ lie in the θ -cocones of the vertices of σ , from which we deduce that
CWζ

ω (L) ⊆ Kθ
ω(L) (Lemma 4.6).

6As mentioned after Theorem 2.5, such distributions of weights exist, provided that �̄ is sufficiently small.
7This condition is mandatory for the existence of a suitable ω on manifolds of dimension three or
higher [13, 14].
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The proof of Theorem 4.2 is given in Sect. 4.2. Intuitively, if L is a sufficiently
dense sampling of S, then, for any simplex σ ∈ Kθ

ω(L) and any vertex v of σ such
that Vω(σ ) ∩ Kθ (v) �= ∅, the points of Vω(σ ) ∩ Kθ (v) lie close to T (v) and hence
close to S. Therefore, they belong to Wζ whenever ζ is large enough, which implies
that σ ∈ DWζ

ω (L) ⊆ CWζ

ω (L).

4.1 Proof of Theorem 4.1

As explained above, all we have to do is to show that, whenever Conditions H1–
H2 are satisfied, CWζ

ω (L) is included in Kθ
ω(L) for any ω : L → [0,∞) of relative

amplitude at most ω̄. We will use the following bound on the weights:

Lemma 4.3 Under Condition H1 of Theorem 4.1, for any v ∈ L and any ω : L →
[0,∞) of relative amplitude at most ω̄, ω(v) is at most 2ω̄(ε + δ).

Proof Let v ∈ L, and let Sv be the connected component of S containing v. Consider
the cell V(v) of v in the unweighted Voronoi diagram of L. Since L is an (ε + δ)-
sample of S, Sv ∩ V(v) is contained in the ball B(v) of center v and radius ε + δ.
By H1, the radius of this ball is at most rch(S), hence we have Sv ∩ B(v) � Sv . This
implies that the boundary of V(v) intersects Sv . Let p be a point of intersection.
There is a point u ∈ L such that ‖p − u‖ = ‖p − v‖, which is at most ε + δ. Hence,
‖v − u‖ ≤ 2(ε + δ). We deduce that ω(v) ≤ ω̄‖v − u‖ ≤ 2ω̄(ε + δ), since ω̄ bounds
the relative amplitude of ω. �

Here is now the core argument of the proof of Theorem 4.1:

Lemma 4.4 Under Condition H1 of Theorem 4.1, for any p ∈ S, for any ω : L →
[0,∞) of relative amplitude at most ω̄, for any nonnegative integer k ≤ d , the Euclid-
ean distance between p and its (k + 1)th nearest landmark in the weighted distance
is at most rk = (1 + 2ω̄ + 2k(1 + 3ω̄))(ε + δ).

Proof The proof is by induction on k. Assume first that k = 0. Let v1 ∈ L be the
nearest neighbor of p in the weighted distance, and u ∈ L the nearest neighbor of p

in the Euclidean metric. Observe that u may or may not be equal to v1. Since L is
an (ε + δ)-sample of S, ‖p − u‖ is at most ε + δ. Moreover, we have ‖p − v1‖2 −
ω(v1)

2 ≤ ‖p−u‖2 −ω(u)2, which gives ‖p−v1‖2 ≤ ‖p−u‖2 +ω(v1)
2 −ω(u)2 ≤

(ε + δ)2 + ω(v1)
2 − ω(u)2. Note that −ω(u)2 is nonpositive and that ω(v1)

2 is at
most 4ω̄2(ε + δ)2, by Lemma 4.3. Therefore, ‖p − v1‖2 ≤ (1 + 4ω̄2)(ε + δ)2 ≤
(1 + 2ω̄)2(ε + δ)2, which proves the lemma in the case k = 0.

Assume now that k ≥ 1 and that the result holds up to k − 1. Let v1, . . . , vk de-
note the k nearest landmarks of p in the weighted distance. By induction, we have
v1, . . . , vk ∈ B(p, rk−1). Moreover, by the case k = 0 above, for any i ≤ k, we have
S ∩ Vω(vi) ⊆ B(vi, (1 + 2ω̄)(ε + δ)), which is included in B(p, rk−1 + (1 + 2ω̄)(ε +
δ)). Let Sp be the connected component of S that contains p. It follows from H1 that
rk−1 + (1 + 2ω̄)(ε + δ) ≤ rch(S), hence we have S ∩ B(p, rk−1 + (1 + 2ω̄)(ε +
δ)) � Sp , which implies two things: first, v1, . . . , vk belong to Sp; second, their
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weighted Voronoi cells do not cover Sp entirely. As a consequence, Sp must in-
tersect the boundary of

⋃k
i=1(S ∩ Vω(vi)). Let q be a point of intersection: q lies

on the bisector hyperplane between some vi and some point v ∈ L \ {v1, . . . , vk},
i.e., q ∈ Vω(vi) ∩ Vω(v). By the case k = 0 above, ‖q − vi‖ and ‖q − v‖ are at
most (1 + 2ω̄)(ε + δ). Moreover, we have ‖p − vi‖ ≤ rk−1, by induction. There-
fore, ‖p − v‖ ≤ ‖p − vi‖ + ‖vi − q‖ + ‖q − v‖ ≤ rk−1 + 2(1 + 2ω̄)(ε + δ).
Since v ∈ L \ {v1, . . . , vk}, we have ‖p − vk+1‖2 − ω(vk+1)

2 ≤ ‖p − v‖2 − ω(v)2,
where vk+1 is the (k + 1)th nearest landmark of p in the weighted distance. Hence,
‖p − vk+1‖2 ≤ ‖p − v‖2 + ω(vk+1)

2 ≤ (‖p − v‖ + ω(vk+1))
2, which is at most

(rk−1 + 2(1 + 2ω̄)(ε + δ) + 2ω̄(ε + δ))2 = r2
k , by Lemma 4.3. �

Using Lemma 4.4, we can bound the Euclidean distances between the k-simplices
of CWζ

ω (L) and their ω-witnesses. Our bounds depend on quantities c1(k) and c2(k)

defined respectively in (1) and (2):

Lemma 4.5 Under Conditions H1–H2 of Theorem 4.1, for any ω : L → [0,∞) of
relative amplitude at most ω̄, for any k-simplex σ of CWζ

ω (L) (k ≤ n), and for any
vertex v of σ , we have:

(i) For any ω-witness c ∈ Wζ of σ , ‖c − v‖ ≤ c1(k)ε.
(ii) For any subsimplex σ ′ ⊆ σ and any ω-witness c′ ∈ Wζ of σ ′, ‖c′ − v‖ ≤ c2(k)ε.

(iii) There is a point p on the dual weighted Voronoi face of σ such that, for any
vertex v of σ , ‖p − v‖ ≤ c2(k)ε.

Proof Let σ be a k-simplex of CWζ

ω (L). By definition, there is a point c ∈ Wζ that ω-
witnesses σ . This means that the vertices of σ are the (k+1) nearest landmarks of c in
the weighted distance. Unfortunately, we cannot apply Lemma 4.4 directly to bound
the Euclidean distance between c and its (k + 1) nearest landmarks in the weighted
distance, because c may not belong to S. However, since c ∈ Wζ , there is some point
w ∈ W ⊆ S such that c ∈ B(w, ζ ). By Lemma 4.4, the ball B(w, rk) contains at least
(k + 1) landmarks. Thus, at least one landmark u in B(w, rk) does not belong to the
k nearest landmarks of c in the weighted distance. This means that, for any l ≤ k + 1,
‖c−vl‖2 −ω(vl)

2 ≤ ‖c−u‖2 −ω(u)2, where vl denotes the lth nearest landmark of
c in the weighted distance. It follows that ‖c − vl‖2 ≤ ‖c − u‖2 + ω(vl)

2 − ω(u)2 ≤
(‖c − u‖ + ω(vl))

2, which by Lemma 4.3 is at most (‖c − u‖ + 2ω̄(ε + δ))2. Since
‖c−u‖ ≤ ‖c−w‖+‖w −u‖ ≤ ζ + rk , we get ‖c−vl‖ ≤ ζ + rk +2ω̄(ε + δ), which
by H1–H2 is bounded by c1(k)ε. Since this is true for any l ≤ k + 1, the Euclidean
distance between c and any vertex of σ is at most c1(k)ε. This proves (i).

Let σ ′ be any subsimplex of σ . Since σ belongs to CWζ

ω (L), σ ′ is ω-witnessed
by some point c′ ∈ Wζ . Let w′ ∈ W ⊆ S be such that c′ ∈ B(w′, ζ ). According to
Lemma 4.4, the Euclidean distance between w′ and its nearest landmark u′ in the
weighted distance is at most r0 = (1 + 2ω̄)(ε + δ). Hence, ‖c′ − u′‖ ≤ ζ + r0. Let v′

1
be the nearest landmark of c′ in the weighted distance. We have ‖c′ − v′

1‖2 ≤ ‖c′ −
u′‖2 + ω(v′

1)
2 − ω(u′)2 ≤ (‖c′ − u′‖ + ω(v′

1))
2, which is at most (ζ + r0 + 2ω̄(ε +

δ))2, by Lemma 4.3. Since c′ ω-witnesses σ ′, v′
1 is a vertex of σ ′ and hence also a

vertex of σ . Thus, for any vertex v of σ , we have ‖c′ − v‖ ≤ ‖c′ − v′
1‖ + ‖v′

1 − v‖,
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which by (i) is at most ζ + r0 + 2ω̄(ε + δ) + 2c1(k)ε. This quantity is bounded by
c2(k)ε, since under H1–H2 δ and ζ are at most ε. This proves (ii).

By Theorem 2.3, we know that σ is a weighted Delaunay simplex and that its
dual weighted Voronoi face intersects the convex hull of the ω-witnesses of the sub-
simplices of σ . Let p be a point of intersection. According to (ii), for any vertex v

of σ , the ω-witnesses (in Wζ ) of σ and of its subsimplices belong to B(v, c2(k)ε),
which therefore also contains their convex hull and hence also p. Thus, we have
‖p − v‖ ≤ c2(k)ε, which proves (iii). �

Now we can show that CWζ

ω (L) ⊆ Kθ
ω(L), which concludes the proof of Theo-

rem 4.1:

Lemma 4.6 Under Conditions H1–H2 of Theorem 4.1, for any distribution of
weights ω : L → [0,∞) of relative amplitude at most ω̄, for any k-simplex σ of
CWζ

ω (L) (k ≤ d), and for any vertex v of σ , Vω(σ ) ∩ Kθ (v) �= ∅. As a consequence,

CWζ

ω (L) ⊆ Kθ
ω(L).

Proof Let σ be a k-simplex of CWζ

ω (L), and let v ∈ L be any vertex of σ . If
k = 0, then σ = [v]. Since the relative amplitude of ω is at most ω̄ < 1

2 , v be-
longs to its weighted Voronoi cell Vω(v). And since v belongs to Kθ (v), we have
Vω(v) ∩ Kθ (v) �= ∅, which proves the lemma in the case k = 0.

Assume now that 1 ≤ k ≤ d . By Lemma 4.5(ii), for any simplex σ ′ ⊆ σ , for any ω-
witness c′ of σ ′, we have ‖c′ − v‖ ≤ c2(k)ε ≤ c2(d)ε. Since c′ ∈ Wζ , there is a point
w′ ∈ W ⊆ S such that ‖w′ − c′‖ ≤ ζ , which implies that ‖w′ − v‖ ≤ ε(c2(d) + ζ/ε).
This quantity is at most rch(S), by H1–H2, hence the Euclidean distance between

w′ and T (v) is at most ε2

2rch(S)
(c2(d) + ζ/ε)2, by Lemma 2.6. It follows that the

Euclidean distance from c′ to T (v) is at most ζ + ε2

2rch(S)
(c2(d) + ζ/ε)2. This holds

for any ω-witness c′ ∈ Wζ of any simplex σ ′ ⊆ σ . Since σ is a simplex of CWζ

ω (L),
Theorem 2.3 tells us that σ belongs to Dω(L) and that the dual weighted Voronoi face
of σ intersects the convex hull of the ω-witnesses of the subsimplices of σ . Let p be
a point of intersection. Since the ω-witnesses (in CWζ

ω (L)) of the subsimplices of σ

do not lie farther than ζ + ε2

2rch(S)
(c2(d) + ζ/ε)2 from T (v), neither does p, which

belongs to their convex hull.
Let us now give a lower bound on ‖p − v‖, which will allow us to conclude

afterwards. Since the dimension k of σ is at least one, σ has at least two vertices.
Hence, there exists at least one point u ∈ L \ {v} such that ‖p − v‖2 − ω(v)2 =
‖p − u‖2 − ω(u)2, which gives ‖p − v‖2 = ‖p − u‖2 + ω(v)2 − ω(u)2. Since ω̄

bounds the relative amplitude of ω, we have ω(u)2 ≤ ω̄2‖u − v‖2. Moreover, ω(v)2

is nonnegative. Hence, ‖p−v‖2 ≥ ‖p−u‖2 − ω̄2‖u−v‖2. By the triangle inequality,
we obtain ‖p − v‖2 ≥ (‖p − v‖ − ‖u − v‖)2 − ω̄2‖u − v‖2, which gives ‖p − v‖ ≥
1
2 (1 − ω̄2)‖u − v‖. This implies that ‖p − v‖ ≥ 1

2 (1 − ω̄2)ε, since L is ε-sparse.

To conclude, p is at most ζ + ε2

2rch(S)
(c2(d) + ζ/ε)2 away from T (v), and at

least 1
2 (1 − ω̄2)ε away from v, in the Euclidean metric. Therefore, sin∠(vp,T (v)) ≤
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2ζ

(1−ω̄2)ε
+ ε

(1−ω̄2)rch(S)
(c2(d) + ζ/ε)2, which is at most sin θ , by H1–H2. As a con-

sequence, p belongs to Kθ (v). Now, recall that p is a point of Vω(σ ). Hence,
Vω(σ ) ∩ Kθ (v) �= ∅, which means that σ is a simplex of Kθ

ω(L). Since this is true

for any k-simplex σ of CWζ

ω (L) (k ≤ d) and since, by Theorem 2.3, CWζ

ω (L) is in-
cluded in Dω(L), which has no simplex of dimension greater than d because the
weighted point set L lies in general position, CWζ

ω (L) is included in Kθ
ω(L). �

4.2 Proof of Theorem 4.2

Let σ be a simplex of Kθ
ω(L). By definition, the dual weighted Voronoi face of

σ intersects the θ -cocone of at least one vertex v of σ . Let c be a point of in-
tersection. Since L is an (ε + δ)-sample of S with ε + δ < 1

9 (1 − sin θ)2rch(S),

Lemma 2.8 states that ‖c − v‖ ≤ 3(ε+δ)
1−sin θ

, which is less than 1
4 rch(S) since by

assumption we have ε + δ < 1−sin θ
12 rch(S). Therefore, by Lemma 2.7, we have

‖q ′ − c‖ ≤ 3(ε+δ)
1−sin θ

(sin θ + 6(ε+δ)
(1−sin θ)rch(S)

), where q ′ is a point of S closest to c. Since
W is a δ-sample of S, there exists some point w ∈ W such that ‖q ′ − w‖ ≤ δ. Hence,
‖c − w‖ ≤ δ + 3(ε+δ)

1−sin θ
(sin θ + 6(ε+δ)

(1−sin θ)rch(S)
), which by H1 is at most 6 sin θε ≤ ζ . It

follows that c ∈ Wζ and hence that σ belongs to DWζ

ω (L), which by Corollary 2.2 is

included in CWζ

ω (L). This concludes the proof of Theorem 4.2.

5 Application to Multiscale Manifold Reconstruction

In this section, we use our structural results in the context of manifold reconstruction.

From now on, we fix ω̄ = 1
4 , θ = π

32 , and �̄ = 2−7−(1+4c1(1))d

c1(1)c3(d)
, where c1(k), c2(k) are

defined as in (1) and (2), and where

c3(k) = c2(k)
(
1 + 2c1(1)

) + 4ω̄. (3)

We give an overview of the approach in Sect. 5.1, then we present the algorithm
in Sect. 5.2, and we prove its correctness in Sect. 5.3. Our theoretical guarantees are
discussed in Sect. 6. In Sect. 5.4, we give some details on how the various components
of the algorithm can be implemented. These details are then used in Sect. 5.5 to bound
the space and time complexity of the algorithm.

5.1 Overview of the Approach

Let W be a finite input point set drawn from some unknown manifold S such that
W is a δ-sample of S for some unknown δ > 0. Imagine we were able to con-
struct an ε-sparse ε-sample L of W for some ε ≤ c�̄rch(S) satisfying Condition
H1 of Theorem 4.1. Then, Theorems 4.1 and 4.2 would guarantee that DS

ω(L) ⊆
CWζ1

ω (L) ⊆ Kπ/32
ω (L) ⊆ CWζ2

ω (L) for any distribution of weights ω of relative am-

plitude at most ω̄, where ζ1 = 2(1−ω̄2) sin θ
5 ε = 3

8 sin π
32ε and ζ2 = 6 sin π

32ε. We could

then apply the pumping strategy of [13] to CWζ2
ω (L), which would remove all �̄-slivers
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from CWζ2
ω (L) (and hence from Kπ/32

ω (L)), provided that �̄ is sufficiently small. As

a result, CWζ1
ω (L) would coincide with DS

ω(L) and be homeomorphic to S, by Theo-
rem 2.5.

Unfortunately, since δ and rch(S) are unknown, finding an ε ≤ c�̄rch(S) that prov-
ably satisfies H1 can be difficult, if not impossible. This is why we combine the
above approach with the multi-scale reconstruction scheme of [27], which gener-
ates a monotonic sequence of samples L ⊆ W . Since L keeps growing during the
process, ε keeps decreasing, eventually satisfying H1 if δ is small enough. At that
stage, CWζ1

ω (L) becomes homeomorphic to S, and thus a plateau appears in the dia-

gram of the Betti numbers of CWζ1
ω (L), showing the values of S, see [27] for some

examples.
Note that the only assumption made on the input point set W is that it is a δ-sample

of some manifold for some small enough δ. In particular, W is not assumed to be a
sparse δ-sample. As a result, W may well-sample several manifolds S1, . . . , Sl , as
it is the case for instance in the example of Fig. 1. In such a situation, the values
δ1, . . . , δl for which W is a δi -sample of Si differ, and they generate distinct plateaus
in the diagram of the Betti numbers of CWζ1

ω (L).
Another noticeable aspect of our approach, compared to some previous algo-

rithms [14], is that it does not require any preprocessing of the input data, like es-
timating the dimension or tangent spaces of the underlying manifold.

5.2 The Algorithm

The input is a finite point set W ⊂ R
d . Initially, L = ∅ and ε = ζ1 = ζ2 = +∞.

At each iteration, the point p ∈ W lying farthest away from L in the Euclidean
metric8 is inserted in L and pumped. Specifically, once p has been appended to L,
its weight ω(p) is set to zero, and ε is set to maxw∈W minv∈L ‖w − v‖. CWζ1

ω (L) and

CWζ2
ω (L) are updated accordingly, ζ1 and ζ2 being defined as in the overview section.

Then, p is pumped: the pumping procedure Pump(p) determines the weight ωp of p

that maximizes the minimum sliver measure among the simplices of the star of p in
CWζ2

ω (L). After the pumping, ω(p) is set to ωp , and CWζ1
ω (L), CWζ2

ω (L) are updated.
The pseudo-code is given below.

Input: W ⊂ R
d finite.

Init: Let L := ∅; ε := +∞; ζ1 := +∞; ζ2 := +∞;
While L � W do

Let p := argmaxw∈W minv∈L ‖w − v‖; // p is chosen arbitrarily in W if L = ∅
L := L ∪ {p}; ω(p) := 0;
ε := maxw∈W minv∈L ‖w − v‖;
ζ1 := 3

8 sin π
32ε; ζ2 := 6 sin π

32ε;

Update CWζ1
ω (L) and CWζ2

ω (L);
ω(p) := Pump(p);
Update CWζ1

ω (L) and CWζ2
ω (L);

8At the first iteration, since L is empty, p is chosen arbitrarily in W .
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End_while
Output: the sequence of complexes CWζ1

ω (L) obtained after every iteration of the
While loop.

The algorithm terminates when L = W . The output is the one-parameter family of
complexes CWζ1

ω (L) built throughout the process, or simply the diagram of their Betti
numbers, computed on the fly using the persistence algorithm of [23, 35]. With this
diagram, the user can determine the scale at which to process the data: it is then easy
to generate the corresponding subset of weighted landmarks (the points of W have
been sorted according to their order of insertion in L, and their weights have been
stored) and to rebuild its weighted witness complex relative to Wζ1 .

The pumping procedure is the same as in [14], with Kπ/32
ω (L) replaced by

CWζ2
ω (L). Given a point p just inserted in L, Pump(p) makes the weight of p vary

from zero to ω̄ min{‖p−v||, v ∈ L\{p}} while maintaining the star of p in CWζ2
ω (L).

The combinatorial structure of the star changes only at a finite set of event times. Be-
tween consecutive event times, the minimum sliver measure among the simplices of
the star is constant and therefore computed once. In the end, the procedure returns an
arbitrary value in the range of weights that maximize the minimum sliver measure in
the star of p.

5.3 Guarantees on the Output

Assume that the input point set W is a δ-sample of some unknown manifold S. For
any i > 0, let p(i) be the point inserted in L at the ith iteration of the algorithm, and
let L(i),ω(i), ε(i), ζ1(i), ζ2(i) denote respectively L,ω, ε, ζ1, ζ2 at the end of that
iteration. We have L(i) = L(i − 1)∪ {p(i)}, therefore L(i) keeps growing with i. As
a consequence, ε(i) is a decreasing function of i. Moreover:

Lemma 5.1 For any iteration i > 0, L(i) is an ε(i)-sparse ε(i)-sample of W .

Proof The fact that L(i) is an ε(i)-sample of W follows directly from the definition
of ε(i). Now, at each iteration j ≤ i of the algorithm, the witness p(j) lying farthest
away from L(j − 1) is appended to L(j − 1). Right before this insertion, L(j − 1)

is an ε(j − 1)-sample of W . This means that the Euclidean distance from p(j) to
L(j − 1) is ε(j − 1). Since j ≤ i, we have ε(j − 1) ≥ ε(j) ≥ ε(i), hence each point
inserted in L before or at iteration i is at least ε(i) away from L at the time of its
insertion. This implies that L(i) is ε(i)-sparse. �

Combining Lemma 5.1 with Theorems 2.5, 4.1, and 4.2, we can prove our main
theoretical guarantee:

Theorem 5.2 CWζ1(i)

ω(i) (L(i)) coincides with DS
ω(i)(L(i)) and is homeomorphic to S

whenever ε(i) ≤ c�̄rch(S) satisfies H1, which eventually happens in the course of the
algorithm if δ is small enough.
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The proof of the theorem consists mainly in showing that all slivers are eventually
removed from CWζ2(i)

ω(i)
(L(i)), even though some of the weights are assigned in early

stages of the course of the algorithm. Our line of argument relies on an intermediate
result, stated as Claim 5.2.1 below, whose proof is deferred to the end of Sect. 5.3:

Proof Let i > 0 be an iteration such that ε(i) ≤ c�̄rch(S) satisfies H1. Then, ζ1(i) =
3
8 sin π

32ε(i) = 2(1−ω̄2) sin θ
5 ε(i) satisfies H2, and ζ2(i) = 6 sin π

32ε(i) satisfies the hy-
pothesis of Theorem 4.2. Since W is a δ-sample of S by assumption and since
L(i) is an ε(i)-sparse ε(i)-sample of W by Lemma 5.1, Theorems 4.1 and 4.2 im-
ply that DS

ω(i)(L(i)) ⊆ CWζ1(i)

ω(i) (L(i)) ⊆ Kπ/32
ω(i) (L(i)) ⊆ CWζ2(i)

ω(i) (L(i)). Let us show

that Kπ/32
ω(i) (L(i)) contains no �̄-sliver, which by Theorem 2.5 gives the result. In

fact, we will prove that CWζ2(i)

ω(i) (L(i)) contains no �̄-sliver, which is sufficient since

Kπ/32
ω(i) (L(i)) ⊆ CWζ2(i)

ω(i) (L(i)).

Claim 5.2.1 For any iteration j > 0 such that δ ≤ ε(j) ≤ 2rch(S)
7d−1 −δ, the star of p(j)

in CWζ2(j)

ω(j) (L(j)) contains no �̄-sliver.

Since ε(i) satisfies H1, we have δ ≤ ε(i) ≤ 2rch(S)
7d−1 − δ. Therefore, Claim 5.2.1

guarantees that the star of p(i) in CWζ2(i)

ω(i) (L(i)) contains no �̄-sliver. However, this

does not mean that CWζ2(i)

ω(i) (L(i)) itself contains no �̄-sliver, because some of the
points of L(i) were pumped at early stages of the course of the algorithm, when the
assumption of Claim 5.2.1 was not yet satisfied.

Let i0 ≤ i be the first iteration such that ε(i0) ≤ 2rch(S)
7d−1 − δ. For any iteration j

between i0 and i, we have ε(j) ≤ ε(i0) ≤ 2rch(S)
7d−1 − δ and ε(j) ≥ ε(i) ≥ δ, hence

Claim 5.2.1 guarantees that the pumping procedure removes all �̄-slivers from the
star of p(j) in CWζ2(j)

ω(j) (L(j)) at iteration j . For any k between j and i, the update

of CWζ2
ω (L) after the pumping of p(k) may modify the star of p(j). However, since

the pumping of p(k) only increases its weight, the new simplices in the star of p(j)

belong also to the star of p(k), which contains no �̄-sliver, by Claim 5.2.1. Therefore,
the star of p(j) in CWζ2(i)

ω(i)
(L(i)) still contains no �̄-sliver. Consider now an iteration

j ≤ i0 − 1. Since ε(j) is greater than 2rch(S)
7d−1 − δ, we cannot ensure that the star

of p(j) in CWζ2(j)

ω(j)
(L(j)) contains no �̄-sliver. However, we claim that the points

of L(i) that are neighbors of p(j) in CWζ2(i)

ω(i) (L(i)) were inserted in L on or after

iteration i0. Indeed, since ε(i) satisfies H1, we have δ ≤ ε(i) ≤ rch(S)
3 − δ. Moreover,

ζ2(i) = 6 sin π
32ε(i) ≤ ε(i). Hence, Lemma A.1 ensures that every neighbor of p(j)

in CWζ2(i)

ω(i) (L(i)) is at Euclidean distance at most 2c1(1)ε(i) from p(j). Now, recall

that L(i0 − 1) is ε(i0 − 1)-sparse, where ε(i0 − 1) >
2rch(S)
7d−1 − δ, which by H1 is

greater than 2c1(1)ε(i). It follows that no point of L(i0 − 1) is a neighbor of p(j)

in CWζ2(i)

ω(i) (L(i)). This means that, for any neighbor q of p(j) in CWζ2(i)

ω(i) (L(i)), q was

inserted in L on or after iteration i0. Hence, the star of q in CWζ2(i)

ω(i) (L(i)) contains no



60 Discrete Comput Geom (2009) 42: 37–70

�̄-sliver. Since this is true for any neighbor q of p(j) in CWζ2(i)

ω(i) (L(i)), the star of p(j)

does not contain any �̄-sliver either. This concludes the proof of Theorem 5.2. �

We end Sect. 5.3 by giving the proof of Claim 5.2.1:

Proof of Claim 5.2.1 The argument is the same as in Sect. 8 of [14] and re-
lies on Lemmas 4 through 10 of [14], which have been adapted to our context in
Appendix. Note that we assumed δ ≤ ε(j) ≤ 2rch(S)

7d−1 − δ and that we have ζ2(j) =
6 sin π

32ε(j) ≤ ε(j), which means that δ, ζ2(j), ε(j) satisfy the hypotheses of Lem-
mas A.1 through A.6. We will show that there exists a value of ω(p(j)) such that the
star of p(j) in CWζ2(j)

ω (L(j)) contains no �̄-sliver. The result will follow, since the
pumping procedure selects a value of ω(p(j)) that maximizes the minimum sliver
measure in the star of p(j).

Let l(j) = min{‖p(j) − v‖, v ∈ L(j) \ {p(j)}}. Let Σ(j) be the set of all the
simplices that appear in the star of p(j) in CWζ2(j)

ω (L(j)) during the course of the
pumping procedure. Since �̄ < 1, the 0- and 1-simplices of Σ(j) are not �̄-slivers.
Now, for any simplex σ ∈ Σ(j) of dimension at least two that is a �̄-sliver, if the
facets of σ are not �̄-slivers, then Lemma A.6 ensures that σ appears in CWζ2(j)

ω (L(j))

only when the squared weight of p(j) belongs to an interval of length less than
8�̄c1(1)c3(d)ε(j)2. Moreover, by Lemma A.3, the total number of neighbors that
p(j) has in CWζ2(j)

ω (L(j)) as its weight ranges from 0 to ω̄l(j) is bounded by
(1 + 4c1(1))d . Therefore, the overall number of simplices that can appear in the
star of p(j) as its weight evolves is at most 2(1+4c1(1))d . It follows that the set of
values of the squared weight of p(j) for which the star of p(j) contains �̄-slivers
whose facets are not �̄-slivers is contained in a union of intervals of total length
less than 23+(1+4c1(1))d �̄c1(1)c3(d)ε(j)2 = 2−4ε(j)2 = ω̄2ε(j)2, which is at most
ω̄2l(j)2 since L(j) is ε(j)-sparse. Therefore, there are values of ω(p(j)) within
[0, ω̄l(j)] for which the star of p(j) in CWζ2(j)

ω (L(j)) contains no �̄-sliver whose
facets are not �̄-slivers. In fact, the star of p contains no �̄-sliver at all, since otherwise
it would contain a �̄-sliver whose facets are not �̄-slivers (take, for instance, a �̄-sliver
of smallest dimension in the star of p). This ends the proof of Claim 5.2.1. �

5.4 Details of the Implementation

Before we can analyze the complexity of the algorithm, we need to give some details
on how its various components can be implemented.

5.4.1 Update of the Witness Complex

Although the algorithm is conceptually simple, its implementation requires to be able
to update CWζ

ω (L), where ζ ∈ {ζ1, ζ2}. This task is significantly more difficult than
updating CW

ω (L), mainly because Wζ is not finite, which makes it impossible to per-
form the ω-witness test of Definition 2.1 on every single point of Wζ individually.
However, since we are working in Euclidean space R

d , for any w ∈ W , it is actually
possible to perform the ω-witness test on the whole ball B(w, ζ ) at once. Each time
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a point is inserted in L or its weight is increased, CWζ

ω (L) is updated by iterating over
the points w ∈ W and performing the ω-witness test on B(w, ζ ). This test boils down
to intersecting B(w, ζ ) with the weighted Voronoi diagrams of L of orders 1 through
d + 1. In the space of spheres R

d+1, this is equivalent to intersecting a vertical cylin-
der of base B(w, ζ ) with the cells of an arrangement of |L| hyperplanes. This opera-
tion is very costly, hence we only construct the arrangement of the hyperplanes of the
κ(d) nearest landmarks of w in the Euclidean metric, where κ(d) = (2 + 2c1(d))d .
This means that we do not actually maintain CWζ

ω (L), but another complex C , which

might not contain CWζ

ω (L) nor be contained in it. Nevertheless,

Lemma 5.3 C(i) coincides with CWζ(i)

ω(i) (L(i)) whenever ε(i) satisfies H1.

Proof Let w be a point of W , and let Λ(w) ⊆ L(i) denote the set of its κ(d) near-
est landmarks in the Euclidean metric. For any point c ∈ B(w, ζ(i)) and any posi-
tive integer k ≤ d + 1, Lemma 4.5(i) ensures that the k nearest landmarks of c in
the weighted distance, p1, . . . , pk , belong to B(c, c1(d)ε(i)). Since ‖w − c‖ ≤ ζ(i),
p1, . . . , pk belong to B(w, r(i)), where r(i) = ε(i)(c1(d) + ζ(i)/ε(i)). Now, L(i)

is ε(i)-sparse, hence the points of L(i) ∩ B(w, r(i)) are centers of pairwise-disjoint
balls of radius ε(i)/2. These balls are included in B(w, r(i) + ε(i)/2), thus their
number is at most (1 + 2r(i)/ε(i))d = (1 + 2c1(d)+ 2ζ(i)/ε(i))d , which is bounded
by κ(d) since ζ(i) ≤ ζ2(i) < ε(i)/2. Therefore, p1, . . . , pk belong to Λ(w). As a re-
sult, in the weighted distance, the k nearest neighbors of c in Λ(w) are the same as its
k nearest neighbors in L(i). Since this is true for any w ∈ W and any c ∈ B(w, ζ(i))

and since all the balls of radius ζ(i) centered at the points of W are tested at each
update of the complex, C(i) coincides with CWζ(i)

ω(i) (L(i)). �

It follows from this lemma that our guarantees on the output of the algorithm
still hold if CWζ

ω (L) is replaced by C . Note also that, since any arrangement of κ(d)

hyperplanes in R
d+1 has O(κ(d)d+1) = dO(d2) cells [22], each point of W generates

at most dO(d2) simplices in C . It follows that the size of our complex is bounded
by |W |dO(d2). The same bound clearly holds for the time spent updating C after a
point insertion or a weight increase, provided that the κ(d) nearest landmarks of a
witness can be computed in dO(d2) time. In practice, we maintain the lists of κ(d)

nearest landmarks of the witnesses in parallel to C . Each time a new point is inserted
in L, the list of each witness is updated in O(κ(d)) time as we iterate over all the
witnesses to update C . Using these lists, we can retrieve the κ(d) nearest landmarks
of any witness in time O(κ(d)) ≤ dO(d2).

5.4.2 Pumping Procedure

As mentioned in Sect. 5.2, only a finite number of events occur while a point p ∈ L

is being pumped. The sequence of events can be precomputed before the beginning
of the pumping process, by iterating over the points of W that have p among their
κ(d) nearest landmarks. For each such point w, we detect the sequence of simplices
incident to p that start or stop being ω-witnessed by points of B(w, ζ2) as the weight
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of p increases. In the space of spheres R
d+1, this is equivalent to looking at how the

cells of the arrangement of κ(d) hyperplanes evolve as the hyperplane of p translates
vertically. The number of events that are generated by a point of W is of the order of
the size of the arrangement of κ(d) hyperplanes in R

d+1, hence the total number of
events is at most |W |dO(d2), and the time spent computing them is also bounded by
|W |dO(d2).

To reduce the total number of events, we discard the ones that involve simplices
whose vertices do not belong to the κ(d) nearest neighbors of p among L in the
Euclidean metric. As a result, only the simplices whose vertices belong to the κ(d)

nearest neighbors of p are considered in the sequel. By the same argument as above,
the number of such simplices is at most dO(d2). Note however that a k-simplex σ

may appear in or disappear from the star of p several times: indeed, its cell in the
weighted Voronoi diagram of L of order k + 1 evolves as the weight of p increases,
and it may intersect Wζ several times during the process, since Wζ is not convex.
Therefore, for each simplex σ , we report only the first time where σ appears in the
star of p, and the last time where it disappears from the star of p. Thus, the number
of events reported per simplex is at most two, which implies that the total number of
events reported is bounded by dO(d2).

Once the sequence of events has been computed, the pumping procedure iterates
over the events. At each iteration, the weight of p is increased, and CWζ2

ω (L) (or
rather the complex C of Sect. 5.4.1) is updated. The minimum sliver measure in the
star of p is computed on the fly, during the update of C . The number of iterations
of the pumping procedure is bounded by the number of events, which is at most
dO(d2). At each iteration, the update of C takes |W |dO(d2) time, which also includes
the computation of the minimum sliver measure in the star of p. All in all, the time
complexity of the pumping procedure is at most |W |dO(d2).

The downside is that some events have been discarded during the precomputation,
which means that the pumping procedure may work with a wrong sequence of events
and therefore may not be able to remove the �̄-slivers from the star of p. Nevertheless,

Lemma 5.4 Whenever ε(i) satisfies H1, the neighbors of p(i) in CWζ2(i)

ω (L(i)) be-
long to the κ(d) nearest neighbors of p(i) among L(i) in the Euclidean metric for
any ω : L(i) → [0,∞) of relative amplitude at most ω̄.

Proof Since ε(i) satisfies H1, Lemma A.1 guarantees that the neighbors of p(i) in
CWζ2(i)

ω (L(i)) belong to the ball B(p(i),2c1(1)ε(i)). Since L(i) is ε(i)-sparse, the
points of L(i) ∩ B(p(i),2c1(1)ε(i)) are centers of pairwise-disjoint balls of radius
ε(i)/2, included in B(p(i), (2c1(1)+1/2)ε(i)). The number of such balls is therefore
bounded by (4c1(1)+ 1)d , which is at most (2 + 2c1(d))d = κ(d) since d ≥ 3. It fol-
lows that the neighbors of p(i) in CWζ2(i)

ω (L(i)) belong to its κ(d) nearest neighbors
among L(i) in the Euclidean metric. �

It follows from Lemma 5.4 that, whenever ε(i) satisfies H1, no simplex is dis-
carded during the precomputation. Note that some events may still be discarded, be-
cause we keep only the first and last events of each simplex. Intuitively, this means
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that the pumping procedure deals with more simplices than it should. However, since
by Lemma A.6 the first and last events of a �̄-sliver occur at very close moments,
Claim 5.2.1 still holds, with exactly the same proof. Therefore, the theoretical guar-
antees of Sect. 5.3 still apply.

5.4.3 Computation of p and ε

At each iteration of the main loop of the algorithm, the computation of p =
argmaxw∈W minv∈L ‖w − v‖ and ε = maxw∈W minv∈L ‖w − v‖ is done naively by
iterating over the points of W and computing their Euclidean distance to L. This
takes O(|W |) time once the sets of κ(d) nearest landmarks have been updated.

5.5 Time and Space Complexities of the Algorithm

Using the results of Sect. 5.4, we can bound the complexity of the algorithm:

Theorem 5.5 The space complexity of the algorithm is at most |W |dO(d2), and its
time complexity is at most |W |2dO(d2).

Proof As reported in Sect. 5.4.1, the size of the complex maintained by the algorithm
remains bounded by |W |dO(d2), therefore the space complexity of the algorithm is at
most |W |dO(d2). At each iteration of the main loop of the algorithm, the computation
of p and ε takes O(|W |) time, according to Sect. 5.4.3, and the pumping of p takes
|W |dO(d2) time, by Sect. 5.4.2. Moreover, the update of CWζ1

ω (L) and CWζ2
ω (L) takes

|W |dO(d2) time, by Sect. 5.4.1. Therefore, the time spent in each iteration of the main
loop of the algorithm is at most |W |dO(d2). It follows that the time complexity of the
algorithm is bounded by |W |2dO(d2), since the number of iterations of the main loop
of the algorithm is |W |. �

6 Discussion and Perspectives

Running Time In view of Theorem 5.5, the worst-case running time of our recon-
struction algorithm is bounded by c(d)n2, where n is the size of the input point cloud
and c(d) is a constant depending exponentially on the ambient dimension d . This
bound is comparable to the ones obtained in previous work [14], and it makes the
corresponding approaches (including ours) rather theoretical. The reduction in the
exponent from dependence on the ambient dimension to dependence on the intrinsic
dimension of the data is of fundamental theoretical importance and may lead to prac-
tical algorithms down the road. Recent work by Chazal and Oudot [11] illustrates the
potential of the witness complex as a data structure in this context, by showing that
a variant of our approach can solve the related problem of homology inference from
point cloud data within a time that depends only on the size and intrinsic dimension-
ality of the input data. This achievement was made possible by the structural results
introduced in the present paper, upon which the ones of [11] are built.
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The exponential dependence of the running time of our algorithm on the ambient
dimension d is easily explained by the fact that the input point cloud is replaced by
a union of balls in the calculations, which forces the algorithm to compute arrange-
ments of hyperplanes in R

d+1. The resort to a union of balls is made necessary by
the fact that using only the data points to drive the construction of the witness com-
plex may result in the appearance of holes in the complex, as pointed out in Sects. 3
and 4 of the paper. Several other attempts at filling in these holes have been made,
starting with the work of Carlsson and de Silva [18], in which the notion of witness is
relaxed so that the resulting complex contains a larger number of simplices. A vari-
ant of this relaxation, proposed by Attali et al. [4], enables to fill in the holes while
limiting the overhead in terms of size. A noticeable advantage of using relaxed wit-
ness complexes is that the construction of the data structure only requires to compare
distances, thus removing the need for costly geometric predicates and reducing the
algorithm’s complexity. Nevertheless, there remains to provide theoretical guarantees
for these various relaxations.

Interpretation of the Output Theorem 5.2 guarantees the existence of a plateau in
the diagram of the Betti numbers of CWζ1

ω (L), but in practice it does not tell where
this plateau is located in the diagram, because δ and rch(S) remain unknown. Never-
theless, it does give a guarantee on the length of the plateau, which, in view of H1, is
of the order of (arch(S) − bδ), where a, b are two constants. Hence, for sufficiently
small δ, the plateau is long enough to be detected by the user or any statistical method
used in a post-processing step. If W samples several manifolds, then several plateaus
may appear in the diagram: each one of them shows a plausible reconstruction, de-
pending on the scale at which the data set W is processed, see Fig. 1. In-between
the plateaus, the algorithm goes through transition phases where the behavior of the
reconstruction cannot be controlled. This is the case in particular at the end of the
refinement process, where ε becomes too small compared to δ (as per Hypothesis
H1) for the guarantees stated in Theorem 4.1 to hold.

A variant of the algorithm uses the existence of a plateau in the diagram of Betti
numbers as an early termination criterion. Specifically, the process stops as soon as a
sufficiently large plateau appears in the diagram, corresponding to a plausible recon-
struction. The minimum plateau length required for early termination can be specified
by the user through some input parameter. This variant of the algorithm prevents the
landmark set L from becoming too large, especially in cases where the input point
cloud W oversamples the underlying manifold. This idea can be further exploited
through an interactive process, where the user or a software agent queries our algo-
rithm for the first significant plateau in the diagram and then decides whether the
corresponding reconstruction is suitable for the application considered or not; in the
negative, our algorithm is queried for the next significant plateau in the diagram, and
so on. It should be noted however that the presence of a plateau in the diagram of
Betti numbers only provides partial evidence that a suitable reconstruction exists,
since stability of the Betti numbers does not mean stability of the corresponding ho-
mology generators, which itself does not mean stability of the homeomorphism type,
as pointed out in [27].
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Handling Noise in the Data It turns out that the structural results of Sect. 4 still
hold9 if we relax the assumption on W and allow its points to lie slightly off the
manifold S, at a Hausdorff distance of δ. This gives a deeper meaning to Theorem 5.2,
which now guarantees that the algorithm generates a plateau whenever there exists
a manifold S that is well sampled by L and that passes close to the points of W .
This holds in particular for small deformations S of the manifold S0 from which the
points of W have been drawn: the consequence is that the topological features of S0
(connected components, handles, etc.) are captured progressively by the algorithm,
by decreasing order of size in the ambient space. For instance, if S0 is a double
torus whose handles have significantly different sizes, then the algorithm first detects
the larger handle, generating a plateau with β0 = β2 = 1 and β1 = 2, then later on
it detects also the smaller handle, generating a new plateau with β0 = β2 = 1 and
β1 = 4. This property, illustrated in the experimental section of [27], enlarges greatly
the range of applications of our method.

Our theoretical results also hold when CWζ1
ω (L) and CWζ2

ω (L) are replaced by

DWζ1
ω (L) and DWζ2

ω (L), respectively. This means that the algorithm can use indif-
ferently the weak witness complex or the strong witness complex, with similar theo-
retical guarantees. In Sect. 5, we focus mainly on the weak witness complex, which is
potentially more practical, yet the definitive choice between both complexes should
depend on the application considered.

Intrinsic Versus Extrinsic Our approach to manifold reconstruction is purely extrin-
sic, that is, based on the pairwise distances between the data points in the ambient
space R

d . What if intrinsic distances along the manifold S are used instead? Is there
any hope to include the witness complex into the (intrinsically defined) Delaunay tri-
angulation? De Silva [17] recently gave a partial answer to this question, showing that
the Weak Witness Theorem 2.3 holds on Riemannian manifolds of arbitrary dimen-
sions that have constant sectional curvature. Gao et al. [25] independently proved that
a class of two-dimensional length spaces also have this property. What is the answer
in the general case, where dimensions and sectional curvatures can be arbitrary?
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Appendix: Proofs of Lemmas 2 through 10 of [14]

Proof of Lemma 2.7 (Lemma 2(ii) of [14]) Since p ∈ Kθ (v), we have ∠pvq ≤ θ .
Hence, ‖p−q‖ = ‖p−v‖ sin∠pvq ≤ ‖p−v‖ sin θ . Moreover, ‖q−v‖ ≤ ‖p−v‖ <
1
4 rch(S), hence, by Lemma 7 of [26] (whose proof holds the same in our context),

9Wζ still covers S when ζ ≥ δ, and the proof that CWζ

ω (L) ⊆ Kθ
ω(L) holds the same, with an additional

term δ in the bounds of Lemmas 4.3 through 4.6.



66 Discrete Comput Geom (2009) 42: 37–70

‖q − q ′‖ ≤ 2‖q−v‖2

rch(S)
≤ 2‖p−v‖2

rch(S)
. Now, by the triangle inequality, we have ‖p − q ′‖ ≤

‖p − q‖+‖q − q ′‖, which, combined with the above inequalities, gives: ‖p − q ′‖ ≤
‖p − v‖ sin θ + 2‖p−v‖2

rch(S)
. �

Proof of Lemma 2.8 (Lemma 3 of [14]) Let ε1 = 3ε
1−sin θ

. The hypothesis of the lemma

implies that ε1 < 1
3 (1−sin θ)rch(S). Assume for a contradiction that there exist v ∈ L

and p ∈ Kθ (v)∩Vω(v) such that ‖p−v‖ > ε1. Let y ∈ [p,v] be such that ‖y −v‖ =
ε1/2. Since p ∈ Kθ (v), we have [p,v] ⊆ Kθ (v), and hence y ∈ Kθ (v). Let q be the
orthogonal projection of y onto T (v), and q ′ the point of S closest to q .

Since y ∈ Kθ (v) and ‖y − v‖ = ε1
2 < 1

4 rch(S), Lemma 2.7 states that ‖y − q ′‖ ≤
ε1
2 (sin θ + ε1

rch(S)
). Let B ′ be the closed ball of center q ′ and radius ε. By the triangle

inequality, the distance between y and any point of B ′ is at most ε + ‖y − q ′‖, which
is bounded by ε1

3 (1− sin θ)+ ε1
2 (sin θ + ε1

rch(S)
) = ε1

2 ( 2
3 + sin θ

3 + ε1
rch(S)

). This quantity

is less than ε1
2 since by hypothesis we have ε1 < 1

3 (1 − sin θ)rch(S). Therefore, B ′
is included in the open ball of center y and radius ‖y − v‖ = ε1/2. In particular, B ′
does not contain v. Now, q ′ ∈ S, B ′ has radius ε, and L is an ε-sample of S, thus B ′
contains some point u ∈ L. This point is different from v since v /∈ B ′.

We have (‖p − v‖2 − ω(v)2) − (‖p − u‖2 − ω(u)2) = ‖p − v‖2 − ‖p − u‖2 +
ω(u)2 − ω(v)2. Note that ω(u)2 is nonnegative. Moreover, since ω̄ bounds the rel-
ative amplitude of ω, we have ω(v)2 ≤ ω̄2‖u − v‖2. Hence, (‖p − v‖2 − ω(v)2) −
(‖p−u‖2 −ω(u)2) ≥ ‖p−v‖2 −‖p−u‖2 − ω̄2‖u−v‖2. Now, recall that u belongs
to B ′, which is included in the ball of center y and radius ‖y −v‖ = ε1/2. The latter is
included in the diametral ball of [p,v] since y ∈ [p,v] and ‖p − v‖ > ε1. Therefore,
∠puv is obtuse, and we have ‖p − v‖2 −‖p −u‖2 ≥ ‖u− v‖2, which is greater than
ω̄2‖u − v‖2. It follows that (‖p − v‖2 − ω(v)2) − (‖p − u‖2 − ω(u)2) is positive,
which means that p does not belong to Vω(v). This contradicts the hypothesis of the
lemma. �

Let now W be a (finite or infinite) δ-sample of some manifold S in R
d , and let

L ⊆ W be a (finite) ε-sparse ε-sample of W . Note that L is an (ε + δ)-sample of S.
Let ω̄ be an arbitrary value within (0,1/2). We define c1(k), c2(k) as in (1)–(2), and
c3(k) as in (3).

Lemma A.1 (Lemma 4 of [14]) Let ω : L → [0,∞[ be a distribution of weights of
relative amplitude at most ω̄. If ε + δ ≤ rch(S)

2+4ω̄
and max{δ, ζ } ≤ ε, then, for any points

u,v ∈ L such that [u,v] ∈ CWζ

ω (L), ‖u − v‖ ≤ 2c1(1)ε.

Proof Since [u,v] ∈ CWζ

ω (L), there is a point c ∈ Wζ that ω-witnesses [u,v]. By
Lemma 4.5(i),10 ‖c − u‖ and ‖c − v‖ are at most c1(1)ε. Hence, ‖u − v‖ ≤ ‖u −
c‖ + ‖c − v‖ ≤ 2c1(1)ε. �

10The statement and proof of Lemma 4.5 hold in fact for max{δ, ζ } ≤ ε and ε + δ ≤ rch(S)
2k(1+3ω̄)−2ω̄

.
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Lemma A.2 (Lemma 5(i) of [14]) Let ω,ω′ : L → [0,∞[ be two distributions of
weights of relative amplitudes bounded from above by ω̄. If ε + δ ≤ rch(S)

2+4ω̄
and

max{δ, ζ } ≤ ε, then, for any points u,u′, v ∈ L such that [u,v] ∈ CWζ

ω (L) and

[u′, v] ∈ CWζ

ω′ (L), ‖u − v‖ ≤ 2c1(1)‖u′ − v‖.

Proof By Lemma A.1, we have ‖u − v‖ ≤ 2c1(1)ε. Moreover, since L is ε-sparse,
we have ‖u′ − v‖ ≥ ε. The result follows. �

Given ζ ≥ 0 and v ∈ L, let G(v) ⊂ L be the set of all u ∈ L such that u is a
neighbor of v in CWζ

ω (L) for some weight distribution ω of relative amplitude at
most ω̄.

Lemma A.3 (Lemma 6 of [14]) If ε + δ ≤ rch(S)
2+4ω̄

and max{δ, ζ } ≤ ε, then, for any

v ∈ L, the size of G(v) is at most (1 + 4c1(1))d .

Proof By Lemma A.1, the points of G(v) lie in the ball B(v,2c1(1)ε). Moreover,
they lie at least ε away from one another, since L is ε-sparse. Hence, they are cen-
ters of pairwise-disjoint balls of radius ε/2, included in B(v, (2c1(1) + 1/2)ε). It
follows that the size of G(v) is at most vol(B(v, (2c1(1)+ 1/2)ε))/vol(B(v, ε/2)) =
(4c1(1) + 1)d . �

Using the fact that the points of G(v) lie near the tangent space of S at v, it is
possible to make the bound of Lemma A.3 depend solely on the intrinsic dimension
of the manifold S. However, this result cannot be exploited in our reconstruction
algorithm, where the dimension of S is unknown.

Lemma A.4 (Lemma 7 of [14]) If ε + δ ≤ rch(S)
2d(1+3ω̄)−2ω̄

and max{δ, ζ } ≤ ε, then, for
any distribution of weights ω : L → [0,∞[ of relative amplitude at most ω̄, for any
simplex σ ∈ CWζ

ω (L), the orthoradius-edge ratio of σ is at most c2(d).

Proof Let σ be a simplex of CWζ

ω (L), and let c, r be respectively its orthocenter and
orthoradius: we have {c} = aff(σ ) ∩ aff(Vω(σ )) and r = √‖c − v‖2 − ω(v)2, where
v is any vertex of σ . Recall that Dω(L) has no simplex of dimension greater than d ,
since the weighted point set L lies in general position. Hence, the dimension of σ is at
most d , and by Lemma 4.5(iii) there is a point p ∈ Vω(σ ) such that ‖p−v‖ ≤ c2(d)ε.
Therefore,

r =
√

‖c − v‖2 − ω(v)2 ≤
√

‖p − v‖2 − ω(v)2 ≤ ‖p − v‖ ≤ c2(d)ε.

Moreover, since L is ε-sparse, the shortest edge length of σ is at least ε. Hence, the
orthoradius-edge ratio of σ is at most c2(d). �

Lemma A.5 (Lemma 8 of [14]) If ε + δ ≤ rch(S)
2d(1+3ω̄)−2ω̄

and max{δ, ζ } ≤ ε, then,
for any distribution of weights ω : L → [0,∞[ of relative amplitude at most ω̄, for
any simplex σ ∈ CWζ

ω (L), and any facet σ ′ of σ , the Euclidean distance between the
orthocenter of σ and aff(σ ′) is at most c3(d)ε.



68 Discrete Comput Geom (2009) 42: 37–70

Proof Let c and c′ be the orthocenters of σ and σ ′, respectively. Note that c ∈
aff(Vω(σ )) ⊂ aff(Vω(σ ′)) and that {c′} = aff(σ ′) ∩ aff(Vω(σ ′)). Hence, c′ is the
orthogonal projection of c onto aff(σ ′), and the Euclidean distance between c and
aff(σ ′) is precisely ‖c − c′‖.

Let v′ be any vertex of σ ′. Note that v′ is also a vertex of σ , since σ ′ ⊂ σ . Re-
call that Dω(L) has no simplex of dimension greater than d , since the weighted
point set L lies in general position. Hence, the dimension of σ is at most d , and by
Lemma 4.5(iii), there is a point p ∈ Vω(σ ) such that ‖p − v′‖ ≤ c2(d)ε. Therefore,
‖c − v′‖ ≤ ‖p − v′‖ ≤ c2(d)ε, since {c} = aff(σ ) ∩ aff(Vω(σ )).

If σ ′ = [v′], then we have c′ = v′, which implies that ‖c−c′‖ = ‖c−v′‖ ≤ c2(d)ε,
which is at most c3(d)ε.

Else, σ ′ has at least one vertex u′ different from v′. Let r ′ denote the orthora-
dius of σ ′. By Lemma A.4 (applied to σ ′), we have r ′ ≤ c2(d)‖v′ − u′‖, which by
Lemma A.1 is at most 2c2(d)c1(1)ε. Using Lemma 4.3 and the triangle inequality,
we get

‖c − c′‖ ≤ ‖c − v′‖ + ‖v′ − c′‖ = ‖c − v′‖ +
√

r ′2 + ω(v′)2

≤ ‖c − v′‖ + r ′ + ω(v′) ≤ ‖c − v′‖ + r ′ + 2ω̄(ε + δ)

≤ (
c2(d)

(
1 + 2c1(1)

) + 2ω̄(1 + δ/ε)
)
ε,

which is at most c3(d)ε since δ ≤ ε. �

Lemma A.6 (Lemma 10 of [14]) Assume that ε + δ ≤ rch(S)
2d(1+3ω̄)−2ω̄

and that
max{δ, ζ } ≤ ε. Let �̄ > 0 be a constant. Let σ be a k-dimensional �̄-sliver (k > 0)
with vertices in L such that the facets of σ are not �̄-slivers. Let v be any vertex of σ .
For any distribution of weights ω′ : L \ {v} → [0,∞[ of relative amplitude at most ω̄,
there exists an interval I (v, σ,ω′) ⊆ [0, ω̄2 min{‖v − u‖2 | u ∈ L \ {v}}] of length
less than 8�̄c1(1)c3(d)ε2 such that, for any distribution of weights ω : L → [0,∞[ of
relative amplitude at most ω̄ that coincides with ω′ on L \ {v}, σ belongs to CWζ

ω (L)

only if ω(v)2 ∈ I (v, σ,ω′).

Proof Let l be the shortest edge length of σ . Let σv denote the facet of σ opposite
to v, and let dv be the Euclidean distance of v to aff(σv). We have dvvol(σv)

k
= vol(σ ),

which is less than �̄k lk

k! since σ is a �̄-sliver. By hypothesis, σv is not a �̄-sliver, hence

vol(σv) ≥ �̄k−1lk−1
v

(k−1)! , where lv is the shortest edge length of σv . Note that we have lv ≥ l

since σv ⊂ σ . Combining these relations, we get dv <
k(k−1)!�̄k lk

k!�̄k−1lk−1 = �̄l.

Let ω′ : L \ {v} → [0,∞[ be a distribution of weights of relative amplitude at
most ω̄. For any possible weight ωv ∈ [0, ω̄ min{‖v − u‖ | u ∈ L \ {v}}] of v, we call
dc(ωv) the signed Euclidean distance between the orthocenter c of σ and aff(σv), the
distance being positive if, inside aff(σ ), c and v lie on the same side of aff(σv). By
Lemma A.5, if σ belongs to CWζ

ω (L), then |dc(ωv)| ≤ c3(d)ε. Moreover, it has been

proved in [13, Claim 13] that dc(ωv) = dc(0)− ω2
v

2dv
, dc(0) being the signed Euclidean
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distance of c to aff(σv) when ωv = 0. Therefore, σ belongs to CWζ

ω (L) only if

max
{
0,2dv

(
dc(0) − c3(d)ε

)}

≤ ω2
v ≤ min

{
2dv

(
dc(0) + c3(d)ε

)
, ω̄2 min

{‖v − u‖2 | u ∈ L \ {v}}}.

The length of the admissible interval for ω2
v is at most 4dvc3(d)ε, which is less than

4�̄lc3(d)ε, which by Lemma A.1 is bounded by 8�̄c1(1)c3(d)ε2. �
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