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Abstract We show that the multi-commodity max-flow/min-cut gap for series-
parallel graphs can be as bad as 2, matching a recent upper bound (Chakrabarti et
al. in 49th Annual Symposium on Foundations of Computer Science, pp. 761–770,
2008) for this class, and resolving one side of a conjecture of Gupta, Newman, Rabi-
novich, and Sinclair.

This also improves the largest known gap for planar graphs from 3
2 to 2, yield-

ing the first lower bound that does not follow from elementary calculations. Our ap-
proach uses the coarse differentiation method of Eskin, Fisher, and Whyte in order to
lower bound the distortion for embedding a particular family of shortest-path metrics
into L1.

Keywords Discrete metric spaces · Embeddings · Sparsest cut · Metric
differentiation

1 Introduction

Low-distortion metric embeddings have become an increasingly powerful tool in
studying the relationship between cuts and multi-commodity flows in graphs. For
background on the field of metric embeddings and their applications in theoretical
computer science, we refer to Matoušek’s book [26, Chap. 15], the surveys [19, 23],
and the compendium of open problems [25].

One of the central connections lies in the correspondence between low-distortion
L1 embeddings, on the one hand, and the Sparsest Cut problem (see, e.g., [2–4,

J.R. Lee’s research partially supported by NSF CAREER award CCF-0644037. Part of this research
was completed while the author was a postdoctoral fellow at the Institute for Advanced Study,
Princeton.
P. Raghavendra’s research supported in part by NSF grant CCF-0343672.

J.R. Lee (�) · P. Raghavendra
University of Washington, Seattle, USA
e-mail: jrl@cs.washington.edu

mailto:jrl@cs.washington.edu


Discrete Comput Geom (2010) 43: 346–362 347

24]) and concurrent multi-commodity flows (see, e.g., [12, 17]) on the other. This
relationship allows one to bring sophisticated geometric and analytic techniques to
bear on classical problems in graph partitioning and in the theory of network flows.
In the present paper, we show how techniques developed initially in geometric group
theory can be used to shed new light on the connections between sparse cuts and
multi-commodity flows in planar graphs.

Multi-commodity Flows and Sparse Cuts Let G = (V ,E) be an undirected graph,
with a capacity C(e) ≥ 0 associated to every edge e ∈ E. Assume that we are given
k pairs of vertices (s1, t1), . . . , (sk, tk) ∈ V × V and D1, . . . ,Dk ≥ 1. We think of the
si as sources, the ti as targets, and the value Di as the demand of the terminal pair
(si , ti ) for commodity i.

In the Concurrent MaxFlow problem the objective is to maximize the fraction λ

of the demand that can be shipped simultaneously for all the commodities, subject to
the capacity constraints. Denote this maximum by λ∗. A straightforward upper bound
on λ∗ is the sparsest cut ratio Φ∗ defined as follows. Given any subset S ⊆ V , we
write

Φ(S) =
∑

uv∈E C(uv) · |1S(u) − 1S(v)|
∑k

i=1 Di · |1S(si) − 1S(ti)|
,

where 1S is the characteristic function of S. The value Φ∗ = minS⊆V Φ(S) is the min-
imum over all cuts (partitions) of V , of the ratio between the total capacity crossing
the cut and the total demand crossing the cut. In the case of a single commodity (i.e.,
k = 1) the classical MaxFlow–MinCut theorem states that λ∗ = Φ∗, but in general
this is no longer the case. It is known [4, 24] that Φ∗ = O(log k)λ∗. This result is per-
haps the first striking application of metric embeddings in combinatorial optimization
(specifically, it uses Bourgain’s embedding theorem [6]).

Indeed, the connection between L1 embeddings and multi-commodity flow/cut
gaps can be made quite precise. For a graph G, let c1(G) represent the largest dis-
tortion necessary to embed any shortest-path metric on G into L1 (i.e., the maximum
over all possible assignments of nonnegative lengths to the edges of G). Then c1(G)

gives an upper bound on the ratio between the sparsest cut ratio and the maximum
flow for any multi-commodity flow instance on G (i.e., with any choices of capacities
and demands) [4, 24]. Furthermore, this connection is tight in the sense that there is
always a multi-commodity flow instance on G that achieves a gap of c1(G) [17].

Despite significant progress [7, 8, 12, 17, 28], some fundamental questions are still
left unanswered. As a prime example, consider the well-known planar embedding
conjecture [17, 19, 23, 25]:

There exists a constant C such that every planar graph metric embeds into L1
with distortion at most C.

In initiating a systematic study of L1 embeddings [17] for minor-closed families,
Gupta, Newman, Rabinovich, and Sinclair put forth the following vast generalization
of this conjecture (we refer to [14] for the relevant graph theory).

Conjecture 1 (Minor-closed Embedding Conjecture) If F is any nontrivial minor-
closed family, then supG∈F c1(G) < ∞.
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Lower Bounds on the Multi-commodity Max-flow/Min-cut Ratio in Planar Graphs
While techniques for proving upper bounds on the L1-distortion required to embed
such families have steadily improved, progress on lower bounds has been signifi-
cantly slower, and recent breakthroughs in lower bounds for L1 embeddings of dis-
crete metric spaces that rely on discrete Fourier analysis [20, 21] do not apply to
excluded-minor families.

The best previous lower bound on c1(G) when G is a planar graph occurred for
G = K2,n, i.e., the complete 2 × n bipartite graph. By a straightforward generaliza-
tion of the lower bound of Okamura and Seymour [28], it is possible to show that
c1(K2,n) → 3

2 as n → ∞ (see also [1] for a simple proof of this fact in the dual
setting).

We show that, in fact, there is an infinite family of series-parallel (and hence,
planar) graphs {Gn} such that limn→∞ c1(Gn) = 2; this is not only a new lower bound
for planar graphs but yields an optimal lower bound on the L1-distortion (and hence,
the flow/cut gap) for series-parallel graphs. The matching upper bound was recently
proved in [8].

1.1 Results and Techniques

Our lower bound approach is based on exhibiting local rigidity for pieces of metric
spaces under low-distortion embeddings into L1 (which we take to mean L1([0,1])
throughout). This circle of ideas and the relationship to theory of metric differenti-
ation are a long-studied phenomena in geometric analysis (see, e.g., [5, 9, 18, 29]).
More recently, they have been applied to the study of L1 embeddings [10, 11] based
on local rigidity results for sets of finite perimeter in the Heisenberg group [16]; see
[22] for the relevance to integrability gaps for the Sparsest Cut problem.

The philosophy underlying these approaches is as follows. Suppose that X is the
shortest-path metric on some graph. As is well known, an embedding of X into L1
induces a distribution on cuts in X, i.e., subsets S ⊆ X (see Sect. 2.2). If the embed-
ding has low distortion, then in a precise quantitative sense, most of the weight of the
cuts in this distribution is concentrated on subsets S with small perimeter, i.e., which
cut few edges of the graph. For us, rigidity then refers to the phenomenon (a property
of X) that these cuts of small perimeter must have some canonical form. Local rigid-
ity refers to the fact that this conclusion is a local one—we can only conclude that
for some small ball B in X, “most” of the cuts S ∩ B are close to canonical. Finally,
we use this to prove lower bounds by showing that any L1 embedding composed
primarily of canonical cuts cannot have small distortion.

Our basic approach is simple; we know that c1(K2,n) ≤ 3
2 for every n ≥ 1. Recall

that any L1 embedding can be expressed as a convex combination of cuts. Suppose
it were possible to restrict the kind of cuts that appear in a L1 embedding, then pre-
sumably the distortion would be greater than 3

2 . Specifically, consider s, t ∈ V (K2,n)

which constitute the partition of size 2. Say that a cut S ⊆ V (K2,n) is monotone with
respect to s and t if every simple s–t path in K2,n has at most one edge crossing the
cut (S, S̄). It is not difficult to show that if an L1 embedding is composed entirely
of cuts which are monotone with respect to s and t , then that embedding must have
distortion at least 2 − 2

n
.
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Consider now the recursively defined family of graphs K
k
2,n , where K
1

2,n = K2,n,

and K
k
2,n arises by replacing every edge of K
k−1

2,n with a copy of K2,n. More pre-
cisely, the graph K2,n can be thought of as n disjoint paths of length 2 between
two vertices s, t which constitute the partition of size 2. Replace each edge (u, v) in
K
k−1

2,n with a copy of K2,n by identifying the endpoints {u,v} with the vertices {s, t}
in the copy of K2,n. The family {K
k

2,2 }k≥1 is the well-known diamond graphs of [17,

27]. We show that in any low-distortion embedding of K
k
2,n into L1, for k ≥ 1 large

enough, it is possible to find a (metric) copy of K2,n for which the induced embed-
ding is composed almost entirely of monotone cuts. The claimed distortion bound
follows, i.e., limn,k→∞ c1(K


k
2,n) = 2. In Sect. 5, we exhibit embeddings which show

that for every fixed n, limk→∞ c1(K

k
2,n) < 2, thus it is necessary to have the base

graphs grow in size.
The ability to find these monotone copies of K2,n inside a low-distortion L1 em-

bedding of K
k
2,n arises from two sources. The first is the coarse differentiation tech-

nique of Eskin, Fisher, and Whyte [15], which gives a discrete approach to finding
local regularity in distorted paths; this is carried out in Sect. 3. The second aspect is
the relationship between regularity and monotonicity for L1 embeddings which is ex-
pounded upon in Sect. 3.2 and relies on the well-known fact that every L1 embedding
decomposes in a certain way into a distribution over cuts.

2 Preliminaries

For a graph G, we will use V (G),E(G) to denote the sets of vertices and edges
of G, respectively. Sometimes we will equip G with a nonnegative length function
len : E(G) → R+, and we let dlen denote the shortest-path (semi-)metric on G. We
say that len is a reduced length if dlen(u, v) = len(u, v) for every (u, v) ∈ E(G). All
length functions considered in the present paper will be reduced. We will write dG

for the path metric on G if the length function is implicit. For an integer n, let K2,n

denote the complete bipartite graph with 2 vertices on one side, and n on the other.
We will use the notation {xi}ki=1 to denote a ordered sequence of k elements. All
sequences considered in this work are ordered unless otherwise specified.

2.1 s–t Graphs and 
-products

An s–t graph G is a graph which has two distinguished vertices s, t ∈ V (G). For an
s–t graph, we use s(G) and t (G) to denote the vertices labeled s and t , respectively.
Throughout this article, the graphs K2,n are considered s–t graphs in the natural way
(the two vertices forming one side of the partition are labeled s and t).

Definition 2.1 (Composition of s–t Graphs) Given two s–t graphs H and G, define
H 
 G to be the s–t graph obtained by replacing each edge (u, v) ∈ E(H) by a copy
of G (see Fig. 1). Formally,

• V (H 
 G) = V (H) ∪ (E(H) × (V (G) \ {s(G), t (G)})).
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Fig. 1 A single edge H , H 
 K2,3, and H 
 K2,3 
 K2,2

• For every edge e = (u, v) ∈ E(H), there are |E(G)| edges,

{(
(e, v1), (e, v2)

) | (v1, v2) ∈ E(G) and v1, v2 /∈ {
s(G), t (G)

}}

∪{(
u, (e,w)

) | (s(G),w
) ∈ E(G)

} ∪ {(
(e,w), v

) | (w, t (G)
) ∈ E(G)

}
.

• s(H 
 G) = s(H) and t (H 
 G) = t (H).

If H and G are equipped with length functions lenH and lenG, respectively, we
define lenH
G as follows. Using the preceding notation, for every edge e = (u, v) ∈
E(H),

len
(
(e, v1), (e, v2)

) = lenH (e)

dlenG
(s(G), t (G))

lenG(v1, v2),

len
(
u, (e,w)

) = lenH (e)

dlenG
(s(G), t (G))

lenG

(
s(G),w

)
,

len
(
(e,w), v

) = lenH (e)

dlenG
(s(G), t (G))

lenG

(
w, t (G)

)
.

This choice implies that H 
 G contains an isometric copy of (V (H), dlenH
).

Observe that there is some ambiguity in the definition above, as there are two ways
to substitute an edge of H with a copy of G; thus we assume that there exists some
arbitrary orientation of the edges of H . However, for our purposes, the graph G will
be symmetric, and thus the orientations are irrelevant.

Definition 2.2 (Recursive Composition) For an s–t graph G and a number k ∈ N,
we define G
k inductively by letting G
0 be a single edge of unit length and setting
G
k = G
k−1 
 G.

The following result is straightforward.

Lemma 2.3 (Associativity of 
) For any three graphs G1,G2,G3, we have (G1 

G2) 
 G3 = G1 
 (G2 
 G3), both graph-theoretically and as metric spaces.

Definition 2.4 For two graphs G, H , a subset of vertices X ⊆ V (H) is said to
be a copy of G if there exists a bijection f : V (G) → X with distortion 1, i.e.,
dH (f (u), f (v)) = c · dG(u, v) for some scaling factor c > 0.
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Now we make the following two simple observations about copies of H and G in
H 
 G.

Observation 2.5 The graph H 
 G contains |E(H)| distinguished copies of the
graph G, one copy corresponding to each edge in H .

Observation 2.6 The subset of vertices V (H) ⊆ V (H 
 G) form an isometric copy
of H .

For any graph G, we can write G
N = G
k−1 
 G 
 GN−k . By Observation 2.5,
there are |E(G
k−1)| = |E(G)|k−1 copies of G in G
k−1 
 G. Now using Observa-
tion 2.6, we obtain |E(G)|k−1 copies of G in G
N . We refer to these as the level-k
copies of G, and their vertices as level-k vertices.

In the case of K
N
2,n , we will use a compact notation to refer to the copies of K2,n.

For two level-k vertices x, y ∈ V (K
N
2,n ), we will use K

(x,y)

2,n to denote the copy of
K2,n for which x and y are the s–t points. Note that such a copy does not exist
between all pairs of level-k vertices.

2.2 Cuts and L1 Embeddings

Cuts A cut of a graph is a partition of V into (S, S̄)—we sometimes refer to a subset
S ⊆ V as a cut as well. A cut gives rise to a semi-metric; using indicator functions,
we can write the cut semi-metric as ρS(x, y) = |1S(x) − 1S(y)|. A fact central to our
proof is that embeddings of finite metric spaces into L1 are equivalent to sums of
positively weighted cut metrics over that set (for a simple proof of this, see Sect. 4.2
of [13]).

A cut measure on G is a function μ : 2V → R+ for which μ(S) = μ(S̄) for every
S ⊆ V . Every cut measure gives rise to an embedding f : V → L1 for which

∥
∥f (u) − f (v)

∥
∥

1 =
∫

∣
∣1S(u) − 1S(v)

∣
∣dμ(S), (1)

where the integral is over all cuts (S, S̄). Conversely, to every embedding f : V →
L1, we can associate a cut measure μ such that (1) holds. We will use this correspon-
dence freely in what follows. When V is a finite set (as it will be throughout), for
A ⊆ 22V

, we define μ(A) = ∑
S∈A μ(S).

Embeddings and Distortion If (X,dX), (Y, dY ) are metric spaces, and f : X → Y ,
then we write

‖f ‖Lip = sup
x =y∈X

dY (f (x), f (y))

dX(x, y)
.

If f is injective, then the distortion of f is defined by dist(f ) = ‖f ‖Lip · ‖f −1‖Lip.
A map with distortion D will sometimes be referred to as D-bi-Lipschitz. If
dY (f (x), f (y)) ≤ dX(x, y) for every x, y ∈ X, we say that f is non-expansive. For
a metric space X, we use c1(X) to denote the least distortion required to embed X

into L1.
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3 Coarse Differentiation

In the present section, we study the regularity of paths under bi-Lipschitz mappings
into L1. Our main tool is based on differentiation [15]. First, we need a discrete
analog of bounded variation.

Definition 3.1 An ordered sequence {x1, x2, . . . , xk} ⊆ X in a metric space (X,d) is
said to be ε-efficient if

d(x1, xk) ≤
k−1∑

i=1

d(xi, xi+1) ≤ (1 + ε) d(x1, xk).

Of course the left inequality follows trivially from the triangle inequality.

Definition 3.2 A function f : Y → X between two metric spaces (X,d) and (Y, d ′)
is said to be ε-efficient on P = {y1, y2, . . . , yk} ⊆ Y if the sequence f (P ) =
{f (y1), f (y2), . . . , f (yk)} is ε-efficient in X.

For the sake of simplicity, we first present the coarse differentiation argument for
a function on [0,1]. Let f : [0,1] → X be a non-expansive map into a metric space
(X,d). Let C ∈ N be given, and for each k ∈ N, let Lk = {jC−k}Ck

j=0 ⊆ [0,1] be the

set of level-k points, and let Sk = {(jC−k, (j + 1)C−k) : j ∈ {0, . . . ,Ck − 1}} be the
set of level-k pairs.

For an interval I = [a, b], f |I denotes the restriction of f to the interval I . Now
we say that f |I is ε-efficient at granularity C if

C−1∑

j=0

d

(

f

(

a + (b − a)j

C

)

, f

(

a + (b − a)(j + 1)

C

))

≤ (1 + ε)d
(
f (a), f (b)

)
.

Further, we say that a function f is (ε, δ)-inefficient at level k if
∣
∣
{
(a, b) ∈ Sk : f |[a,b] is not ε-efficient at granularity C

}∣
∣ ≥ δCk.

In other words, the probability that a randomly chosen level k restriction f |[a,b] is
not ε-efficient is at least δ. Otherwise, we say that f is (ε, δ)-efficient at level k. The
main theorem of this section follows.

Theorem 3.3 (Coarse Differentiation) If a non-expansive map f : [0,1] → X is
(ε, δ)-inefficient at an α-fraction of levels k = 1,2, . . . ,N , then dist(f |LN+1) ≥
εαδN .

Proof Let D = dist(f |LN+1), and let 1 ≤ k1 < · · · < kh ≤ N be the h ≥ αN levels at
which f is (ε, δ)-inefficient.

Let us consider the first level k1. Let S′
k1

⊆ Sk1 be a subset of size |S′
k1

| ≥ δ|Sk1 |
for which

(a, b) ∈ S′
k1

=⇒ f |[a,b] is not ε-efficient at granularity C.
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For any such (a, b) ∈ S′
k1

, we know that

C−1∑

j=0

d
(
f

(
a + jC−k1−1), f

(
a + (j + 1)C−k1−1)) > (1 + ε)d

(
f (a), f (b)

)

≥ d
(
f (a), f (b)

) + ε
C−k1

D

by the definition of (not being) ε-efficient and the fact that d(f (a), f (b)) ≥ |a −
b|/D. For all segments (a, b) ∈ Sk1 \ S′

k1
, the triangle inequality yields

C−1∑

j=0

d
(
f

(
a + jC−k1−1), f

(
a + (j + 1)C−k1−1)) ≥ d

(
f (a), f (b)

)
.

By summing the above inequalities over all the segments in Sk1 , we get

∑

(u,v)∈Sk1+1

d
(
f (u), f (v)

) ≥
∑

(a,b)∈Sk1

d
(
f (a), f (b)

) + εδ

D
.

Similarly, for each of the levels k2, . . . , kh, we will pick up an excess term of εδ/D.
We conclude that

1 ≥
∑

(u,v)∈SN+1

d
(
f (u), f (v)

) ≥ εδh

D
,

where the LHS comes from the fact that f is non-expansive. Simplifying achieves
the desired conclusion. �

3.1 Differentiation for Families of Geodesics

Let G = (V ,E) be an unweighted graph, and let P denote a family of geodesics (i.e.,
shortest-paths) in G. Furthermore, assume that every γ ∈ P has length Cr for some
C and r ∈ N. Let f : (V , dG) → X be a non-expansive map into some metric space
(X,d).

For the sake of convenience, we will index the vertices along the paths using num-
bers from [0,1]. Specifically, we will refer to the ith vertex along the path γ ∈ P by
γ ( i

Cr ). For indices a, b, we will use γ [a, b] to denote the sub path starting at γ (a)

and ending at γ (b). We will also use f |γ [a,b] to denote the restriction of f to the path
γ [a, b]. As earlier, the function f |γ [a,b] is said to be ε-efficient at granularity C if

C−1∑

j=0

d
(
f

(
γ
(
a + C−1(b − a)j

))
, f

(
γ
(
a + C−1(b − a)(j + 1)

)))

≤ (1 + ε)d
(
f (a), f (b)

)
.
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Let the sets Lk and Sk be defined as before. Thus a level-k segment of a path
γ ∈ P is γ [a, b] for some (a, b) ∈ Sk . We say that f is (ε, δ) inefficient at level k for
the family of paths P if the following holds:

∣
∣
{
(a, b) ∈ Sk, γ ∈ P : f |γ [a,b] is not ε-efficient at granularity C

}∣
∣ ≥ δCk|P |.

A straightforward variation of the proof of Theorem 3.3 yields the following.

Theorem 3.4 If a non-expansive map f : V → X is (ε, δ)-inefficient at an α-fraction
of levels k = 1,2, . . . ,N , then dist(f ) ≥ εαδN .

Proof Let D = dist(f ), and let 1 ≤ k1 < · · · < kh ≤ N be the h ≥ αN levels for
which f is (ε, δ)-inefficient at level ki .

Let us consider the first level k1. Let S′
k1

⊆ P × Sk1 be a subset of size |S′
k1

| ≥
δ|Sk1 ||P | for which

(
γ, (a, b)

) ∈ S′
k1

=⇒ f |γ [a,b] is not ε-efficient at granularity C.

For any such
(
γ, (a, b)

) ∈ S′
k1

, we know that

C−1∑

j=0

d
(
f

(
γ
(
a + jC−k1−1)), f

(
γ
(
a + (j + 1)C−k1−1)))

> (1 + ε)d
(
f

(
γ (a)

)
, f

(
γ (b)

))

≥ d
(
f

(
γ (a)

)
, f

(
γ (b)

)) + ε
CN−k1

D

by the definition of (not being) ε-efficient and the fact that d(f (γ (a)), f (γ (b))) ≥
CN |a − b|/D. In particular, summing both sides over all the segments γ [a, b] over
all paths γ and segments [a, b] ∈ Sk1 (and replacing the preceding inequality by the
triangle inequality if (a, b) /∈ S′

k1
), we get

∑

γ∈P

∑

(u,v)∈Sk1+1

d
(
f

(
γ (u)

)
, f

(
γ (v)

))

≥
∑

γ∈P

∑

(a,b)∈Sk1

d
(
f

(
γ (a)

)
, f

(
γ (b)

)) + εδCN |P |
D

.

Similarly, for each of the levels k2, . . . , kh, we will pick up an excess term of
εδCN |P |/D. We conclude that

CN |P | ≥
∑

γ∈P

∑

(u,v)∈SN+1

d
(
f

(
γ (u)

)
, f

(
γ (v)

)) ≥ εδhCN |P |
D

,

and the desired conclusion follows. �
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3.2 Efficient L1-valued Maps and Monotone Cuts

Finally, we relate monotonicity of L1-valued mappings to properties of their cut de-
compositions.

Definition 3.5 A sequence P = {x1, x2, . . . , xk} ⊆ X is said to be monotone with
respect to a cut (S,S) (where X = S � S̄) if S ∩ P = {x1, x2, . . . , xi} or S̄ ∩ P =
{x1, x2, . . . , xi} for some 1 ≤ i ≤ k.

If μ is a cut measure on a finite set X, we define the separation measure μP for a
subset P ⊆ X as follows: For every S ⊆ X, let

μP (S) =
{

μ(S) if P ⊆ S ∧ P ⊆ S̄,

0 otherwise.

Lemma 3.6 Let (X,d) be a finite metric space, and let P = {x1, x2, . . . , xk} ⊆ X

be a finite sequence. Given a mapping f : X → L1, let μ be the corresponding cut
measure (see (1)). If f is ε-efficient on P , then

μP
({

S : P is monotone with respect to (S, S̄)
}) ≥ (1 − ε)

∥
∥f (x1) − f (xk)

∥
∥

1.

Proof If the sequence P is not monotone with respect to a cut (S,S), then

k−1∑

i=1

∣
∣1S(xi) − 1S(xi+1)

∣
∣ ≥ 2

∣
∣1S(x1) − 1S(xk)

∣
∣.

Now, let E = {S : P is not monotone with respect to (S, S̄)}, and for the sake of con-
tradiction, assume that μP (E ) > ε‖f (x1) − f (xk)‖1, then

k−1∑

i=1

∥
∥f (xi) − f (xi+1)

∥
∥

1

=
k−1∑

i=1

[∫

E

∣
∣1S(xi) − 1S(xi+1)

∣
∣dμ(S) +

∫

Ē

∣
∣1S(xi) − 1S(xi+1)

∣
∣dμ(S)

]

≥ 2
∫

E

∣
∣1S(x1) − 1S(xk)

∣
∣dμ(S) +

∫

Ē

∣
∣1S(x1) − 1S(xk)

∣
∣dμ(S)

= 2μP (E ) + μP (Ē )

> (1 + ε)
∥
∥f (x1) − f (xk)

∥
∥

1,

where we observe that ‖f (x1) − f (xk)‖1 ≤ μP (E ) + μP (Ē ). This is a contradiction,
since f is assumed to be ε-efficient on P . �
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4 The Distortion Lower Bound

Our lower bound examples are the recursively defined family of graphs {K
k
2,n}∞k=1.

We recall that the graphs K
k
2,2 are known as diamond graphs [17, 27].

Lemma 4.1 Let G be an s–t graph with a uniform length function, i.e., len(e) = 1
for every e ∈ E(G). Then for every ε,D > 0, there exists an integer N = N(G,ε,D)

such that the following holds: For any non-expansive map f : G
N → X with
dist(f ) ≤ D, there exists a copy G′ of G in G
N such that f is ε-efficient on all
s–t geodesics in G′.

Proof Let C = dG(s, t), and let PG denote the family of s–t geodesics in G. Fix
δ = 1

|PG| , α = 1
2 , and N = 4D

εδ
.

Let P denote the family of all s–t geodesics in G
N . Each path in P is of length
C and consists of CN edges. From the choice of parameters, observe that εαδN > D.
Applying Theorem 3.4 to the family P , any non-expansive map f with dist(f ) ≤ D

is (ε, δ)-efficient at an α = 1
2 -fraction of levels k = 1,2, . . . ,N . Specifically, there

exists a level k such that f is (ε, δ)-efficient at level k.
For a uniformly random choice of path γ ∈ P and level-k segment (a, b) of γ ,

f |γ [a,b] is not ε-efficient at granularity C with probability at most δ. In case of the
family P , each of the level-k segments is nothing more than an s–t geodesic in a
level-k copy of G.

If, for at least one of the level-k copies of G, f is ε-efficient on all the s–t geo-
desics in that copy, the proof is complete. On the contrary, suppose that each level-k
copy has an s–t geodesic on which f is not ε-efficient. Then in each level-k copy at
least a δ = 1

PG
-fraction of the s–t geodesics are ε-inefficient. Observe that the level-

k copies form a partition the set of all level-k segments, with each level-k segment
being a s–t geodesic in a unique level-k copy. Therefore, if at least a δ-fraction of the
s–t geodesics in each level-k copy are ε-inefficient, then at least a δ-fraction of all
level-k segments are ε-inefficient. This contradicts the fact that f is (ε, δ)-efficient at
level k. �

Although we will not need it, the same type of argument proves the following
generalization to weighted graphs G. The idea is that in G
N for N large enough,
there exists a copy of a subdivision of G with each edge finitely subdivided. Paying
small distortion, we can approximate G (up to uniform scaling) by this subdivided
copy, where the latter is equipped with uniform edge lengths.

Lemma 4.2 Let G be an s–t graph with arbitrary nonnegative edge lengths len :
E(G) → R+. Then for every ε,D > 0, there exists an integer N = N(G,ε,D, len)

such that the following holds: For any non-expansive map f : G
N → X with
dist(f ) ≤ D, there exists a copy G′ of G in G
N such that f is ε-efficient on all
s–t geodesics in G′.

In the graph K2,n, we will refer to the n vertices other than s, t by M = {mi}ni=1.
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Lemma 4.3 For ε < 1
2 and any function f : V (K2,n) → L1 that is ε/n-efficient with

respect to each of the geodesics s–mi–t for 1 ≤ i ≤ n, we have dist(f ) ≥ 2 − 2
n

− 2ε.

Proof Let μ be the cut measure corresponding to f . By scaling, we may assume that
∥
∥f (s) − f (t)

∥
∥

1 = μ
{
S : 1S(s) = 1S(t)

} = 1.

Let V = V (K2,n). Without loss of generality, we assume that μ is supported on 2V \
{∅,V }. Let γi be the geodesic s–mi–t for i ∈ {1,2, . . . , n}. Define

Ei = {
S : (S, S̄) is not monotone with respect to γi

}

and E = ⋃n
i=1 Ei . Since f is ε/n efficient on every γi , by applying Lemma 3.6 we

see that μγi (Ei ) ≤ ε/n. For every (S, S̄) ∈ E , there exists i such that μγi (S) = μ(S).
Hence by a union bound, we see that μ(E ) ≤ ∑n

i=1 μγi (Ei ) ≤ ε.
Consider a cut (S,S) that is monotone with respect to all the γi geodesics and

such that μ(S) > 0. Let us refer to these cuts as good cuts. By monotonicity and the
fact that S /∈ {0,V }, we know that |1S(s)− 1S(t)| = 1. Thus for a good cut (S,S), we
have

∑

i,j∈[n]

∣
∣1S(mi) − 1S(mj )

∣
∣ = 2

(|S| − 1
)(

n − |S| − 1
) ≤ n2

2
. (2)

It follows that
∑

i,j∈[n]

∥
∥f (mi) − f (mj )

∥
∥

1

=
∫

E

∑

i,j∈[n]

∣
∣1S(mi) − 1S(mj )

∣
∣dμ(S) +

∫

Ē

∑

i,j∈[n]

∣
∣1S(mi) − 1S(mj )

∣
∣dμ(S)

≤ μ(Ē )
n2

2
+ μ(E )n2

≤ (1 − ε)
n2

2
+ εn2

= (1 + ε)n2

2

∥
∥f (s) − f (t)

∥
∥

1,

where in the first inequality, we have used (2), and we recall that ‖f (s)−f (t)‖1 = 1.
Contrasting this with the fact that

∑

i,j∈[n]
dK2,n

(mi,mj ) = n(n − 1)dK2,n
(s, t)

yields

dist(f ) ≥ n(n − 1)

(1+ε)n2

2

= 2

1 + ε

(

1 − 1

n

)

≥ 2 − 2

n
− 2ε.

�
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Theorem 4.4 For any n ≥ 2, limk→∞ c1(K

k
2,n) ≥ 2 − 2

n
.

Proof For any ε′ > 0, let N be the integer obtained by applying Lemma 4.1 to K2,n

with ε = ε′/n,D = 2 and G = K2,n. We will show that for any map f : K
N
2,n → L1,

dist(f ) ≥ 2 − 2
n

− 2ε′. Without loss of generality, assume that f is non-expansive. If

dist(f ) ≤ 2, then by Lemma 4.1 there exists a copy of K2,n in which f is ε′
n

-efficient
on all the s–t geodesics. Using Lemma 4.3, we see that on this copy of K2,n we get
dist(f |K2,n

) ≥ 2 − 2
n

− 2ε′. The result follows by taking ε′ → 0. �

5 Embeddings of K�k
2,n

In this section, we show that for every fixed n, limk→∞ c1(K

k
2,n) < 2.

A Next-embedding Operator Let T be a random variable ranging over subsets of
V (K
k

2,n), and let S be a random variable ranging over subsets of V (K2,n). We define

a random subset PS(T ) ⊆ V (K
k+1
2,n ) as follows. One moves from K
k

2,n to K
k+1
2,n by

replacing every edge (x, y) ∈ E(K
k
2,n) with a copy of K2,n which we will call K

(x,y)

2,n .

For every edge (x, y) ∈ K
k
2,n , let S(x,y) be an independent copy of the cut S (which

ranges over subsets of V (K2,n)). We form the cut PS(T ) ⊆ V (K
k+1
2,n ) as follows. If

(x, y) ∈ E(K
k
2,n), then for v ∈ V (K

(x,y)

2,n ), we put

1PS(T )(v) =
{

1PS(T )(s(K
(x,y)

2,n )) if 1S(x,y) (v) = 1S(x,y) (s(K
(x,y)

2,n )),

1PS(T )(t (K
(x,y)

2,n )) otherwise.

We note that, strictly speaking, the operator PS depends on n and k, but we allow
these to be implicit parameters.

5.1 Embeddings for Small n

Consider the graph K2,n with vertex set V = {s, t} ∪ M . An embedding in the style
of [17] would define a random subset S ⊆ V by selecting M ′ ⊆ M to contain each
vertex from M independently with probability 1

2 , and then setting S = {s} ∪ M ′.
The resulting embedding has distortion 2 since, for every pair x, y ∈ M , we have
Pr[1S(x) = 1S(y)] = 1

2 . To do slightly better, we choose a uniformly random subset
M ′ ⊆ M of size �n

2 � and set S = {s}∪M ′ or S = {s}∪(M \M ′), each with probability
half. In this case, we have

Pr[1S(x) = 1S(y)] = �n
2 � · �n+1

2 �
(
n
2

) >
1

2
,

resulting in a distortion slightly better than 2. A recursive application of these ideas
results in limk→∞ c1(K


k
2,n) < 2 for every n ≥ 1, though the calculation is compli-

cated by the fact that the worst distortion is incurred for a pair {x, y} with x ∈ M(H)

and y ∈ M(G) where H is a copy of K

k1
2,n and G is a copy of K


k2
2,n , and the
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relationship between k1 and k2 depends on n. (For instance, c1(K2,2) = 1, while
limk→∞(K
k

2,2) = 4
3 .)

Theorem 5.1 For any n, k ∈ N, we have c1(K

k
2,n) ≤ 2 − 2

2� n
2 �+1 .

Proof For simplicity, we prove the bound for K
k
2,2n. A similar analysis holds for

K
k
2,2n+1. We define a random cut Sk ⊆ V (K
k

2,2n) inductively. For k = 1, choose a

uniformly random partition M(K
1
2,2n) = Ms ∪ Mt with |Ms | = |Mt | = n, and let

S1 = {s(K
1
2,2n)} ∪ {Ms}. The key fact which causes the distortion to be less than 2 is

the following: For any x, y ∈ M(K
1
2,2n), we have

Pr
[
1S1(x) = 1S1(y)

] = n2

(2n
2

) = n

2n − 1
>

1

2
. (3)

This follows because there are
(2n

2

)
pairs {x, y} ∈ M(K
1

2,2n) and n2 are separated
by S1.

Assume now that we have a random subset Sk ⊆ V (K
k
2,2n). We set Sk+1 = PS1(Sk)

where PS1 is the operator defined above, which maps random subsets of V (K
k
2,2n) to

random subsets of V (K
k+1
2,2n ). In other words, Sk = P k−1

S1
(S1).

Let s0 = s(K
k
2,2n) and t0 = t (K
k

2,2n). It is easy to see that the cut S = Sk de-

fined above is always monotone with respect to every s0–t0 shortest path in K
k
2,2n,

thus every such path has exactly one edge cut by Sk , and furthermore the cut edge
is uniformly chosen from along the path, i.e., Pr[1S(x) = 1S(y)] = 2−k for every
(x, y) ∈ E(K
k

2,2n). In particular, it follows that if u,v ∈ V (K
k
2,2n) lie along the same

simple s0–t0 path, then Pr[1S(u) = 1S(v)] = 2−kd(u, v).
Now consider any u,v ∈ V (K
k

2,2n). Fix some shortest path P from u to v. By
symmetry, we may assume that P goes left (toward s0) and then right (toward t0).
Let s be the left-most point of P . In this case, s = s(H) for some subgraph H which
is a copy of K
k′

2,2n with k′ ≤ k and such that u,v ∈ V (H); we let t = t (H). We also
have d(u, v) = d(u, s) + d(s, v). Let M = M(H), and fix x, y ∈ M which lie along
the s–u–t and s–v–t shortest-paths, respectively. Without loss of generality, we may
assume that d(s, v) ≤ d(s, y). We need to consider two cases (see Fig. 2).

Case I: d(u, s) ≤ d(x, s).

For any pair a, b ∈ V (K
k
2,2n), we let Ea,b be the event {1S(a) = 1S(b)}. In this

case, we have Pr[Eu,v] = Pr[Es,t ] · Pr[Eu,v | Es,t ]. Since s, t clearly lie on a shortest
s0–t0 path, we have Pr[Es,t ] = 2−kd(s, t). For any event E , we let μ[E ] = Pr[E | Es,t ].
Now we calculate using (3),

μ[Eu,v] ≥ μ[Ex,y]
(
μ[Ex,s ´ Ex,y]μ[Eu,s ´ Ex,s , Ex,y] + μ[Ex,t ´ Ex,y]μ[Ev,s ´ Ex,t , Ex,y]

)

= n

2n − 1

(
1

2
· d(u, s)

d(x, s)
+ 1

2
· d(v, s)

d(y, s)

)

= n

2n − 1

d(u, v)

d(s, t)
.
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Fig. 2 The two cases of Theorem 5.1

Hence in this case, Pr[1S(u) = 1S(v)] ≥ n
2n−1 · 2−kd(u, v).

Case II: d(u, s) ≥ d(x, s).

Here, we need to be more careful about bounding μ[Eu,v]. It will be helpful to
introduce the notation a �→ b to represent the event {1S(a) = 1S(b)}. We have

μ[Eu,v] = μ[x �→ t, y �→ s] + μ[x �→ t, y �→ t, v �→ s] + μ[x �→ s, y �→ s, u �→ t]
+ μ[x �→ s, y �→ t, u �→ t, v �→ s] + μ[x �→ s, y �→ t, u �→ s, v �→ t]

= 1

2

n

2n − 1
+ n − 1

2n − 1

d(v, y) + d(u, x)

d(s, t)

+ 1

2

n

2n − 1

(
d(u, x)d(v, y) + d(u, t)d(v, s)

d(x, t)d(y, s)

)

.

If we set A = d(v,s)
d(s,t)

and B = d(u,x)
d(s,t)

, then d(u,v)
d(s,t)

= 1
2 + A + B , and simplifying the

expression above, we have

μ[Eu,v] = 1

2
+ B + A

2n − 1
− 4n

2n − 1
AB.

Since the shortest path from u to v goes through s by assumption, we must have
A+B ≤ 1

2 . Thus we are interested in the minimum of μ[Eu,v]/( 1
2 +A+B) subject to

the constraint A+B ≤ 1
2 . It is easy to see that the minimum is achieved at A+B = 1

2 ,
thus setting B = 1

2 − A, we are left to find

min
0≤A≤ 1

2

{

1 − 2A + 4nA2

2n − 1

}

= 2n + 1

4n
.

(The minimum occurs at A = 1
2 − 1

4n
.) So in this case, Pr[1S(u) = 1S(v)] ≥

2n+1
4n

2−kd(u, v).
Combining the above two cases, we conclude that the distribution S = Sk induces

an L1 embedding of K
k
2,2n with distortion at most max{ 2n−1

n
, 4n

2n+1 } = 2 − 2
2n+1 .
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A similar calculation yields

c1(K

k
2,2n+1) ≤

(

min
0≤A≤ 1

2

{

1 − 2A + 4(n + 1)A2

2n + 1

})−1

= 2 − 2

2n + 3
.

�
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