
Discrete Comput Geom (2009) 42: 399–420
DOI 10.1007/s00454-009-9170-6

Markov Incremental Constructions

Bernard Chazelle · Wolfgang Mulzer

Received: 12 July 2008 / Revised: 7 January 2009 / Accepted: 2 February 2009 /
Published online: 28 April 2009
© Springer Science+Business Media, LLC 2009

Abstract A classic result asserts that many geometric structures can be constructed
optimally by successively inserting their constituent parts in random order. These ran-
domized incremental constructions (RICs) still work with imperfect randomness: the
dynamic operations need only be “locally” random. Much attention has been given
recently to inputs generated by Markov sources. These are particularly interesting
to study in the framework of RICs, because Markov chains provide highly nonlocal
randomness, which incapacitates virtually all known RIC technology.

We generalize Mulmuley’s theory of Θ-series and prove that Markov incremental
constructions with bounded spectral gap are optimal within polylog factors for trape-
zoidal maps, segment intersections, and convex hulls in any fixed dimension. The
main contribution of this work is threefold: (i) extending the theory of abstract con-
figuration spaces to the Markov setting; (ii) proving Clarkson–Shor-type bounds for
this new model; (iii) applying the results to classical geometric problems. We hope
that this work will pioneer a new approach to randomized analysis in computational
geometry.

Keywords Randomized incremental constructions · Expander graphs ·
Clarkson–Shor bound

This work was supported in part by NSF grants CCR-0306283, CCF-0634958.

B. Chazelle · W. Mulzer (�)
Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540, USA
e-mail: wmulzer@cs.princeton.edu

B. Chazelle
e-mail: chazelle@cs.princeton.edu

mailto:wmulzer@cs.princeton.edu
mailto:chazelle@cs.princeton.edu

400 Discrete Comput Geom (2009) 42: 399–420

1 Introduction

Randomized incremental constructions (RICs) are popular for three reasons: they are
widely applicable; they are as simple as one could hope; and they are often optimal
under random input sequences [4–8, 11, 12, 14–16, 18, 22, 31, 32, 34–36, 40–43,
48]. But what if the sequences are not truly random? In the worst case, the running
time typically goes up by a factor of n. Less obvious is the fact that perfect random-
ness is not actually necessary. Mulmuley [37] proved that O(1)-wise independence
is in fact sufficient. On the other hand, Amenta et al. [2] showed that the entropy
may slowly decay during the RIC without penalty; in other words, the insertion se-
quence can afford to be less and less random as the construction progresses. Devillers
and Guigue [17] introduced the shuffling buffer which randomly permutes contiguous
subsequences of the input sequence of a certain length k, and they provided trade-offs
between the length k and the running time of the RIC. What these results demonstrate
is that standard RIC analysis still works as long as there is sufficient local random-
ness early enough. Unfortunately, these two features are precisely what is lacking in
Markov sources.

What are those? A Markov source is a probabilistic model of input data that se-
rializes the production of data over time by means of a random walk in a graph.
It is widely used in queuing theory, speech recognition, gesture modeling, protein
homology, computer graphics, robotics, web searching, etc. It captures the statisti-
cal correlations created by time coherence. In speech, for example, the randomness
of the next utterance is heavily dependent on the previous ones; hence the use of
hidden Markov models. In geometric applications, Markov sources have been used
in ray tracing [25, 46], computer games [30], robotics [21], terrain generation [47],
etc. In computer science, one of the main motivations has been locality of reference;
in particular, there exists a vast body of research in online algorithms for Markov
sources [10, 24, 26–29, 38, 39, 45]. The work of Amenta et al. [2] on RICs is also
motivated by the desire for local access. The focus of much of modern computing has
shifted over to the “data” side (partly because of the need to cope with massive data
sets), and it is natural to ask what happens to a general algorithmic paradigm (RIC)
when one assumes a Markov source—arguably the most widely used probabilistic
model in applied science today.1

For the purpose of this paper, our model consists of an event graph G = (V ,E)

which is connected and undirected. This means that G defines a Markov chain that
is irreducible and reversible but not necessarily ergodic. Each node v is associated
with an item xv in a universe U . Requests are specified by following a random walk,
beginning at a random start node of G and hopping from node to node, each time
choosing an adjacent node v uniformly at random. Upon reaching v, item xv is in-
serted into the current structure. The structure in question depends, of course, on the
application. In this work we consider convex hulls, trapezoidal maps, and segment
intersections. The structure is the corresponding conflict graph. Actually, we can use
a data structure called influence graph [5–8, 18, 19] or history graph [36], which

1See Appendix A for technical background on Markov Chains and our terminology.

Discrete Comput Geom (2009) 42: 399–420 401

has the advantage of supporting queries and allowing for online (semi)dynamic algo-
rithms. This means that we do not even need to know the graph G ahead of time. Our
analysis, in fact, supports all known variants of RICs.

Our Results and Their Significance The main contribution of this paper is to extend
Mulmuley’s theory of Θ-series [36] to Markov chains.2 In the course of doing so,
we prove two results of independent interest: one is a generalization of the classic
Clarkson–Shor counting technique for Markov sampling; the other is a new bound
on mean first passage times for Markov chains with bounded spectral gap.

With the new tools we build, we are able to bound the expected complexity of
RIC for convex hulls in d dimensions by O(γ −dn�d/2�(logn)�d/2�) for d > 3 and
O(n(γ −1 logn)d) for d ≤ 3, where γ is the spectral gap of the random walk, i.e., the
difference between the first and second largest eigenvalues of the transition matrix—
note that γ is a positive constant in the case of a random graph or an expander. For
trapezoidal maps of nonintersecting segments and segment intersections, the com-
plexity is respectively O(n(γ −1 logn)4) and O((n + m)(γ −1 logn)6), where m is
the number of intersections.

The polylog factors we achieve are unlikely to be tight, and improving them re-
mains an intriguing open problem. We suspect that further progress hinges on a better
understanding of the geometry of k-sets and of the short-term behavior of random
walks, a topic that seems to have been addressed only recently in the Markov chain
literature [3].

A reader familiar with the role of expanders in derandomizing BPP might expect
that Markov sources should provide more, not less, randomizing power than, say,
bounded independence.3 This intuition is wrong for very interesting reasons that are
important to understand. The standard analyses for RICs require global randomness
within local time windows. Markov sources violate that essential feature in the worst
possible way. Even post-mixing, a short walk contains virtually no global random-
ness. Note that all previous uses of expanders for (de)randomization rely on their
randomness over global windows: in that regard, this paper pioneers a local approach
to Markov chains that is likely to find further applications. In particular, our contri-
bution includes new results of general interest on first passage times.

That Markov RICs come within polylog and not, say, nε of optimal is, in and of it-
self, a very intriguing result. In fact, we do not know any simple argument that shows
that the expected RIC complexity beats that of the worst possible deterministic inser-
tion sequence (even assuming bounded spectral gap)! Markov sources seem to shatter
the foundation of RIC’s analysis at its core. We show in this paper how the framework
of Θ-series can be partly salvaged. It is doubtful whether backwards analysis can be
similarly rescued, but this is a fascinating open question.

RICs provide essentially the simplest algorithms one can hope for. The message
of this paper is that a tiny amount of local entropy (as provided by Markov sources)

2See Appendix C for more on configuration spaces and Θ-series.
3BPP is the class of languages that can be decided by probabilistic polynomial-time Turing machines with
two-sided error bounded away from 1/2.

402 Discrete Comput Geom (2009) 42: 399–420

is sufficient to bring about almost all (though not quite all) the benefits of full ran-
domization. What our work also shows is that there is nothing obvious at all about
such a statement.

2 A Simple Example: Treaps

We begin with a toy example that avoids some of the complications of the general
case: suppose that each node v of G is labeled with an element xv from a totally
ordered universe and that all the labels are distinct. The structure to be maintained is
a binary search tree T . Start with an empty tree and perform a random walk on G.
When the walk reaches v for the first time, insert xv into T . Our goal is to bound
the expected time for the construction of T . For convenience, we assume that G is
connected and r-regular4 for some constant r . The complexity of the algorithm is
tightly coupled to the spectral gap γ , which is the difference between the first and
second largest eigenvalues of the (stochastic) transition matrix. We will prove the
following result.

Theorem 1 The expected time to construct the binary search tree is O(γ −1n logn).

For example, if G is the complete graph with self-loops, then γ = 1, and we get
the original theorem about treap construction [33, 44]. More interestingly, if G is a
random r-regular graph or an expander, we have γ = Θ(1), and the running time is
still optimal. A cycle, on the other hand, has γ = Θ(1/n2), and Theorem 1 predicts
a running time of O(n3 logn).

For distinct u,v ∈ V , let Suv denote the set of nodes z ∈ V such that xz lies in the
open interval bounded by xu and xv . Furthermore, let Iuv be the indicator random
variable for the event that xu is compared to xv when xu is inserted into T , i.e., the
event that xv is an ancestor of xu in the binary search tree. Clearly, the time to insert xu

into T is proportional to
∑

v∈V \u Iuv . We claim that Iuv = 1 precisely if the random

walk encounters v before any other node in S = Suv ∪ {u,v} [44, Lemma 4.3]: let w

be the first node in S that is encountered during the random walk, and let T ∗ be the
tree just before the insertion of xw . Since the labels of the nodes in S constitute an
interval, for every element x in T ∗, the comparison of x with any xz, z ∈ S, yields
the same result, irrespective of which z ∈ S is chosen. Therefore, the search paths in
T ∗ for all xz, z ∈ S, are identical. It follows that all those elements will be stored in
a subtree rooted at xw . We can now cover all the cases (see Fig. 1): if w = u, then
Iuv = 0, and if w = v, then Iuv = 1. Finally, if w ∈ Suv , then xu and xv will be stored
in different subtrees of xw , and hence they will never be compared to each other, i.e.,
Iuv = 0. Thus, the expected time to build the binary search tree is proportional to

Θ =
∑

u,v∈V
u
=v

E[Iuv] =
∑

u,v∈V
u
=v

Pr
[
the random walk meets v before any node in Suv ∪ {u}].

(1)

4A graph is r-regular if all its nodes have degree r .

Discrete Comput Geom (2009) 42: 399–420 403

Fig. 1 All elements xz , z ∈ S,
are stored in a subtree rooted at
xw . (a) If w = u, then Iuv = 0;
(b) if w = v, then Iuv = 1; and
(c) if w ∈ Suv , we have Iuv = 0

To get a handle on this sum, we need some random walk theory. Recall that the
transition matrix of a Markov process with n states is the n × n matrix P in which
entry Pij is the probability of a transition from state i to state j . The transition matrix
of a random walk on a graph G is its adjacency matrix, normalized so that each
row sums to one. Furthermore, for any initial probability distribution π0 ∈ R

n, the
distribution after t steps equals πT

0 P t .
For technical reasons, we assume a lazy walk with P = 1

2 (I + M/r), where M

is the adjacency matrix of G. This is only for analytical convenience, and an ac-
tual implementation could assume a random walk in the original graph G. For the
cost of a constant-factor slowdown, the lazy walk brings with it well-known analyt-
ical benefits. For example, P is positive semidefinite, and the walk is ergodic. Fix
a node u0 ∈ V . Given any nonempty set S ⊂ V and u ∈ V \ S, let Pr[u0

u→ S] be
the probability that an infinite walk from u0 reaches u before any node in S, and let
t0 = �c(1 − λ)−1 logn� be an upper bound on the mixing time, where λ is the second
largest eigenvalue of P , and c is a large enough constant [13]. Note that λ = 1 − γ /2
(the factor 1/2 comes from the lazy walk) and that

λt0 ≤ 1/n, (2)

for appropriate c, since λ = 1 − (1 − λ) ≤ exp (λ − 1). We begin with a technical
result of independent interest.5

Lemma 1 For any given u0 ∈ V , nonempty S ⊂ V , and u ∈ V \ S,

Pr[u0
u→ S]

∑

0≤t<3t0

(
P t

)
u0u

+ 1

(1 − λ)|S| .

Proof We may assume that u0
= u, since otherwise the sum on the right-hand side
is at least 1 and the lemma holds trivially. Similarly, we assume that u0
∈ S, since
otherwise Pr[u0

u→ S] = 0. Let Q be the matrix derived from P by zeroing out any
entry Pvw with either v or w (or both) in S ∪ {u}. (We index matrix elements and
vector coordinates by their corresponding nodes in G.) Being positive semidefinite,
Q has a (real) spectral decomposition

∑
i μizizT

i such that μ1 ≥ · · · ≥ μn = 0 and the
zi constitute an orthonormal basis of eigenvectors. By the Perron–Frobenius theorem
(Theorem 5 in Appendix B), λ < 1. We also have μ1 < 1. To see why, note that
the components of G \ (S ∪ {u}) induce a decomposition of Q into block matrices.

5For convenience, we use the Vinogradov notation
 and � for O(·) and Ω(·), respectively.

404 Discrete Comput Geom (2009) 42: 399–420

If μ1 = 1, one of these block matrices Q′ would have principal eigenvalue 1, and
Perron–Frobenius would yield a corresponding eigenvector with all positive entries.
But this is impossible, since Q′ has a row whose entries sum to less than 1 (and all
other rows sum to at most 1).6 By the eigenvalue interlacing lemma (Theorem 4),
μ2 ≤ λ, so for any v,w ∈ V \ (S ∪ {u}),

(
Qt

)
vw

= z1vz1wμt
1 +

∑

i>1

zivziwμt
i (spectral decomposition)

≤ z1vz1wμt
1 + μt

2

√∑

i>1

z2
iv

∑

i>1

z2
iw (Cauchy–Schwarz and μi ≤ μ2)

≤ z1vz1wμt
1 + λt (orthonormality of the zi and μ2 ≤ λ). (3)

Since 1/
√

n is the principal unit eigenvector of P for the eigenvalue 1, an analogous
calculation for P yields for any v,w ∈ V :

(
P t

)
vw

≤ 1

n
+ λt . (4)

To bound Pr[u0
u→ S], we proceed as follows: first, we distinguish between short

paths (with less than 3t0 steps) and long paths (with at least 3t0 steps). The contri-
bution of the short paths constitutes the first summand in the bound of Lemma 1. To
analyze the contribution of the long paths, we break down every long path from u0 to
u into a premixing part, a mixed portion, and the premixed part of the reverse path.
We then assess the contribution of each piece. Let Nu denote the set of nodes in V \S

adjacent to u via a nonloop edge. Since G is r-regular, |Nu| ≤ r . Note that (Qt)u0v is
the probability that a t-step random walk from u0 ends in v while avoiding S ∪ {u}.
Therefore,

Pr[u0
u→ S] = 1

r

∞∑

t=0

∑

v∈Nu

(
Qt

)
u0v

≤
∑

t<3t0

(
P t

)
u0u

+ 1

r

∑

t≥3t0

∑

v∈Nu

(
Qt

)
u0v

. (5)

We now break down the long paths. The last summand in (5) is bounded by

1

r

∑

v∈Nu

∑

t≥t0

∑

a,b∈V

(
P t0

)
u0a

(
Qt

)
ab

(
P t0

)
bv

(
break-up and

(
Qt0

)
uv

≤ (
P t0

)
uv

)

≤
(

1

n
+ λt0

)2 ∑

t≥t0

∑

a,b∈V

(
Qt

)
ab

(by (4) and |Nu| ≤ r)

6Let v be this eigenvector, and suppose that the ith row of Q′ sums to less than 1. Since μ1 = 1, there
must be an index j such that Q′

ij
> 0 and vj > vi , where vi , vj denote the corresponding components

of v. The j th row sums to at most 1, and by symmetry Q′
ji

> 0. Hence there must be j ′ with Q′
jj ′ > 0 and

vj ′ > vj . Repeating this argument yields an arbitrarily long strictly increasing sequence of components
of v, which is impossible since v has finite dimension.

Discrete Comput Geom (2009) 42: 399–420 405

≤ 4

n2

∑

t≥t0

∑

a,b∈V

(
Qt

)
ab

(by (2)). (6)

Since ‖z1‖2 = 1 and since at least |S| + 1 of its coordinates are zero (an easy conse-
quence of being an eigenvector for Q), Cauchy–Schwarz yields ‖z1‖2

1 ≤ n − |S| − 1.
By applying Perron–Frobenius to the parts of the block decomposition of Q induced
by the components of G \ (S ∪ {u}), we can assume that z1 is nonnegative, and so

∑

a,b∈V

z1az1b = ‖z1‖2
1 ≤ n − |S| − 1. (7)

We have

Pr[u0
u→ S] −

∑

t<3t0

(
P t

)
u0u

≤ 1

r

∑

t≥3t0

∑

v∈Nu

(
Qt

)
u0v

(by (5))

≤ 4

n2

∑

a,b∈V

∑

t≥t0

(
z1az1bμ

t
1 + λt

)
(by (3), (6))

≤ 4

n(1 − μ1)
+ 4λt0

1 − λ
(geometric sum and (7)). (8)

We already noted μ1 < 1. However, to bound (8), we need a better estimate on 1−μ1.
This can be done using an argument similar to one given by Broder and Karlin [9]:
since z1 is nonnegative, nz1 − ‖z1‖11 is normal to the principal eigenvector 1 of P ,
and since P is symmetric, by Courant–Fischer (Theorem 3),

λ ≥ (nz1 − ‖z1‖11)T P (nz1 − ‖z1‖11)

‖nz1 − ‖z1‖11‖2
2

= n2zT
1 P z1 − n‖z1‖1(zT

1 P 1 + 1T P z1) + ‖z1‖2
11T P 1

n2‖z1‖2
2 − n‖z1‖1(zT

1 1 + 1T z1) + ‖z1‖2
11T 1

.

Now, since 1 is a left and right eigenvector of P , 1T P = 1T and P 1 = 1. Furthermore,
1T 1 = n, zT

1 1 = 1T z1 = ‖z1‖1, and ‖z1‖2 = 1. Hence,

λ ≥ nzT
1 P z1 − ‖z1‖2

1

n − ‖z1‖2
1

≥ nμ1 − ‖z1‖2
1

n − ‖z1‖2
1

,

because zT
1 P z1 ≥ zT

1 Qz1 = μ1. It follows that nμ1 ≤ nλ + (1 − λ)‖z1‖2
1, and us-

ing (7), we get μ1 ≤ 1 − (1 − λ)(|S| + 1)/n. Plugging this bound into (8) completes
the proof, as λto ≤ 1/n ≤ 1/|S| by (2). �

Proof of Theorem 1 By (1), the expected running time is

Θ =
∑

u,v∈V
u
=v

1

n

∑

u0∈V

Pr
[
u0

v→ Suv ∪ {u}],

406 Discrete Comput Geom (2009) 42: 399–420

where u0 is the random start node of the walk. By Lemma 1,

Θ

∑

u,v∈V
u
=v

1

n

∑

u0∈V

(3t0−1∑

t=0

(P t)u0v + 1

(1 − λ)(|Suv| + 1)

)

=
∑

u,v∈V
u
=v

(
3t0

n
+ 1

(1 − λ)(|Suv| + 1)

)

,

since
∑

u0∈V (P t)u0v = 1, as (P t)u0v is the probability that a t-step random walk
ending in v started out at u0. Hence,

Θ
 nt0 + (1 − λ)−1
n∑

i,j=1
i
=j

1

|i − j | + 1

 γ −1n logn. �

3 Θ-Series for Markov Sources

We use the classical notion of configuration spaces (see [36] or Appendix C for a
primer) and adapt it to the Markov model. This is done as follows: fix a natural
number d , the degree of the configuration space. Each node v of G is assigned an
object xv chosen from a geometric universe (e.g., points, hyperplanes, segments),
and to each d-tuple u = (u1, . . . , ud) of distinct ui ∈ V we assign a (possibly empty)
Su ⊆ V disjoint from u. We denote by fk the number of u’s such that |Su| = k and by
f≤k the prefix sum f0 +· · ·+fk . We write fk(n) and f≤k(n) to refer to the maximum
such values over all subsets of the universe of size n. The coordinates of a d-tuple u
play the role of the triggers and the sets Su that of the stoppers. Naturally, fk counts
the k-sets of the underlying range space.

The apparent simplifications of our model do not, in fact, restrict the generality of
the results in any way. Indeed, our framework can just as easily handle cases where
u is not a sequence but a multiset, where it maps to several stopper sets, or where
the degree d is not unique. Given a random ordered u = (u1, . . . , ud) with distinct
elements, perform an infinite random walk from a random node in G. If the walk first
reaches u1, . . . , ud in that order before hitting any node in Su, then set Φ = nd |Su|;
else set Φ = 0. Standard Θ-series theory shows that the expectation of Φ determines
the expected amortized complexity of RIC [36]. As before, we assume that the graph
is connected and r-regular, and we let γ denote the spectral gap. We postpone the
proof of this result:

Theorem 2 (Master Theorem) If there exists a constant α > 0 such that f0(n) =
O(nα), then E[Φ]
 γ −dnα(logn)d−α for α > 1 and E[Φ]
 γ −dn(logn)d for
α ≤ 1.

We apply the theorem to three problems: convex hulls (and hence Voronoi di-
agrams); trapezoidal maps of disjoint segments; and line segment intersections. For

Discrete Comput Geom (2009) 42: 399–420 407

simplicity, we assume that the input is in general position. The algorithms themselves
operate in standard incremental fashion by inserting objects online with the help of
the history graph. The algorithms do not require knowledge of the Markov chain
(which is why we do not use conflict graphs).

– CONVEX HULLS IN R
d : The convex hull of n points in R

d has O(n�d/2�)
faces, which implies that α = �d/2�. The algorithm runs in time O(γ −dn�d/2�
(logn)�d/2�) for d > 3 and O(n(γ −1 logn)d) for d ≤ 3.

– TRAPEZOIDAL MAPS: At each node, the trapezoidal map formed by a set of (non-
intersecting) segments is maintained. The relevant configuration space is made of
three subconfiguration spaces of respective degrees 2, 3, and 4. Hence, the time
required by the algorithm is O(n(γ −1 logn)4).

– SEGMENT INTERSECTIONS: The m intersections among n segments are computed
in O((n+m)(γ −1 logn)6) steps. The proof depends on an extension of the Master
Theorem discussed in Sect. 4.

To bound the expectation of Φ , we need to understand a certain stochastic process,
which we proceed to describe. A random thread refers either to a single node w1
chosen uniformly at random (thread size of 1) or to a sequence w1, . . . ,wl (thread size
of l > 1), where w1 is random and, for each i > 0, wi+1 is the end node of a random
walk from wi of length ti > 0. The time sequence θ = (t1, . . . , tl−1) parameterizes
the thread. Given 1 ≤ μ ≤ d , a random μ-thread is a sequence of μ threads whose
sizes add up to d : each thread is drawn independently and has its own size and time
sequence. Its time sequence θ refers now to the collection of its constituent threads’
time sequences. A μ-thread forms a d-tuple u and is therefore associated with a
stopper set7 Su. Let g

(μ)
k be the probability that a random μ-thread (with a given time

sequence) produces u such that |Su| = k,

g
(μ)
k = Pr

[
μ-thread ↪→ u : |Su| = k

]
, (9)

and let g
(μ)
≤k = ∑

0≤i≤k g
(μ)
i .

Lemma 2 Let f0 be monotonically increasing. For any μ-thread and any corre-
sponding time sequence θ1, . . . , θμ, we have g

(μ)
≤k
 (k/n)μf0(n/k) for k > 0.

Proof We use a Clarkson–Shor-type counting argument [15] tailored for Markov
chains. As usual, the idea is to use sampling in order to bound g

(μ)
≤k in terms of f0.

More precisely, we sample a set Rv ⊆ V of size about n/k. Then, for a configuration
u ⊆ Rv with |Su| ≤ k, we argue that with constant probability, u is active in Rv , i.e.,
Su ∩ Rv = ∅. Together with a bound on the probability that a given configuration u
appears in Rv , this yields the desired result. We may assume that k ≤ n/2d , since for
larger k, the bound becomes constant and g

(μ)
≤k ≤ g

(μ)
≤n ≤ 1.

All μ-threads in this proof share the given time sequence θ1, . . . , θμ. Let s ≤ n be
an integer to be determined later. For each i = 1, . . . ,μ, pick s random threads of type

7This is not true if u contains less than d distinct nodes. Since Lemma 2 deals only with finite stopper sets,
we can invalidate this case by setting Su = R, or any other infinite set.

408 Discrete Comput Geom (2009) 42: 399–420

θi , and define R as the set of u’s formed by taking all possible sμ combinations of the
resulting threads, one of each type. Given a fixed (nonrandom) u ∈ V d , let pu denote
the probability that u is chosen by a random μ-thread. Since each starting node is
chosen independently, pu is of the form

∏
1≤i≤μ

pu,i

n
, where pu,i is the probability

that the ith thread visits the relevant nodes of u in the correct order, given that the
first node of the ith thread equals the corresponding node in u. Therefore, u ends up
in R with probability at least

∏
1≤i≤μ(1 − (1 − pu,i/n)s). Now, since pu,i s/n ≤ 1,

we have

(

1− pu,i

n

)s

≤ 1−
(

s

1

)
pu,i

n
+

(
s

2

)(
pu,i

n

)2

≤ 1− pu,i s

n
+ 1

2

(
pu,i s

n

)2

≤ 1− pu,i s

2n
;

(10)
hence,

Pr[u ∈ R] ≥
μ∏

i=1

pu,i s

2n
� pusμ. (11)

Let Rv be the collection of nodes appearing among the d-tuples of R. Given a fixed u
with |Su| ≤ n/2d , conditioned upon u ∈ R, what is the probability that Rv ∩ Su = ∅,
i.e., that configuration u is active in Rv? Being in R, u itself is a μ-thread formed by
picking exactly one thread per type out the s available ones in R. The d nodes of u
lie outside Su, so the only possibility for Rv to intersect Su is for any of the (s − 1)μ

other threads to pass through Su. Take one of them: it is a random walk w1 . . .wl . The
starting node w1 is random, so its distribution forms an eigenvector for the thread’s
transition matrix with eigenvalue 1 (also true if l = 1). This means that each wi lies
in Su with probability |Su|/n. These events are not independent, so we use a union
bound to argue that the thread w1 . . .wl remains outside Su with probability at least
1 − l|Su|/n ≥ 1 − d|Su|/n. The (s − 1)μ threads that are candidates for passing
through Su are independent, however, and thus refrain from doing so with probability
at least (1 − d|Su|/n)(s−1)μ. For any x ∈ [0,1/2], we have (1 − x)−1 ≤ (1 + x)2 ≤
exp(2x). Thus, (1 − d|Su|/n) ≥ exp(−2d|Su|/n), since |Su| ≤ n/2d . It follows that

Pr
[
Rv ∩ Su = ∅|u ∈ R

] ≥
(

1 − d|Su|
n

)(s−1)μ

≥ e−2d(s−1)μ|Su|/n.

If ru denotes the probability that both u ∈ R and Su ∩ Rv = ∅, then, by (11), setting
s = n

dk
yields

ru = Pr
[
u ∈ R

] × Pr
[
Rv ∩ Su = ∅|u ∈ R

] �
(

n

dk

)μ

pue−2μ|Su|/k;

therefore, since μ ≤ d and k ≤ n/2d ,

∑

u:|Su|≤n/2d

ru �
∑

u:|Su|≤n/2d

(
n

dk

)μ

pue−2d|Su|/k �
∑

u:|Su|≤k

(
n

dk

)μ

pu �
(

n

k

)μ

g
(μ)
≤k ,

Discrete Comput Geom (2009) 42: 399–420 409

as g
(μ)
≤k = ∑

u:|Su|≤k pu. Since |Rv| ≤ ds, by the definition and by the monotonicity
of f0, |{u ∈ R : |Su ∩ Rv| = 0}| ≤ f0(ds); therefore,

∑

u:|Su|≤n/2d

ru ≤ f0(n/k).

Note that this holds uniformly over all time sequences for the μ-thread. �

Proof of Theorem 2 Recall that our goal is to bound the expectation of a random
variable Φ defined as follows: pick a random d-tuple u = (u1, u2, . . . , ud) of distinct
ui ∈ V and perform an infinite random walk in G starting at a random node u0. If the
walk encounters all the nodes in u in that order before any node in Su, let Φ = nd |Su|,
otherwise, let Φ = 0. The expectation of Φ is given by

E[Φ] = ndd!
(
n
d

)
∑

u

1

n

∑

u0∈V

|Su|
d−1∏

i=0

Pr
[
ui

ui+1→ Su ∪ {ui+2, . . . , ud}],

where
∑

u ranges over all ordered subsets of d distinct nodes: obviously, we may re-

strict the sum to {u : |Su| > 0}. The sum d!(n
d

)−1 ∑
u represents the random choice of

u, the sum n−1 ∑
u0∈V accounts for the random starting vertex. The product denotes

the probability that a random walk from u0 visits the nodes u1, . . . , ud in that or-
der before it encounters any node in Su. Note that removing elements from S cannot
decrease Pr[u0

u→ S]; therefore,

E[Φ]

∑

u

Au

n
|Su|

d−1∏

i=1

Pr[ui

ui+1→ Su],

where

Au
def=

∑

u0∈V

Pr[u0
u1→ Su]

∑

u0∈V

(∑

0≤t<3t0

(
P t

)
u0u1

+ 1

(1 − λ)|Su|
)

(Lemma 1)

= 3t0 + n

(1 − λ)|Su|
(

by
∑

u0

(P t)u0u1 = 1

)

 n

1 − λ

(
1

|Su| + logn

n

)
(
by t0
 (1 − λ)−1 logn

)
.

Thus, using Lemma 1 once more,

E[Φ]
 1

1 − λ

∑

u

(

1 + |Su| logn

n

) d−1∏

i=1

{ ∑

0≤t<3t0

(
P t

)
uiui+1

+ 1

(1 − λ)|Su|
}

. (12)

410 Discrete Comput Geom (2009) 42: 399–420

Fig. 2 The index set
L = {1,2,4,7,9,10} defines a
5-thread

Writing (12) as E[Φ]
 (1 − λ)−1 ∑
u(1 + |Su|(logn)/n)Bu, we begin with the sum∑

u Bu. Expanding the (d − 1)-fold product Bu produces 2d−1 terms of the form

(
1

1 − λ

)j 1

|Su|j
∏

i∈L

∑

0≤t<3t0

(
P t

)
uiui+1

=
∑

θ=(ti)i∈L
0≤ti<3t0

(
1

1 − λ

)j 1

|Su|j
∏

i∈L

(
P ti

)
uiui+1

,

(13)
where L ⊆ {1, . . . , d − 1} and j + |L| = d − 1. Let

CL,θ
u =

(
1

1 − λ

)j 1

|Su|j
∏

i∈L

(P ti)uiui+1,

so
∑

u Bu = ∑
u
∑

L

∑
θ C

L,θ
u . The index set L specifies the parameters of a μ-

thread (except for its time sequence). Indeed, break 1, . . . , d into μ = j + 1 in-
tervals by applying the rule that i and i + 1 are in the same interval precisely if
i ∈ L. In Fig. 2, d = 11, μ = 5, j = 4, L = {1,2,4,7,9,10}, and the threads are
[1,2,3], [4,5], [6], [7,8], [9,10,11]. All we can say about the time sequences is that
the total number of elements t1, t2, . . . in all of them is exactly |L| = d − μ. We use
the superscripts L,θ in the sums to indicate a fixed L or a fixed time sequence θ (or
both).

∑

u

Bu =
∑

L

∑

θ

∑

u

CL,θ
u =

∑

L

∑

θ

(
1

1 − λ

)j L,θ∑

u

nμ

|Su|j Pr[μ-thread ↪→ u]. (14)

Note the presence of the factor nμ to make up for the fact that in a μ-thread each
thread starts from a random vertex, whereas in C

L,θ
u each thread starts from the cor-

responding ui . Assume that j > 0. Now, the sum
∑L,θ

u |Su|−j Pr[μ-thread ↪→ u] can
be upper-bounded using summation by parts:

L,θ∑

u

Pr[μ-thread ↪→ u]
|Su|j =

n∑

k=1

g
(μ)
k

kj
(group by |Su|)

Discrete Comput Geom (2009) 42: 399–420 411

= g
(μ)
≤n

nj
− g

(μ)
0 +

n−1∑

k=1

g
(μ)
≤k

(
1

kj
− 1

(k + 1)j

)

(sum by parts)

 1

nj
+

n−1∑

k=1

g
(μ)
≤k

kj+1

(
g

(μ)
≤n ≤ 1

)

 1

nj
+ 1

nμ

n−1∑

k=1

f0(n/k)

kj+1−μ
(Lemma 2). (15)

Let
∑L

u Bu denote the sum obtained by collecting all summands in
∑

u Bu with a
fixed L. By (14) and using the identity μ = j + 1,

L∑

u

Bu

L∑

θ

(
1

1 − λ

)j

nμ

L,θ∑

u

|Su|−j Pr[μ-thread ↪→ u] (by (14))

 (3t0)
d−μ

(
1

1 − λ

)j
(

n +
n−1∑

k=1

f0(n/k)

)

((15), μ = j + 1, and |θ | = d − μ)

 (logn)d−μ

(
1

1 − λ

)d−1
(

n +
n−1∑

k=1

(
n

k

)α
)

(since f0(n) = nα). (16)

We can now easily cover all cases:

(I) j > 0 and α ≤ 1:
∑

k(n/k)α
 n logn; hence, using μ = j + 1,

L∑

u

Bu
 (1 − λ)1−dn(logn)d−j
 (1 − λ)1−dn(logn)d−1.

(II) j > 0 and μ ≥ α > 1:
∑

k(n/k)α
 nα ; hence

L∑

u

Bu
 (1 − λ)1−dnα(logn)d−μ
 (1 − λ)1−dnα(logn)d−α.

(III) α > μ or j = 0: by (14),

L∑

u

Bu
 (1 − λ)1−dnμ(logn)d−1−j .

If α > μ, then
∑L

u Bu = o((1 − λ)1−dnα). If j = 0, then
∑L

u Bu
 (1 −
λ)1−dn(logn)d−1.

412 Discrete Comput Geom (2009) 42: 399–420

Since the bounds are independent of L for which there are only constantly many
choices, we conclude that

∑

u

Bu
 (1 − λ)1−d max
{
n(logn)d−1, nα(logn)d−α

}
.

Going back to (12), recall that

E[Φ]
 (1 − λ)−1
∑

u

(

1 + |Su| logn

n

)

Bu.

To handle D = logn
n

∑
u Bu|Su|, first note that since |Su| ≤ n, we never lose more than

a factor of logn. However, in Case (II) we can do better. Assume that j > 0 and μ ≥
α > 1. We revisit the above calculation. With the additional factor of |Su|(logn)/n,
(14) becomes

D =
∑

L

∑

θ

logn

(
1

1 − λ

)j L,θ∑

u

nμ−1

|Su|j−1
Pr[μ-thread ↪→ u]. (17)

First, if j = 1, then μ = 2 and
∑L,θ

u nμ−1|Su|1−j Pr[μ-thread ↪→ u] ≤ n. Therefore
in this case DL
 (1 − λ)1−dn(logn)d−1, where DL denotes the sum obtained by
collecting all the terms of D with a fixed L.

Next, we consider the case j ≥ 2. Similarly to (15),

L,θ∑

u

|Su|1−j Pr[μ-thread ↪→ u]
 1

nj−1
+ 1

nμ

n∑

k=1

f0(n/k)

kj−μ
. (18)

Hence, (16) becomes

logn

n

L∑

u

Bu|Su|

L∑

θ

logn

(
1

1 − λ

)j

nμ−1
L,θ∑

u

|Su|1−j Pr[μ-thread ↪→ u]

(by (17))

 (logn)d+1−μ

(
1

1 − λ

)d−1
(

n + k

n

n∑

k=1

(
n

k

)α
)

(by (18))

= (logn)d+1−μ

(
1

1 − λ

)d−1
(

n +
n∑

k=1

(
n

k

)α−1
)

,

and since α > 1, DL = o((1 − λ)1−dnα).
Thus, accounting for the extra logn-factor in Cases (I) and (III),

E[Φ]
 (1 − λ)−d max
{
n(logn)d, nα(logn)d−α

}
.

This completes the proof of the Master Theorem. �

Discrete Comput Geom (2009) 42: 399–420 413

4 Extensions

Segment Intersections The Master Theorem cannot be used for the trapezoidal map
of intersecting segments. The reason is that the complexity of an arrangement of n

segments depends on both n and the number m of intersections. We show how to
extend the Master Theorem to handle this case. The problem can be described by a
configuration space that is made of subconfiguration spaces of degrees 3,4,5,6 with
f0(n,m) = O(n + m). We need to strengthen Lemma 2:

Lemma 3 Let g
(μ)
≤k be as defined in Lemma 2; for any μ-thread, any corresponding

time sequence, and any k > 0,

g
(μ)
≤k
 (k/n)μO

(
(n + m)/k

)
.

Proof We use the same notation as in Lemma 2. We only need a better upper bound
on

∑
u ru, the expected complexity of the trapezoidal map for the sample Rv . To

do this, we bound the expected number of intersections among the line segments xz,
z ∈ Rv . Let I be an intersection, and let xu be one of its defining segments: I can only
be present in the trapezoidal map for Rv if u ∈ Rv . This happens with probability at
most 1− (1−d/n)s : we have s independent samples of d nodes, each of which could
be u with probability 1/n. Since d/n ≤ 1, we have 1 − (1 − d/n)s ≤ ds/n = 1/k.
By linearity of expectation, it follows that the expected number of intersections is
O(m/k), which gives the desired upper bound of O((n + m)/k) on the expected
complexity of the trapezoidal map for Rv . Together with the lower bound from the
proof of Lemma 2, this completes the proof. �

The desired result follows now by repeating the proof of the Master Theorem with
the bound g

(μ)
≤k
 (n + m)/k in (15). Then, (16) becomes

L∑

u

Bu
 (logn)d−μ

(
1

1 − λ

)d−1
(

n +
n−1∑

k=1

n + m

k

)

,

and as in Cases (I) and (III), we find
∑

u Bu
 (1 − λ)1−d(n + m)(logn)d−1.
Accounting for the additional logn-factor (and the factor (1 − λ)−1), this yields
E[Φ]
 (1 − λ)−d(n + m)(logn)d . To summarize, the m intersections among n seg-
ments are computed in time O((n + m)(γ −1 logn)6), as we claimed earlier.

Revisiting the Clarkson-Shor Bound While proving the Master Theorem, we ob-
tained a variant of the Clarkson–Shor bound suited for our Markov model (Lemma 2).
We believe that this lemma is of independent interest and could lead to new bounds
on the number of k-sets when certain restrictions on the defining elements are im-
posed. Here is a toy example: let P ⊆ R

3 be a set of n points in general position. Let
H be the set of planes in R

3 spanned by triplets of the form (x, y,n(x)) for x, y ∈ P ,
where n(x) denotes a neighbor of x in the Euclidean minimum spanning tree (EMST)
of P . A plane h ∈ H conflicts with a point p ∈ P if p lies below h. Let f≤k denote
the number of planes in H that conflict with at most k points.

414 Discrete Comput Geom (2009) 42: 399–420

Corollary 1 f≤k = O(nk).

Let H ′ denote the planes spanned by triplets of the form (x, y,nn(x)), x, y ∈ P ,
where nn(x) denotes the nearest neighbor of x in P . Let f ′≤k count the planes in H ′
with at most k conflicts. Since the EMST contains the nearest neighbor graph [20],
we also have

Corollary 2 f ′≤k = O(nk).

Compare this with the well-known Clarkson–Shor bound of O(nk2) for the unre-
stricted case.

Proof of Corollary 1 As our event graph G we take the EMST of P . It is connected
and has bounded degree [1, Lemma 4]. Let m be the number of edges in G. We
choose d = 3 and μ = 2. The first thread has size two with time sequence (1), and
the second thread has size one. For each thread, the probability of picking v ∈ V as
the initial vertex is deg(v)/2m. In other words, the sampling is defined as follows:
pick v ∈ V with probability deg(v)/2m and take one random step in G. Then pick
another random node v according to the same distribution. This yields a triplet of
points spanning a plane in H , and each triplet appears with probability Θ(1/n2).
We have f0(n) = O(n), since every plane that is spanned by a triplet in P 3 and has
no conflicts supports a facet of the lower convex hull of P , and since the number
of such facets is O(n) and each facet is supported by exactly one plane. Thus, by
Lemma 2, the probability of sampling a plane in conflict with at most k points is
O((n/k)(k/n)2) = O(k/n). Since every plane is sampled with probability Ω(1/n2),
the claim follows.

Technically, Lemma 2 applies only to regular graphs, while G has bounded, but
possibly varying, degree. However, our discussion easily generalizes to the nonregu-
lar case—at a loss of only a constant factor. We will show this in Lemma 4 below. �

Lemma 4 Let G be a connected graph with n nodes, m edges, and degree bounded
by r , and let f0 be increasing. Define μ-threads as in Lemma 2, the only difference
being that the initial node of each thread is sampled according to the distribution
π with πv = deg(v)/2m. For k > 0, any μ-thread, and any corresponding time se-
quence, we have g

(μ)
≤k
 (k/n)μf0(n/k).

Proof Consider the proof of Lemma 2. We may assume that k ≤ n/2dr . Set s =
n/dkr . Then (11) still holds, since for a given u ∈ V d , the probability pu that u
is chosen by a random μ-thread is now of the form

∏
1≤i≤μ

dipu,i

2m
, where di is the

degree of the node in u corresponding to the initial vertex of the ith thread, and since
by our choice of s we have dipu,i s/2m ≤ rpu,is/2(n − 1) ≤ 1.

Next, we need to bound the probability that a configuration u with |Su| ≤ n/2dr is
active, given that u ∈ R. Since we sample according to the stationary distribution of
G, each node of a μ-thread lies in Su with probability at most r|Su|/2m ≤ r|Su|/n.
Proceeding as before, we now get

Pr
[
Rv ∩ Su = ∅|u ∈ R

] ≥ e−2d(s−1)μr|Su|/n

Discrete Comput Geom (2009) 42: 399–420 415

and

ru �
(

n

dkr

)μ

pue−2d|Su|/k.

Thus, as before,

∑

u:|Su|≤n/2dr

ru �
(

n

k

)μ

g
(μ)
≤k

and
∑

u:|Su|≤n/2dr

ru ≤ f0(ds) = f0(n/rk) ≤ f0(n/k),

since f0 is monotone. This finishes the extension of Lemma 2 to the bounded degree
case. �

Acknowledgements We wish to thank Alistair Sinclair for helpful discussions. We would also like to
thank the anonymous referees for pointing us to additional references and providing numerous suggestions
for improving the exposition of this paper.

Appendix A: Markov Chains

A Markov chain M over a finite state space Q is an infinite sequence of random
variables X0,X1, . . . with the following properties: (i) Xt ∈ Q for t ≥ 0; (ii) X0 is
drawn from a given initial distribution π0 over Q; and (iii) there are pqr ∈ [0,1],
q, r ∈ Q, such that Pr[Xt+1 = qt+1|X0 = q0,X1 = q1, . . . ,Xt = qt] = pqtqt+1 for
t ≥ 0, i.e., the distribution of Xt+1 depends only on Xt . The variable Xt is called the
state at time t . The |Q| × |Q| matrix P formed by the pqr is called the transition
matrix of M . The distribution of Xt can be computed as πT

0 P t . We say that M is
irreducible if for any two states q, r ∈ Q, there exists t ≥ 0 such that Pr[Xt = r|
X0 = q] > 0, i.e., every state can reach all other states with positive probability after
a finite number of steps. A state q ∈ Q is periodic if there exists an integer � > 0 such
that Pr[Xt = q|X0 = q] = 0, unless t is a multiple of �. Furthermore, q is non-null
persistent if

Pr[∃t > 0 : Xt = q|X0 = q] = 1

and
∑

t>0

t Pr[Xt = q|X0 = q,X1, . . . ,Xt−1
= q] < ∞,

i.e., if every state is revisited with probability 1 after a finite number of steps. The
chain is aperiodic if none of its states is periodic. It is ergodic if it is aperiodic and if
all its states are non-null persistent. Any finite, irreducible, aperiodic Markov chain
is ergodic. This implies that it has a unique stationary distribution π , i.e., there ex-
ists a unique distribution π with πT = πT P . Finally, M is reversible if there is a
distribution π such that for any q, r ∈ Q, we have πqpqr = πrprq .

416 Discrete Comput Geom (2009) 42: 399–420

Given an undirected graph G = (V ,E) and an initial distribution π0 on V , a ran-
dom walk on G is a sequence of vertices v0, v1, . . . , where v0 is chosen according
to π0, and vt+1 is found by following a random edge out of vt . A random walk
induces a Markov chain with state space V . This chain is always reversible. It is irre-
ducible if and only if G is connected, and aperiodic if and only if G has no bipartite
components. Thus, any connected, non-bipartite graph induces an ergodic Markov
chain. In this case, any random walk converges to the stationary distribution given by
πv = deg(v)/2|E| for v ∈ V . In particular, π is uniform if all vertices have the same
degree.

Appendix B: Matrix Theory

We recall some basic facts from matrix theory [23]. Let A ∈ R
n×n. We say that A is

symmetric if AT = A. A symmetric matrix is positive semidefinite if vT Av ≥ 0 for
every v ∈ R

n. We call v ∈ R
n \ 0 an eigenvector of A if there exists an eigenvalue

λ ∈ R with Av = λv. Every symmetric matrix has n real eigenvalues λ1, . . . , λn and
a corresponding orthonormal basis v1, . . . ,vn of eigenvectors. They can be charac-
terized as follows [23, Theorem 4.2.11]:

Theorem 3 (Courant–Fisher) Let A ∈ R
n×n be symmetric with eigenvalues λ1 ≥

· · · ≥ λn and corresponding eigenvectors v1, . . . ,vn. Then, for k = 1, . . . , n,

λk = max
v∈R

n\0
v⊥v1,...,vk−1

vT Av
vT v

.

The Courant–Fisher theorem allows us to relate the eigenvalues of any principal
submatrix of A to those of A [23, Theorem 4.3.15].

Theorem 4 (Interlacing Theorem) Let A ∈ R
n×n be symmetric with eigenvalues

λ1 ≥ · · · ≥ λn, and let Ar be obtained from A by deleting n − r rows and the
corresponding columns from A. Let μ1 ≥ · · · ≥ μr be Ar ’s eigenvalues. Then, for
1 ≤ k ≤ r ,

λk ≥ μk ≥ λn−r+k.

For A ∈ R
n×n, let GA be the directed graph on {1, . . . , n} which contains an edge

from i to j precisely if Aij
= 0. We call A irreducible if GA is strongly connected. If
all entries of A are nonnegative, we can say more about its principal eigenvalue and
eigenvector [23, Theorem 8.4.4].

Theorem 5 (Perron–Frobenius) Let A ∈ R
n×n be nonnegative, irreducible, and sym-

metric with eigenvalues λ1 ≥ · · · ≥ λn. Then λ1 > λ2, and λ1 has an eigenvector with
all positive entries.

Discrete Comput Geom (2009) 42: 399–420 417

Appendix C: Configuration Spaces

A configuration space of degree d over a universe U is a set C of configurations.
A configuration σ ∈ C is a pair (Dσ ,Sσ), where Dσ ,Sσ ⊆ U are disjoint with
|Dσ | ≤ d . Dσ are the triggers and Sσ the stoppers of σ . Given a subset U ⊆ U ,
we say σ is active in U if Dσ ⊆ U and Sσ ∩ U = ∅. The configuration space frame-
work is powerful enough to capture many geometric construction problems, as we
will explain below.

The generic construction problem can be phrased as follows: given U ⊆ U , find all
active configurations in U . The randomized incremental construction (RIC) paradigm
solves this problem by picking a random permutation of U and inserting the elements
one by one, creating and destroying configurations according to which trigger and
stopper sets contain the newly inserted element. In order to locate the conflicting
configurations for the new element quickly, the RIC maintains a conflict graph C , i.e.,
a bipartite graph representing the conflicts between the currently active configurations
and the elements in U that still need to be processed. The graph C is updated after
each insertion, and in our examples this takes time linear in the number of edges in
C that are modified. Algorithms that rely on C are static, since all objects in U need
to be known in advance. The influence or history graph [8, 36] keeps track of all the
configurations that have been active in the construction so far and stores information
about their adjacencies that makes it possible to postpone the conflict updates for an
element until it is inserted, with the same asymptotic cost. Thus, algorithms that use
this structure are online, i.e., they do not need to know the input beforehand. Using
any of the above data structures, the expected running time of RIC for our examples
is

Θ =
∑

σ∈C

|Sσ |Pr[σ becomes active during the construction].

We call this sum the Θ-series of the RIC. In this paper, we use the following config-
uration spaces:

– CONVEX HULLS IN R
d AND VORONOI DIAGRAMS IN R

d−1 [36, Example 3.4.2]:
Let P ⊆ R

d be in general position. The set C consists of all open half-spaces σ

whose bounding hyperplane is spanned by a d-tuple Dσ of distinct points in P .
The stopper set Sσ contains all points in P ∩ σ . Clearly, the active configurations
in a subset U ⊆ P correspond to the facets of the convex hull of U . Note that a
d-tuple Dσ defines two half-spaces, but this can be disambiguated using the order-
ing of Dσ . By a standard reduction this configuration space also handles Voronoi
diagrams in R

d−1.
– TRAPEZOIDAL MAPS [36, Example 3.4.1]: Let L be a set of nonintersecting pla-

nar line segments in general position. To avoid unbounded trapezoids, we assume
a large bounding box that contains L. The set C consists of all trapezoids σ that
can be defined by a set Dσ of line segments in L (and parts of the bounding box).
It is easily seen that |Dσ | ∈ {2,3,4} (see Fig. 3(a)). The stopper set Sσ contains
the line segments in L that cross the interior of σ . Again, a tuple Dσ may define
more than one trapezoid, which we disambiguate with the ordering information of
Dσ . Note that this configuration space gives an opaque representation of the map:

418 Discrete Comput Geom (2009) 42: 399–420

Fig. 3 (a) A trapezoid is defined by 2, 3, or 4 line segments. (b) The handle e of a racquet (τ, e) is defined
by 1 or 2 segments. (c) In an opaque representation, the trapezoid σ is incident to 4 vertices, in a planar
graph representation, it is incident to 10 vertices

each trapezoid is incident to at most 6 vertices, even though its bounding segments
may be subdivided by trapezoids on the other side (see Fig. 3(c)). Since L is nonin-
tersecting, this is sufficient to capture the running time of the RIC, because newly
inserted segments cross only vertical boundaries of trapezoids that are destroyed.

– SEGMENT INTERSECTIONS [36, Example 3.4.4]: Let L be a set of planar line
segments in general position. Again, we assume a large bounding box for L. Since
now a newly inserted segment can cross other line segments, we need a planar
graph representation of the trapezoidal map. This is achieved using racquets, i.e.,
pairs σ = (τ, e), where τ is a trapezoid and e a vertical attachment. The endpoint
of e is defined by 1 or 2 segments, while τ is defined by 2,3,4 segments (see
Fig. 3(a), (b)). Thus, |Dσ | ∈ {3,4,5,6}. The stopper set Sσ of a racquet σ = (τ, e)

contains all segments in L that intersect τ or e.

References

1. Aldous, D., Steele, J.M.: Asymptotics for Euclidean minimal spanning trees on random points.
Probab. Theory Relat. Fields 92(2), 247–258 (1992)

2. Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: SCG ’03: Proceedings of the
Nineteenth Annual Symposium on Computational Geometry, pp. 211–219. ACM, New York (2003)

3. Barnes, G., Feige, U.: Short random walks on graphs. SIAM J. Discrete Math. 9(1), 19–28 (1996)
4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms

and Applications. Springer, Berlin (2000)
5. Boissonnat, J.D., Devillers, O., Schott, R., Teillaud, M., Yvinec, M.: Applications of random sampling

to on-line algorithms in computational geometry. Discrete Comput. Geom. 8(1), 51–71 (1992)
6. Boissonnat, J.D., Teillaud, M.: The hierarchical representation of objects: the Delaunay tree. In: SCG

’86: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 260–268. ACM,
New York (1986)

7. Boissonnat, J.D., Teillaud, M.: On the randomized construction of the Delaunay tree. Theor. Comput.
Sci. 112(2), 339–354 (1993)

8. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, New York (1998)
9. Broder, A.Z., Karlin, A.R.: Bounds on the cover time. J. Theor. Probab. 2(1), 101–120 (1989)

10. Chassaing, P.: Optimality of move-to-front for self-organizing data structures with locality of refer-
ences. Ann. Appl. Probab. 3(4), 1219–1240 (1993)

Discrete Comput Geom (2009) 42: 399–420 419

11. Cheong, O., Mulmuley, K., Ramos, E.A.: Randomization and derandomization. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of discrete and computational geometry, 2nd edn., pp. 895–926. CRC
Press, Boca Raton (2004)

12. Chew, L.P.: Building Voronoi diagrams for convex polygons in linear expected time. Tech. Rep. PCS-
TR90-147, Dartmouth College, Hanover, NH, USA (1990)

13. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92.
American Mathematical Society, Providence (1997)

14. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Com-
put. Geom. 3(4), 185–212 (1993)

15. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete
Comput. Geom. 4(5), 387–421 (1989)

16. Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13, 163–180 (2002)
17. Devillers, O., Guigue, P.: The shuffling buffer. Int. J. Comput. Geom. Appl. 11(5), 555–572 (2001)
18. Devillers, O., Meiser, S., Teillaud, M.: Fully dynamic Delaunay triangulation in logarithmic expected

time per operation. Comput. Geom. 2(2), 55–80 (1992)
19. Dobrindt, K., Yvinec, M.: Remembering conflicts in history yields dynamic algorithms. In: Algo-

rithms and computation, Hong Kong, 1993. Lecture Notes in Comput. Sci., vol. 762, pp. 21–30.
Springer, Berlin (1993)

20. Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor graphs. Discrete Comput. Geom. 17(3),
263–282 (1997)

21. Fox, D., Burgard, W., Thrun, S.: Markov localization for reliable robot navigation and people de-
tection. In: Selected Papers from the International Workshop on Sensor Based Intelligent Robots,
pp. 1–20. Springer, London (1999)

22. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi
diagrams. Algorithmica 7(4), 381–413 (1992)

23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)
24. Hotz, G.: Search trees and search graphs for Markov sources. Elektron. Informationsverarbeitung

Kybern. 29(5), 283–292 (1993)
25. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. Peters, Natick (2001)
26. Kapoor, S., Reingold, E.M.: Stochastic rearrangement rules for self-organizing data structures. Algo-

rithmica 6(2), 278–291 (1991)
27. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000)
28. Konneker, L.K., Varol, Y.L.: A note on heuristics for dynamic organization of data structures. Inf.

Process. Lett. 12(5), 213–216 (1981)
29. Lam, K., Leung, M.Y., Siu, M.K.: Self-organizing files with dependent accesses. J. Appl. Probab.

21(2), 343–359 (1984)
30. Lu, P., Zeng, X., Huang, X., Wang, Y.: Navigation in 3D game by Markov model based head pose

estimating. In: ICIG ’04: Proceedings of the Third International Conference on Image and Graphics,
pp. 493–496. IEEE Computer Society, Washington (2004)

31. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica
16(4–5), 498–516 (1996)

32. Mehlhorn, K., Sharir, M., Welzl, E.: Tail estimates for the efficiency of randomized incremental algo-
rithms for line segment intersection. Comput. Geom. 3, 235–246 (1993)

33. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
34. Mulmuley, K.: A fast planar partition algorithm, I. J. Symb. Comput. 10(3–4), 253–280 (1990)
35. Mulmuley, K.: A fast planar partition algorithm, II. J. ACM 38(1), 74–103 (1991)
36. Mulmuley, K.: Computational Geometry: An Introduction through Randomized Algorithms. Prentice-

Hall, Englewood Cliffs (1994)
37. Mulmuley, K.: Randomized geometric algorithms and pseudorandom generators. Algorithmica

16(4–5), 450–463 (1996)
38. Phatarfod, R.M., Pryde, A.J., Dyte, D.: On the move-to-front scheme with Markov dependent re-

quests. J. Appl. Probab. 34(3), 790–794 (1997)
39. Schulz, F., Schömer, E.: Self-organizing data structures with dependent accesses. In: ICALP, pp. 526–

537 (1996)
40. Schwarzkopf, O.: Dynamic maintenance of geometric structures made easy. In: Proceedings of the

32nd annual symposium on Foundations of Computer Science, pp. 197–206. IEEE Computer Society
Press, Los Alamitos (1991)

41. Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompo-
sitions and for triangulating polygons. Comput. Geom. 1, 51–64 (1991)

420 Discrete Comput Geom (2009) 42: 399–420

42. Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete Comput.
Geom. 6(5), 423–434 (1991)

43. Seidel, R.: Backwards analysis of randomized geometric algorithms. In: New Trends in Discrete and
Computational Geometry. Algorithms Combin., vol. 10, pp. 37–67. Springer, Berlin (1993)

44. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4–5), 464–497 (1996)
45. Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1(3), 218–241 (1972)
46. Veach, E., Guibas, L.J.: Metropolis light transport. In: SIGGRAPH ’97: Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–76. ACM/Addison-
Wesley, New York (1997)

47. Wellington, C., Courville, A., Stentz, A.T.: A generative model of terrain for autonomous navigation
in vegetation. Int. J. Rob. Res. 25(12), 1287–1304 (2006)

48. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New Results and New Trends in Com-
puter Science, Graz, 1991. Lecture Notes in Comput. Sci., vol. 555, pp. 359–370. Springer, Berlin
(1991)

	Markov Incremental Constructions
	Abstract
	Introduction
	Our Results and Their Significance

	A Simple Example: Treaps
	Theta-Series for Markov Sources
	Extensions
	Segment Intersections
	Revisiting the Clarkson-Shor Bound

	Acknowledgements
	Appendix A: Markov Chains
	Appendix B: Matrix Theory
	Appendix C: Configuration Spaces
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

