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Abstract Given a fixed origin o in the d-dimensional grid, we give a novel defin-
ition of digital rays dig(op) from o to each grid point p. Each digital ray dig(op)

approximates the Euclidean line segment op between o and p. The set of all dig-
ital rays satisfies a set of axioms analogous to the Euclidean axioms. We measure
the approximation quality by the maximum Hausdorff distance between a digital ray
and its Euclidean counterpart and establish an asymptotically tight Θ(logn) bound
in the n×n grid. The proof of the bound is based on discrepancy theory and a simple
construction algorithm. Without a monotonicity property for digital rays the bound is
improved to O(1). Digital rays enable us to define the family of digital star-shaped re-
gions centered at o, which we use to design efficient algorithms for image processing
problems.
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1 Introduction

The digital line segment dig(pq) between two grid points p and q is a fundamental
digital geometric object, but still its definition is not that obvious. Indeed, the digital
representation of line segments has been an active subject of research for almost half
a century now (see, for example, the excellent survey of Klette and Rosenfeld [9]).
In digital geometry, a geometric object is represented by a set of d-dimensional grid
points in a digital grid G = Z

d , and its topological properties are considered under
a grid topology defined by a graph on the grid. In two dimensions, it is common to
consider the orthogonal (or 4-neighbor) grid topology, where each point p = (x, y) is
connected to its four vertical and horizontal neighbors (x, y ± 1) and (x ± 1, y), and
we focus on this topology; as a variant, however, we may consider the octagonal (or
8-neighbor) grid topology that connects each grid point p = (x, y) to its 4-neighbors
and additionally to its diagonal neighbors (x + 1, y ± 1) and (x − 1, y ± 1). Given a
grid topology, the digital line segment dig(pq) between two grid points p and q is a
path between p and q in this topology.

Since a digital line segment dig(pq) is a representation of a line segment pq in
Euclidean geometry, it is natural (at least from a mathematical perspective) to set up
the following axioms that a digital line segment should satisfy:

(S1) A digital line segment dig(pq) is a connected path between p and q under the
grid topology.

(S2) For any two grid points p and q , there is a unique digital line segment
dig(pq) = dig(qp).

(S3) For a digital line segment dig(pq) and two grid points s, t ∈ dig(pq), it holds
that dig(st) ⊆ dig(pq).

(S4) For any two grid points p and q , there is a grid point r /∈ dig(pq) such that
dig(pq) ⊂ dig(pr).

Note that axiom (S3) implies that a nonempty intersection of two digital line segments
is either a grid point or a digital line segment. Axiom (S4) implies that any digital line
segment can be extended to a digital line. We often identify a path in a grid with its
vertex set if the correspondence is clear. Accordingly, if we say that a grid point p is
in a path P , it means that p is a vertex of P .

Unfortunately, popular definitions of two-dimensional (2D) digital line segments
in computer vision do not satisfy these axioms. For example, in the standard defin-
ition of a digital straight segment (DSS) [9], a digital line segment (in the octago-
nal topology) that corresponds to the Euclidean line segment given by y = mx + b,

x0 ≤ x ≤ x1, is defined as the set of grid points {(i, �mi + b + 0.5�) | x0 ≤ i ≤ x1}
for |m| ≤ 1. Using this definition connectivity of segments is certified only in the 8-
neighbor topology. Moreover, the intersection of two DSSs is not always connected,
and axiom (S3) is violated in some cases as depicted in Fig. 1.

In the 2D grid, another possibility to define digital line segments would be to use
the system of L- and Γ -shaped shortest paths. An L- or Γ -shaped path between
two points p = (xp, yp) and q = (xq, yq) such that xp ≤ xq is the (at most) 2-link
path that consists of the grid points on the vertical segment pp′ and on the horizon-
tal segment p′q where p′ = (xp, yq). It is easy to confirm that the system of these
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Fig. 1 Euclidean line segments
and their DSSs. Intersections are
indicated by bicolored pixels.
Axiom (S3) is violated since
s, t ∈ dig(pq) but
dig(st) 	⊆ dig(pq) (top); the
intersection of the DSSs g1 and
g2 is not connected (bottom)

paths satisfies axioms (S1)–(S4) for digital line segments. A clear drawback is that
an L-shaped path is visually very different from the Euclidean line segment, and the
Hausdorff distance from pq to the L-shaped path between p and q becomes n/

√
2 for

p = (0, n) and q = (n,0). If, on the other hand, one accepts to use a nonplanar graph
structure to define the topology on the grid points, Pach, Pollack, and Spencer [12]
show that the shortest-path distance (using Euclidean distance for the edge lengths)
in the grid topology given by a suitable sparse graph is at most (1 + ε) times the
Euclidean distance. Accordingly, the polygonal path consisting of the edge set of the
shortest path between p and q in the graph gives a nice approximation of the line
segment pq . However, the graph structure is a union of many randomly chosen lat-
tice structures on the grid points using long edges with a variety of slopes; thus, the
vertex set of the polygonal path is too sparse for direct use as a digital line segment.
Also, the method does not guarantee an o(n) bound for the Hausdorff distance.

Thus, it seems that there is a trade-off between the axiomatic requirements and the
visual quality of digital line segments. It is a challenging problem to find a system
of digital line segments that satisfies the axioms and is visually alike Euclidean line
segments at the same time.

In this paper we study a less ambitious but important subproblem, motivated by
geometric optimization applications: we consider only digital line segments that have
the origin o as one of their endpoints. In other words, we consider digital halflines
emanating from o. Then dig(op) is defined as the unique portion of the halfline that
has p as its second endpoint. We call such segments digital ray segments or simply
digital rays emanating from o.

For digital rays, axioms (S1)–(S4) for digital line segments are adapted as follows:

(R1) A digital ray dig(op) is a connected path between o and p under the grid topol-
ogy.

(R2) There is a unique digital ray dig(op) between o and any grid point p.
(R3) For a digital ray dig(op) and a grid point r ∈ dig(op), it holds that dig(or) ⊆

dig(op).
(R4) For any grid point p, there is a grid point r /∈ dig(op) such that dig(op) ⊂

dig(or).
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We also give an additional monotonicity axiom, which is not combinatorial but a
reasonable condition for a digital ray:

(R5) For any r ∈ dig(op), |or| ≤ |op|, where |ab| is the length of the Euclidean
segment ab.

Note that in the orthogonal grid topology the monotonicity axiom (R5) implies that
any ray dig(op) is a shortest path in the grid.

A system of digital rays is called consistent if it satisfies axioms (R1)–(R5). From
these axioms it follows that the union of all digital rays forms an infinite spanning
tree T of the grid graph on G rooted at o such that dig(op) is the unique path between
o and p in the tree. Because of axiom (R4), T cannot have leaves. Thus, the problem
is basically to embed the infinite “star” consisting of the halflines emanating from o

in the d-dimensional Euclidean space as a tree in the d-dimensional grid. Although
embedding a tree in a grid is a popular topic in metric embedding and graph drawing,
it is a novel and interesting problem to geometrically approximate ray segments by
paths.

Main Result The main result of the paper is the asymptotically tight Θ(logn) bound
for the maximum Hausdorff distance between dig(op) and op among all points p in
an n × n grid. The lower bound argument is based on discrepancy theory, and the
upper bound is attained by a simple and systematic construction of a tree T that is
extended to the d-dimensional case. Surprisingly, if we do not include the monotonic-
ity axiom (R5), the bound can be reduced to O(1).

2 Motivation and Related Work

Our motivation comes from handling digital analogues of star-shaped regions for
optimization problems in a pixel grid. A square pixel grid is a subdivision of an
n × n square region into N = n2 unit squares called pixels. We have a canonical
one-to-one correspondence between pixels in a pixel grid P and grid points in our
two-dimensional grid G restricted to an n × n subgrid. Thus, we can translate the
definitions of digital rays and digital star-shaped regions in G to those in P. A pixel
grid image is an assignment of a color to each pixel: A monochromatic image can be
considered as a function from the set P of all pixels to real values in [0,1] called gray
levels, while a color image can be considered as a triple of functions from P to real
values in [0,1] corresponding to the color levels of red, green, and blue. For example,
a picture taken with a 1-megapixel digital camera is a color image in a pixel grid of
size 1024 × 1024.

Image segmentation is an important problem in computer vision, which separates
an object from the background in the picture. Asano, Chen, Katoh, and Tokuyama [1]
formulated the problem as a least-square optimization problem and gave an efficient
algorithm if the object is a region bounded by two x-monotone curves. Several im-
proved results such as controlling smoothness of curves and higher-dimensional ex-
tensions were given by Wu and Chen [19], and the optimal-ratio formulation was
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Fig. 2 Input terrain (left) and output pyramid (right)

given by Wu [18]. It was further pointed out that image segmentation problems ap-
pear in medical applications [18]: Tumors can be approximated by a layer of three-
dimensional star-shaped annuli, where a star-shaped annulus is the set difference of
two star-shaped regions with a shared center o. If an image transformed by the central
projection from o is given as the input by using a mechanism such as optical coher-
ence tomography, then a star-shaped annulus is transformed to a region bounded by
two x-monotone surfaces, which can be naturally digitized. Wu [18] considered the
case where such an input is given and applied his algorithm to extract a tumor region
from a medical image. A remaining question is how to directly segment a star-shaped
annulus from a pixel grid (in two or three dimensions). In other words, how to ex-
tract a tumor in a digital image that is not generated/preprocessed by using a central
projection method about o.

Chen, Chun, Katoh, and Tokuyama [3] and Chun, Sadakane, and Tokuyama [4]
considered the pyramid approximation problem to compute the least-square approx-
imation of an input digital terrain (given as a function on P) where each horizontal
slice (i.e., a region bounded by a contour line) of the output terrain is a special kind of
rectilinear convex region as shown in Fig. 2, where heights are given by gray-levels.
It was desired to solve the analogous mountain approximation problem where each
horizontal slice is a star shape, since it will be useful in applications to computer
vision and geographic data processing.

A natural definition of a digital star-shaped region is the set of all pixels intersect-
ing a given Euclidean star-shaped region. However, such a family of regions does not
satisfy the condition that the intersection of two digital star-shaped regions centered
at o is again a digital star-shaped region. This causes difficulty for solving the above
mentioned problems. We give the following definition of a digital star-shaped region
that satisfies the above condition:

Definition 2.1 Given a system of digital rays from a center o, a region R is a digital
star-shaped region centered at o if and only if dig(op) ⊆ R for any grid point p ∈ R.
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This definition and theory naturally can be extended to higher-dimensional grids.
The quality of a digital star-shaped region is assured by the following theorem, which
follows immediately from our main results:

Theorem 2.2 For any Euclidean star-shaped region R with center o in the n × n

pixel grid P, R′ = ⋃
p∈P∩R dig(op) is a digital star-shaped region such that the Haus-

dorff distance H(R,R′) between R and R′ is O(logn). Conversely, given any digital
star-shaped region Q, let Q′ be the union of segments ox over all points x in the
plane covered by pixels in Q. Then, Q′ is a Euclidean star-shaped region such that
H(Q,Q′) = O(logn). The O(logn) bound improves to O(1) if we use a system of
digital rays without the monotonicity axiom.

We can define the inverse digital central projection D from P to P along digital
rays such that a region below an x-monotone curve is canonically mapped to a digital
star-shaped region: We use the spanning tree of the grid graph underlying P that will
be given in Sect. 3.3 (Sect. 4 for its higher-dimensional analogue) to define digital
rays. Then a pixel p = (i, j) is mapped to the pixel D(p) corresponding to the node
of depth j on the path in the tree from the origin towards (i, n − i). Thus, we can
solve the segmentation problem for star-shaped annuli by using the inverse digital
central projection combined with Wu’s algorithm [18]. Instead of using D explicitly,
we may also implement the algorithm by using our digital rays directly; we can con-
trol smoothness of the contour of the region by using techniques given in [18, 19]
(omitted here). Section 5 gives our mountain approximation algorithm.

Relation to Digital Computational Geometry In computational geometry, the prob-
lem of representing geometric objects in digital geometry without causing topological
and combinatorial inconsistencies is a major concern, and algorithmic solutions have
been considered from the viewpoint of robust finite-precision geometric computa-
tion [8, 16].

Suppose that we would like to represent a set S of line segments digitally. Al-
though ideally one would like to give a precisely defined and consistent system of dig-
ital line segments, the above-mentioned difficulties prevent us from doing so. Rather,
it is popular to use a dynamic method to digitize the line segments; that is, the digital
approximation of a line segment � is affected by the configuration of the other line
segments of S. In particular, it is required to construct the arrangement of S in the dig-
ital plane without changing the combinatorial structure of the arrangement, while all
vertices of the arrangement are located at grid points, and each line segment is visu-
ally alike the original line segment. It is known that a grid of exponential size is nec-
essary to represent all the combinatorial types of arrangements of n straight lines [6];
hence, we need to bend lines if we want to use a polynomial-size grid. In the pio-
neering paper of Greene and Yao [8] and its following research by Goodrich, Guibas,
Hershberger, and Tanenbaum [7], each line segment is represented by a polygonal
chain consisting of edges of the arrangement. It is necessary to carefully round each
vertex of the arrangement to a grid point in order to avoid combinatorial inconsisten-
cies, and a method named snap rounding is proposed. Since no pair of edges of the
arrangement intersect each other, we can draw edges by using a popular method like
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DSS once we have such a representation of the arrangement. We note that the snap
rounding idea is important not only in the theory of robust computation but also in the
practical design of geometric editors or systems: for example, the Ipe editor [15] is
a pioneering system that uses snap rounding; the idea has also been implemented in
the CGAL project [2]. This dynamic approach is different from our static approach,
in which each digital line segment is defined irrespective to the existence of other
lines in the arrangement. Still, we think that it is important to investigate how well
line segments can be digitized statically and to consider the combination of static and
dynamic methods to design efficient systems and algorithms in digital geometry.

3 Digital Rays in the Plane Grid

3.1 Preliminaries

The Hausdorff distance H(A,B) of two objects A and B is defined as H(A,B) =
max{h(A,B),h(B,A)}, where h(A,B) = maxa∈A minb∈B d(a, b), and d(a, b) is
some distance between the points a and b. Although it is most natural to consider
the Euclidean distance for d(a, b), we will use the L∞ metric in the following for
technical convenience. Since the ratio of the Euclidean distance to the L∞ distance
in d-dimensional space is in the interval [1,

√
d] the choice of the metric is irrel-

evant in a constant-dimensional space when considering the bounds in big-O and
big-Ω notation. Recall that the monotonicity axiom (R5) has been stated in terms of
the Euclidean metric. Note that using the L∞ metric to measure distances between
Euclidean and digital ray segments does not affect the definition of axiom (R5).

Consider the set V = {(i, j) | i, j ∈ Z} of integer grid points. We define a pla-
nar graph G on V that represents the adjacency relations of a 4-neighborhood pixel
grid. In G = (V ,E) each vertex (i, j) is connected to its four neighbors (i, j − 1),
(i − 1, j), (i + 1, j), and (i, j + 1). This also defines the orthogonal topology of the
grid G. A subset of V is connected in this topology if its induced subgraph in G is
connected.

3.2 The Lower Bound Result

We focus on the part G(n) of the planar orthogonal grid restricted to the region de-
fined by x + y ≤ n in the first quadrant. The remaining quadrants are handled anal-
ogously by rotating G(n) around the origin. From the monotonicity axiom (R5) it
follows that dig(op) ⊂ G(n) for any p ∈ G(n) and that dig(op) is a shortest path in
the grid. We show that there exists a point p ∈ G(n) such that the Hausdorff distance
H(dig(op), op) is Ω(logn). Let T be the spanning tree of G(n) that is the union
of dig(op) for all p ∈ G(n). Figure 3 shows the spanning tree induced by a set of
consistent rays.

We use a classical result on pseudo-random number generation [10, 11, 14]. The
following historical summary is according to Schmidt’s textbook [14]. Consider a
sequence X = (x0, x1, x2, . . .) of real numbers in [0,1]. For any given a ∈ [0,1] and
m ∈ N, define Xm(a) = |{0 ≤ i ≤ m | xi ∈ [0, a]}|. The discrepancy of the sequence
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Fig. 3 A spanning tree T of
G(n) for n = 10. The labels
attached to the leaves as callouts
are the elements of the
low-discrepancy sequence X(T )

in the interval [0,1], while the
inner labels are used in the
construction of that sequence
and determine the order of the
elements

Xm = (x0, x1, . . . , xm) is defined as D(Xm) = supa∈[0,1] |am−Xm(a)|. Van der Cor-
put conjectured in 1935 that no sequence X in the unit interval can have bounded
discrepancy, that is, D(Xm) ∈ ω(1) for infinitely many integers m. This was affirma-
tively answered by van Aardenne-Ehrenfest in 1945. Roth gave an Ω(

√
logm) bound

in 1954, and the correct order of magnitude of the discrepancy is Θ(logm) given by
Schmidt in 1972. We make use of discrepancy theory in the form of Theorem 3.1
below. We remark that a slightly stronger version of the conjecture was given in a
list of favorite questions of Erdős [5]: He conjectured that there is a real number a

such that maxm<n |am − Xm(a)| is an unbounded function in n, for which Schmidt’s
method also gives a Θ(logn) bound.

Theorem 3.1 (Schmidt [13]) Given a sequence X = (x0, x1, x2, . . .) of real num-
bers in [0,1] and a sufficiently large integer n, there are an integer m < n and a
real number a ∈ [0,1] such that the subsequence Xm = (x0, x1, . . . , xm) satisfies that
|am − Xm(a)| > c logn, where c is a positive constant independent of n.

We will apply Theorem 3.1 to a sequence constructed from the spanning tree T to
obtain a lower bound for the Hausdorff distance between dig(op) and op. Let us start
with some preparations to construct that sequence.

For m = 1,2, . . . , n + 1, let L(m) = {(i,m − 1 − i) | i = 0, . . . ,m − 1} be the
subset of G(n) satisfying x + y = m − 1.

Lemma 3.2 For any integer m, 1 ≤ m ≤ n, the spanning tree T has a unique node
of degree 3 in L(m).

Proof There are m grid points in L(m) and m + 1 grid points in L(m + 1). Since
T does not have any leaves in L(m) for m ≤ n and since all paths from the origin
o to any tree node in T are shortest paths in the grid G (due to the monotonicity
axiom (R5)), each of the m points of L(m) must be connected to a point in L(m+ 1),
and, conversely, each of the m + 1 points of L(m + 1) must be connected to a point
in L(m). In the 4-neighbor grid topology, this is only possible if there are exactly one
node of degree 3 and m − 1 nodes of degree 2 in L(m). �
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We denote this unique degree-3 node in L(m) as the branching node of L(m).
There is a vertical and a horizontal edge incident to the branching node that lead to
its two children in L(m + 1). We denote these two edges as the branching edges
of L(m).

We associate the number j/n to the leaf (j, n − j) ∈ L(n + 1) in order to obtain
the set N = {j/n : j = 0,1,2, . . . n} ⊂ [0,1] of leaf labels, see Fig. 3. For an edge
e = uv in T , where u is the parent of v, we define the subtree rooted at e to be the
subtree of T rooted at the child node v of e. Then for each edge e of T in G(n),
the set of vertices of L(n + 1) in the subtree rooted at e are consecutive, and their
associated numbers form an interval I (e) ⊂ N . Let x(e) denote the largest element
in I (e). An example for an edge e is given in Fig. 3, where I (e) = {0.4,0.5,0.6} and
x(e) = 0.6.

We create a sequence X(T ) ⊂ [0,1] as follows: We set x0 = 1, and for m =
1, . . . , n, we set xm = x(em), where em is the upper (vertical) branching edge in
L(m). Note that for any two different vertical branching edges e and e′, the num-
bers x(e) and x(e′) differ since the path from e to the leaf with the largest associated
value in I (e) always uses the horizontal branching edge at each encountered branch-
ing node. Thus, the obtained sequence X(T ) = (x0, x1, . . . , xn), is a permutation of
N that depends only on T . For example, the tree T in Fig. 3 creates the sequence
X(T ) = (1,0,0.6,0.3,0.8,0.2,0.7,0.4,0.9,0.1,0.5). The labels inside the nodes in
Fig. 3 show the correspondence between the unique internal branching node in L(i)

and the leaf located at (nxi, n − nxi) in L(n + 1) that is associated with the number
xi shown in the callouts. For each i = 1, . . . , n, the corresponding nodes are labeled
by i. In other words, each branching node and the rightmost leaf in the subtree rooted
at the upper branching edge of that node have the same label.

Let E(m) be the set of edges in T going from L(m) towards L(m+ 1). We get the
following two lemmas.

Lemma 3.3 Let e and f be edges in E(m). If e is to the left of f (that is, the endpoint
of e in L(m + 1) has smaller x-coordinate than the endpoint of f in L(m + 1)), we
have x(e) < x(f ).

Proof Assume to the contrary that x(e) ≥ x(f ). The case x(e) = x(f ) contradicts
the fact that T is a tree since we would have two different paths from the root to the
same leaf. In the case x(e) > x(f ), the paths from e and f to their largest leaves
must cross. But since the grid topology allows only horizontal and vertical edges
between adjacent grid points, the paths must cross in a common tree node, which
again contradicts the fact that T is a tree. �

Lemma 3.4 The set {x(e) : e ∈ E(m)} equals the set {x0, x1, x2, . . . , xm}.

Proof A simple induction shows the lemma. First, let m = 1, and thus in all valid
spanning trees, E(m) consists of the vertical and horizontal edge leaving the origin.
We denote these edges by ev and eh, respectively. By definition we have x1 = x(ev).
For eh, x(eh) = 1 is the largest element (attached to the leaf (n,0)) in I (eh). Hence,
we indeed have x(eh) = x0.
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Now assume that the statement holds for some m. All edges in the set E(m + 1),
except the two branching edges, just continue the corresponding predecessor edge
in E(m) and thus have the same x-values as their predecessor edges. It remains to
consider the branching node u in L(m + 1). Let e be the edge incident to u in E(m),
and ev and eh the vertical and the horizontal branching edge incident to u in E(m+1).
By definition xm+1 = x(ev); furthermore, we have x(e) = x(eh) since I (eh) ⊂ I (e)

contains (by Lemma 3.3) the largest element x(e) of I (e). Thus, the statement also
holds for m + 1. �

The following theorem shows our lower bound.

Theorem 3.5 For any spanning tree T , there is a grid point p ∈ L(n + 1) and a
grid point q in G(n) such that q is on the path dig(op) in T and the L∞ distance
from q to the line segment op exceeds c logn − 1, where c is the constant considered
in Theorem 3.1.

Proof To prove the theorem we consider the discrepancy of the sequence X(T ). From
Theorem 3.1 we have a real number 0 ≤ a ≤ 1 and two integers m < n for n large
enough such that |am−Xm(a)| > c logn. The following two cases should be consid-
ered:

Case 1: Xm(a) > am+c logn. Consider the node q in L(m+1) located at the grid
point (Xm(a) − 1,m − (Xm(a) − 1)), and let e be the edge between q and its parent
in T . By definition, q is on the path dig(op) from o to the node p = (x(e)n,n −
x(e)n) ∈ L(n + 1). Because of the definition of Xm(a) and Lemma 3.4, we have
exactly Xm(a) edges f ∈ E(m) for which x(f ) ≤ a. However, there are also exactly
Xm(a) edges of E(m) to the left of e, including e itself, since q is the Xm(a)th
node in L(m + 1) counted from the left. Lemma 3.3 implies that no edge g to the
right of e can attain x(g) ≤ a. Thus, e itself must satisfy x(e) ≤ a. Now, consider
the L∞ distance of the line segment op and q . The line segment op goes through
(x(e)m,m − x(e)m), which is the L∞-nearest point from q on op. The L∞ distance
is (Xm(a) − 1 − x(e)m) ≥ (Xm(a) − 1 − am) > c logn − 1.

Case 2: Xm(a) < am − c logn. Consider the node q in L(m + 1) located at the
grid point (Xm(a),m − Xm(a)) and the edge e between q and its parent. Since there
are only Xm(a) edges f ∈ E(m) for which x(f ) ≤ a, we have x(e) > a (again, from
Lemma 3.3). Node q is on the path dig(op) to the node p = (x(e)n,n − x(e)n).
Similarly to Case 1, we can show that the L∞ distance from q to op is greater than
c logn. This proves the theorem. �

3.3 The Upper Bound Results

We deterministically construct a 2D spanning tree DT(2) of G (which we generalize
to a d-dimensional tree DT(d) in Sect. 4) such that for every p = (i, j) ∈ V , the
unique path from o to p in DT(2) defines the digital ray dig(op) that represents the
Euclidean line segment op. By the monotonicity axiom (R5), dig(op) is always a
shortest path in the orthogonal grid.

We give the construction of DT(2) restricted to G(n) for n = 2k . By creating ro-
tated copies in the other quadrants and extending them to the infinite grid we get
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Fig. 4 The spanning tree T = T 4 (a) and the corresponding tree Φ−1(T ) in G(n) (b). The center path
and the two boundary paths are highlighted in bold

DT(2). To simplify the description (especially, when we generalize to higher di-
mensions later), we transform the grid by a linear map Φ that maps the lattice base
{(1,0), (0,1)} to {(1,0), (1,1)}, respectively. The linear map Φ transforms the quad-
rant containing G(n) to the first octant and maps G(n) to a skew-grid with the base
{(1,0), (1,1)} in the triangular region defined by 0 ≤ y ≤ x ≤ n. The set L(m) is
mapped to the mth column of the transformed grid. Figure 4 shows the tree T that we
will construct in the skew grid and the corresponding tree Φ−1(T ) in G(n).

In the transformed grid Φ(G(n)), all edges are horizontal or diagonal with positive
unit slope. An edge connecting a vertex (i, j) and a vertex (i + 1, j) or (i + 1, j + 1)

is called an edge in the ith edge-column. The ith edge-column is called an even (odd)
edge-column if i is even (odd). Note that the column index starts from 0.

Since the infinite tree DT(2) cannot have leaves, the set of leaves of T restricted
to Φ(G(n)) must be the right endpoints of the edges in the rightmost edge-column,
that is, the set {(n, b) | b = 0,1,2, . . . , n}. Any such spanning tree, and thus also the
one we will construct, must satisfy the following lemma.

Lemma 3.6 If an edge e ∈ T is horizontal (resp. diagonal), all the edges in T in the
same edge-column below e (resp. above e) must be horizontal (resp. diagonal).

Proof If e is horizontal and there is a diagonal edge below e, then two edges in that
column must share their right endpoint by the pigeon hole principle. This creates
a cycle in T , which contradicts the fact that T is a tree. If e is diagonal a similar
argument holds. �

This lemma implies that there is not much freedom for defining T , and it is also a
crucial observation for generalizing the construction to higher dimensions.

We give a procedure to construct all paths from the root to the leaves of T . This
suffices to define T . For sake of convenience, we denote the spanning tree restricted
to the subgrid Φ(G(2k)) by T k . We have two boundary paths: The path towards
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(2k,0) uses only horizontal edges, and the path towards (2k,2k) uses only diagonal
edges. These are the only paths for k = 0 and uniquely define T 0. If k ≥ 1, we first
give the path towards (2k,2k−1), which we call the center path (see Fig. 4). The
center path is the alternating chain of horizontal and diagonal edges, starting with the
horizontal edge connecting the origin o = (0,0) and (1,0). Thus, the center path has
a horizontal edge in every even column and a diagonal one in every odd column. We
observe that the left endpoint of an edge of the center path in an even column is on
the diagonal line y = x/2, while its right endpoint is below this line. The following
lemma is a straightforward consequence of Lemma 3.6:

Lemma 3.7 In the tree T k , all the edges in an even column below the center path are
horizontal, and all the edges in an odd column above the center path are diagonal.

Let us first consider the part of T k below and including the center path. The even
columns are determined by Lemma 3.7 and consist of horizontal edges only. The
number of edges between the upper and lower boundary paths in the ith column
of Φ(G(2k−1)) equals the number of edges between the center path and the lower
boundary path in the (2i + 1)th column of Φ(G(2k)). So we can simply copy the
ith column of T k−1 to the lower half of the (2i + 1)th column of T k . Similarly,
we know the odd columns of the part of T k above the center path and fill the even
columns by copying the ith column of T k−1 to the upper half of the (2i)th column
for i = 0,1, . . . ,2k−1 − 1. These copies do not conflict with the boundary paths and
the center path of T k .

This recursively constructs the tree T k for k ∈ N, and we can generate a spanning
tree T of the first octant of the whole infinite grid such that T k is the restriction of
T to Φ(G(2k)). Our tree in the orthogonal grid G(2k) is Φ−1(T k), which we can
obviously extend to DT(2), the tree on the whole orthogonal grid G.

Theorem 3.8 The set of digital rays defined by DT(2) is consistent. For any grid
point p ∈ G(n), the L∞-Hausdorff distance between dig(op) and op is less than
1 + logn.

Proof It is easy to verify that the set of digital rays defined by DT(2) is consis-
tent, that is, it satisfies axioms (R1)–(R5). It remains to bound the distance between
dig(op) and op. Let p = (xp, yp) be any vertex in T = T k , and let q = (xq, yq) be
any vertex on dig(op), the path from o to p in T . We claim that the vertical distance
between op and q is at most k. The proof is by induction on k. If k ≤ 1, the claim
is trivial. Thus, assume that the claim holds for Tk−1. We can further assume that
xq ≤ xp − 2, as we can check the claim directly otherwise.

If dig(op) is the center path, the claim holds by construction of the center path.
Thus, we assume this is not the case. Since two paths in T cannot cross each other,
both p and q must be on the same side of the center path. We distinguish the following
two cases:

Case 1. If p = (xp, yp) is below the center path (that is, yp < �xp/2�), then q =
(xq, yq) satisfies that yq ≤ �xq/2�. From the recursive definition of T we know that
the odd columns below the center path are copied from T k−1 and the even columns
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contain only horizontal edges. Thus, p is a copy of p′ = (�xp/2�, yp), and q is a
copy of q ′ = (�xq/2�, yq).

Since the claim holds for T k−1, the vertical distance from q ′ to the line segment
op′ is at most k − 1, that is,

dy(q
′, op′) = ∣

∣yq − yp

(�xq/2�)/(�xp/2�)∣∣ ≤ k − 1.

Now, consider the vertical distance dy(q, op) = |yq − ypxq/xp| from q to op. We
have the inequality
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and thus

dy(q, op) ≤
∣
∣
∣
∣yq − yp

�xq/2�
�xp/2�

∣
∣
∣
∣ +

∣
∣
∣
∣yp

�xq/2�
�xp/2� − yp

xq

xp

∣
∣
∣
∣ ≤ (k − 1) + 1 = k. (2)

Case 2. If p = (xp, yp) is above the center path (that is, yp > �xp/2�), then
q = (xq, yq) satisfies that yq ≥ �xq/2�. The even columns above the center path are
copied from Tk−1, and the odd columns contain only diagonal edges. Thus, p is a
copy of p′ = (�xp/2�, yp − �xp/2�), and q is a copy of q ′ = (�xq/2�, yq − �xq/2�).

Since the claim holds for T k−1, the vertical distance from q ′ to the line segment
op′ is

dy(q
′, op′) =

∣
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(3)
which is exactly the same expression as in Case 1. Hence, by (1) and the same argu-
ment as above, we get dy(q, op) ≤ k.

Analogously, we can pick any point q on the Euclidean line segment op and show
that its vertical distance dy(q,dig(op)) from the digital line segment digop is at
most 1 + logn. Note that in this case we need to add 1 to the bound since the grid
point of dig(op) that is closest to q has a distance of at most 1 from the vertical line
through q .

Since Φ−1 maps the vector (1,0) to (1,0) and the vector (0,1) to (−1,1), the L∞
distance of q and a line op (with a positive slope) in G(n) is the same as the vertical
distance dy(Φ(q),Φ(op)) between the corresponding point and line in Φ(G(n)). �

Note that the tree DT(2) is related to a famous low-discrepancy sequence called
the van der Corput sequence [17]. Assume that n is a power of 2, and construct the
sequence X(DT(2)) using the method of Sect. 3.2 (ignoring x0 = 1). Then, we obtain
X(DT(2)) = (0,1/2,1/4,3/4,1/8,5/8,3/8,7/8, . . .), where in general for the 2-
adic expansion b1b2b3 . . . bs of i − 1, we have xi = 0.bsbs−1 . . . b1 for 1 ≤ i ≤ n.
This sequence is indeed the van der Corput sequence.

It is also an interesting observation that DT(2) has a quite uniform structure. In-
deed, for any grid point p = (x, y), the path from o to p has �log(|x| + |y|)� or
�log(|x| + |y|)� branching vertices (excluding o) in DT(2).
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3.4 Constant Distance Bound for Nonmonotonic Rays

Surprisingly, if we omit the monotonicity axiom (R5), the lower bound does not hold.
We instead give a constant upper bound on the Hausdorff distance in Theorem 3.9.
The same bound holds for the Fréchet distance if we regard a digital ray as the corre-
sponding connected path in the graph G defining the grid topology. The digital rays
that we construct are locally snake-like almost everywhere; but their bird’s eye views
can approximate the respective Euclidean line segments fairly well.

Theorem 3.9 If the monotonicity axiom (R5) is not considered, there exists a system
of digital rays in the plane grid such that the Hausdorff distance between each digital
ray and its corresponding Euclidean line segment is O(1).

Proof The idea is as follows: We first consider a coarser grid of width 2 that is ad-
ditionally translated by (0.5,0.5), and construct a spanning forest T1 of this grid,
where internal leaves are allowed. Then, we replace each node v of this forest by four
nodes in the original unit-width grid such that v is located in the center of gravity of
these four nodes, that is, if v has coordinates (2x + 0.5,2y + 0.5) for two integers x

and y, then it is replaced by the four nodes (2x,2y), (2x,2y + 1), (2x + 1,2y), and
(2x + 1,2y + 1) in the unit-width grid. Finally, we convert the forest T1 into a tree
T2 in the unit-width grid.

Let c > 1 be an irrational constant. The forest T1 is constructed as follows: We
consider the belt R(k) ⊃ G(2k+1) \ G(2k) defined by 2k < x + y ≤ 2k+1 in the first

quadrant and subdivide it into trapezoids by lines �t : y = 2k−tc
tc

x passing through
the nongrid points (tc,2k − tc) on the line x + y = 2k for t = 1,2, . . . , �2k/c�. The
widths of the two parallel edges of each trapezoid are (at most)

√
2c and 2

√
2c,

respectively. Further, each trapezoid F is adjacent to one trapezoid p(F) in R(k − 1)

called the parent of F and to two trapezoids l(F ) and r(F ) in the belt R(k + 1)

that are called the left and right children, respectively. Let q be the intersection of
x + y = 2k+1 and the dividing line of l(F ) and r(F ). The nearest grid point to q in
F is called the exit node of F , and the nearest grid points to q in l(F ) and r(F ) are
called their entry nodes. Each trapezoid has exactly one entry and one exit node. In
Fig. 5, the entry node and the exit node of F are marked by “E” and “X”, respectively.

By gathering these trapezoids for all k ≥ �log c�, we have a decomposition of the
first quadrant of the plane. Since c > 1, each trapezoid is wide enough so that the
induced subgraph of the grid points in a trapezoid is connected. It is easy to find a
spanning tree of the vertices in each trapezoid consisting of a trunk that is a shortest
path from its entry node to its exit node, together with branches such that the length of
each branch (that is, the path length from the trunk to the furthest leaf) is at most 2c as
seen in Fig. 5. This gives a forest T1 consisting of small trees, one in each trapezoid.
Now, let us convert T1 into T2 as shown in Fig. 6. Each node of T1 is replaced by
four nodes at the corners of the surrounding unit square. Thus, we can realize the
walk around the subtree of T1 in F as a Hamiltonian cycle in the finer grid. We cut
the cycle at the exit node and connect to the entry nodes of the trees in the two child
trapezoids as in Fig. 6. We obtain a tree T2 that has no internal leaves. For any grid
point p ∈ F , the line segment op is contained in the union of the ancestor trapezoids
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Fig. 5 Trapezoid
decomposition and two trees of
the forest T1

Fig. 6 The walks around the two trees (a) and the corresponding part of the tree T2 formed by connecting
the two walks (b)

of F , and also all ancestors of p in the tree T2 are in the same union of trapezoids.
Since the width of each trapezoid is at most 2

√
2c, the distance from any point q

in the path dig(op) in T2 to the line op is at most 2
√

2c. It might happen that the
nearest point from q to the line op is not in the segment op since we do not assume
the monotonicity axiom. However, since the length of each branch of a subtree in T1
is at most 2c, the Hausdorff distance between the segment op and the path from o to
p in the tree is at most (2

√
2 + 2)c.

�

4 Digital Rays in Higher-Dimensional Grids

We can give a d-dimensional analogue DT(d) of DT(2) to define digital rays in d-
dimensional space. We utilize the fact that a line in d-dimensional space is uniquely
determined by its projections to all two-dimensional subspaces spanned by the first
coordinate and the ith coordinate for i = 2,3, . . . , d . We first demonstrate the con-
struction for the case d = 3 and discuss the general case later.
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Analogously to the two-dimensional case, we first transform the orthogonal grid
by a linear map that maps the base vectors (1,0,0), (0,1,0), and (0,0,1) to (1,0,0),
(1,1,0), and (1,1,1), respectively. Thus, the first octant of the orthogonal grid is
mapped to the part Q(3) defined by 0 ≤ z ≤ y ≤ x of the skew grid spanned by three
types of edges corresponding to the vectors (1,0,0), (1,1,0), and (1,1,1). Next, we
define a spanning tree T (3) in this skew grid and transform it back to a spanning tree
in the orthogonal grid.

To define T (3), it suffices to define the parent of each vertex (i, j, k) ∈ Q(3).
We use our previous two-dimensional tree in the skew-grid Φ(G), which covers the
range 0 ≤ y ≤ x in the plane. We call this tree T (2) implying that it is a tree in the
two-dimensional skew-grid. We define two copies T (2;x, y) and T (2;x, z) of T (2)

for the dimension pairs (x, y) and (x, z), which we call (x, y)-tree and (x, z)-tree,
respectively. The (x, y)-tree covers the range 0 ≤ y ≤ x, and the (x, z)-tree covers
the range 0 ≤ z ≤ x.

Given a grid point p = (i, j, k) ∈ Q(3), we call p (x, y)-horizontal (resp. (x, y)-
diagonal) if the edge between (i, j) and its parent in the (x, y)-tree is horizontal (resp.
diagonal). Similarly, p is called (x, z)-horizontal (resp. (x, z)-diagonal) if the edge
between (i, k) and its parent in the (x, z)-tree is horizontal (resp. diagonal).

The following case distinction defines the parent of p = (i, j, k) in T (3):

1. if p is (x, y)-horizontal and (x, z)-horizontal, its parent is (i − 1, j, k);
2. if p is (x, y)-diagonal and (x, z)-horizontal, its parent is (i − 1, j − 1, k);
3. if p is (x, y)-diagonal and (x, z)-diagonal, its parent is (i − 1, j − 1, k − 1).

There is one case missing, namely when (i, j, k) is (x, y)-horizontal and (x, z)-
diagonal. Our key observation is that this case cannot occur. By the definition of
Q(3), we have k ≤ j , and by Lemma 3.6 there is never a diagonal edge below a hor-
izontal one in an edge column of T (2). Now if (i, j, k) is (x, y)-horizontal, it must
also be (x, z)-horizontal.

Therefore, we have defined a graph T (3) in the grid Q(3), which uses only edges
that are parallel to the vectors (1,0,0), (1,1,0), or (1,1,1). Analogously, we can
confirm that every node has at least one child. The following lemma follows from the
definition of T (3).

Lemma 4.1 For every p = (i, j, k) ∈ Q(3), there is a unique path p from the origin
o to p in T (3). Thus, T (3) is a tree rooted at o. The projection of p to the (x, y)-
plane (resp. (x, z)-plane) coincides with the path from o to (i, j) (resp. (i, k)) in the
(x, y)-tree (resp. (x, z)-tree).

The next lemma is a consequence of Lemma 4.1 and Theorem 3.8:

Lemma 4.2 For any plane x = a where 0 ≤ a ≤ n, let (a, b, c) and (a, b′, c′) be
its intersection points with op and dig(op), respectively. Then, |b − b′| < logn and
|c − c′| < logn.

We use the inverse map from the skew grid Q(3) to the three-dimensional orthog-
onal grid; this maps T (3) to an orthogonal tree DT(3).
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Proposition 4.3 The L1 distance from any point on the digital ray in DT(3) to the
corresponding Euclidean line is at most 4 logn if the absolute value of each coor-
dinate value of the point is bounded by n. Consequently, the L1-Hausdorff distance
between a line segment and the corresponding digital ray is a most 4 logn.

Proof Let us examine how the distance changes during the inverse map. The vectors
(0,1,0) and (0,0,1) are mapped to (−1,1,0) and (0,−1,1), respectively. Thus, a
vector (0, s, t) is mapped to (−s, s − t, t) and |− s|+ |s − t |+ |t | ≤ 2|s|+2|t |. Thus,
for |s| ≤ n and |t | ≤ n, we can apply Lemma 4.2, which yields the proposition. �

For the general d-dimensional grid, we have the following theorem:

Theorem 4.4 Given a d-dimensional grid with nd grid points in the orthogonal
topology, we can define a spanning tree T (d) such that the L1-Hausdorff distance
between the line segment op and the digital ray dig(op) is less than 2(d − 1) logn if
the absolute value of each coordinate value of p is bounded by n.

Proof Let x1, x2, . . . , xd be the coordinates of the d-dimensional space and define
Q(d) by 0 ≤ xd ≤ xd−1 ≤ · · · ≤ x1. As before, we define copies T (2;x1, xi) of T (2)

for the dimension pairs (x1, xi), where i = 2,3, . . . , d . Now, let us consider a grid
point p = (p1,p2, . . . , pd) ∈ Q(d) and define its parent in T (d). By Lemma 3.6,
there exists an integer 2 ≤ i ≤ d + 1 such that (p1,pj ) is diagonal in T (2;x1, xj ) for
j < i and horizontal for j ≥ i. Note that all edges (p1,pj ) are horizontal (resp.
diagonal) if i = 2 (resp. i = d + 1). We connect p by an edge with the vector
(1,1, . . . ,1,0, . . . ,0,0) to its parent, where the vector has (i − 1) unit entries and
(d − i + 1) zero entries. This yields a spanning tree of the grid points of Q(d). The
remaining analysis is analogous to the three-dimensional case. �

5 Digital Mountain Approximation

Consider a [0,1]-valued function f on P, which we call a pixel image function.
In computer vision, it is important to find an approximation of a given pixel grid
image (represented by a function) by using another function with a nice property.
The problem comes as a natural variant of the least-squares method and is formulated
as follows: Let us fix a family O of pixel image functions with some nice property.
Given a pixel image function f , we would like to find φ ∈ O minimizing the L2
distance |f − φ|2 = [∑p∈P(f (p) − φ(p))2]1/2.

Picture retouching is a typical process on a pixel image: The user clips a part of
a digital picture and retouches it; for example, to remove noise, waves, scars, and/or
stains in a picture. A useful operation in picture retouching is as follows: Given a peak
position o (as user’s input or automatically), reform the clipped part into a distribution
peaked at o and gradually fading out to the boundary. This can be formulated as the
following particular function approximation problem: Given a function f defined
on P, its level set at a height t is L(f, t) = {p ∈ P : f (p) ≥ t}. The boundary of
a level set is often called a contour. We call f a mountain function with the peak
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Fig. 7 Mountain approximation: the values of the pixel image functions f (left) and φ (right) are repre-
sented by gray levels

position o ∈ P if each of its level sets is a digital star-shaped region centered at o

(thus, each contour is a digital star-shaped polygon).
The optimal mountain approximation problem is as follows: Given a real-valued

function f defined on P, we would like to find a digital mountain function φ min-
imizing the L2 distance |f − φ|2 = [∑p∈P(f (p) − φ(p))2]1/2. Geometrically, the
problem can be regarded as transforming a terrain represented by f to a mountain.
Figure 7 illustrates how the mountain approximation works in our implementation.

The following two results given by Chen et al. [3] are our basic tools to compute
the optimal digital mountain approximation:

Proposition 5.1 (Chen et al. [3]) Let R be a family closed under intersection and
union of regions, and let R(f, t) be the region R ∈ R maximizing

∑
p∈R(f (p) − t)

for a given real value t . If there is more than one such region, there are a maximum
and a minimum (in terms of set inclusion) among those regions. We denote them
Rmax(f, t) and Rmin(f, t), respectively.

We call t a critical height if Rmax(f, t) 	= Rmin(f, t). Chen et al. [3] showed that it
suffices to compute R(f, t) for each critical height t in order to compute φ.

Theorem 5.2 (Chen et al. [3]) Let R be a region family closed under intersection
and union of regions, and let F be a family of pixel image functions whose level
sets are regions in R. Then for the function φ ∈ F that minimizes the L2-distance
from f , the level set L(φ, t) = Rmax(f, t). Moreover, if φ(p) = t for a pixel p ∈ P,
then p ∈ Rmax(f, t) \ Rmin(f, t).

Let us consider the family S of digital star-shaped regions. For each vertex v ∈ V

of the tree DT(2), we give a parametric weight w(v, t) = f (v)− t , where f (v) is the
value of the input function f at the pixel corresponding to v. R(f, t) must be a rooted
subtree of DT(2) maximizing the sum of the parametric weights of the vertices. For a
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given t , it is quite easy to compute R(f, t): We traverse DT(2) in a bottom-up fashion
starting from the leaves and remove each vertex v and the subtree rooted at v if the
sum of the parametric weights of v in the subtree (ignoring removed vertices so far) is
negative. The final subtree obtained by the algorithm gives Rmax(f, t). If we replace
“negative” by “nonpositive” in the above procedure, we obtain Rmin(f, t). Clearly,
this can be done in linear time in terms of the tree size.

Now, we can apply a so-called hand probing operation: Given two heights
t1 < t2 where R1 = Rmax(f, t1) 	= R2 = Rmax(f, t2), we find a height t3 with
t1 < t3 < t2 such that R1 and R2 have the same parametric weight at t3 and com-
pute R3 = Rmax(f, t3). This operation can be done in linear time in terms of the
tree size. If the height t3 is a critical height, we define φ(p) = t3 for all p ∈
Rmax(f, t3) \ Rmin(f, t3). We recursively process the height intervals (t1, t3) and
(t3, t2) and thus find all critical heights in O(h) hand-probing operations, where
h is the number of different heights in the input data. Note that h is bounded by
h ≤ min{N,Γ }, where Γ is the number of gray levels, for example, Γ = 256, and N

is the size of the tree DT(2). So the total time complexity is O(Nh).
We can speed up the algorithm to run in O(N logh) time using the methods of

Chen et al. [3]. Their idea is based on using a contracted tree that, for a query with
heights t1 < t2, represents only the pixels in the set R1 \ R2 instead of the full tree
DT(2). Thus, each full level of the binary search tree can be handled in O(N) time.
Obviously, the number of levels of the search tree is O(logh), and thus the optimal
mountain approximation can be computed in O(N logh) time. Note that if the peak
position o is not specified by the user, we need to test all candidate positions to find
the best one.

We remark that the result can be easily extended to the d-dimensional case that
is an analogue of the pyramid construction problem considered in [3]. Note that
this algorithm can also be extended to the nonmonotonic rays defined in Sect. 3.4.
We can also control the curvature of the contours by using the method of Wu and
Chen [19], where we consider a directed acyclic graph obtained by adding artificial
edges to DT(2), although we need a minimum-cost-flow algorithm for solving that
version.

6 Concluding Remarks

Although our O(logn) bound for the distance is asymptotically optimal, we can im-
prove the constant factor: The lower bound factor in discrepancy theory is merely
0.06 [11]. An obviously important problem is to investigate the definition of consis-
tent digital line segments for all pairs of grid points or, as a first step, for digital rays
with multiple origins. As shown in the introduction, if the set of digital line segments
satisfies the axioms, the distance bound seems to become Ω(n); it is an interesting
question to prove or disprove this.
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10. Matousěk, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (1999)
11. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Re-

gional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)
12. Pach, J., Pollack, R., Spencer, J.: Graph distance and Euclidean distance on the grid. In: Bodendiek, R.,

Henn, R. (eds.) Topics in Graph Theory and Combinatorics, pp. 555–559. Physica-Verlag, Heidelburg
(1990)

13. Schmidt, W.M.: Irregularities of distribution, VII. Acta Arithm. 21, 45–50 (1972)
14. Schmidt, W.M.: Lectures on Irregularities of Distribution. Tata Inst. Fund. Res., Bombay (1977)
15. Schwarzkopf, O.: The extensible drawing editor Ipe. In: Proc. 11th Ann. ACM Symp. Comput. Geom.

(SoCG’95), pp. C10–C11 (1995)
16. Sugihara, K.: Robust geometric computation based on topological consistency. In: Alexandrov, V.N.,

Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) Proc. Internat. Conf. Computational Sci-
ence, Part 1 (ICCS’01). Lecture Notes in Comput. Sci., vol. 2073, pp. 12–26. Springer, Berlin (2001)

17. van der Corput, J.: Verteilungsfunktionen I & II. Nederl. Akad. Wetensch. Proc. 38, 813–820, 1058–
1066 (1935)

18. Wu, X.: Efficient algorithms for the optimal-ratio region detection problems in discrete geometry with
applications. In: Proc. 17th Internat. Symp. Algorithms and Computation (ISAAC’06). Lecture Notes
in Comput. Sci., vol. 4288, pp. 289–299. Springer, Berlin (2006)

19. Wu, X., Chen, D.Z.: Optimal net surface problems with applications. In: Proc. 29th Internat. Coll.
Automata, Languages and Programming (ICALP’02). Lecture Notes in Comput. Sci., vol. 2380,
pp. 1029–1042. Springer, Berlin (2002)

http://www.cgal.org

	Consistent Digital Rays
	Abstract
	Introduction
	Main Result

	Motivation and Related Work
	Relation to Digital Computational Geometry

	Digital Rays in the Plane Grid
	Preliminaries
	The Lower Bound Result
	The Upper Bound Results
	Constant Distance Bound for Nonmonotonic Rays

	Digital Rays in Higher-Dimensional Grids
	Digital Mountain Approximation
	Concluding Remarks
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


