
Discrete Comput Geom (2009) 42: 443–468
DOI 10.1007/s00454-009-9164-4

Fast Enumeration Algorithms for Non-crossing
Geometric Graphs

Naoki Katoh · Shin-Ichi Tanigawa

Received: 25 August 2008 / Revised: 24 December 2008 / Accepted: 13 February 2009 /
Published online: 22 April 2009
© Springer Science+Business Media, LLC 2009

Abstract A non-crossing geometric graph is a graph embedded on a set of points
in the plane with non-crossing straight line segments. In this paper we present a
general framework for enumerating non-crossing geometric graphs on a given point
set. Applying our idea to specific enumeration problems, we obtain faster algorithms
for enumerating plane straight-line graphs, non-crossing spanning connected graphs,
non-crossing spanning trees, and non-crossing minimally rigid graphs. Our idea also
produces efficient enumeration algorithms for other graph classes, for which no algo-
rithm has been reported so far, such as non-crossing matchings, non-crossing red-and-
blue matchings, non-crossing k-vertex or k-edge connected graphs, or non-crossing
directed spanning trees. The proposed idea is relatively simple and potentially applies
to various other problems of non-crossing geometric graphs.

Keywords Enumeration · Non-crossing geometric graphs · Triangulations

1 Introduction

Given a graph G = (V ,E) with n vertices and m edges where V = {1, . . . , n}, an
embedding of the graph on a set of points P = {p1, . . . , pn} ⊂ R

2 is a mapping of
the vertices to the points in the Euclidean plane i �→ pi . A geometric graph is a
graph embedded on P such that each edge (i, j) of G is mapped to a straight line
segment (pi,pj). A set of embedded segments is called non-crossing if any pair of
elements does not have a point in common except possibly their endpoints, and a

N. Katoh · S.-I. Tanigawa (�)
Department of Architecture and Architectural Engineering, Kyoto University, Kyoto Daigaku
Katsura, Nishikyo-ku, Kyoto 615-8540 Japan
e-mail: is.tanigawa@archi.kyoto-u.ac.jp

N. Katoh
e-mail: naoki@archi.kyoto-u.ac.jp

mailto:is.tanigawa@archi.kyoto-u.ac.jp
mailto:naoki@archi.kyoto-u.ac.jp

444 Discrete Comput Geom (2009) 42: 443–468

Table 1 Time complexities of new algorithms and previous ones

New results Previous best results

plane straight-line graphs O(pg(P)) O(n logn · pg(P)) [2]

non-crossing spanning connected graphs O(cg(P)) O(n logn · cg(P)) [2]

non-crossing spanning trees O(n · tri(P) + st(P)) O(n logn · st(P)) [2]

non-crossing minimally rigid graphs O(n2 · mrf(P)) O(n3 · mrf(P)) [8, 9]

non-crossing perfect matchings O(n3/2 · tri(P) + n5/2pm(P)) –

geometric graph is called non-crossing if its corresponding straight line segments are
non-crossing.

In this paper we assume that a given point set P is fixed in R
2 and an embedding

V → P is given. Since a graph class is defined in terms of the properties that all its
members share, imposing the additional “non-crossing” requirement to an existing
graph class, we can define a non-crossing geometric graph class on P , such as non-
crossing spanning trees or non-crossing perfect matchings. Let us denote by N G G a
specific non-crossing geometric graph class. We shall extensively study the following
enumeration problem:

Input: A point set P in the plane with n points.
Output: The list of all the non-crossing geometric graphs belonging to N G G on P .

Since the output of the problem may consist of exponentially many graphs in terms
of the input size, the efficiency of the enumeration algorithm is measured customarily
in both the input and output sizes. In particular, if the computational time can be
bounded by a polynomial in the input size and by a linear function in the output, the
algorithm is said to work in polynomial time (on average).

In this paper we present a new general framework for enumerating non-crossing
geometric graphs. Our new framework provides faster algorithms for various enu-
meration problems compared with existing ones, such as those for plane straight-
line graphs, non-crossing spanning connected graphs, non-crossing spanning trees,
and non-crossing minimally rigid graphs. Moreover, since the idea is quite simple,
it can be applied to many enumeration problems, for which enumeration algorithms
were not known to the best of our knowledge, such as non-crossing matchings, non-
crossing red-and-blue matchings, non-crossing k-vertex or k-edge connected graphs,
or non-crossing directed geometric graphs. In Table 1 we list the time complexities
of (a part of) new algorithms obtained in this paper, where we use the following no-
tation to denote the numbers of graphs on a point set P : pg(P) for plane straight-line
graphs, cg(P) for non-crossing spanning connected graphs, st(P) for non-crossing
spanning trees, mrf(P) for non-crossing minimally rigid graphs, tri(P) for triangula-
tions, and pm(P) for non-crossing perfect matchings.

The key idea of our technique is to use triangulations. Let us consider enumerat-
ing all non-crossing spanning trees for example. Since every subgraph of a triangu-
lation is non-crossing, enumerating all non-crossing spanning trees in a triangulation
is easily done by applying algorithms such as [19, 32] developed for enumerating

Discrete Comput Geom (2009) 42: 443–468 445

all spanning trees in a given (abstract) graph. Moreover, efficient enumeration al-
gorithms for triangulations are already known [7, 12]. Therefore, by enumerating
spanning trees in every triangulation, we will obtain all non-crossing spanning trees
since every non-crossing spanning tree is a subgraph of some triangulation. However,
some non-crossing spanning tree might be produced more than once since it could be
a subgraph of more than one triangulation.

For some specific graph classes, Avis et al. [9] and the authors [21] have shown
how to avoid duplicate generation based on a well-known enumeration framework,
called the reverse search [6, 7]. In this paper we extend this idea and develop a
new general technique which does not rely on the property of a particular graph
class. In order to avoid duplicate enumeration, we introduce two key notions: edge-
constrained lexicographically largest triangulations (which were originally intro-
duced in [21] for the development of an efficient enumeration algorithm of edge-
constrained non-crossing spanning trees) and minimal representative sets. For a set
of non-crossing segments F , a geometric graph containing F is called F -constrained.
We will show that, for each triangulation T , there exists the inclusionwise minimum
non-crossing edge set F ∗, called the minimal representative set, such that T is the
F ∗-constrained lexicographically largest triangulation (that is, the triangulation of
the lexicographically largest edge list among all F ∗-constrained triangulations with
respect to a certain order on edges defined later). In the enumeration algorithm pro-
posed in this paper, every time a new triangulation T is obtained, we will compute
the minimal representative set F ∗ of T and then enumerate all spanning trees that
are contained in T and contain F ∗ as the subset. We will show that this algorithm
correctly enumerates all non-crossing spanning trees without repetitions.

The overall idea of our techniques will be described in two algorithms, Algo-
rithm 1 and Algorithm 2, in Sects. 3 and 4, respectively. Let ngg(P) be the to-
tal number of graphs of N G G to be enumerated. Then, Algorithm 1 enumerates
all the non-crossing geometric graphs belonging to N G G without repetitions in
O(f (n) · tri(P) + g(n) · ngg(P)) time, where f is a polynomial function, and g is
a function of n depending on N G G . In the graph classes considered in this paper,
g is also a polynomial function. By applying Algorithm 1 we obtain new algorithms
for enumerating plane straight-line graphs, non-crossing spanning connected graphs,
non-crossing spanning trees, and non-crossing perfect matchings (see Table 1). In
particular, for plane straight-line graphs or non-crossing spanning connected graphs,
we show that pg(P) and cg(P) are exponentially larger than tri(P) for every point
set P , and thus the term of f (n) · tri(P) is dominated by pg(P) or cg(P). Conse-
quently, our algorithms work in g(n) time on average, which will be shown to be
constant. These results improve the running time of the previous best ones by Aich-
holzer et al. [2].

Although Algorithm 1 enumerates all graphs of N G G efficiently in terms of tri(P)

and ngg(P), its time complexity cannot be bounded by O(g(n) · ngg(P)) in general
since its complexity is dominated by tri(P) when tri(P) is much larger than ngg(P).
The next proposed algorithm Algorithm 2 overcomes this drawback by avoiding
the enumeration of the triangulations T which contain no F ∗-constrained geomet-
ric graph of N G G for the minimal representative set F ∗ of T . Applying Algorithm 2,
we obtain an enumeration algorithm for non-crossing minimally rigid graphs that

446 Discrete Comput Geom (2009) 42: 443–468

works in O(n2) time on average. This result improves the previous one by Avis et
al. [8] by an O(n) factor on average.

As for related work of our paper, Welzl [36] recently showed a relatively simi-
lar approach for counting the total number of planar straight-line graphs on a given
point set, where he proposed the method of using the edge-constrained Delaunay
triangulation and so-called Lawson edges, which in our context correspond to the
edge-constrained lexicographically largest triangulation and the minimal representa-
tive set, respectively. We remark that our work has been done independently from
it. In addition, as the current fastest enumeration algorithm [12] for triangulations
is based on the lexicographical ordering on the edge set, there are some advantages
of using the lexicographically largest triangulation over the Delaunay triangulation
especially in the time complexity analysis (e.g., a simple amortized analysis of the
edge insertion algorithm given in Sect. 4). Also, the concept of the lexicographically
largest triangulation enables us to prove a non-trivial lower bound on the number of
non-crossing spanning connected graphs, which will be given in Theorem 3.7.

Enumerating combinatorial objects is a fundamental problem, and several algo-
rithms have been developed for non-crossing geometric graphs, e.g., triangulations [7,
12], non-crossing spanning trees [2, 7, 21], pseudo-triangulations [10, 13], and non-
crossing minimally rigid graphs [8, 9]. Let us explain why the enumeration of non-
crossing geometric graphs is more difficult than that of non-geometric (abstract)
graphs. The branch-and-bound technique (or sometimes called the binary-partition
technique, see, e.g., [33, 34]) is a well-known framework for designing enumeration
algorithms. Consider, for example, the problem for enumerating all spanning trees in
a (multi)graph G with n vertices and m edges. Then, we can easily design an algo-
rithm that enumerates all spanning trees in O(m2) time per output graph as follows.
The algorithm repeatedly divides the problem into two subproblems: one enumer-
ates the spanning trees containing an edge e of G, and the other enumerates those not
containing e. In the first subproblem, e is contracted (and resulting loops are removed
if there exists any), while in the second subproblem, e is removed. Then, the prob-
lem size is surely reduced in each subproblem. Moreover, since it can be checked in
O(m) time whether the resulting graph contains at least one spanning tree, the algo-
rithm can decide correctly whether it should continue the search or not. Therefore, by
going down this branch-and-bound tree in O(m) steps, the algorithm surely detects a
new spanning tree.

The branch-and-bound technique provides us with polynomial-time enumeration
algorithms for many graph classes because it just requires a polynomial-time ora-
cle that checks whether a given graph contains at least one subgraph belonging to a
certain graph class. However, the problem of detecting a non-crossing subgraph in a
given geometric graph is known to be NP-hard for most graph classes (even in the
case of non-crossing spanning trees or non-crossing perfect matchings [26]). For this
reason, most of the enumeration problems for non-crossing geometric graphs become
non-trivial, and we need to introduce some new technique. In fact, all previous works
for the enumeration of non-crossing geometric graphs are based not on the branch-
and-bound technique but on sophisticated local transformations discussed below.

Two objects of N G G are connected if they can be transformed into each other
by a transformation which generates one graph from the other by a certain specified

Discrete Comput Geom (2009) 42: 443–468 447

operation. Define a graph GN G G on N G G where the vertex set of GN G G corresponds
to the set of all objects of N G G and two vertices are connected by an edge if the
corresponding graphs of N G G are connected. Then, the natural question is how we
can design a transformation so that GN G G is a connected graph. Moreover, from the
viewpoint of the applications to enumeration problems, a transformation should be
defined locally, i.e., the symmetric difference between two connected objects should
be as small as possible. Developing such a nice transformation might be interesting in
its own right, and there are many known results not only for local transformations [2,
5, 7, 21–23, 25] but also for large transformations [1, 3, 24]. Almost all previous
works for the enumerations of non-crossing geometric graphs discussed above are
based on local transformations, and thereby they deeply rely on the property of a
particular graph class. On the other hand, the proposed technique in this paper reveals
that efficient enumeration of N G G is possible without defining a local transformation
of N G G explicitly.

2 The Edge-Constrained Lexicographically Largest Triangulation

Recall that a geometric graph containing a set of non-crossing segments F is called
F -constrained. In this section, we first introduce some notation used throughout the
paper and then provide a number of preliminary results on the F -constrained lexi-
cographically largest triangulation (F -CLLT). These results were originally obtained
in [21] for the purpose of developing an efficient enumeration algorithm for edge-
constrained non-crossing spanning trees and play a crucial role in the development of
our framework.

2.1 Notation

Let P be a set of n points in R
2, and for simplicity, we label the points P =

{p1, . . . , pn} in the increasing order of x-coordinates. We assume that the x-
coordinates of all points are distinct and that no three points of P are collinear. For
two points pi,pj ∈ P , we use the notation pi < pj if i < j holds and pi = pj if they
coincide. Considering pi ∈ P , we often pay attention only to the point set to its right,
{pi+1, . . . , pn} ⊆ P , which is denoted by Pi+1.

Let Kn be the complete graph embedded on P (with straight line segments). The
line segment between pi and pj with pi < pj is called edge, denoted by (pi,pj). We
often consider a geometric graph G as an edge set and use the notation G to denote
the edge set of G for simplicity when it is clear from the context.

For three points pi,pj , and pk , the signed area Δ(pi,pj ,pk) of the triangle
pipjpk tells us whether pk is on the left (or right, resp.) side of a line passing
through pi and pj when moving along the line from pi to pj by Δ(pi,pj ,pk) > 0
(or Δ(pi,pj ,pk) < 0, respectively). We define a total ordering ≺ on the set of edges
as follows: for e = (pi,pj) and e′ = (pk,pl), e ≺ e′ holds if pi < pk , or pi = pk and
Δ(pi,pj ,pl) < 0. Notice that the ordering of e and e′ is determined by the clockwise
ordering around pi if pi = pk . Let E = {e1 ≺ · · · ≺ em} and E′ = {e′

1 ≺ · · · ≺ e′
m} be

sorted edge lists in increasing ordering. Then, E′ is lexicographically larger than E

if ei ≺ e′
i for the smallest i such that ei
= e′

i .

448 Discrete Comput Geom (2009) 42: 443–468

Fig. 1 An example of the upper
and lower tangents, denoted by
(pi ,p

up
i

) and (pi ,p
low
i

),
respectively. The bold edges
represent F

Fig. 2 F -CLLT

We say that two edges (pi,pj) and (pk,pl) properly intersect if (pi,pj) and
(pk,pl) have a point in common except for their endpoints. For two points pi,pj ∈ P

and a non-crossing edge set F , we say that pj is visible from pi with respect to F

when the edge (pi,pj) does not properly intersect any edge of F , but we assume that
pj is visible from pi if (pi,pj) ∈ F .

Upper and lower tangents, (pi,p
up
i) and (pi,p

low
i), of pi with respect to F are

defined as the supporting edges from pi to the convex hull of the points of Pi+1 that
are visible from pi with respect to F (see Fig. 1).

2.2 The Edge-constrained Lexicographically Largest Triangulations

For a non-crossing edge set F on P and a point pi ∈ P , let us denote by δF (pi) the set
of edges of F whose left endpoints are pi . Let us consider the following construction
of an F -constrained geometric graph on P :

Construction 1

0. Repeat the following process for all pi ∈ P in an arbitrary order.
1. Let (pi,p

up
i) and (pi,p

low
i) be the upper and lower tangents of pi ∈ P with re-

spect to F , and denote the right endpoints of δF (pi) ∪ {(pi,p
up
i), (pi,p

low
i)} by

pi0,pi1, . . . , pim arranged in clockwise order around pi (where pi0 = p
up
i and

pim = plow
i hold) (Fig. 3(a)).

2. Consider the cone Ck with apex at pi bounded by two consecutive edges (pi,pik)

and (pi,pik+1) for each k with 0 ≤ k ≤ m − 1, where Ck contains both pik and
pik+1 , and construct the convex hull Hk of Pi+1 ∩ Ck inside each Ck (Fig. 3(b)).

3. Draw an edge from pi to every point pj ∈ Pi+1 ∩Ck such that pj = (pi,pj)∩Hk

for each k (Fig. 3(c)).

Discrete Comput Geom (2009) 42: 443–468 449

Fig. 3 Construction 1 around pi where the bold edges represent F . (a) Step 1, (b) Step 2, and (c) Step 3

We give an example of the graph obtained by the above construction in Fig. 2.
Notice that the graph obtained by Construction 1 always has the edges of δF (pi) ∪
{(pi,p

up
i), (pi,p

low
i)} for all pi ∈ P . The following property has been proved in [21].

Proposition 2.1 ([21]) The graph G obtained by Construction 1 is an F -constrained
triangulation on P . Moreover, it has the lexicographically largest edge list among all
F -constrained triangulations on P .

Hence, we call the F -constrained triangulation obtained by the above construction
the F -constrained lexicographically largest triangulation (F -CLLT). Although the
details are omitted, we can show that the F -CLLT can be also constructed by greed-
ily adding the edges of Kn to F in the descending order with respect to ≺ without
violating the non-crossing property. Note that the F -constrained lexicographically
largest triangulation is uniquely determined for every F since ≺ is a total ordering
over the edges of Kn.

An edge e in a triangulation T is called flippable if the two triangles incident to e

in T form a convex quadrilateral Q. Flipping e in T generates a new triangulation by
replacing e with the other diagonal of Q. In [21], we showed that every F -constrained
triangulation can be transformed into F -CLLT by flipping O(n2) edges not in F , each
of which increases the lexicographical order of the edge list.

2.3 Deleting and Inserting the Constrained Edge

Let F be the collection of all non-crossing edge sets on a given point set P , and
let T be the collection of all triangulations on P . We will often treat a triangulation
as an edge set in the subsequent discussion. We make use of the construction of the
F -CLLT as a function T ∗ : F → T that maps a non-crossing edge set F to the corre-
sponding F -CLLT T ∗(F). The following properties of the function T ∗ are crucial for
developing the general technique in the next section (a part of them has been given in
[21]). We shall provide proofs for completeness.

Lemma 2.2 Let F ∈ F . Then, for every e ∈ T ∗(F), T ∗(F ∪ {e}) = T ∗(F) holds.

450 Discrete Comput Geom (2009) 42: 443–468

Proof Suppose, for a contradiction, that there is e ∈ T ∗(F) such that T ∗(F ∪ {e})
=
T ∗(F). Since F ∪ {e} ⊆ T ∗(F), the triangulation T ∗(F ∪ {e}) has a lexicographi-
cally larger edge list than that of T ∗(T ∗(F)) = T ∗(F). This is a contradiction be-
cause F ⊆ F ∪ {e} implies that T ∗(F) has a lexicographically larger edge list than
T ∗(F ∪ {e}). �

Lemma 2.3 Let F ∈ F . Then, for E ⊆ F , T ∗(F \ E) = T ∗(F) holds if and only if
every e = (pi,pj) ∈ E is (i) the upper or lower tangent of pi with respect to F or (ii)
non-flippable in T ∗(F).

Proof (“Only-if” part:) Assume, for a contradiction, that there exists e = (pi,pj) ∈
E satisfying neither (i) nor (ii) of the statement when T ∗(F \ E) = T ∗(F) holds.
Notice that T ∗(F \ E) = T ∗(F) implies that T ∗(F) is an (F \ E)-constrained lex-
icographically largest triangulation and an F -constrained lexicographically largest
triangulation. Consider the two triangles of T ∗(F \ E) incident to e and denote the
two vertices appearing in these triangles other than pi and pj by v and w. Since e

is flippable in T ∗(F \ E)(= T ∗(F)), the quadrilateral pivpjw is convex. In addi-
tion, since e is neither upper nor lower tangent of pi , both v and w lie on the right
side of pi , and hence e ≺ (v,w) holds. Therefore, flipping e to (v,w) produces an
(F \ E)-constrained triangulation that is lexicographically larger than T ∗(F), which
is a contradiction.

(“If” part:) We shall show that, for e = (pi,pj) ∈ E, T ∗(F \ {e}) = T ∗(F) holds
if e satisfies (i) or (ii) of the statement. If so, since each edge of E \ {e} still satisfies
(i) and (ii) in T ∗(F \ {e}) = T ∗(F), removing the edges of E one by one from the
constraint, we eventually obtain T ∗(F \ E) = T ∗(F).

First let us consider the case where e satisfies (i). Since removing e = (pi,pj)

does not affect the visibility of pi , e is also the upper or lower tangent of pi with re-
spect to F \ {e}. Since T ∗(F \ {e}) contains every tangent from the definition of Con-
struction 1, e ∈ T ∗(F \{e}) follows, implying T ∗(F \{e}) = T ∗(F) from Lemma 2.2.

Next let us consider the case where e satisfies (ii). We can assume that e is neither
upper nor lower tangent. We shall show that e is still contained in T ∗(F \ {e}), which
in turn implies T ∗(F \ {e}) = T ∗(F). Let (pi,p

up
i) and (pi,p

low
i) be the upper and

lower tangents of pi with respect to F . Since removing e = (pi,pj) does not affect
the visibility of pi as mentioned above, they are, respectively, the upper and lower
tangents of pi with respect to F \ {e}.

Let us denote the set of the right endpoints of δF (pi) ∪ {(pi,p
up
i), (pi,p

low
i)} by

pi0,pi1, . . . , pim in clockwise ordering around pi . Since e ∈ δF (pi) and e is neither
upper nor lower tangent, e = (pi,pik) holds for some k with 1 ≤ k ≤ m − 1. Ac-
cording to the definition of Construction 1, there exists a convex chain between pik

and pik+1 in T ∗(F) such that the face bounded by this convex chain and the two
edges (pi,pik) and (pi,pik+1) form a pseudo-triangle, which contains no point of P

in its interior. Similarly, there exists the convex chain between pik−1 and pik in T ∗(F)

and the corresponding pseudo-triangle. Since e is non-flippable in T ∗(F), combining
these two pseudo-triangles, we obtain a single pseudo-triangle which consists of the
convex chain from pik−1 to pik+1 and the two edges (pi,pik−1) and (pi,pik+1). Let us
denote this pseudo-triangle by t . Note that t contains no point of P .

Discrete Comput Geom (2009) 42: 443–468 451

Suppose, for a contradiction, that e /∈ T ∗(F \ {e}) holds. Then, there exists an
edge e′ ∈ T ∗(F \ {e}) such that e′ properly intersects e. However, considering
the pseudo-triangle t , e′ must intersect at least one of (pi,pik−1) and (pi,pik+1)

because e = (pi,pik) is contained in (the face of) t and the three convex cor-
ners of t are pi,pik−1 , and pik+1 . Therefore, T ∗(F \ {e}) misses at least one of
(pi,pik−1) and (pi,pik+1), which contradicts that T ∗(F \ {e}) contains all edges of
δF\{e}(pi)∪{(pi,p

up
i), (pi,p

low
i)}, as we remarked right after the description of Con-

struction 1. This is a contradiction. �

2.4 Maintaining the F -constrained Lexicographically Largest Triangulation

Let us discuss how to maintain the F -CLLT when we newly insert one constrained
edge e to F . Developing the following efficient way to construct T ∗(F ∪ {e}) from
T ∗(F) will be helpful for constructing the fast enumeration algorithm discussed in
Sect. 4.1.

Lemma 2.4 Let T ∗(F) be the F -CLLT on a given set of n points, and let e be an edge
that does not properly intersect any edge of F . Then, it takes O(n) time to construct
T ∗(F ∪ {e}) from T ∗(F).

Proof Let e = (pi,pj), and let I be the set of edges of T ∗(F) that properly in-
tersect e. Let us first verify the following fact: Every edge of T ∗(F) \ I , say
(pk,pl) ∈ T ∗(F) \ I , is still contained in T ∗(F ∪ {e}).

Let us consider how T ∗(F) is determined by Construction 1 around pk . Since
(pk,pl) ∈ T ∗(F), there exists the cone CF with apex pk considered in Step 2 of
Construction 1 which contains pl , and the convex hull HF of Pk+1 ∩ CF with pl =
(pk,pl)∩HF . Similarly, when constructing T ∗(F ∪ {e}), in Step 2 we shall consider
the convex hull HF+e inside some cone with apex pk such that pl ∈ HF+e .

When inserting e, the vertices that are not visible from pk with respect to F remain
non-visible from pk with respect to F ∪ {e}. This implies HF+e ⊆ HF . Hence, pl =
(pk,pl) ∩ HF implies pl = (pk,pl) ∩ HF+e, and (pk,pl) remains in T ∗(F ∪ {e})
from Construction 1.

Therefore, the update occurs only inside the two polygons obtained by removing
the edges of I and adding e (see Figs. 4(a) and (b)). Without loss of generality, we

Fig. 4 (a) Insertion of a new constrained edge e. (b) The two empty simple polygons obtained by remov-
ing the edges I properly intersecting e. (c) Reconstruction inside the polygon in the upper side, where the
dashed and dotted edges represent the type (1) and type (2) edges

452 Discrete Comput Geom (2009) 42: 443–468

assume that e is horizontal, and let us show an efficient algorithm to triangulate (the
interior of) the polygon lying on the upper side of e = (pi,pj) (the lower side can
be treated similarly). Consider the updated triangulation of the polygon by Construc-
tion 1. There exist two types of new edges: (1) lower tangent of each vertex of the
polygon with respect to the boundary edges of the polygon, and (2) the others (see
Fig. 4(c)). We call them type (1) and type (2), respectively.

Let us consider how to find the type (1) edges. Let v be a vertex of the polygon
which misses the lower tangent in (T ∗(F) \ I) ∪ {e}, that is, e properly intersects the
lower tangent (v, vlow) of v with respect to F which existed in T ∗(F). Consider a
ray emanating from v to vlow, which first hits e before reaching vlow. Rotating the
ray around v in counterclockwise order inside the polygon until it encounters a ver-
tex of the polygon, we can find the new lower tangent (v, ṽlow) of v, which is a type
(1) edge (if (v, ṽlow) does not already exist in T ∗(F)). We repeatedly continue the
rotation of the ray around the newly encountered vertex ṽlow of the polygon until the
ray encounters pj . Since we are rotating the ray in one direction, the sequence of
vertices encountered in this process induces a convex chain connecting pj and some
vertices of the polygon. Consequently, the set of all type (1) edges is a subset of the
convex chains connecting pj and each vertex of the polygon as shown in Fig. 4(c),
which represent the shortest paths inside the polygon from pj . It is known [18] that
the shortest paths from a single source to all vertices inside a simple polygon can be
computed in O(n) time, although it requires an involved linear-time algorithm for tri-
angulating a simple polygon [14]. Thus, we could obtain the desired time complexity
through the shortest path algorithm.

Our problem, however, can be solved easily by performing a Graham scan (see,
e.g., [15]) only once. Let us try to construct the lower part of the convex hull of the
vertices of the polygon by performing a Graham scan algorithm from pj to pi . We
remark that the algorithm scans all vertices not in the order of the coordinates as usual
but in the vertex sequence order of the polygon from pj to pi . When we encounter
a new vertex p during the scan, we examine the top vertex q and the next one r

on the stack. If the angle of the three points around q inside the polygon is convex
(i.e., Δ(r, q,p) > 0), we draw the edge between p and r and then pop q from the
stack. We continue this process until we obtain three vertices p, q ′, and r ′ whose
angle around q ′ inside the polygon is reflex, that is, Δ(r ′, q ′,p) < 0. Then, we insert
p into the stack and proceed to the next vertex. Repeating this process until p = pi

and the stack contains only pi and pj , we can draw all of the required edges in linear
time. �

3 Enumerating Non-crossing Geometric Graphs

3.1 General Idea

We define the relation ∼ on F as follows; for two non-crossing edge sets F and F ′,
F ∼ F ′ if and only if T ∗(F) = T ∗(F ′). Let [T] = {F ∈ F | F ∼ T } for each T ∈ T .

Lemma 3.1 The relation ∼ is an equivalence relation on F . The collection {[T] |
T ∈ T } of all equivalence classes forms a partition of F .

Discrete Comput Geom (2009) 42: 443–468 453

Proof Since T ∗(F) is uniquely determined for each F ∈ F , ∼ clearly is an equiv-
alence relation. Hence, [T] is an equivalence class, and thus {[T] | T ∈ T } forms a
partition of F . �

We say that an edge e of F ∈ F is the smallest or largest one among F if it is
the smallest edge, or respectively the largest edge, among F with respect to the edge
ordering ≺. We remark that the upper tangent (and the lower tangent, resp.) of pi with
respect to F is the smallest edge (and the largest edge, resp.) in {(pi, q) ∈ T ∗(F) | q ∈
{pi+1, . . . , pn} = Pi+1}. This implies that, for any F ∈ [T] of a triangulation T , the
upper and lower tangents with respect to F are equivalent to the smallest and largest
ones of {(pi, q) ∈ T | q ∈ Pi+1}. Using Lemma 2.3, a unique minimal representative
set for each [T] is defined as follows.

Lemma 3.2 Let T be a triangulation on a given point set P , and let F ∗ be the set of
all flippable edges in T except for the smallest and largest edges of {(pi, q) ∈ T | q ∈
Pi+1} for every pi ∈ P . Then,

(i) F ∗ ∈ [T] (i.e., T ∗(F ∗) = T), and
(ii) for any F ∈ F , F ∈ [T] if and only if F ∗ ⊆ F ⊆ T .

Proof Let us show (i). It is obvious that T ∗(T) = T . Note that, by the definition
of F ∗, every edge e = (pi,pj) ∈ T \ F ∗ is non-flippable in T , or the smallest or
largest edge among {(pi, q) ∈ T | q ∈ Pi+1} (i.e., e is the upper or lower tangent of
pi with respect to T). Hence, by Lemma 2.3, removing T \ F ∗ does not change the
triangulation, that is, T = T ∗(T) = T ∗(T \ (T \ F ∗)) = T ∗(F ∗).

Next, let us show (ii). The “if-part” can be proved in the same way as in the first
part. In fact, removing the edges of F \ F ∗, we obtain T ∗(F) = T ∗(F \ (F \ F ∗)) =
T ∗(F ∗) = T by Lemma 2.3. Let us consider the “only-if” part. It is obvious that F ⊆
T if F ∈ [T]. Suppose that F (with F ⊆ T) is a counterexample, that is, T ∗(F) = T

but F ∗ \ F
= ∅. Then an edge e = (pi,pj) ∈ F ∗ \ F is flippable in T and neither
the smallest nor largest edge among {(pi, q) ∈ T | q ∈ Pi+1} from the definition of
F ∗, which implies T = T ∗(F) = T ∗(F ∗ \ (F ∗ \ F))
= T ∗(F ∗) by Lemma 2.3. This
contradicts T = T ∗(F ∗). �

Thus, we call F ∗ defined in Lemma 3.2 the minimal representative set of T , denoted
by R(T). Our enumeration algorithm, which consists of two phases, can be easily
described as follows.

Algorithm 1: Enumeration of N G G .
Phase 1: Enumerate all triangulations for a given point set P based on the fast enu-

meration algorithm by Bespamyatnikh [12].
Phase 2: Every time a new triangulation T is found, enumerate all graphs G con-

tained in T such that G ∈ N G G and G contains the minimal representative
set R(T) as its subset, i.e., G is an R(T)-constrained graph in T .

Let C be the graph class obtained by relaxing the non-crossing constraint from
the non-crossing geometric graph class N G G (i.e., the collection of geometric graphs

454 Discrete Comput Geom (2009) 42: 443–468

Fig. 5 The search tree on the set of triangulations obtained by the algorithm by Bespamyatnikh, where
each minimal representative set is drawn in bold

whose edge sets are not necessarily non-crossing but satisfy the combinatorial prop-
erties of N G G). Notice that in Phase 2 the problem for enumerating all graphs of
N G G is reduced to that of enumerating all elements of C containing R(T) in a tri-
angulation T because T is non-crossing. This implies that we may utilize an oracle
for enumerating all the graphs of C in a given (abstract) graph and we can ignore
“geometric” and “non-crossing.”

The algorithm needs R(T) explicitly for every T in Phase 2, and hence it will be
better to maintain and update R(T) during the enumeration of triangulations rather
than to compute it from scratch. The task of Phase 1 is in fact not only the enumeration
of T but also the generation of R(T). This additional task can be handled by slightly
modifying the triangulation enumeration, which will be discussed more formally in
Sect. 3.2. Figure 5 shows an example of the enumeration of triangulations and the
minimal representative sets.

Theorem 3.3 Algorithm 1 enumerates all graphs of N G G without repetitions.

Proof Consider an arbitrary graph G ∈ N G G . Then, T = T ∗(G) is uniquely deter-
mined. This implies G ∈ [T] and G /∈ [T ′] for any triangulation T ′ with T ′
= T by
Lemma 3.1. Since G ∈ [T] implies R(T) ⊆ G ⊆ T by Lemma 3.2, Phase 2 of Algo-
rithm 1 for the triangulation T enumerates G by an (assumed) oracle. On the other
hand, G /∈ [T ′] implies R(T ′)
⊆ G or G
⊆ T ′. Thus, any G is enumerated exactly
once in Phase 2 for T = T ∗(G). �

3.2 Time Complexity of Algorithm 1

In order to analyze the time complexity of Algorithm 1, let us briefly review the
enumeration algorithm of triangulations by Bespamyatnikh [12], which is based on

Discrete Comput Geom (2009) 42: 443–468 455

the reverse search technique [7]. The reverse search is a well-known technique to
generate all elements of the considered combinatorial objects by tracing the nodes
in the search graph, in which a node corresponds to an object to be enumerated and
an edge corresponds to a transformation (discussed in the introduction) between two
objects. To trace the search graph efficiently, the algorithm defines a root node and a
unique parent for each node except for the root such that the subgraph of the search
graph induced by the parent-child relations forms a rooted spanning tree. Such a
spanning tree is called search tree, and the algorithm traces it by depth-first manner.
The search graph of the algorithm by Bespamyatnikh is defined in such a way that
two triangulations are connected if and only if they can be transformed to each other
by a diagonal flip (see Fig. 5 or [12] for more details). The following lemma states
how to efficiently maintain the minimal representative set during the enumeration of
triangulations.

Lemma 3.4 Let T1 and T2 be two triangulations for which T2 is obtained from T1
by a diagonal flip of the edge f . Then, the size of the symmetric difference between
R(T1) and R(T2) is constant. More specifically, only the four edges of the two triangle
faces incident to f are involved in the symmetric difference.

Proof Let us first characterize e ∈ R(T1) \ R(T2) with e
= f . There are two cases:
(Case 1) e = (pi,pj) ∈ R(T1) becomes non-flippable in T2, and (Case 2) e = (pi,pj)

becomes the smallest or largest edge among {(pi, q) ∈ T2 | q ∈ Pi+1} in T2. Notice
that a diagonal flip switches at most the four flippable edges in T1 into non-flippable
edges in T2, and hence, if e is an edge of Case 1, it must be one of the four edges
of the triangles incident to f . Let us consider Case 2. Since e is not the smallest (or
largest, resp.) one in {(pi, q) ∈ T1 | q ∈ Pi+1}, there exists an edge e′ = (pi, q

′) in T1
with e′ ≺ e (or e ≺ e′, resp.) such that e′ and e are incident to a common triangle face
of T1. We notice that e′ disappears in T2 because e becomes the smallest (or largest)
one, and hence e′ is exactly f . So, f and e are incident to the same triangle face in
T1.

The analogous argument works for e ∈ R(T2) \ R(T1). �

By Lemma 3.4, during Algorithm 1, the symmetric difference of the minimal rep-
resentative sets can be output in O(1) time if the triangulation is maintained in a
proper data structure and a flag is attached to each edge to indicate whether it is in
the minimal representative set or not. The algorithm by Bespamyatnikh [12] enumer-
ates all triangulations in O(log logn) time per output. Thus, we obtain the following
theorem:

Theorem 3.5 Let C be the graph class obtained by relaxing the non-crossing con-
straint from N G G . Suppose that there exists an algorithm for enumerating all R(T)-
constrained graphs of C in a triangulation without repetitions in time tC per output
graph with preprocessing time tC,pre. Then, all graphs of N G G on a given point set P

of n points can be enumerated without repetitions in O((log logn + tC,pre) · tri(P) +
tC · ngg(P)) time, where tri(P) and ngg(P) are the total numbers of triangulations
and N G G on P , respectively.

456 Discrete Comput Geom (2009) 42: 443–468

Most of the enumeration algorithms we will use as a subroutine in the applications
take tC,pre = O(n) time in the preprocess phases (see Sect. 3.3).

3.3 Applications of Algorithm 1

3.3.1 Enumerating Non-crossing Spanning Trees

We show here how to apply Algorithm 1 to the enumeration of non-crossing spanning
trees on a given point set. What we have to consider here is just how to enumerate all
spanning trees in a given triangulation T , each of which contains the minimal repre-
sentative set R(T). We remark again that, in the above process, we do not have to care
about whether an output spanning tree is non-crossing because T is non-crossing. In
Phase 2 of Algorithm 1, we use the algorithm for enumerating all spanning trees on a
given undirected graph developed by Kapoor and Ramesh [19] or Shioura et al. [31,
32]. These algorithms can enumerate all spanning trees of a given graph in O(1)

time per output graph1 with O(n + m) preprocessing time, where n and m denote
the numbers of vertices and edges of a given graph. The edge constraint can be han-
dled easily by contracting the constraint edges before calling these oracles. Hence,
applying algorithms of [19, 31, 32] to the resulting (multi-)graph, we can enumerate
all the R(T)-constrained spanning trees contained in T in tC = O(1) time per output
graph with tC,pre = O(n) preprocessing time (for contracting the edges of R(T) and
for the preprocessing of [19, 31, 32]). Thus, from Theorem 3.5 the following result is
derived:

Theorem 3.6 Let P be a set of n points in the plane. Then the set of non-crossing
spanning trees on P can be enumerated in O(n · tri(P) + st(P)) time.

Remark Provided that there exists a constant c (>1) for which cn · tri(P) ≤ st(P)

holds for every P ⊂ R
2 of n points, the above running time is dominated by st(P). It

is known that st(P) becomes minimum when P is in a convex position. On the other
hand, tri(P) is not always minimum for convex positions (see [4]). Furthermore, the
number of st(P) in the convex position is known to be Θ(6.75n) [16] relative to
the number of triangulations, which is Θ(4n), where we ignore polynomial factors.
Hence, we strongly conjecture that there exists such a constant c > 1.

3.3.2 Enumerating Non-crossing Spanning Connected Graphs

We show here how Algorithm 1 can be applied to the enumeration of non-crossing
spanning connected graphs. To efficiently perform Phase 2 of Algorithm 1, we need
an algorithm for enumerating all spanning connected subgraphs of a given graph.

1The algorithm outputs each graph by the compact form, that is, the symmetric difference between the last
found object and the current one, otherwise it takes O(n) time to output each graph. We remark that the
symmetric difference between the last found object and the current one is not necessary of constant size. It
can be shown that, if the symmetric difference between two consecutive objects in the search tree (or the
branch-and-bound tree) is at most k, then it takes O(k) time to output an object on average (see, e.g., [19,
31–33] for more details).

Discrete Comput Geom (2009) 42: 443–468 457

Although, to the best of our knowledge, previously there was no efficient enumeration
algorithm for this graph class, we observe that they can be enumerated in O(1) time
per output with O(n) preprocessing time with a slight modification of the algorithm
by Uno [33], which was developed for the enumeration of all bases of a matroid
(including spanning trees). Let us briefly explain how to modify this algorithm.

The algorithm by Uno is based on the branch-and-bound technique described in
the introduction with a balancing operation and a sophisticated amortized analysis.
Let G = (V ,E) be a given graph. Let us index the edges of E by ei with 1 ≤ i ≤ |E|
in an arbitrary order. Consider enumerating all the spanning trees (i.e., the bases of a
graphic matroid) in G by the branch-and-bound technique, starting with a given graph
and recursively dividing the problem into two subproblems, where one subproblem
is obtained by removing an edge ei , and the other is obtained by contracting ei in the
ith step. If the graph obtained by removing ei is disconnected, the algorithm does not
proceed further, which is a bounding operation. This algorithm outputs each spanning
tree when it reaches a leaf of the branch-and-bound tree. Due to the bounding oper-
ation, we easily observe that the algorithm keeps a spanning connected graph during
the search. Hence, by outputting graphs not only at leaves but also at some internal
nodes, we can enumerate all spanning connected subgraphs of G.

To make this more precise, let us take a look at this branch-and-bound tree in
more detail. We can associate a spanning connected subgraph with each of its nodes
as follows. The given graph G is associated with the root node of the branch-and-
bound tree. Suppose that a node N at depth i has the associated graph G′. Then, N

has two children, which have the associated graphs G′ \ {ei} and G′, respectively, if
G′ \ {ei} is connected. Otherwise N has only one child N ′ which has the associated
graph G′. Note that G′ is associated with both N and its one child N ′. However, since
the edge ei is never removed from the graph at depth greater than i, the edge ei in G′
may be considered as a contracted edge at N ′.

In order to enumerate all the spanning connected subgraphs without repetitions,
we initially output G at the root node and then inductively output G′ \ {ei} after the
branching operation at depth i (if G′ \ {ei} is connected). To see the correctness, let us
consider a spanning connected subgraph G′′ = (V ,E′′) of G. Let j be the maximum
index among E \ E′′. Then, since G′′ can be obtained by removing E \ E′′ from G,
there exists a node N ′′ at depth j + 1 whose associated graph is G′′. It is not difficult
to see that a node has the associated graph G′′ only if it is either N ′′ or descendants
of N ′′, and the algorithm outputs G′′ only at N ′′.

To achieve O(1) running time per graph, we just output the symmetric difference
of two spanning connected subgraphs which are consecutively output during the enu-
meration, following the balancing technique proposed by Uno [33]. As a result, the
collection of the spanning connected subgraphs can be enumerated in the same time
bound as that of the spanning trees.

The edge constraint can be treated easily by edge contraction, and thus all the
R(T)-constrained spanning connected subgraphs of T can be enumerated in tC =
O(1) time per output with tC,pre = O(n). Combined with Theorem 3.5, we found
that Algorithm 1 enumerates all the non-crossing spanning connected graphs in O(n ·
tri(P) + cg(P)) time. Moreover, we obtain the following result.

458 Discrete Comput Geom (2009) 42: 443–468

Theorem 3.7 For every general point set P in the plane with n points, 1.52n−1 ×
tri(P) ≤ cg(P) holds.

Proof Let T be a triangulation on P with the minimal representative set R(T). We
show that, for every T , there exist at least 1.52n−1 non-crossing spanning connected
subgraphs in T that are not contained in the other triangulations.

Let us first show that, for every triangle face pipjpk of T , |{(pi,pj), (pi,pk),

(pj ,pk)} ∩ R(T)| ≤ 2. Without loss of generality, assume that pi < pj < pk . Then,
notice that the edge (pj ,pk) is the largest or smallest edge among {(pj , q) ∈ T |
q ∈ Pj+1}. Hence, (pj ,pk) is not contained in R(T) by definition of the minimal
representative set given in Lemma 3.2.

Consider a subset S of T such that (i) S forms a spanning connected graph on P ,
(ii) S contains R(T) as its subset, and (iii) S has the minimum edge cardinality among
the subsets of T satisfying (i) and (ii). Then, from the above discussion, S con-
tains at most two edges for each face of T . Since S is an R(T)-constrained non-
crossing spanning connected graph on P , S ∪ F forms a distinct R(T)-constrained
non-crossing spanning connected graph on P for every F ⊆ T \ S. The number of
bounded faces of a triangulation is known to be 2n−h− 2, where h is the number of
vertices of the convex hull of P . Since at least one edge of each triangle is contained
in T \ S and each edge can belong to at most two triangles, by counting the elements
of T \S for each triangle, we have |T \S| ≥ (2n−h− 2)/2. Therefore, there exist at
least 2n−h/2−1 subsets of T \ S, and T contains at least 2n−h/2−1 R(T)-constrained
non-crossing spanning connected graphs.

On the other hand (for a point set with large value of h), it can be shown that
T contains at least 3h/2 R(T)-constrained non-crossing spanning connected graphs
as follows.2 Notice that no edge of the convex hull of P is contained in R(T), and
hence removing arbitrary edges of the convex hull results in an R(T)-constrained
non-crossing spanning connected graph unless both edges incident to a degree-two
vertex of T are removed. If an edge of the convex hull is not incident to a degree-two
vertex, there are two possibilities to obtain a connected subgraph of T (i.e., remove
it or not). For two edges incident to a degree-two vertex, at most one of them can be
removed to obtain a connected graph. Hence there are three possibilities for these two
edges (i.e., remove either one of the two edges or leave them). The number of ways to
obtain connected subgraphs of T in this manner is minimum if the number of degree-
two vertices is maximum, i.e., h/2. Thus, T contains at least 3h/2 R(T)-constrained
non-crossing spanning connected graphs.

Finally, choosing one of two bounds according to whether h <
2(n−1)

1+log2 3 or not, we
obtain the claimed lower bound. �

Theorem 3.7 implies that the running time of Algorithm 1, which is O(n · tri(P)+
cg(P)), is dominated by cg(P).

Theorem 3.8 Let P be a set of n points in the plane. Then, the set of non-crossing
spanning connected graphs on P can be enumerated in O(cg(P)) time.

2This lower bound for the case of large h was pointed out by an anonymous referee.

Discrete Comput Geom (2009) 42: 443–468 459

3.3.3 Enumerating Plane Straight-line Graphs

For any F ⊆ T \ R(T), F ∪ R(T) is a plane straight-line graph containing R(T).
Hence, by enumerating (the symmetric differences of) all subsets of T \ R(T),
we can obtain all R(T)-constrained plane straight-line graphs in T . Enumerating
all subsets of T \ R(T) is equivalent to generating all |T \ R(T)|-bit binary num-
bers with O(n) preprocessing time, which can be done in constant time per output
(see, e.g., [29]). Algorithm 1 thus enumerates all the plane straight-line graphs in
O(n · tri(P) + pg(P)) time. Since a non-crossing spanning connected graph is also
a plane straight-line graph, 1.52n−1tri(P) ≤ cg(P) ≤ pg(P) holds by Theorem 3.7.
Thus, we obtain the following result.

Theorem 3.9 Let P be a set of n points in the plane. Then, the set of plane straight-
line graphs on P can be enumerated in O(pg(P)) time.

3.3.4 Enumerating Non-crossing Perfect Matchings

Given a point set P of 2n points, a non-crossing perfect matching is a non-crossing
geometric graph on P such that every point of P is incident to exactly one edge of
the graph.

Let us consider how to design Phase 2 of Algorithm 1. Suppose that we have an
algorithm for finding a perfect matching in a given (non-geometric) graph in tP M
time if it exists. Then, using this algorithm as an oracle, the naively implemented
branch-and-bound algorithm can enumerate all the perfect matchings in O(ntP M)

time per output graph (see also [28]). The edge constraint can be treated easily.
If T has a vertex that is incident to more than one edge of R(T), we report that
there is no R(T)-constrained perfect matching in T . Otherwise we first remove
all edges of R(T) together with the vertices incident to R(T) and then apply the
above algorithm for enumerating perfect matchings to the resulting graph. By putting
R(T) back to each solution, we obtain all the perfect matchings in T that contain
R(T). Algorithm 1 hence enumerates all the non-crossing perfect matchings on P in
O(tP M · tri(P) + ntP M · pm(P)) time.

4 Independent Minimal Representative Sets

We know that the algorithm by Bespamyatnikh [12] enumerates all triangulations
efficiently, but its search tree is not nicely structured when we focus on the minimal
representative sets (see Fig. 5). Namely, for two triangulations T and T ′ for which T

is a parent of T ′ in the search tree, T ′ may miss some representative edge that appears
in T . Consider, for example, the enumeration of non-crossing matchings. In Phase 2
of Algorithm 1 for a triangulation T , the algorithm outputs no R(T)-constrained
non-crossing matching if there is a vertex incident to more than one edge of R(T).
However, since some descendant triangulation T ′ of T may not have a vertex which is
incident to more than one edge of R(T ′), T ′ may contain an R(T ′)-constrained non-
crossing matching, and thus we cannot skip the enumeration of T and its descendants.
The next proposed algorithm avoids this inefficiency.

460 Discrete Comput Geom (2009) 42: 443–468

We first propose a new algorithm for enumerating triangulations whose search tree
has a monotone structure with respect to the minimal representative sets such that
R(T) ⊂ R(T ′) holds for any triangulation T and its descendant T ′ (see Fig. 7). Us-
ing this monotonicity, we can efficiently enumerate only the minimal representative
sets possessing the specified property, which allows us to skip the output of unneces-
sary triangulations. Let us explain this idea more formally. Recall that F denotes the
collection of all non-crossing edge sets on P . Let I be a subset of F satisfying the
following independent system;

(I1) ∅ ∈ I .
(I2) If F2 ∈ I and F1 ⊆ F2, then F1 ∈ I .

A non-crossing edge set F ∈ F is called independent edge set or independent (with
respect to I) if F ∈ I . If I satisfies the following condition,

(I3) for every G ∈ N G G , G ∈ I (where G is considered as an edge set),

then we can ensure that the minimal representative set of T ∗(G) is independent for
every G ∈ N G G . This implies that it is sufficient to enumerate only the independent
minimal representative sets to enumerate all graphs of N G G .

4.1 Enumerating Triangulations Based on Edge Insertions

Our new enumeration algorithm for triangulations is also based on the reverse
search [6, 7] whose search tree can be characterized by the root triangulation and
the parent-child relation (see Sect. 3.2 for a brief explanation of the reverse search).
Here, we define T ∗(∅) as the root triangulation. Hence, the minimal representative
set of the root triangulation is empty. For each non-root triangulation T , the parent
of T is defined as T ∗(R(T) \ {e}) with the smallest edge e among R(T) with respect
to the edge ordering ≺. The correctness of our parent-child relation follows from the
next lemma.

Lemma 4.1 Let T be a triangulation with R(T)
= ∅. Then, for any e ∈ R(T), the
minimal representative set of T ∗(R(T) \ {e}) is R(T) \ {e}.

Proof Let T ′ = T ∗(R(T) \ {e}). It is sufficient to show R(T) \ {e} ⊆ R(T ′) because
R(T ′) ⊆ R(T) \ {e} by Lemma 3.2.

Consider any (pi,pj) ∈ R(T) \ {e} with pi < pj . Let pipjv and pipjw be the
two triangles incident to (pi,pj) in T , and similarly let pipjv

′ and pipjw
′ be those

in T ′. Without loss of generality, we assume that v and v′ (and w and w′, resp.) lie on
the right side (and the left side, resp.) of (pi,pj). Note that pi < v and pi < w since
(pi,pj) ∈ R(T). If v = v′ and w = w′, then the triangle faces incident to (pi,pj) do
not differ between T and T ′. Hence (pi,pj) ∈ R(T) implies (pi,pj) ∈ R(T ′) by the
definition of the minimal representative set given in Lemma 3.2.

Let us consider the case of v
= v′. When generating T = T ∗(R(T)) by Con-
struction 1, there exists the cone C with apex pi which is bounded by (pi,pj) and
the other consecutive edge among δR(T)(pi) ∪ {(pi,p

up
i), (pi,p

low
i)} to (pi,pj) and

which contains both pj and v since pi < v. Let H be the convex hull of Pi+1 ∩ C.

Discrete Comput Geom (2009) 42: 443–468 461

Fig. 6 Illustration of the proof
of Lemma 4.1, where the bold
line represents the removed edge
e, the dotted and dashed lines
represent the boundaries of H

and H ′ , respectively

Then, v = (pi, v) ∩ H holds since (pi, v) ∈ T ∗(R(T)). Similarly, when constructing
T ′ = T ∗(R(T)\{e}), there exists the convex hull H ′ just below (pi,pj) ∈ R(T)\{e}
for which v′ = (pi, v

′) ∩ H ′ holds. Since every vertex visible from pi with respect
to R(T) is still visible from pi with respect to R(T) \ {e}, all the right endpoints of
the edges of δR(T)(pi) ∪ {(pi,p

up
i), (pi,p

low
i)} are still visible from pi with respect

to R(T) \ {e}. Thus, H ⊆ H ′ holds, and hence H ′ contains v (see Fig. 6).
It is easily observed that, since H ⊆ H ′, (pi,pj) does not become the smallest

one among {(pi, q) ∈ T ′ | q ∈ Pi+1} when removing e (and it is not the largest one
either). Hence, by the definition of the minimal representative set, (pi,pj) ∈ R(T ′) if
(pi,pj) is flippable in T ′. Since there exists no point of P inside the triangle pipjv

and no point inside pipjv
′, either one of the following two cases occurs depending

on the position of v′: (i) (pi, v
′) intersects (v,pj), or (ii) (v′,pj) intersects (pi, v).

When (i) holds, v′ is properly contained in H . However, since H ⊆ H ′, v′ also is
properly contained in H ′, which contradicts v′ = (pi, v

′) ∩ H ′. Thus, (ii) must hold.
In this case the inner angles ∠pipjv and ∠pipjv

′ satisfy ∠pipjv
′ ≤ ∠pipjv. Ap-

plying a similar argument to the pair of w and w′, we have ∠pipjw
′ ≤ ∠pipjw.

(However, it is not difficult to see w = w′ from the fact that e properly intersects
(v′,pj) but not (pi,pj).) Hence, the inner angle of the quadrilateral piv

′pjw
′ at pj

is less than π because (pi,pj) is flippable in T .
Let us show that the opposite angle, that is, the inner angle of the quadrilateral

piv
′pjw

′ at pi , is also less than π . This can be proved from the fact that both of v′
and w′ are on the right side of pi since (pi,pj) is neither the smallest nor largest one
among {(pi, q) ∈ T ′ | q ∈ Pi+1} with respect to ≺. Hence (pi,pj) is flippable in T ′,
and (pi,pj) ∈ R(T ′) follows. �

By Lemma 4.1, R(T) ⊂ R(T ′) holds for any triangulation T and its descendant
T ′. Moreover, since the root triangulation has an empty minimal representative set,
our definition of the parent-child relation correctly induces a rooted search tree on
the collection of all triangulations. The algorithm traces this search tree in depth-
first manner. We call this new algorithm edge insertion algorithm for (enumerating)
triangulations. An example of the new search tree is depicted in Fig. 7.

Let us analyze the time complexity of the edge insertion algorithm. In the reverse
search the most time-consuming part is to find all children T ′ of a triangulation T ,
i.e., to find all edges e ∈ Kn for which T ′ = T ∗(R(T) ∪ {e}) is a child of T . Such e

can be characterized by the following lemma.

462 Discrete Comput Geom (2009) 42: 443–468

Fig. 7 The search tree on the collection of triangulations obtained by the edge insertion algorithm, where
each minimal representative set is drawn in bold

Lemma 4.2 Let T and T ′ be triangulations on P for which T ′ = T ∗(R(T) ∪ {e})
holds for some e ∈ Kn, where e does not properly intersect any edge of R(T). Then
T ′ is a child of T if and only if all of the following three conditions are satisfied:

(a) e /∈ T ,
(b) e ≺ e1, where e1 is the lexicographically smallest edge among R(T), and
(c) R(T) ⊆ R(T ′).

Proof (“Only-if”-part) Let e′ be the lexicographically smallest edge among R(T ′).
Note that by Lemma 4.1 R(T) = R(T ′) \ {e′} whenever T is a parent of T ′ (i.e.,
T = T ∗(R(T) \ {e′})). Hence (c) holds. Also, since T ′ = T ∗(R(T) ∪ {e}), we have
R(T ′) ⊆ R(T) ∪ {e} by Lemma 3.2. Hence, combining R(T ′) ⊆ (R(T ′) \ {e′}) ∪ {e}
and e′ ∈ R(T ′), we obtain e = e′. Consequently, e is the lexicographically smallest
edge among R(T ′) = R(T) ∪ {e}, implying (b).

Suppose, for a contradiction, that (a) does not hold. Then, we have R(T) ⊆ R(T)∪
{e} ⊆ T since e ∈ T , and hence we obtain R(T) ∪ {e} ∈ [T] by Lemma 3.2, which
implies T ′ = T ∗(R(T) ∪ {e}) = T . This contradicts that T ′ is a child of T .

(“If”-part) First, let us show e ∈ R(T ′). Suppose otherwise; then, by the definition
of R(T ′), e is non-flippable in T ′, or the smallest or largest edge among {(pi, q) ∈
T ′ | q ∈ Pi+1} for the left endpoint pi of e. We hence have, by Lemma 2.3, e ∈
T ′ = T ∗(R(T) ∪ {e}) = T ∗((R(T) ∪ {e}) \ {e}) = T ∗(R(T)) = T , which contradicts
condition (a).

Combining e ∈ R(T ′) and condition (c), we obtain R(T) ∪ {e} ⊆ R(T ′). On the
other hand, R(T ′) ⊆ R(T) ∪ {e} is known from Lemma 3.2. Therefore, R(T ′) =
R(T) ∪ {e}. Condition (b) says that e is the smallest edge among R(T) ∪ {e}, and
hence, according to the definition of the parent, T ∗(R(T ′) \ {e}) = T ∗(R(T)) = T is
the parent of T ′. �

We now concentrate on how to find all edges that produce children of a given tri-
angulation T . We first show that all edges satisfying the conditions of Lemma 4.2

Discrete Comput Geom (2009) 42: 443–468 463

can be found in O(cn2) time for each T , where c is the subscription of the left end-
point pc of the smallest edge among R(T) (and c is defined to be n if R(T) = ∅).
Note that the number of edges satisfying condition (b) can be bounded from above
by

∑c
i=1(n − i) < cn. The algorithm checks each of these edges one by one whether

it satisfies the other conditions (a) and (c) in O(n) time (per edge). Clearly condition
(a) can be checked in O(n) time. To check (c) the algorithm explicitly constructs
T ′ = T ∗(R(T)∪ {e}) in O(n) time based on the method of Lemma 2.4 for each edge
e satisfying (a) and (b). Then it is enough to check whether all edges of R(T) are
contained in R(T ′) in T ′. This can be done in O(1) time for each edge of R(T) (due
to the definition of the minimal representative set given in Lemma 3.2), and thus (c)
can be checked in O(n) time. As a result, we can find all edges that satisfy all the
conditions of Lemma 4.2 in O(cn2) time.

This O(cn2) time is improved to O(n2/c) time by a simple amortized analysis as
follows. Consider the point set P ′ = {p1, . . . , pc}. We claim that, for any edge e ∈
Kn \T whose both endpoints are contained in P ′, e always satisfies all the conditions
of Lemma 4.2. Since such e clearly satisfies (a) and (b) from its definition, let us
confirm that e also satisfies (c). Notice that every edge of R(T) lies completely to
the right side of the right endpoint of e due to the definition of pc. Hence, inserting
e into R(T) does not affect the right side of pc when constructing T ∗(R(T) ∪ {e}),
i.e., every e′ ∈ R(T) is incident to the same two triangles in T ∗(R(T)∪{e}) as in T =
T ∗(R(T)), and all edges of R(T) are still contained in the minimal representative set
of T ∗(R(T) ∪ {e}). Thus, e satisfies (c).

The number of edges e ∈ Kn \ T whose both endpoints are contained in P ′ is
at least c(c − 1)/2 − (3c − 6). This implies that there exist Ω(c2) children of T .
Distributing the time O(cn2) evenly to Ω(c2) children and T itself, we obtain the
result.

Theorem 4.3 Let P be a set of n points. Then, the edge insertion algorithm enumer-
ates all the triangulations on P in O(n2) time per output graph without repetition.

4.2 Enumerating Independent Minimal Representative Sets

Owing to the nicely structured search tree of the minimal representative sets, we can
now perform the efficient enumeration of the independent minimal representative sets
(defined at the beginning of Sect. 4) and the corresponding triangulations.

Algorithm 2: Enumeration of N G G .
Phase 1: Execute the edge insertion algorithm starting from T ∗(∅) as described in

Sect. 4.1 to enumerate triangulations.
Phase 2: Every time a new triangulation T is found, check whether R(T) is inde-

pendent or not. If R(T) is dependent, skip the enumeration of all the de-
scendants of T .

Phase 3: Every time a new independent R(T) is found, enumerate all R(T)-
constrained graphs of N G G in T .

The correctness of Algorithm 2 follows from the next lemma.

464 Discrete Comput Geom (2009) 42: 443–468

Lemma 4.4 Let I be the collection of independent edge sets of F . Then, Algorithm 2
correctly enumerates all graphs of N G G without repetitions if I satisfies (I1), (I2),
and (I3).

Proof We first note that all of the independent minimal representative sets are cor-
rectly enumerated in Algorithm 2. To verify this, let us imagine the search tree which
is obtained by performing the edge insertion algorithm for enumerating triangula-
tions. The subgraph of this search tree induced by all T with R(T) ∈ I forms a
rooted tree by (I1) and (I2), and hence the algorithm enumerates every independent
R(T) correctly.

Let us show that every G ∈ N G G is actually enumerated. Lemma 3.2 states
R(T ∗(G)) ⊆ G ⊆ T ∗(G). Since G ∈ I holds by (I3), R(T ∗(G)) ∈ I follows from
(I2). Thus, G is enumerated in Phase 3 for T ∗(G). �

Let us analyze the time complexity of Algorithm 2 under the assumption that I
satisfies (I1), (I2), and (I3). Assume that there exists an oracle that checks in tcheck

time whether I ∪ {e} ∈ I or not for an independent set I and an edge e ∈ Kn. Let
Irep ⊆ I be the collection of the independent minimal representative sets on a given
point set P . We can easily observe that the time to be spent in Phase 1 and 2 is
O(n2 · tcheck · |Irep|) since there exist O(n2) children for each triangulation on the
search tree and from Theorem 4.3. Hence, using the notation C, tC , and tC,pre defined
in Theorem 3.5, we obtain the following result:

Theorem 4.5 Algorithm 2 enumerates all the graphs of N G G on a given point set
P without repetitions in O((n2 · tcheck + tC,pre) · |Irep| + tC · ngg(P)) time. Moreover,
the time complexity is bounded by O((n2 · tcheck + tC,pre + tC) · ngg(P)), which is
polynomial on average, if |Irep| ≤ ngg(P).

4.3 Application of Algorithm 2

We show here how Algorithm 2 can be applied to the enumeration of non-crossing
minimally rigid frameworks. A graph G = (V ,E) is minimally rigid if |E| = 2|V |−3
and every subgraph of G induced by V ′ ⊆ V spans at most 2|V ′| − 3 edges. An em-
bedded minimally rigid graph on a planar (generic) point set is called (generically)
minimally rigid framework. It is known that the collection of minimally rigid frame-
works forms a rigidity matroid defined on the edge set of Kn (see, e.g., [17]).

We define the independence on F in such a way that F ∈ F is independent if and
only if F is independent in the rigidity matroid on Kn. Then, since the edge set of
each minimally rigid framework is a base of the rigidity matroid, the collection I
of the independent edge sets of F satisfies (I1), (I2), and (I3). To bound |Irep|, we
remark the following known fact:

Lemma 4.6 ([9]) Let F be a non-crossing edge set on P that is an independent set
in the rigidity matroid on Kn. Then every F -constrained triangulation on P contains
an F -constrained minimally rigid framework.

Discrete Comput Geom (2009) 42: 443–468 465

Hence, a triangulation T contains at least one R(T)-constrained non-crossing mini-
mally rigid framework if R(T) is independent, which implies |Irep| ≤ mrf(P).

Let us consider the time complexity of Phase 2 of Algorithm 2. For a graph G =
(V , I) with n vertices and an independent set I of the rigidity matroid, a maximal
rigid subgraph G′ = (V ′, I ′) of G (i.e., a subgraph with the maximal subset I ′ ⊆ I

satisfying |I ′| = 2|V ′| − 3), is called a rigid component. Then I ∪ {e} is independent
if and only if both endpoints of e do not belong to the same rigid component. It is
known that all the rigid components of G can be detected in O(n2) time [11, 27].
Moreover, using the data structure by Lee and Streinu [27] or Berg and Jordán [11]
that maintains rigid components, it can be checked in O(1) time whether two vertices
belong to the same rigid component. Thus, the algorithm can check in tcheck = O(1)

time whether the minimal representative set of a new child, that is, R(T) ∪ {e}, is
independent or not. If R(T) ∪ {e} is independent, the algorithm enters Phase 3 while
updating the rigid components in tupdate = O(n) time for each edge insertion [11, 27].
Algorithm 2 hence enumerates all the independent minimal representative sets (and
the corresponding triangulations) in O(n2 · tcheck + tupdate) = O(n2) time per output.

Next, let us consider Phase 3. We use the algorithm by Uno [33] for enumerating
all the bases of a matroid. Given a matroid M on a ground set E with rank r , the algo-
rithm generates all bases of M in tC = O(tcir/r) time per base with the preprocessing
time tC,pre, where tcir is the time to calculate the fundamental circuit of B ∪ {e} for a
base B and e ∈ E \ B , and tC,pre is the time to compute the coloops of the matroid in
E (where e ∈ E is called a coloop if all bases contain e). In the case of the rigidity
matroid, the algorithm by Berg and Jordán [11] can detect the circuit of B ∪ {e} in
tcir = O(r2) time. Moreover, they also developed an algorithm for detecting all the
coloops in E in tC,pre = O(r2) time. Since the rank r of the rigidity matroid is at most
2n − 3, it thus enumerates all the minimally rigid graphs in G that contain a spec-
ified edge set in tC = O(tcir/r) = O(n) time per output graph with tC,pre = O(n2)

preprocessing time. Putting these facts and Theorem 4.5 together gives the following
result:

Theorem 4.7 Let P be a set of n points in the plane. Then the set of non-crossing
(generically) minimally rigid frameworks on P can be enumerated without repeti-
tions in O(n2 · mrf(P)) time.

This result improves the previous one by [8], which requires O(n3) time per graph.
We note that Algorithm 1 enumerates all non-crossing minimally rigid frameworks
in O(n2 · tri(P) + n · mrf(P)) time.

5 Other Applications

We proposed a new algorithmic framework for the efficient enumeration of non-
crossing geometric graphs, and by applying our technique we obtained the improved
algorithms for several specific graph classes. We briefly show below applications of
the proposed framework to further graph classes. Algorithm 1 always works in time
proportional to the number of triangulations and objects to be enumerated. Whereas,
in some problems, Algorithm 2 works practically faster than Algorithm 1, although
it seems a non-trivial task to evaluate its running time theoretically.

466 Discrete Comput Geom (2009) 42: 443–468

Non-crossing Red-and-Blue Matchings For a given point set P , every point is as-
sumed to have either red or blue color. A non-crossing red-and-blue matching is a
non-crossing matching on P each of whose edges is not allowed to connect points
of the same color. The enumeration can be performed by using the algorithm for
enumerating the matchings in a (non-geometric) bipartite graph [35] in Phase 2 of
Algorithm 1 or in Phase 3 of Algorithm 2, which needs tC = O(n) time per output
with tC,pre = O(n3/2) preprocessing time (if the edge cardinality of a given graph is
O(n)). Hence, by Theorem 3.5, Algorithm 1 enumerates all non-crossing red-and-
blue matchings in O(n3/2 · tri(P) + n · rbm) time, where rbm is the total number of
non-crossing red-and-blue matchings on P , which depends not only on P but also on
the coloring of each point.

Algorithm 2 can enumerate all the red-and-blue matchings efficiently if we define
I as the collection of F such that no two edges of F are incident to a vertex and
no edge of F connects points of the same color. Notice that every independent min-
imal representative set is also a non-crossing red-and-blue matching, which implies
|Irep| ≤ rbm. The independence of each non-crossing edge set is trivially checked in
tcheck = O(1) time, and thus Algorithm 2 works in O(n2 · rbm) time by Theorem 4.5.

Non-crossing k-vertex or k-edge Connected Graphs A non-crossing k-vertex (or k-
edge) connected graph is a non-crossing geometric graph spanning a given point set
P that remains connected after removing any k − 1 vertices (or k − 1 edges) from
the graph. Since it can be checked in a polynomial time Qk whether a given (non-
geometric) graph is k-vertex connected (or k-edge connected) or not, according to
the branch-and-bound technique discussed in the introduction, we can enumerate k-
vertex connected (or k-edge connected) subgraphs in tC = O(mQk) time per output
with tC,pre = O(n + m + Qk) preprocessing time, where m denotes the number of
edges in a subgraph. Thus, using this algorithm in Phase 2, Algorithm 1 enumerates
all non-crossing k-vertex (or k-edge) connected graphs in O((n+Qk) · tri(P)+nQk ·
cgk(P)) time, where cgk(P) denotes the total number of non-crossing k-vertex (or
k-edge) connected graphs on P .

In particular, it is known that 2-vertex (or 2-edge) connectivity of a graph can be
checked in linear time (see, e.g., [30, Chap. 15.2b]). Moreover, tri(P) ≤ cg2(P) for
every point set P since every triangulation is also a non-crossing 2-vertex (or 2-edge)
connected graph on P . Algorithm 1 hence enumerates all the non-crossing 2-vertex
(or 2-edge) connected graphs in O(n2cg2(P)) time.

Non-crossing Directed Spanning Trees Each edge of the given geometric complete
graph on P is assumed to have an orientation. A non-crossing directed spanning
tree (or non-crossing r-arborescence) is a non-crossing spanning tree on P having a
unique directed path from a rooted point r to all points of P \ {r}. The enumeration
can be performed by using the algorithm of [20, 34] in Phase 2 of Algorithm 1 or
in Phase 3 of Algorithm 2. Given a digraph D whose number of arcs is O(n), this
algorithm enumerates all the directed spanning trees in D in tC = O(log2 n) time
per graph with tC,pre = O(n logn) preprocessing time. Hence, Algorithm 1 works
in O(n logn · tri(P) + log2 n · dst) time, where dst denotes the total number of the
non-crossing directed spanning trees, which depends not only on P but also on the
orientation of D.

Discrete Comput Geom (2009) 42: 443–468 467

Algorithm 2 can enumerate all the non-crossing directed spanning trees if we de-
fine I as the collection of the non-crossing edge sets F such that F has no cycle and
no vertex has indegree more than one in the directed graph induced by F , then clearly
tcheck = O(1). Its running time becomes O(n2 · |Irep| + log2 n · dst).

Edge-constrained Non-crossing Geometric Graphs The technique can be also ap-
plied to the enumeration of S-constrained non-crossing geometric graphs that are
those containing a given specified edge set S as their subsets, e.g., S-constrained
non-crossing spanning trees or S-constrained non-crossing matchings. This is be-
cause both the algorithm by Bespamyatnikh [12] and the edge-insertion algorithm
proposed in this paper for enumerating triangulations can be naturally extended to
those for enumerating only the S-constrained triangulations by restricting the collec-
tion of non-crossing edge sets F to those containing S as their subsets.

For Algorithm 1, the S-constrained triangulations can be enumerated in
O(log logn) time per output (see [21]), while the edge-insertion algorithm for Al-
gorithm 2 enumerates them in O(n3) time per output by setting the root as T ∗(S)

instead of T ∗(∅). (Note that we cannot use an amortized analysis as done in the proof
of Theorem 4.3 to achieve an O(n2) bound.) Efficient algorithms for enumerating
edge-constrained non-crossing spanning trees and edge-constrained minimally rigid
frameworks are proposed in [21] and [9], respectively, which are based on the reverse
search technique.

Acknowledgements We would like to thank the referees for a lot of helpful comments. One of the

anonymous referees pointed out how to improve the result of Theorem 3.7 from 1.41n

2 tri(P) ≤ cg(P) to

1.52n−1tri(P) ≤ cg(P) by a simple idea. We greatly appreciate this comment. The first author is supported
by the project New Horizons in Computing, Grant-in-Aid for Scientific Research on Priority Areas, MEXT
Japan, and by Grant-in-Aid for Scientific Research (C), JSPS. The second author is supported by Grant-
in-Aid for JSPS Research Fellowship for Young Scientists.

References

1. Aichholzer, O., Aurenhammer, F., Huemer, C., Krasser, H.: Transforming spanning trees and pseudo-
triangulations. Inf. Process. Lett. 97(1), 19–22 (2006)

2. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enumeration of plane
straight-line graphs. Graphs Comb. 23(5), 467–479 (2007)

3. Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a fixed tree theorem.
Comput. Geom. 21(1–2), 3–20 (2002)

4. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of
plane geometric graphs. Graphs Comb. 23(1), 67–84 (2007)

5. Aichholzer, O., Reinhardt, K.: A quadratic distance bound on sliding between crossing-free spanning
trees. Comput. Geom. Theory Appl. 37, 155–161 (2007)

6. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)

7. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)
8. Avis, D., Katoh, N., Ohsaki, M., Streinu, I., Tanigawa, S.: Enumerating non-crossing minimally rigid

frameworks. Graphs Comb. 23(1), 117–134 (2007)
9. Avis, D., Katoh, N., Ohsaki, M., Streinu, I., Tanigawa, S.: Enumerating constrained non-crossing

minimally rigid frameworks. Discrete Comput. Geom. 40(1), 31–46 (2008)
10. Bereg, S.: Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl. 30(3), 207–

222 (2005)

468 Discrete Comput Geom (2009) 42: 443–468

11. Berg, A., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Proc. 11th Annual Euro-
pean Symposium on Algorithms (ESA). Lecture Notes in Computer Science, vol. 2832, pp. 78–89.
Springer, Berlin (2003)

12. Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Comput. Geom. Theory
Appl. 23(3), 271–279 (2002)

13. Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Counting and enumerating pointed pseudo-
triangulations with the greedy flip algorithm. SIAM J. Comput. 36(3), 721–739 (2006)

14. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524
(1991)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT
Press, Cambridge (2001)

16. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204,
203–229 (1999)

17. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity, Graduate Studies in Mathematics,
vol. 2. American Mathematical Society, Reading (1993)

18. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility
and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

19. Kapoor, S., Ramesh, H.: Algorithms for enumerating all spanning trees of undirected and weighted
graphs. SIAM J. Comput. 24(2), 247–265 (1995)

20. Kapoor, S., Ramesh, H.: An algorithm for enumerating all spanning trees of a directed graph. Algo-
rithmica 27(2), 120–130 (2000)

21. Katoh, N., Tanigawa, S.: Enumerating edge-constrained triangulations and edge-constrained non-
crossing spanning trees. Discrete Appl. Math. (to appear)

22. Hernando, M.C., Houle, M.E., Hurtado, F.: On local transformation of polygons with visibility proper-
ties. In: Proc. 6th International Conference Computing and Combinatorics, COCOON 2000. Lecture
Notes in Computer Science, vol. 1858, pp. 54–63. Springer, Berlin (2000)

23. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings. Graphs Comb. 18(3),
517–532 (2002)

24. Houle, M.E., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations and perfect matchings.
Graphs Comb. 21(3), 325–331 (2005)

25. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22(3),
333–346 (1999)

26. Jansen, K., Woeginger, G.J.: The complexity of detecting crossingfree configurations in the plane.
BIT 33(4), 580–595 (1993)

27. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308(8), 1425–1437
(2008)

28. Matsui, Y., Matsui, T., Fukuda, K.: A catalog of enumeration algorithms. http://roso.epfl.ch/kf/enum/
enum.html

29. Savage, C.: A survey of combinatorial Gray codes. SIAM Rev. 39, 605–629 (1997)
30. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Heidelberg (2003)
31. Shioura, A., Tamura, A.: Efficiently scanning all spanning trees of an undirected graph. J. Oper. Res.

Soc. J. 38(3), 331–344 (1995)
32. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected

graphs. SIAM J. Comput. 26(3), 678–692 (1997)
33. Uno, T.: A new approach for speeding up enumeration algorithms and its application for matroid

bases. In: Proc. 5th Computing and Combinatorics Conference (COCOON ’99). Lecture Notes in
Computer Science, vol. 1627, pp. 54–63. Springer, Berlin (1999)

34. Uno, T.: A new approach for speeding up enumeration algorithms. In: Proc. 9th International Sym-
posium on Algorithm and Computation (ISAAC ’98). Lecture Notes in Computer Science, vol. 1533,
pp. 287–296. Springer, Berlin (1998)

35. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite
graphs. In: Proc. 8th International Symposium on Algorithms and Computation (ISAAC ’97). Lecture
Notes in Computer Science, vol. 1350, pp. 92–101. Springer, Berlin (1997)

36. Welzl, E.: Counting of crossing-free geometric graphs. In: Significant Advances in Computer Science
(SACS 07), Graz, Austria, November 2007

http://roso.epfl.ch/kf/enum/enum.html
http://roso.epfl.ch/kf/enum/enum.html

	Fast Enumeration Algorithms for Non-crossing Geometric Graphs
	Abstract
	Introduction
	The Edge-Constrained Lexicographically Largest Triangulation
	Notation
	The Edge-constrained Lexicographically Largest Triangulations
	Deleting and Inserting the Constrained Edge
	Maintaining the F-constrained Lexicographically Largest Triangulation

	Enumerating Non-crossing Geometric Graphs
	General Idea
	Time Complexity of Algorithm 1
	Applications of Algorithm 1
	Enumerating Non-crossing Spanning Trees
	Enumerating Non-crossing Spanning Connected Graphs
	Enumerating Plane Straight-line Graphs
	Enumerating Non-crossing Perfect Matchings

	Independent Minimal Representative Sets
	Enumerating Triangulations Based on Edge Insertions
	Enumerating Independent Minimal Representative Sets
	Application of Algorithm 2

	Other Applications
	Non-crossing Red-and-Blue Matchings
	Non-crossing k-vertex or k-edge Connected Graphs
	Non-crossing Directed Spanning Trees
	Edge-constrained Non-crossing Geometric Graphs

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

