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Abstract Let G and R each be a finite set of green and red points, respectively, such
that |G| = n, |R| = n − k, G ∩ R = ∅, and the points of G ∪ R are not all collinear.
Let t be the total number of lines determined by G∪R. The number of equichromatic
lines (a subset of bichromatic) is at least (t +2n+3− k(k +1))/4. A slightly weaker
lower bound exists for bichromatic lines determined by points in C

2. For sufficiently
large point sets, a proof of a conjecture by Kleitman and Pinchasi is provided. A lower
bound of (2t + 14n − k(3k + 7))/14 is demonstrated for bichromatic lines passing
through at most six points. Lower bounds are also established for equichromatic lines
passing through at most four, five, or six points.

1 Introduction

Questions concerning “how many?” or “what types?” of lines are determined by a
set of points have been asked since (no later than) 1893 when J.J. Sylvester, in [14],
essentially asked whether any non-collinear set of points necessarily determines an
ordinary line (i.e., a line that passes through exactly two points). Unaware that it
had previously been raised, Erdös arrived at the same question (about 40 years later)
while attempting to prove by induction that there are at least n lines determined by a
set of n points. T. Gallai provided a proof in the affirmative which was published by
Steinberg in [13], hence it is now called the Sylvester–Gallai Theorem. Interestingly,
an inequality due to Melchior also provides a proof of this theorem and was published
four years earlier in [11].
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More directly related to this article is a question first asked by R.L. Graham around
1965 (see [5]) of whether a bichromatic arrangement of lines necessarily determines
a monochromatic point (the dual of the context for the present article). A few years
passed before the first proof was published, again in the affirmative, by G.D. Chake-
rian in [1]. However, Chakerian is not credited with the first proof. That honor belongs
to T.S. Motzkin and M. Rabin (and in his article, Chakerian acknowledges this). The
theorem is now commonly called the Motzkin–Rabin Theorem.

Motivated by a conjecture of Fukuda [2] (now known to be false for a specific case
with nine points [4]), in their groundbreaking paper Pach and Pinchasi demonstrated
several lower bounds on the number of bichromatic lines incident to few points [12]
(see Sects. 2.3.3 and 3.2 for corrections and improvements to a result from this paper).
A line is bichromatic when it passes through at least one point of each color, and
monochromatic otherwise. (Note that only lines incident to at least two points are
considered.) The best lower bounds established in [12] concern the case where there
is an equal number of points of each color, i.e., |G| = |R|. The present article provides
improved lower bounds for a subset of the bichromatic lines, called equichromatic.
Several lower bounds are shown to also be true for lines determined by points in the
complex plane (C2).

In [10], Kleitman and Pinchasi consider the case where neither color class, G

nor R, is collinear. They conjecture that among all such arrangements there are at
least |G ∪ R| − 1 bichromatic lines, assuming that |G| = n and n − 1 ≤ |R| ≤ n, and
they prove a lower bound of |G ∪ R| − 3 bichromatic lines. The present article will
prove their conjecture for sufficiently large n.

Pach and Pinchasi derive their results from two identities, which are used again
in [10]. Let ti,j be the number of lines which pass through exactly i green and j

red points. With the assumption that |G| = |R| = n, they show that the number of
bichromatic point pairs (i.e., n2) is equal to a summation over all lines determined by
the sets:

∑

i,j≥0
i+j≥2

ij ti,j = n2.

Similarly, monochromatic pairs of points can be counted as

∑

i,j≥0
i+j≥2

[(
i

2

)
+

(
j

2

)]
ti,j = 2

(
n

2

)
= n2 − n.

More generally, if one assumes that |G| = n and |R| = n − k, these identities
become

∑

i,j≥0
i+j≥2

ij ti,j = n(n − k) = n2 − nk (1)

and

∑

i,j≥0
i+j≥2

[(
i

2

)
+

(
j

2

)]
ti,j
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= n(n − 1)

2
+ (n − k)(n − k − 1)

2

= n2 − n − nk + k2 + k

2
. (2)

By subtracting (1) from (2) and then splitting the summation, the following iden-
tity is found:

∑

i,j≥0
i+j≥2

(i + j)ti,j =
∑

i,j≥0
i+j≥2

(i − j)2ti,j + 2n − (
k2 + k

)
. (3)

This identity will be used throughout the present article.

2 Equichromatic Lines

2.1 Lower Bound in R2

Definition 2.1 Any line passing through i green and j red points such that i + j ≥ 2
and |i − j | ≤ 1 is called equichromatic.

An equichromatic line can be thought of as one in which the number of points of
each color, lying on the line, are as “equal” as possible, i.e., equal if the line contains
an even number of points, and otherwise differing by only one. Let Q be the set of
equichromatic lines determined by G ∪ R, and let B be the set of bichromatic lines.
A lower bound on the number of equichromatic lines is demonstrated below, and
since Q ⊆ B , this also applies to bichromatic lines.

Let tk be the number of lines which pass through exactly k points. In [11], Mel-
chior published the following inequality (which follows from Euler’s polyhedral for-
mula):

∑

k≥2

(k − 3)tk ≤ −3.

Within our context, this can be rewritten as
∑

i,j≥0
i+j≥2

(i + j)ti,j ≤ 3 ·
∑

i,j≥0
i+j≥2

ti,j − 3. (4)

By applying to this the identity above, (3), and then reuniting the two summations
this becomes

∑

i,j≥0
i+j≥2

(
(i − j)2 − 3

)
ti,j ≤ −2n − 3 + (

k2 + k
)
.

Let qm be the sum of all ti,j such that |i−j | = m, that is, qm = ∑
|i−j |=m ti,j . Note

that the number of equichromatic lines (i.e., |Q|) is equal to q0 +q1. Let t be the total
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number of lines determined by G ∪ R. Now, by partially unwinding the summation
and then negating the inequality, it becomes

3q0 + 2q1 ≥ 2n + 3 + q2 + 6q3 +
∑

m≥4

(
m2 − 3

)
qm − (

k2 + k
)
,

3 · |Q| ≥ 2n + 3 + (
t − |Q|) − (

k2 + k
)
.

This gives us the following:

Theorem 2.2 Let G and R each be a finite set of green or red points, respectively,
in R

2 such that |G| = n, |R| = n − k, G ∩ R = ∅, and the points of G ∪ R are not
all collinear. Let t be the total number of lines determined by G ∪ R. The number of
equichromatic lines is at least 1

4 (t + 2n + 3 − k(k + 1)).

Using the Erdös–de Bruijn Theorem, i.e., t ≥ 2n − k, one can see the following
corollary:

Corollary 2.3 The number of equichromatic lines, |Q|, is at least n+ 1
4 (3−k(k+2)).

If k ∈ {0,1}, then |Q| ≥ n + 1 − k.

2.2 Proof of the Kleitman–Pinchasi Conjecture

In [10], Kleitman and Pinchasi conjectured that when neither color class is collinear,
there exist at least 2n − k − 1 bichromatic lines, assuming that |G| = n, |R| = n − k,

and k ∈ {0,1}. Since equichromatic lines are a subset of bichromatic, our lower bound
(i.e., Theorem 2.2) is better than the Kleitman–Pinchasi conjecture whenever t ≥
6n − 7 (or t ≥ 6n − 9 if k = 1). We now prove that when n is sufficiently large, their
conjecture is true.

When all but a few points lie on a line, one can verify the conjectured bound
directly. We give the following lemmas:

Lemma 2.4 If neither color class is collinear and 2n − k − 2 points are incident to
one line, then |Q| ≥ 2n − k − 1.

Lemma 2.5 If neither color class is collinear and 2n − k − 3 points are incident to
one line, then |Q| ≥ 3n − k − 4.

(Note that by Lemma 2.4 the conjectured 2n − k − 1 lower bound is sharp, i.e., it
cannot be improved.)

Although one can count the number of equichromatic lines in the specific cases
above, a tool is needed for more general point configurations. Just such a tool can be
found in a well-known paper from 1958 by Kelly and Moser.

In [9], Kelly and Moser proved a lower bound on the number of lines, t , assuming
that at most 2n − k − r points are collinear. (Note that Kelly and Moser originally
assumed n points total, but the present article uses the context of 2n−k points.) Their
lower bound is as follows:
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Theorem 2.6 If at most 2n − k − r points are incident to a single line and 2n − k ≥
1
2 (3(3r − 2)2 + 3r − 1), then

t ≥ r(2n − k) − (3r + 2)(r − 1)

2
.

So by letting r = 4 in the inequality above, we get the needed lower bound for the
total number of lines:

Lemma 2.7 If n ≥ 78 + k and no more than 2n − k − 4 points are incident to one
line, then t ≥ 8n − 4k − 21.

By Lemmas 2.4, 2.5, and 2.7 we have the following theorem:

Theorem 2.8 Let G and R each be a finite set of green or red points, respectively, in
R

2 such that |G| = n, |R| = n − k, k ∈ {0,1}, G ∩ R = ∅, and neither color class is
collinear. If n ≥ 78 + k, then the number of equichromatic lines is at least 2n− k − 1.

Thus, the Kleitman–Pinchasi conjecture is true for all n ≥ 79.

2.3 Equichromatic Lines with Few Points

2.3.1 Equichromatic Lines Through at Most Four Points

Although Pach and Pinchasi did not define “equichromatic,” Theorem 2(i) in their pa-
per [12] proves a lower bound on the number of equichromatic lines passing through
at most four points. For the convenience of the reader, we will show Pach and Pin-
chasi’s derivation, except we will assume that |G| = n and |R| = n − k (i.e., we do
not assume |G| = |R| as was originally).

By adding twice Melchior’s inequality (4) to the identity (3), one can see that

∑

i,j≥0
i+j≥2

(
6 − (i + j) − (i − j)2)ti,j ≥ 2n + 6 − k(k + 1).

Let γi,j be the coefficient corresponding to ti,j in the summation above. The only
positive coefficients are γ1,1 = 4 and γ1,2 = γ2,1 = γ2,2 = 2. So, it must be the case
that

2t1,1 + t1,2 + t2,1 + t2,2 ≥ n + 3 − k(k + 1)

2
.

From this we get the following theorem:

Theorem 2.9 Let G and R each be a finite set of green or red points, respectively, in
R

2 such that |G| = n, |R| = n − k, G ∩ R = ∅, and the points of G ∪ R are not all
collinear. The number of equichromatic lines determined by at most four points is at
least 1

4 (2n + 6 − k(k + 1)).
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2.3.2 Equichromatic Lines Through at Most Five Points

To extend these results to equichromatic lines in the complex plane, Hirzebruch’s
“Improved” Inequality will be used. The Hirzebruch Inequalities are derived from the
Miyaoka–Yau Inequality (known in the field of algebraic geometry), and they are true
in the complex plane (i.e., C

2). Unlike Melchior’s Inequality, both of Hirzebruch’s
Inequalities show that among a set of points in C

2 there must exist a line determined
by at most three points (see also [3] and [8]). One must note that these inequalities
were originally proven for the dual of the present context, i.e., an arrangement of lines
in the complex plane (such that tk was the number of intersection points at which k

lines cross). The present article will instead remain consistent with the context used
by Kleitman, Pach, and Pinchasi. Of course, the lower bound established below for
points in C

2 also applies to points in R
2.

The first of Hirzebruch’s two inequalities, as used in the present article, was pub-
lished in [6]. It states that, among a set of n points in C

2 and assuming tn = tn−1 = 0,

t2 + t3 ≥ n +
∑

k≥5

(k − 4)tk. (5)

In the slightly more restrictive case of tn = tn−1 = tn−2 = 0, published in [7], there
exists the improved inequality

t2 + 3

4
t3 ≥ n +

∑

k≥5

(2k − 9)tk. (6)

In the present context (i.e., |G| = n, |B| = n − k), the improved inequality can be
rewritten:

−(t0,2 + t2,0) − t1,1 − 3

4
(t0,3 + t3,0) − 3

4
(t1,2 + t2,1)

+
∑

i,j≥0
i+j≥5

(
2(i + j) − 9

)
ti,j ≤ −(2n − k). (7)

Similarly, subtracting (1) from (2) and unwinding the first few terms of the sum-
mation produces

(t0,2 + t2,0) − t1,1 + 3(t0,3 + t3,0) − (t1,2 + t2,1) + 6(t0,4 + t4,0) − 2t2,2

+
∑

i,j≥0
i+j≥5

((
i

2

)
+

(
j

2

)
− ij

)
ti,j = −n + k2 + k

2
. (8)

By adding two times (8) and (1 + ε) times (7), it becomes

(1 − ε)(t2,0 + t0,2) − (3 + ε)t1,1 +
(

21

4
− 3

4
ε

)
(t0,3 + t3,0)
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−
(

11

4
+ 3

4
ε

)
(t1,2 + t2,1) + 12(t0,4 + t4,0) − 4t2,2

+
∑

i,j≥0
i+j≥5

(
(i − j)2 + ε

(
2(i + j) − 9

) + i + j − 9
)
ti,j

≤ −2n(2 + ε) + k(k + 2 + ε). (9)

Let ε = 1, and let γi,j be the coefficient for ti,j produced by the left side of the
inequality above. One can see that the only negative coefficients are γ1,1 = γ2,3 =
γ3,2 = −2, γ1,2 = γ2,1 = − 7

2 , and γ2,2 = −4, and so

−4 · (t1,1 + t1,2 + t2,1 + t2,2 + t2,3 + t3,2) ≤ −6n + k(k + 3).

This gives us the following:

Theorem 2.10 Let G and R each be a finite set of green or red points, respectively,
in C

2 such that |G| = n, |R| = n − k, G ∩ R = ∅, and no 2n − k − 2 points of G ∪ R

are collinear. The number of equichromatic lines determined by at most five points is
at least 1

4 (6n − k(k + 3)).

For the cases where at most 2n − k − 2 points are collinear, we provide the fol-
lowing two lemmas:

Lemma 2.11 If exactly 2n−k −2 points of G∪R are collinear in C
2, the number of

equichromatic lines, |Q|, determined by at most three points is at least 2(n − k − 1).
Since the total number of lines, t , is at least 2(2n− k − 2) and at most 2(2n− k − 1),
|Q| is at least one-half of t , i.e., t

2 .

Lemma 2.12 If exactly 2n − k − 1 points of G ∪ R are collinear in C
2, the number

of equichromatic lines, |Q|, determined by at most two points is at least n − k. Since
the total number of lines, t , is 2n − k, |Q| is at least one-half of t , i.e., t

2 .

Note that the bound given in Lemma 2.11 is better than that of Theorem 2.10 for
all n ≥ 7. Thus, if at most 2n − k − 2 points are collinear and n ≥ 7, then the number
of equichromatic lines is at least 1

4 (6n − k(k + 3)). (These lemmas will be referred
to again to augment results in the complex plane.)

2.3.3 Equichromatic Lines Through at Most Six Points

In [12], Pach and Pinchasi claim “the number of bichromatic lines passing through at
most six points is at least one tenth of the total number of connecting lines.” Although
this statement is true (the present article contains an even better result of t

7 +n), their
derivation contains a small mistake (i.e., Theorem 2(ii) of their paper should state
“eight” points instead of “six,” since the coefficient γ4,4 = 0, not 2

5 as would have
been needed). Below, we show a fix for their derivation which maintains the “at most
six points,” applies it to equichromatic lines, but weakens the result to a twelfth of the
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total number of lines. Also, see Sect. 3.2 for a stronger result for bichromatic lines
through at most six points in C

2 (which of course applies to R
2).

Again following the method of Pach and Pinchasi, add the identity (3) to (1 + ε)

times (4). From this one obtains (the negated form of what was used by Pach and
Pinchasi)

∑

i,j≥0
i+j≤2

(
3 − ε(i + j − 3) − (i − j)2)ti,j ≥ 2n + 3(1 + ε) − k(k + 1).

Let ε = 2
3 and γi,j be the coefficient for ti,j in the summation above. With care-

ful inspection, one can verify that the only positive coefficients are γ2,3 = γ3,2 = 2
3 ,

γ3,3 = 1, γ1,2 = γ2,1 = 2, γ2,2 = 7
3 , and the largest γ1,1 = 11

3 . Of the nonpositive co-
efficients, γ0,2 = − 1

3 is the largest. So by subtracting 4 · (t2,3 + t3,2 + t3,3 + t1,2 +
t2,1 + t2,2) from both sides of the inequality one can see that

−1

3
·

∑

i,j≥0
i+j≥2

ti,j ≥ 2n + 5 − (
k2 + k

) − 4 ·
∑

i,j≥1
|i−j |≤1

2≤i+j≤6

ti,j ,

∑

i,j≥1
|i−j |≤1

2≤i+j≤6

ti,j ≥ t + 6n + 15 − 3(k2 + k)

12
.

So we have now proven the following:

Theorem 2.13 Let G and R each be a finite set of green or red points, respectively,
in R

2 such that |G| = n, |R| = n − k, G ∩ R = ∅, and the points of G ∪ R are not
all collinear. Let t be the total number of lines determined by G ∪ R. The number of
equichromatic lines determined by at most six points is at least (t +6n+15−3k(k +
1))/12.

By letting k = 0, Theorem 2.13 becomes the corrected result for Pach and Pin-
chasi’s. The fact that the lines counted are equichromatic, instead of the more general
bichromatic, comes for free.

3 Lines in C
2

3.1 A Lower Bound for Bichromatic Lines

In Sect. 2.1, a lower bound on the number of equichromatic lines in R
2 was shown to

be 1
4 (t + 2n+ 3 − (k2 + k)). Below, a nearly equivalent lower bound is demonstrated

for bichromatic lines in C
2, assuming that no 2n − k − 2 points are collinear (note

that |G ∪ R| = 2n − k).
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Hirzebruch’s Improved Inequality (6) can be rewritten as (assuming n points)

9 ·
∑

k≥2

tk ≥ n + 2 ·
∑

k≥2

ktk + 4t2 + 9

4
t3 + t4.

In our context, this would be

9 ·
∑

i,j≥0
i+j≥2

ti,j ≥ 2n − k + 2 ·
∑

i,j≥0
i+j≥2

(i + j) · ti,j + 4t2 + 9

4
t3 + t4.

Using our identity (3), we have

9 ·
∑

i,j≥0
i+j≥2

ti,j − 6n + 2
(
k2 + k

) ≥ 2 ·
∑

i,j≥0
i+j≥2

(i − j)2 · ti,j + 4t2 + 9

4
t3 + t4.

On the right-hand side of this inequality one can see that every monochromatic
line is counted at least twelve times. Therefore,

m ≤ 3

4
t − n

2
+ k2 + k

6
.

We get the following theorem:

Theorem 3.1 Let G and R each be a finite set of green or red points, respectively, in
C

2 such that |G| = n, |R| = n − k, G ∩ R = ∅, and no 2n − k − 2 points of G ∪ R

are collinear. Let t be the total number of lines determined by G ∪ R. The number of
bichromatic lines is at least (3t + 6n − 2k(k + 1))/12.

Similar attempts to place a lower bound for equichromatic lines (Q) in C2 yield
only |Q| ≥ n. We refer the reader to Lemmas 2.11 and 2.12 for the cases where there
are 2n − k − 2 or 2n − k − 1 collinear points.

3.2 Bichromatic Lines Through at Most Six Points

Returning to the inequality derived in Sect. 2.3.2, let ε = 1
3 in (9). The inequality

becomes

2

3
(t2,0 + t0,2) − 10

3
t1,1 + 5(t0,3 + t3,0)

− 3(t1,2 + t2,1) + 12(t0,4 + t4,0) − 4t2,2

+
∑

i,j≥0
i+j≥5

(
(i − j)2 + 1

3

(
2(i + j) − 9

) + i + j − 9

)
ti,j

≤ −14n

3
+ k

(
k + 7

3

)
.
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Let γi,j be the coefficient for ti,j given in the inequality above. Of all coefficients
for the bichromatic lines containing fewer than six points, the smallest is γ2,2 = −4.
Of all other coefficients (i.e., for lines either not bichromatic or containing more than
six points), the smallest are γ0,2 = γ3,4 = γ4,3 = 2

3 .
By adding 14

3 · ∑ i,j≥1
2≤i+j≤6

ti,j to both sides and rearranging, one can see that

2t

3
+ 14n

3
− k

(
k + 7

3

)
≤ 14

3
·

∑

i,j≥1
2≤i+j≤6

ti,j ,

∑

i,j≥1
2≤i+j≤6

ti,j ≥ t

7
+ n − k(3k + 7)

14
.

We get the following theorem:

Theorem 3.2 Let G and R each be a finite set of green or red points, respectively, in
C

2 such that |G| = n, |R| = n − k, G ∩ R = ∅, and no 2n − k − 2 points of G ∪ R

are collinear. Let t be the total number of lines determined by G ∪ R. The number
of bichromatic lines determined by at most six points is at least (2t + 14n − k(3k +
7))/14.

We remark that this result is of course also true in R
2 and is better than the

lower bound found by Pach and Pinchasi. Again, we refer the reader to Lemmas 2.11
and 2.12 for the cases where there are 2n − k − 2 or 2n − k − 1 collinear points.

3.3 Lower Bound on Total Number of Lines

In Sect. 2.2, we utilized a result from a Kelly–Moser paper [9] to prove a conjecture
of Kleitman and Pinchasi. This result of Kelly and Moser (Theorem 4.1 in their paper)
showed a lower bound, assuming that certain conditions were met on the total num-
ber of lines determined by an arrangement of points. Since their result was derived
from Euler’s Polyhedral Formula, it does not apply to the complex plane. Below, an
analogous result is derived and valid for C

2.

Lemma 3.3 Given r points on a line, L, and s points not on L, in C
2 at least 1 +

rs − s(s − 1)/2 lines, including L, are formed.

Proof Using induction on s. If s = 1, then there are r + 1 lines, and the lemma is
true.

Suppose that the lemma is true for s. A new point off of L will determine r lines,
of which at most s already exist. Hence, we have at least

(
1 + rs − s(s − 1)/2

) + (r − s) = 1 + r(s + 1) − (s + 1)s/2

lines. The lemma follows by induction. �
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The lemma above is quite strong but requires exactly “r points on a line, L, and s

points not on L.” To get the desired result, we must extend this to point sets where at
most n − k are collinear.

We now alter our terms. Instead of r and s, we will refer to a set of n points with
at most n− k collinear. Furthermore, we define the expression from the lemma above

to be a function of k (with n being considered constant), i.e., f (k)
def= k(n − k) −

k(k−1)
2 + 1.

Theorem 3.4 Given a finite set of points, G, in C
2 such that |G| = n, k ≥ 2, and at

most n − k of the points are collinear. Let t be the total number of lines determined
by G. If

n ≥ (
3
(
16k2 − 23k + 9

) − 1
)
/2, (10)

then

t ≥ f (k) = kn − (3k + 2)(k − 1)

2
.

Proof Let ri denote the number of points that are incident to precisely i lines. (Note
that we only consider lines determined by the set of points.) We assume that the points
are not all collinear, so r1 = 0. Fix a > k to be a number determined later.

Case 1: Suppose r2 + r3 + · · · + ra+1 ≥ 2. There are two points, P and Q, each
incident with at most a + 1 lines. Let L be the line PQ. There are at most a2 points
not on L, since neither P nor Q can be incident to a line, other than L, with more
than a + 1 points. Let n − x be the exact number of points on L. Now consider
the function f (x) defined above. The first and second derivative of this function are
f ′(x) = −3x + n + 1

2 and f ′′(x) = −3 (i.e., f (x) is concave down). Since k ≤ x ≤
a2, we know that t ≥ f (x) ≥ min{f (k), f (a2)}.

We are going to choose n so that f (k) ≤ f (a2), so that t ≥ f (k), and the theorem
holds. (Note the ordering of values: a2 > a > k ≥ 2.) Thus we want that

k(n − k) − k(k − 1)

2
+ 1 ≤ a2(n − a2) − a2(a2 − 1)

2
+ 1,

and hence we want that

n
(
a2 − k

) ≥ 3(a4 − k2)

2
− a2 − k

2
.

Dividing both sides by a2 − k > 0, we obtain

n ≥ 3(a2 + k) − 1

2
. (11)

Case 2: Suppose r2 + r3 + · · ·+ ra+1 ≤ 1. By Hirzebruch’s first inequality (5), we
know that

t2 + t3 + 4t ≥ 4t + n + t5 + 2t6 + 3t7 + · · ·
≥ n + 4t2 + 4t3 + 4t4 + 5t5 + 6t6 + · · · .
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Hence,

4t ≥ n + 3t2 + 3t3 + 4t4 + 5t5 + · · ·
≥ n +

∑

i≥2

i · ti = n +
∑

i≥2

i · ri

≥ n + 2 + (a + 2)
(−1 + (r2 + r3 + · · · + ra+1) + ra+2 + · · · )

= n + 2 + (a + 2)(n − 1).

We need to choose a so that t ≥ f (k) = k(n − k) − k(k−1)
2 + 1. We choose a =

4k−3, so that 4t ≥ 2+(4k−1)(n−1)+n = 4kn−4k+3, and so t > kn−k > f (k).
Combining this with (11) gives us (10). �

3.4 The Kleitman–Pinchasi Conjecture Revisited

In Sect. 3.2 we proved a lower bound on the number of bichromatic lines passing
through at most six points in C

2. This result will now be used in conjunction with
Theorem 3.4 to extend the proof of the Kleitman–Pinchasi conjecture to the complex
plane.

The following lemmas, the same as used in Sect. 2.2, are also true in the complex
plane (C2). (Note that we are now using the following context: Let G and R each be
a finite set of green or red points, respectively, in C

2 such that |G| = n, |R| = n − k,
k ∈ {0,1}, and G ∩ R = ∅.)

Lemma 3.5 If neither color class is collinear and if 2n− k − 2 points are incident to
one line, then the number of equichromatic lines determined by at most three points
is at least 2n − k − 1.

Lemma 3.6 If neither color class is collinear and if 2n − k − 3 points are incident
to one line, then the number of equichromatic lines determined by at most four points
is at least 3n − k − 4.

With little effort, one can see from Theorem 3.2 that whenever t ≥ 7n − 7, the
number of bichromatic lines through no more than six points in C

2 is greater than
2n − k − 1. Using Theorem 3.4, we have the following lemma:

Lemma 3.7 If n ≥ 130 and no more than 2n − k − 4 points are incident to one line,
then t ≥ 8n − 4k − 21.

By combining Lemmas 3.5, 3.6, and 3.7 with Theorem 3.2 we get the following
theorem:

Theorem 3.8 Let G and R each be a finite set of green or red points, respectively, in
C

2 such that |G| = n, |R| = n − k, k ∈ {0,1}, G ∩ R = ∅, and neither color class is
collinear. If n ≥ 130, then the number of bichromatic lines determined by at most six
points is at least 2n − k − 1 = |G| + |R| − 1.
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Table 1 Best general lower bounds

In R
2 In C

2a

Equichromatic (t + 2n + 3 − k(k + 1))/4 (6n − k(k + 3))/4

Bichromatic (t + 2n + 3 − k(k + 1))/4b (3t + 6n − 2k(k + 1))/12

aResults in this column assume that no 2n − k − 2 points are collinear

bFor k ≥ 3, (3t + 6n − 2k(k + 1))/12 is a better result

Table 2 Best equichromatic lower bounds

# of Points (at most) In R
2 In C

2a

4 (2n + 6 − k(k + 1))/4 N/A

5 (6n − k(k + 3))/4b (6n − k(k + 3))/4

6 (t + 6n + 15 − 3k(k + 1))/12 (6n − k(k + 3))/4

aResults in this column assume that no 2n − k − 2 points are collinear

bAssumes that no 2n − k − 2 points are collinear

Table 3 Best bichromatic lower bounds

# of Points (at most) In R
2 In C

2a

4 (2n + 6 − k(k + 1))/4 N/A

5 (6n − k(k + 3))/4b (6n − k(k + 3))/4

6 (2t + 14n − k(3k + 7))/14c (2t + 14n − k(3k + 7))/14

aResults in this column assume that no 2n − k − 2 points are collinear

bAssumes that no 2n − k − 2 points are collinear
cAssumes that no 2n − k − 2 points are collinear

4 Conclusion

For the convenience of the reader, Tables 1, 2, and 3 are a collection of the results
from this paper.

We ask whether one can prove a tight lower bound on the number of equichromatic
or bichromatic lines determined by at most four points in C

2.
Let t be the total number of lines determined by a point set. We conjecture that

there exists an Ω(t) lower bound on the number of equichromatic lines in C
2. We

also conjecture that there exists a lower bound on the number of bichromatic lines
determined by points in C

2 (or R
2) that is asymptotic to t/2. (The example of |G| =

|R| = n with points in general position gives
(
n
2

)+ (
n
2

) = n2 −n monochromatic lines
and n2 bichromatic lines, so ∼t/2 cannot be made stronger.)
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