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Abstract A topological graph is called k-quasi-planar if it does not contain k pair-
wise crossing edges. It is conjectured that for every fixed k, the maximum number
of edges in a k-quasi-planar graph on n vertices is O(n). We provide an affirmative
answer to the case k = 4.
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1 Introduction

A topological graph is a graph drawn in the plane with its vertices as points and its
edges as Jordan arcs that connect corresponding points and do not contain any other
vertex as an interior point. Throughout this paper we use the term arc when referring
to an edge of a topological graph. We only consider graphs that do not contain loops
or parallel arcs. We also assume that any two arcs of a topological graph have a finite
number of intersection points that are either endpoints or crossing points. A planar
graph is a graph that can be drawn in the plane without any pair of crossing arcs.
One possible generalization of the notion of planar graphs are k-quasi-planar graphs.
A k-quasi-planar graph is a topological graph with no k pairwise crossing arcs. We
denote by fk(n) the maximum number of arcs in such a graph on n vertices.

Since 2-quasi-planar graphs are planar graphs, it follows from Euler’s Polyhedral
Formula that f2(n) ≤ 3n − 6. It is a well-known conjecture [3, Problem 3.3] that for
any fixed k, there is a constant Ck such that fk(n) ≤ Ckn. Agarwal et al. [2] were
the first to prove this conjecture for k = 3. Later, Pach et al. [4] simplified their proof
and showed that f3(n) ≤ 65n. Recently, Ackerman and Tardos [1] proved that 7n −
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O(1) ≤ f3(n) ≤ 8n − Ω(1) and provided a tight bound of 6.5n − Ω(1) for simple
topological graphs (graphs in which every pair of arcs intersect at most once). For a
fixed k ≥ 4, the best upper bound for topological graphs is O(n log4k−12 n) [4], while
for topological graphs with x-monotone arcs, Valtr [5] showed an upper bound of
O(n logn). In this paper we extend the work of Ackerman and Tardos [1] to provide
the first proof that f4(n) = O(n).

2 Proof of the Main Theorem

Since the (underlying abstract) graphs we consider contain no loops or parallel arcs,
we have f4(1) = 0 and f4(2) = 1. For greater values of n, we prove the following
theorem.

Theorem 1 For any integer n > 2, every topological graph on n vertices with no four
pairwise crossing arcs has at most 72(n − 2) arcs.

Proof It is easy to see that f4(3) = 3 < 72(3 − 2). Let G be a 4-quasi-planar graph
on n > 3 vertices. We denote by V (G) the vertex set of G, and by E(G) the arc set
of G. Given an arc e ∈ E(G) and two points p and q on e, we use the notation e|p,q

to denote the segment of e between p and q . For a vertex v, we denote by d(v) the
degree of v. If there is a vertex v ∈ V (G) such that d(v) < 3, then we can conclude
the theorem by induction. Hence, we assume the that degree of every vertex in G

is at least three. Assume, w.l.o.g., that G is drawn with the least possible number
of crossings such that there are no four pairwise crossing arcs and that there are no
three arcs crossing at the same point. Let a1 and a2 be two arcs of G that intersect at
least twice. A region bounded by segments of a1 and a2 that connect two consecutive
intersection points is called a lens. We observe, as in [4], that G has no empty lenses,
that is, lenses that do not contain a vertex of G. If there were empty lenses, then the
number of crossings in G could be reduced. For the same reason, G does not contain
self-intersecting arcs.

Let G′ be the (drawing of the) planar graph induced by G. That is, V (G′) =
V (G) ∪ X(G), where X(G) is the set of crossing points in G; and e′ ∈ E(G′) if e′ is
a segment of an arc of G that connects two vertices in V (G′) and contains no other
vertex from V (G′). Henceforth, the term edge refers to an edge of G′, while the term
arc refers to an edge of G. Denote by F(G′) the set of faces of G′, and let |f | be the
number of edges along the boundary of a face f ∈ F(G′).1 Given a face f , we denote
by v(f ) the number of vertices from V (G) along the boundary of f (we call these
vertices original vertices). We will use the terms triangles, quadrilaterals, pentagons,
and hexagons to refer to faces of size 3, 4, 5, and 6, respectively. An integer m before
the name of a face, denotes the number of original vertices on its boundary. For
example, a 2-pentagon is a face of size 5 that has 2 original vertices on its boundary.

Following [1], we use the discharging method to prove the theorem. We begin
by assigning a certain amount of charge to every face of G′ such that the overall

1Note that an edge can sometimes appear twice along the boundary of a face.
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Fig. 1 Charging a 0-triangle

assigned charge is O(n). Then, we redistribute the charges (discharging phase) such
that every face has a nonnegative charge and the charge of every original vertex v is
proportional to d(v). This implies that the overall charge is Ω(|E(G)|), and therefore,
|E(G)| = O(n).

Let us begin then by assigning charges to the faces of G′ such that each face f

receives a charge of |f | + v(f ) − 4. Summing the total charges over all the faces of
G′, we have

∑

f ∈F(G′)

(|f | + v(f ) − 4
) = 2

∣∣E(G′)
∣∣ +

∑

f ∈F(G′)
v(f ) − 4

∣∣F(G′)
∣∣ = 4n − 8, (1)

where the last equality follows from Euler’s formula and from the next equalities:

∑

f ∈F(G′)
v(f ) =

∑

u∈V (G)

d(u) =
∑

u∈V (G′)
d(u) −

∑

u∈X(G)

d(u)

= 2
∣∣E(G′)

∣∣ − 4
(∣∣V (G′)

∣∣ − ∣∣V (G)
∣∣). (2)

Our plan is to redistribute the charges such that there will be no faces with a
negative charge and every original vertex v will be charged with at least d(v)

36 units of

charge. Then, the total charge over all the original vertices will be 2|E(G)|
36 ≤ 4n − 8,

and the theorem will follow. Since a face of size one yields a self-intersecting arc
and a face of size two yields an empty lens or two parallel arcs, the only faces with a
negative charge are 0-triangles. We proceed by describing a method to charge these
faces. Then, we will show how to charge the original vertices.

Charging 0-triangles Let t be a 0-triangle, let e1 be one of its edges, and let f1 be
the other face incident to e1 (see Fig. 1(a)). It must be that |f1| > 3, for otherwise
there would be an empty lens. If v(f1) > 0 or |f1| > 4, we move 1

3 units of charge
from f1 to t and say that f1 contributed 1

3 units of charge to t through e1. Otherwise,
f1 must be a 0-quadrilateral. Let e2 be the opposite edge to e1 in f1, and let f2 be the
other face incident to e2. Applying the same arguments as above, we conclude that
either f2 contributes 1

3 units of charge to t through e2, or f is also a 0-quadrilateral. In
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Fig. 2 A pentagon contributing
to three 0-triangles through
non-consecutive edges implies
four pairwise crossing arcs

the second case we continue to the next face, that is, to the other face that is incident
to the opposite edge to e2 in f2. However, at some point we must encounter a face that
is not a 0-quadrilateral. Denote by fi this face, by fi−1 the face preceding fi , and by
ei the edge incident to both of these faces. Then fi will contribute 1

3 units of charge
to t through ei (see Figs. 1(b,c)). Note that if fi is a 1-triangle, then it implies that
G has an empty lens. Furthermore, both endpoints of ei are crossing points. Thus,
|fi | > 3.

In a similar way, t obtains 2
3 units of charge from its other edges. Thus, after

redistributing charges this way, the charge of every 0-triangle is 0. Note that a face
can contribute charges through each of its edges at most once. Therefore, every face
f such that |f | + v(f ) ≥ 6 still has a nonnegative charge. Since triangles do not
contribute charge, it remains to verify that 1-quadrilaterals and 0-pentagons, which
had only one unit of charge to contribute, also have a nonnegative charge. Indeed, a
1-quadrilateral contributes charge to at most two 0-triangles, since the endpoints of
an edge through which it contributes charge must be vertices in X(G). A 0-pentagon
can contribute charge to at most three 0-triangles by the following easy observation.

Observation 2.1 A 0-pentagon contributes charge to at most three 0-triangles.
Moreover, if it contributes charge to three 0-triangles, then it must be done through
consecutive edges.

Proof One can easily check that a contribution to three 0-triangles through noncon-
secutive edges implies four pairwise crossing arcs (see Fig. 2). In case a 0-pentagon
contributes charge to more than three 0-triangles, then there must be three noncon-
secutive edges through which it contributes charge. �

We charge an original vertex v by charging each of the d(v) wedges incident to v.
Draw a small circle C around v such that v is the only vertex of G′ in the region
bounded by C. Then the crossing points of C with the arcs incident to v define a
clockwise order of the arcs that are incident to v.

Definition 2.2 (Wedge) A wedge is a triplet w = (v, al, ar ) such that: v ∈ V (G); al

and ar are arcs incident to v; and al immediately follows ar in a clockwise order of
the arcs that are incident to v.

We say that a face f ∈ F(G′) is the first face of a wedge w = (v, al, ar ) if there
are points pl ∈ al and pr ∈ ar such that al |v,pl

∪ ar |v,pr is on the boundary of f .
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Fig. 3 Crossing patterns of a wedge

Charging Wedges After the previous step, the faces with a zero charge, apart from
0-triangles, 1-triangles, and 0-quadrilateral, are 0-pentagons that contributed charge
to three 0-triangles, and 0-hexagons that contributed charge to six 0-triangles. We
call such faces bad faces. Faces that have a positive charge are called good faces. It is
easy to verify that a good face has at least 1/3 units of charge. Our goal now is to find
some extra charge for each wedge. This extra charge will be found next to a farthest
uncut Δ-crossing or X-crossing of the wedge. At this point, few new definitions are
needed.

Let w = (v, al, ar ) be a wedge, let a be an arc, and let p and q be crossing points
of a with al and ar , respectively, such that a|p,q does not cross al or ar in any other
point. We denote by w|a,p,q the bounded and closed region whose boundary is the
closed curve composed of al |v,p , a|p,q , and ar |q,v (see Fig. 3(a)).

Definition 2.3 Δ-crossing Let w = (v, al, ar ) be a wedge. A Δ-crossing of w is a
triplet δ = (a,p, q) such that a is an arc crossing al at p and ar at q such that:
(1) a|p,q does not intersect al or ar ; and (2) there are no original vertices in the
interior of w|a,p,q . We say that δ is an uncut Δ-crossing of w if a|p,q is an edge
of G′. For illustrations, refer to Fig. 3(b).

Let δ = (a,p, q) be a Δ-crossing of a wedge w = (v, al, ar ). We use the notation
w|δ as an abbreviation for w|a,p,q . Given another Δ-crossing of w, δ′ = (a′,p′, q ′),
we say that δ is farther than δ′ if p′ ∈ al |v,p and q ′ ∈ ar |v,q . Clearly, not every two
Δ-crossings of a wedge are comparable, but uncut Δ-crossings are.

Definition 2.4 (X-crossing) Let w be a wedge, and let δ1 = (a1,p1, q1) and δ2 =
(a2,p2, q2) be two Δ-crossings of w. Then x = (δ1, δ2) is an X-crossing of w if
a1|p1,q1 and a2|p2,q2 intersect exactly once. We use the notation w|x to denote the
region w|δ1 ∪ w|δ2 .



370 Discrete Comput Geom (2009) 41: 365–375

Fig. 4 An illustration for the
proof of Observation 2.6

Let x and x′ be two X-crossings of a wedge w. We say that x is farther than x′
if one Δ-crossing of x is farther than one Δ-crossing of x′ and the other Δ-crossing
of x′ is not farther than the other Δ-crossing of x (note that the last two Δ-crossings
might be identical). In a similar way, we say that an uncut Δ-crossing is farther (resp.,
closer) than an X-crossing of the same wedge if it is farther (resp., closer) than both
Δ-crossings of the X-crossing.

Definition 2.5 (Visible part of an X-crossing) Let x = (
δ1 = (a1,p1, q1), δ2 =

(a2,p2, q2)
)

be an X-crossing of a wedge w = (v, al, ar). Then the part of the bound-
ary of w|x that is composed of segments of the arcs a1 and a2 is called the visible part
of w|x and is denoted by Vis(x) when it is clear to which wedge we refer. We denote
by Vis(x, al) (resp., Vis(x, ar)) the segment of Vis(x) whose one endpoint lies on al

(resp., ar ) and whose other endpoint is the intersection point of a1|p1,q1 and a2|p2,q2 .
See Fig. 3(c) for an example.

The next observation will be useful later.

Observation 2.6 Suppose that x = (δ1 = (a1,p1, q1), δ2 = (a2,p2, q2)) is an X-
crossing of a wedge w = (v, al, ar ) such that Vis(x, al) ⊂ a1. Then an arc a′ that
crosses Vis(x, al) (resp., Vis(x, ar)) must cross al (resp., ar ) and must not cross a2
(resp., a1).

Proof Let y be the crossing point of a1|p1,q1 and a2|p2,q2 , and let z be the crossing
point of a′ and a1|p1,y (see Fig. 4). Since the interior of w|x contains no original
vertex, a′ must cross the boundary of w|x at least one more time. If it crosses a1|p1,q1

at any point other than z, we have an empty lens. Therefore, a′ cannot cross Vis(x)

at any point but z. Otherwise, if a′ crosses ar |v,q2 , then it must also cross a2|p2,y .
This implies four pairwise crossing arcs: a′, a1, a2, and ar . Thus a′ must cross al .
Moreover, it must not cross a2 since this also yields four pairwise crossing edges.
The proof for an arc crossing Vis(x, ar) is similar and is thus omitted. �

Rules for Charging a Wedge We are now ready to define the charging rules for
wedges. Given a wedge w = (v, al, ar ), we look for an uncut Δ-crossing or X-
crossing of w such that there is no uncut Δ-crossing or X-crossing farther than it
and continue as follows:



Discrete Comput Geom (2009) 41: 365–375 371

Fig. 5 A bad pentagon next to
an uncut Δ-crossing implies a
farther X-crossing

1. Suppose that there is no such uncut Δ-crossing or X-crossing. Then the first face
of w is not a 1-triangle. Thus, its charge is at least 1

3 units, from which we use 1
36

units to charge w.
2. Suppose that there is such an uncut Δ-crossing δ = (a,p, q). Let f be the face

incident to a|p,q outside w|δ . f is not a triangle as this would yield an empty
lens or parallel arcs. It also cannot be a 0-quadrilateral since this would imply
an uncut Δ-crossing farther than δ. If f is a bad pentagon, then it follows from
Observation 2.1 that there is an X-crossing farther than δ (see Fig. 5). f cannot be
a bad hexagon, since this would imply that it has contributed charge to a 0-triangle
through a|p,q . Therefore, f must be a good face that will contribute 1

36 units of
charge to w through a|p,q .

3. Suppose that there is such an X-crossing x = (δ1 = (a1,p1, q1), δ2 = (a2,p2, q2)).
Denote by y the intersection point of a1|p1,q1 and a2|p2,q2 , and assume w.l.o.g. that
Vis(x, al) = a1|p1,y . Let f1 be the face that is incident to y and outside w|x (see
Fig. 6). Let us analyze the possible subcases.
(a) f1 is a good face. Let ei be the edge of fi that is contained in Vis(x, al). Then

fi contributes 1
36 units of charge to w through ei .

(b) f1 is a 0-triangle. Let a3 be the third arc incident to f1 (see Fig. 6(a)). It
follows from Observation 2.6 that a3 must cross al , thus al , a1, a2, and a3 are
pairwise crossing. Hence, this subcase is impossible.

(c) If f1 is a bad pentagon, then we consider the possible cases according to which
none, one, or both of a1|p1,y and a2|y,q2 are edges of G′. In case both of them
are edges (see Fig. 6(b)), then there is an uncut Δ-crossing of w that is farther
than x. In case one of them, say a2|y,q2 , is an edge (see Fig. 6(c)), then there
is an X-crossing farther than x. If none of them is an edge (see Fig. 6(d)),
then there must be four pairwise crossing arcs. Therefore f1 cannot be a bad
pentagon.

(d) By arguments similar to the previous case it follows that if f1 is a bad
hexagon, then there must be four pairwise crossing arcs, or an X-crossing
of w farther than x.

(e) f1 is a 0-quadrilateral. Let f2 be the face outside of w|x that shares an edge
with f1 and is incident to Vis(x, al) (see Fig. 6(e)). If there is no such face,
or there is no face outside w|x that shares an edge with f1 and is incident to
Vis(x, ar), then there is an X-crossing farther than x. Examining f2, one can
see by inspection that it cannot be a 0-triangle, as this implies four pairwise
crossing arcs. If f2 is a bad pentagon (see Fig. 6(f, g)) or a bad hexagon,
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Fig. 6 Obtaining a charge near a farthest X-crossing

then again there must be four pairwise crossing arcs or an X-crossing farther
than x. Thus, either f2 is a good face or it is a 0-quadrilateral.

In the second case, we examine the “next” face, that is, the face f3 �= f1

such that f3 is outside w|x , shares an edge with f2, and is incident to
Vis(x, al). If there is no such face, then we have an X-crossing farther than x.
Otherwise, we can apply the same arguments we used for f2 on f3, proceed
to the next face if f3 is not a good face, and so on. At some point we must
encounter a good face, for otherwise we have an X-crossing farther than x

(see Fig. 6(h)). Let fi be the first good face we encounter along Vis(x, al),
and let ei be the edge of fi that is contained in Vis(x, al). Then fi contributes
1

36 units of charge to w through ei .

Analyzing the Final Charges Next, we prove that after applying the above charging
rules there are no faces with a negative charge. For that, we need to show that a face
cannot contribute charge to “too many” wedges. Apart from Rule 3(e), whenever a
face contributes charge to a wedge, the edge through which the contribution is made
lies on one arc of the wedge. Therefore, it is easy to see that, following those rules,
a face contributes a charge that is proportional to its size. We will also show that
Rule 3(a) cannot be applied more than once for a certain edge of a certain face. For
this, we introduce the following definition.
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Fig. 7 Illustrations for the proof of Observation 2.8

Definition 2.7 (Possible X-contributor) For a (good) face f and one of its edges e,
we say that f is a possible X-contributor to a wedge w = (v, al, ar ) through e if
there is an X-crossing of w, x, such that f is outside w|x and e ⊂ Vis(x, al).

Observation 2.8 Let f be a face, and let e be one of its edges. Then f is a possible
X-contributor through e to at most one wedge.

Proof Suppose that there is a face f that is a possible X-contributor through one
of its edges, e, to two wedges, w1 = (v1, l1, r1) and w2 = (v2, l2, r2). Let a be the
arc containing e; then there are four points, p1, q1,p2, q2, such that δ1 = (a,p1, q1)

is a Δ-crossing of w1 and δ2 = (a,p2, q2) is a Δ-crossing of w2. Denote by x1 =
((a,p1, q1), (a

′
1,p

′
1, q

′
1)) the X-crossing of w1 such that e ⊂ Vis(x1, l1), and by x2 =

((a,p2, q2), (a
′
2,p

′
2, q

′
2)) the X-crossing of w2 such that e ⊂ Vis(x2, l2). Suppose

that we sort p1, q1,p2, q2 by the order in which they appear when traversing a from
one of its endpoints to the other, so that when traversing e the face f is to our right.
Then, pi must precede qi for i = 1,2, since f is outside of wi |xi

. Assume, w.l.o.g.,
that p1 precedes p2. It follows from Observation 2.6 that l2 crosses l1 (see Fig. 7(a)).
Since e ⊂ a|p1,q1 ∩ a|p2,q2 , the order of the four points is either p1,p2, q1, q2 or
p1,p2, q2, q1. Let us consider these cases:

Case 1: Suppose that q1 precedes q2 (see Fig. 7(b)). Since w1|x1 and w2|x2 do not
contain any original vertex, either (1) l2 must cross l1 (one more time) and r1 (see
Fig. 7(c)) or (2) r2 must cross l1 and r1 (see Fig. 7(d)). The first case yields an empty
lens. In the second case, note that a′

1 must cross either l2 (see Fig. 7(e)) or r2 (see
Fig. 7(f)), yielding four pairwise crossing arcs.
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Case 2: Suppose that q2 precedes q1 (see Fig. 7(g)). Then the arc a′
2 must cross

a twice, creating an empty lens, or cross l1, yielding four pairwise crossing arcs (see
Fig. 7(h)).

Since all the cases imply forbidden configurations (an empty lens or four pairwise
crossing arcs), f cannot be a possible X-contributor through e to more than one
wedge. �

Lemma 2.9 The final charge of every face is nonnegative.

Proof Let e be an edge of a face f . Recall that f contributes at most 1/3 units of
charge through e when 0-triangles are being charged. When charging the wedges,
Rules 2 and 3 can be applied on f and e at most once each. Note that if Rule 1 is
applied on f to charge a wedge with a vertex v, then f does not contribute charge
through its two edges that are incident to v (the endpoints of an edge through which
charge is contributed are always in X(G)). Thus, f contributes at most |f | − 4 −
|f |( 1

3 + 1
36 + 1

36 ) units of charge. Therefore, if |f | ≥ 7, its final charge is nonnegative.
Assume that |f | ≤ 6. If f is a bad face, then it does not contribute any charge

to a wedge, and so its final charge is zero. If f is a good face, then recall that its
charge after the 0-triangles were charge is at least 1/3. When the wedges are being
charged, f contributes at most 2|f |

36 units of charge, thus it remains with a nonnegative
charge. �

Summing up the charges over all the wedges, we have 2|E(G)|
36 ≤ 4n − 8; hence

|E(G)| ≤ 72(n − 2). �

3 Discussion

We have shown that the maximum number of arcs in a topological graph on n vertices
with no four pairwise crossing arcs is O(n). The constant in Theorem 1 is certainly
not optimal. One can reduce it by noticing that it is impossible that all the faces
incident to a vertex of G are 1-triangles (as done in [1]), or by further analyzing the
ways a small-sized face contributes charge. The bound we found, combined with the
analysis in [2] and [4], yields the following corollaries.

Corollary 3.1 For any fixed integer k > 4, a simple topological graph on n vertices
with no k pairwise crossing arcs has O(n log2k−8 n) arcs.

Corollary 3.2 For any fixed integer k > 4, a topological graph on n vertices with no
k pairwise crossing arcs has O(n log4k−16 n) arcs.

This improves the previous bounds by a factor of Θ(log2 n) and Θ(log4 n), re-
spectively. However, the conjecture that fk(n) = O(n) for any fixed k > 4 remains
open. It might be possible to settle this conjecture for k = 5 using our method, but it
seems that for greater values, one should come up with new ideas.
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