
Discrete Comput Geom (2009) 41: 556–582
DOI 10.1007/s00454-009-9137-7

Region-Fault Tolerant Geometric Spanners

M.A. Abam · M. de Berg · M. Farshi ·
J. Gudmundsson

Received: 15 May 2007 / Revised: 5 September 2008 / Accepted: 1 January 2009 /
Published online: 30 January 2009
© Springer Science+Business Media, LLC 2009

Abstract We introduce the concept of region-fault tolerant spanners for planar point
sets and prove the existence of region-fault tolerant spanners of small size. For a
geometric graph G on a point set P and a region F , we define G � F to be what

Communicated by Joseph S.B. Mitchell.

M.A. Abam was supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 612.065.307 and by the MADALGO Center for Massive Data Algorithmics, a Center of
the Danish National Research Foundation.
M. de Berg was supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 639.023.301.
M. Farshi was supported by Ministry of Science, Research and Technology of I.R. Iran.

NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

M.A. Abam
MADALGO Center, Department of Computer Science, Aarhus University, Aarhus, Denmark
e-mail: abam@madalgo.au.dk

M. de Berg
Department of Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands
e-mail: m.t.d.berg@tue.nl

M. Farshi
School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
e-mail: mfarshi@cg.scs.carleton.ca

M. Farshi
Department of Computer Science, Yazd University, P.O. Box 89195-741, Yazd, Iran

J. Gudmundsson (�)
NICTA, Sydney, Australia
e-mail: joachim.gudmundsson@gmail.com

mailto:abam@madalgo.au.dk
mailto:m.t.d.berg@tue.nl
mailto:mfarshi@cg.scs.carleton.ca
mailto:joachim.gudmundsson@gmail.com

Discrete Comput Geom (2009) 41: 556–582 557

remains of G after the vertices and edges of G intersecting F have been removed.
A C-fault tolerant t-spanner is a geometric graph G on P such that for any convex
region F , the graph G �F is a t-spanner for Gc(P)�F , where Gc(P) is the complete
geometric graph on P . We prove that any set P of n points admits a C-fault tolerant
(1 + ε)-spanner of size O(n logn) for any constant ε > 0; if adding Steiner points is
allowed, then the size of the spanner reduces to O(n), and for several special cases,
we show how to obtain region-fault tolerant spanners of O(n) size without using
Steiner points. We also consider fault-tolerant geodesic t-spanners: this is a variant
where, for any disk D, the distance in G � D between any two points u,v ∈ P \ D

is at most t times the geodesic distance between u and v in R
2 \ D. We prove that

for any P , we can add O(n) Steiner points to obtain a fault-tolerant geodesic (1 + ε)-
spanner of size O(n).

Keywords Geometric networks · Geometric spanners · Fault-tolerance

1 Introduction

A geometric network on a set P of points in d-dimensional space is an undirected
graph G(P,E) with vertex set P whose edges are straight-line segments connecting
pairs of points in P . Often the space considered is the Euclidean plane—this is also
the setting we shall consider—but other metrics and/or higher dimensions can be
considered as well. Geometric networks naturally model many real-life networks,
such as road networks, telecommunication networks, and so on.

When designing a network for a given set P of points, several criteria can be
taken into account. In particular, in many applications it is important to ensure a fast
connection between every pair of points in P . For this, it would be ideal to have a di-
rect connection between every pair of points—the network would then be a complete
graph—but in most applications this is unacceptable due to the high costs. This leads
to the concepts of spanners, as defined below. Spanners were introduced by Peleg and
Schäffer [19] in the context of distributed computing and by Chew [4] in a geometric
context.

For two vertices u,v in a weighted graph G , we use dG (u, v) to denote their dis-
tance in the graph, that is, the length of the (weighted) shortest path between them.
Now consider a weighted graph G(V ,E) and a graph G′(V ,E′) on the same vertex
set but with edge set E′ ⊆ E. We say that G′ is a t-spanner of G if for each pair of
vertices u,v ∈ V, we have that dG′(u, v) ≤ t · dG (u, v). The dilation or stretch factor
of G′ is the minimum t for which G′ is a t-spanner of G . The size of G′ is defined as
the number of edges in E′.

For geometric networks, the weight of an edge (u, v) is defined to be the Euclidean
distance d(u, v) between u and v. Now we say that a geometric network G(P,E)

is a (geometric) t-spanner if G(P,E) is a t-spanner of Gc(G), where Gc(G) is the
complete geometric network on P . In other words, for any two points p,q ∈ P, the
graph distance in G is at most t times the Euclidean distance between the two points.
Geometric spanners have received a lot of attention over the past few years—see the
survey papers [10, 12, 25] and the book by Narasimhan and Smid [18]. From now on,
we shall limit our discussion to geometric spanners.

558 Discrete Comput Geom (2009) 41: 556–582

Fig. 1 The input graph G and a fault region F , the graph G�F , and the graph Gc(G)�F

The spanner concept captures the notion of “good” networks when short connec-
tions between the points are important. The main question is whether spanners exist
that have a small stretch factor and a small, ideally near-linear, size. Other desirable
properties of a spanner are, for example, that the total weight of the edges is small
or that the maximum degree is low. As it turns out, such spanners do indeed exist:
it has been shown that for any set P of n points and for any fixed ε > 0, there ex-
ists a (1 + ε)-spanner with O(n) edges, bounded degree, and whose total weight is
O(wt(MST(P))), where wt(MST(P)) is the weight of a minimum spanning tree of
P [7, 18].

Another useful property of a network is fault tolerance: after one or more ver-
tices or edges fail, the spanner should retain its good properties. In particular, there
should still be a short path between any two vertices in what remains of the span-
ner after the fault. Levcopolous et al. [16] showed the existence of k-vertex (or k-
edge) fault-tolerant geometric spanners with O(nk logn) edges. This was improved
by Lukovszki [17], who presented a fault-tolerant spanner with O(nk) edges, which
is optimal. Later Czumaj and Zhao [6] showed that a greedy approach produces a
k-vertex (or k-edge) fault-tolerant geometric (1 + ε)-spanner with degree O(k) and
total weight O(k2 · wt(MST(P))); these bounds are asymptotically optimal.

The papers on fault-tolerant spanners mentioned above all consider faults that can
destroy an arbitrary collection of k vertices or edges. For geometric spanners, how-
ever, it is natural to consider region faults: faults that do not destroy an arbitrary
collection of vertices and edges, but faults that destroy all vertices and edges inter-
secting some geometric fault region. This is relevant, for instance, when the spanner
models a road network and a natural (or other) disaster makes all the roads in some
region inaccessible. This is the topic of our paper: we study the existence of sparse
spanners in the plane1 that are tolerant against region faults. Before we present our
results, let us define region-fault tolerance more precisely.

Let F be a family of regions in the plane, which we call the fault regions. For a
fault region F ∈ F and a geometric graph G on a point set P , we define G�F to be the
part of G that remains after the points from P inside F and all edges that intersect F

have been removed from the graph, see Fig. 1. (For simplicity, we assume that a
region fault F does not contain its boundary, i.e., only vertices and edges intersecting
the interior of F will be affected.)

1The concepts and many of the results carry over to d-dimensional Euclidean space. However, we feel that
the concept is mainly interesting in the plane, so we confine ourselves to the planar case in this paper.

Discrete Comput Geom (2009) 41: 556–582 559

An F -fault tolerant t-spanner is a geometric graph G on P such that for any
region F ∈ F , the graph G�F is a t-spanner for Gc(G)�F . (Recall that Gc(G) is the
complete geometric graph on P .) We are mainly interested in the case where F is the
family C of convex sets. It is easy to see that there are no sparse region-fault tolerant
t-spanners with respect to nonconvex faults: if H H denotes the family of regions that
are the union of two half-planes, then Gc(G) is the only H H-fault tolerant t-spanner
for P for any finite t . For example, for each pair p and q in P , one can draw two half-
planes region faults which contain all points of P except p and q, which implies that
the spanner must have an edge between p and q in order to be an H H-fault tolerant
t-spanner.

We shall also consider the case where we are allowed to add Steiner points to the
graph. In other words, instead of constructing a geometric network for P , we are
allowed to construct a network for P ∪ Q for some set Q of Steiner points. Then we
say that a graph G on P ∪Q is an F -fault tolerant Steiner t-spanner for P if, for any
F ∈ F and any two points u,v ∈ P \ F , the distance between u and v in G�F is at
most t times their distance in Gc(G)�F .

We also study another variant of region-fault tolerance. In this variant we require
that the distance between any two points u,v in G�F is at most t times the geodesic
distance between u and v in R

2 \ F . Note that the geodesic distance in R
2 \ F —that

is, the length of a shortest path in R
2 \F —is never more than the distance between u

and v in Gc(G)�F . We call a spanner with this property an F -fault tolerant geodesic
(1 + ε)-spanner. It is not difficult to show that F -fault tolerant geodesic spanners do
not exist unless we are allowed to use Steiner points. To see this, consider a graph
with two vertices and one edge connecting them. After any fault which intersects the
edge, the distance between the two vertices in the graph is infinite, while the geodesic
distance between them is finite. Even in the case of Steiner points, finite size F -fault
tolerant geodesic spanners do not exist when F is the family C of all convex sets.
Again, consider a set of two points. Then for any finite set of Steiner points, we
can destroy all edges crossing the perpendicular bisector of the two points using a
(possibly very long and skinny) convex area fault, so after the fault the two points
are no longer connected in the spanner. Hence, we restrict our attention to D-fault
tolerant geodesic spanners, where D is the family of disks in the plane.

We obtain the following results.

– In Sect. 2 we present a general method to convert a well-separated pair decompo-
sition (WSPD) [2] for P into a C -fault tolerant spanner for P . We use this method
to obtain linear-size C -fault tolerant (1 + ε)-spanners for points in convex position
and for points distributed uniformly at random inside the unit square, and to obtain
linear-size C -fault tolerant Steiner (1 + ε)-spanners for arbitrary point sets.

– In Sect. 3 we study small C -fault tolerant (non-Steiner) spanners for arbitrary point
sets. By combining a more relaxed version of the WSPD with ideas from Θ-
graphs [15], we show that any point set P admits a C -fault tolerant (1+ ε)-spanner
of size O(n logn).

– In Sect. 4 we study the geodesic case. We show that for any set P of n points,
there exists a D-fault tolerant geodesic Steiner (1 + ε)-spanner with O(n) edges
and O(n) Steiner points.

560 Discrete Comput Geom (2009) 41: 556–582

2 Constructing C-Fault Tolerant Spanners Using the WSPD

In this section we show a general method to obtain a C -fault tolerant spanner from a
well-separated pair decomposition of a point set P . We show that for some special
cases, this approach generates a C -fault tolerant spanner with only a linear number
of edges. We also show how to use the approach to obtain small Steiner spanners.
Before we start, we prove a general lemma showing that, when constructing C -fault
tolerant spanners, we can in fact restrict our attention to half-plane faults. This lemma
will also be used in later sections. Let H be the family of half-planes in the plane.

Proposition 2.1 A geometric graph G on a set P of points in the plane is a C -fault
tolerant t-spanner if and only if it is an H-fault tolerant t-spanner.

Proof Obviously a graph is H-fault tolerant if it is C -fault tolerant. To prove the other
direction assume that G is an H-fault tolerant t-spanner and that F ∈ C is an arbitrary
convex area fault. We need to prove that between every pair of points u,v ∈ P \ F,

there is a path in G�F of length at most t times the length of the shortest path in
G′

c = Gc(G)�F .
If u and v are not connected in G′

c, we are done. Otherwise, let Π be a shortest
path between u and v in G′

c. We claim that for every edge (p, q) in Π, there is a
path in G�F of length at most t · d(p,q). Since the edge (p, q) lies outside F and F

is convex, there must be a half-plane h that contains F but does not intersect (p, q).
Since G is an H-fault tolerant t-spanner, there is a path Π(p,q) between p and q in
G�h of length at most t · d(p,q). Furthermore, since F ⊂ h, the path Π(p,q) also
exists in G�F . The claim and, hence, the lemma follows. �

2.1 The Well-Separated Pair Decomposition

The well-separated pair decomposition (WSPD) was developed by Callahan and
Kosaraju [3]. We briefly review (the planar version of) this decomposition here.

Definition 2.1 Let s > 0 be a real number referred to as the separation constant. We
say that two point sets A and B in the plane are well-separated with respect to s if
there are two disjoint disks DA and DB of the same radius, r , such that

(i) DA contains A, and DB contains B .
(ii) The distance between DA and DB is at least s · r .

Definition 2.2 Let P be a set of n points in the plane, and let s > 0 be a real number.
A well-separated pair decomposition (WSPD) for P with respect to s is a collection
W := {(A1,B1), . . . , (Am,Bm)} of pairs of nonempty subsets of P such that

1. Ai and Bi are well separated w.r.t. s for all i = 1, . . . ,m.
2. For any two distinct points p and q of P , there is exactly one pair (Ai,Bi) in the

collection such that (i) p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi .

The number of pairs, m, is called the size of the WSPD. Callahan and Kosaraju [3]
show that any set P admits a WSPD of size m = O(s2n).

Discrete Comput Geom (2009) 41: 556–582 561

Fig. 2 (a) Illustrating the construction of the WSPD-graph. (b) Points in convex position

2.2 Constructing a C -Fault Tolerant Spanner

Callahan and Kosaraju [2] showed that the WSPD can be used to obtain a small
(1 + ε)-spanner. Similar ideas were used earlier by Salowe [23, 24] and Vaidya
[26–28]. To obtain the (1 + ε)-spanner one simply computes a WSPD with respect
to s := 4 + 8/ε, and then for each well-separated pair (A,B), one adds an arbitrary
edge connecting a point from A to a point in B .

Unfortunately this construction is not C -fault tolerant, because a fault F can de-
stroy the spanner edge that connects a pair (A,B), while some other edges between
A and B (which are not in the spanner) may survive the fault. Hence, we need to add
more than a single edge for (A,B). Let CH(A) and CH(B) denote the convex hulls
of A and B , respectively. At first sight it seems that adding the two outer tangents of
CH(A) and CH(B) to our spanner may lead to a C -fault tolerant spanner, but this is
not the case either. Instead, we will triangulate the region in between the two convex
hulls in an arbitrary manner, as illustrated in Fig. 2a.

Let E(A,B) be the set of edges in the triangulation added between CH(A)

and CH(B), and let G be the obtained graph. Note that any triangulation between
CH(A) and CH(B) has the same number of edges. Throughout the paper we will use
the notation | · | to denote the number of elements in a set.

Lemma 2.1 The graph G is a C -fault tolerant (1 + ε)-spanner for P of size∑
(A,B)∈W |E(A,B)|.

Proof The size of the graph is obviously
∑

(A,B)∈W |E(A,B)|, so it remains to show
that it is a C -fault tolerant (1 + ε)-spanner. Now we observe that for any half-plane h,
{(A\h,B \h) : (A,B) ∈ W } is a WSPD for P \h. Hence, by Proposition 2.1 and the
properties of the WSPD it is sufficient to show the following: Let h be a half-plane
fault, let u,v be points not in h, and let (A,B) be a pair with u ∈ A and v ∈ B; then
there is an edge e ∈ E(A,B) between CH(A) and CH(B) that is outside h.

To see this we first prove that, given a point set P and a triangulation T of P ,
the graph T �h is connected for any half-plane h. Assume without loss of generality
that h is below and bounded by a horizontal line. Since any point of P \h not on the
convex hull must have an edge connecting it to a point further away from h, we can
walk from p away from h along edges of T until we reach a point on the convex hull

562 Discrete Comput Geom (2009) 41: 556–582

of P . Moreover, any two convex hull points in P \h can be connected by convex hull
edges outside h. It follows that T �h is indeed connected.

Now consider any triangulation T on A ∪ B that includes E(A,B). Then T �h

must be connected. Since u,v /∈ h, and u ∈ A and v ∈ B , this means there must be an
edge e ∈ E(A,B) outside h. �

Unfortunately there exists a point set P such that for any WSPD W of P, we have∑
(A,B)∈W (|A| + |B|) = Ω(n2), see [18, Exercise 9.2]. A simple example of such

a point set is n points on a line with exponentially increasing interpoint distance. In
other words, the WSPD-approach will never lead to a worst-case subquadratic sized
spanner.

2.3 Linear-Size Spanners for Special Cases

The method described above can be used to get small C -fault tolerant spanners for
several special cases. For example, if P is in convex position, then |E(A,B)| ≤ 3
for any pair (A,B) in the decomposition, see Fig. 2b. The time complexity of the
algorithm for constructing such a spanner is straightforward. To compute the WSPD
of the point set, we need O(n logn + n/ε2) time. For adding the edges between each
pair in the WSPD, we can compute the convex hull of each set in the pair in con-
stant time, assuming that we compute the convex hull of the input point set before-
hand. Therefore in total we need O(n logn+n/ε2) time to compute a C -fault tolerant
(1 + ε)-spanner for points on convex position. So we get:

Theorem 2.1 For any set P of n points in convex position in the plane and any ε > 0,
there exists a C -fault tolerant (1+ε)-spanner of size O(n/ε2) which can be computed
in O(n logn + n/ε2) time.

Next we show that we can also get a C -fault tolerant spanner whose expected size
is linear if the point set P is generated by picking n points uniformly at random in
the unit square.

Lemma 2.2 Let P be a set of n uniformly distributed points in the unit square and A

be a sub-square of the unit square. Then the expected number of points on the convex
hull of P ∩ A is O(log(n · area(A))).

Proof If n points are uniformly distributed in the unit square, then it is known that
the expected number of points on the convex hull of the points is O(logn) [14, 21].

Now let X be the number of points on the convex hull of P ∩ A, and let Y :=
|P ∩ A|. Clearly E[Y] = n · area(A). By the law of total expectation [22, Proposi-
tion 4.1], if X and Y are two random variables, then E[X] = E[E[X|Y]], therefore

E[X] = E
[
E[X|Y]]

= E
[

O
(
log(Y)

)]

≤ O
(
log

(
E[Y])) (

Jensen’s inequality [22, p. 418]
)

= O
(
log

(
n · area(A)

))
. �

Discrete Comput Geom (2009) 41: 556–582 563

Now we combine the ideas from the previous section with Lemma 2.2 to construct
a (1 + ε)-spanner of the uniformly distributed point set P .

Constructing the quadtree is done in O(n logn) time. For a fixed level of the
quadtree, the total size of the subsets P(ν) is O(n). Hence, the total expected size
of the subsets over all levels is O(n logn), since the expected number of levels of the
quadtree for a uniformly distributed point set is O(logn). It is well known [8] that
the convex hull of a point set can be built incrementally in linear time if the points
are given in sorted order. Thus, the convex hulls of the set P(ν) can be computed in
time O(|P(ν)|) after presorting the points from left to right, which in total this takes
O(n logn) time.

Finally, computing the edges for a fixed pair (A,B) can then be done in linear time
in the complexity of their convex hulls; over all pairs this is O(n/ε2) expected time.
In total, the expected time to construct the spanner is therefore O(n logn + n/ε2).

Theorem 2.2 Let P be a set of n points uniformly distributed in the unit square U .
For any ε > 0, there is a C -fault tolerant (1 + ε)-spanner for P of expected size
O(n/ε2) which can be computed in O(n logn + n/ε2) expected time.

Proof Construct a quadtree partitioning of U into smaller and smaller squares, un-
til each square has size (side length) between 1/

√
n and 2/

√
n. So the area of any

leaf is O(1/n), which means the expected number of points in a leaf region is O(1).
The quadtree has O(n) leaves. Level � of the quadtree corresponds to a regular sub-
division of U into squares of size 1/2�. One can show that there exists a WSPD
W := {(Ai,Bi)}i for P of size O(n/ε2) such that for each i, the pair (Ai,Bi) ei-
ther corresponds to two squares at the same level, or Ai and Bi are both singleton
points that lie in adjacent cells (or the same cell) of the final subdivision. Moreover,
if we denote by n� the number of pairs of the WSPD at level � of the quadtree, then
n� = O(22�/ε2). The existence of a WSPD with these properties follows rather di-
rectly from the results of Fischer and Har-Peled [11]. For completeness, we briefly
sketch an argument for our setting.

For a node ν of the quadtree, let P(ν) denote the subset of points from P inside
the square corresponding to ν. Consider a level � of the quadtree. For each pair of
nodes ν, ν′ at level � such that the point sets P(ν) and P(ν′) are well-separated,
while the point sets of the parents of ν and ν′ are not well-separated, we put the
pair (P (ν),P (ν′)) into the WSPD. In addition, for pair of leaf nodes μ,μ′ such
that P(μ) and P(μ′) are not well-separated, we put a pair ({p}, {q}) into the WSPD
for every pair p ∈ P(μ) and q ∈ P(μ′). It is easy to verify that this indeed defines
a WSPD. The bound on the number of pairs added for each level follows from a
standard packing argument.

Now consider a square σ at level �. By Lemma 2.2, because the area of σ is 1/22�,
the expected size of the convex hull of the points in σ is O(log(n/22�)).

If (A,B) is an arbitrary pair in W which appears at level � of the quadtree, then

E
[∣
∣E(A,B)

∣
∣
] ≤ E

[∣
∣CH(A)

∣
∣ + ∣

∣CH(B)
∣
∣
]

= E
[∣
∣CH(A)

∣
∣
] + E

[∣
∣CH(B)

∣
∣
]

= O
(
log

(
n/22�

))
.

564 Discrete Comput Geom (2009) 41: 556–582

Therefore

E
[∑

(Ai ,Bi)∈W

∣
∣E(Ai,Bi)

∣
∣
]

=
∑

(Ai ,Bi)∈W
E

[∣
∣E(Ai,Bi)

∣
∣
]

=
1
2 logn∑

�=1

O
(
n� log

(
n/22�

))

=
1
2 logn∑

�=1

O
((

22�/ε2) log
(
n/22�

))
.

To bound this summation, we set m := 1
2 logn and we get

1
2 logn∑

�=1

22� log
(
n/22�

) =
m∑

�=1

22�(2m − 2�)

= 2
m∑

�=1

22�(m − �)

= 2
m−1∑

k=0

22(m−k) · k (by setting k = m − �)

= 22m+1
m−1∑

k=0

k

22k

≤ 22m+1
∞∑

k=0

k

22k

= O(n).

Hence the expected size of the generated (1 + ε)-spanner is O(n/ε2). �

2.4 C -Fault Tolerant Steiner Spanners

Above we showed that the WSPD can be used to construct C -fault tolerant spanners
of small size when the points are in convex position or uniformly distributed. For
arbitrary point sets, however, the size of the spanner may be Ω(n2) [18]. In this
section we will show that if we are allowed to add Steiner points, we can always use
the above method to get a linear-size spanner:

Theorem 2.3 For any set P of n points in the plane and any ε > 0, one can construct
a C -fault tolerant Steiner (1 + ε)-spanner of size O(n/ε2) in O(n logn + n/ε2) time
by adding at most 4(n − 1) Steiner points.

Discrete Comput Geom (2009) 41: 556–582 565

The idea is to add a set Q of Steiner points to P such that |E(A,B)| = O(1) for
any pair (A,B) in the WSPD of P ∪ Q. Then the theorem immediately follows from
Lemma 2.1.

Our method is based on the WSPD construction by Fisher and Har-Peled [11].
Their construction uses a compressed quadtree, which is defined as follows.

Let T (P) be the quadtree on P . We denote the square corresponding to a node ν ∈
T (P) by σ(ν) and the subset of points from P inside σ(ν) by P(ν). When some of
the points are very close together, a quadtree can have superlinear size. A compressed
quadtree T ∗(P) for P therefore removes internal nodes ν from T (P) for which all
points from P lie in the same quadrant of σ(ν). A compressed quadtree has at most
n − 1 internal nodes. Fisher and Har-Peled [11] show that one can obtain a WSPD of
size O(s2n) for P that consists of pairs (P (ν1),P (ν2)) where ν1 and ν2 are nodes in
T ∗(P).

The set Q of Steiner points that we use is defined as follows. Let T ∗(P) be a
compressed quadtree for P . Without loss of generality, we may assume that no point
from P lies on any of the splitting lines. For each internal node ν of T ∗(P), we add
the four corner points of σ(ν) to Q. To avoid degenerate cases, we slightly move
each point into the interior of σ(ν). Note that two (or more) squares σ(ν1) and σ(ν2)

may share, for instance, their top right corner. In this case we add the (slightly shifted)
corner point only once. The resulting set Q has size at most 4(n−1). The next lemma
finishes the proof of Theorem 2.3.

Lemma 2.3 Let T ∗(P) be a compressed quadtree for P := P ∪ Q, where the initial
bounding square U is the same as for T ∗(P), and let ν be an internal node of T ∗(P).
Then CH(P (ν)) has at most four vertices.

Proof If the square σ(ν) contains zero or one point from P, then at most one Steiner
point has been added inside σ(ν), and the lemma is true. If σ(ν) contains two or more
points, then there are two cases, both illustrated in Fig. 3.

Let μ be the node of T ∗(P) such that P(μ) = P (ν)∩P . Note that the four shifted
corners of σ(μ) were added as Steiner points to Q. If σ(μ) = σ(ν), then CH(P (ν))

is a square. Otherwise, σ(μ) ⊂ σ(ν). In this case CH(P (ν)) is formed by three of the
four corners of σ(μ) together with the unique corner of σ(ν) that generated a Steiner
point at some ancestor of ν in T ∗(P), see Fig. 3. Hence, in this case CH(P (ν)) has
four vertices as well. �

The WSPD, including adding the Steiner points, can be computed in O(n logn +
n/ε2) time. We can compute the convex hull of each set in constant time, because the
points on the convex hulls are the Steiner point of the node itself or one of the Steiner

Fig. 3 Illustration for the proof
of Lemma 2.3

566 Discrete Comput Geom (2009) 41: 556–582

points of the parent of the node, and we can triangulate the space between convex
hulls in constant time since the complexity of convex hulls is constant. So in total the
construction takes O(n logn + n/ε2) time.

3 C-Fault Tolerant Spanners for Arbitrary Point Sets

In this section we consider the problem of constructing a sparse C -fault tolerant
(1 + ε)-spanner for an arbitrary set P of n points in the plane without using Steiner
points. The method that was described in the previous section does not guarantee a
small spanner in general. Here we will describe a method that is guaranteed to result
in a spanner of size O(n logn).

Throughout this section d(·, ·) denotes the shortest distance between two objects
(points, disks, etc.), and radius(D) denotes the radius of a disk D.

3.1 SSPDs and Fault-Tolerant Spanners

The problem with the WSPD in our application is that, even though the number of
pairs in the WSPD is O(n), the total number of points over all the pairs can be Θ(n2).
Therefore we will introduce a relaxed version of the WSPD, the SSPD.

Definition 3.1 Let A and B be two sets of points in the plane, and let s > 0 be a
constant. We say that A and B are semi-separated with respect to separation constant
s if there are two disjoint disks DA and DB such that

(i) DA contains A, and DB contains B .
(ii) d(DA,DB) ≥ s · min(radius(DA), radius(DB)).

Thus we allow the balls DA and DB to be of different sizes, and we only require
that the distance between the disks is large relative to the smaller disk. Note that using
the same notation, we can reformulate the definition of well-separated with respect
to s as d(DA,DB) ≥ s · max(radius(DA), radius(DB)).

We now define our SSPD.

Definition 3.2 Let P be a set of n points in the plane, and let s > 0 be a real
number. A semi-separated pair decomposition (SSPD) for P w.r.t. s is a collection
{(A1,B1), . . . , (Am,Bm)} of pairs of nonempty subsets of P such that

1. Ai and Bi are semi-separated w.r.t. s for all i = 1, . . . ,m.
2. For any two distinct points p and q of P , there is exactly one pair (Ai,Bi) in the

collection such that (i) p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi .

The weight of a set A, denoted by |A|, is defined as the number of points in A,
the weight of a semi-separated pair (A,B) is the sum of the weights of A and B , and
the weight of an SSPD is the total weight of all the pairs. Later we will prove that
it is possible to compute an SSPD of weight O(n logn). It is known that the weight
of such a decomposition has Ω(n logn) lower bound, see [1, 13]. First, however, we

Discrete Comput Geom (2009) 41: 556–582 567

Fig. 4 (a) The cones of angle at most θ defined with respect to oA and A. (b) Illustration for the proof
that qj is outside CH(A ∪ {q1, . . . , qj−1})

will show how to use the SSPD to obtain a C -fault tolerant spanner. The idea is to add
edges to the spanner for each pair in the SSPD. Because the pairs in an SSPD are only
semi-separated, however, adding a single edge for every pair does not necessarily lead
to a good spanner. Therefore we use an idea that is also used in the construction of
Θ-graphs [5, 15].

Consider a pair (A,B) in an SSPD for P . Then there exist two disjoint disks DA

and DB that contain A and B, respectively, and for which

d(DA,DB) ≥ s · min
(
radius(DA), radius(DB)

)
.

Assume without loss of generality that radius(DA) ≤ radius(DB), and let oA denote
the center of DA, see Fig. 4a. The set E(A,B) of edges added to the spanner for the
pair (A,B) is found as follows.

1. Partition the plane into k := �2π/θ� cones C1, . . . ,Ck , all with apex at oA and
with interior angle at most θ , where θ is a suitable constant to be specified later.
Let B(i) := B ∩Ci denote the subset of points from B inside the cone Ci ; here we
assume without loss of generality that no point lies on the boundary between two
cones.

2. Let CH(A) be the convex hull of A. For each B(i), we sort the points in B(i) in
order of increasing distance to oA. Let q1, q2, . . . denote the sorted list of points.
We process each point qj in order as follows. Let CH(A′) be the convex hull
of the set A′ = A ∪ {q1, . . . , qj−1}. We add every possible edge between qj and
the vertices of A on CH(A′) for which the interior of the edge does not intersect
CH(A′). Next we update CH(A′) by adding the point qj . After processing all
points qi ∈ B(i), we have produced a set E(A,B(i)) of edges. The set E(A,B) is
simply ∪1≤i≤kE(A,B(i)).

Note that in Step 2 for each j , the point qj is outside CH(A ∪ {q1, . . . , qj−1}).
To show this assume that qj is inside CH(A′) for A′ = A ∪ {q1, . . . , qj−1}. Then
the ray from o = oA to qj intersects an edge of CH(A′), see Fig. 4b. Let a and b

be the endpoints of this edge. Note that qj lies inside �oab. On the other hand,
a, b ∈ A ∪ {q1, . . . , qj−1}, and therefore d(o, a) ≤ d(o, qj) and d(o, b) ≤ d(o, qj).
This contradicts the fact that qj is inside �oab.

568 Discrete Comput Geom (2009) 41: 556–582

By construction the edges that we are adding to E(A,B(i)) do not cross, hence
E(A,B) forms a planar set of edges. Since the number of sets B(i) is O(1/θ) and∑ |B(i)| = |B|, we have:

Lemma 3.1 |E(A,B)| = O(|A|/θ + |B|).

To prove that the approach generates a fault-tolerant spanner, we need the follow-
ing lemma. Consider the ordered set B(i) of the points in B inside the cone Ci .

Lemma 3.2 Let h be a half-plane fault such that both A and B(i) have at least one
point outside h. Of all the points in B(i) outside h, let qj be the one with minimum
distance to oA. There is an edge in E(A,B(i)) connecting qj to a point p ∈ A out-
side h.

Proof By assumption, qj is outside h, and there is at least one point from A outside h.
On the other hand, by the choice of qj , the points q1, . . . , qj−1 are all inside h. As
mentioned before, qj is outside CH(A ∪ {q1, . . . , qj−1}), and therefore qj is a vertex
of CH(A∪{q1, . . . , qj }). Let a and b be the neighbors of qj on CH(A∪{q1, . . . , qj }).
We have two cases:

Case 1: a or b lies outside h. In this case we are done because that neighbor
belongs to A.

Case 2: a and b are inside h. If we continue the edges (qj , a) and (qj , b), then
the cone with apex at qj contains A ∪ {q1, . . . , qj−1}. By assumption there exists at
least one point of A outside h, and therefore there is at least one point p ∈ A which
lies on the convex hull CH(A∪ {q1, . . . , qj−1}), see Fig. 5a. The point p is visible by
qj because all the points on CH(A ∪ {q1, . . . , qj−1}) and between a and b are visible
from qj . Hence there is an edge connecting qj to p, and so we are done. �

Let W be an SSPD of P , and let G(P,E) be a graph with vertex set P and edge
set E = ⋃

(A,B)∈W E(A,B). Next we prove that G is a (1 + ε)-spanner if we choose
the separation constant s and the angle θ suitably and, moreover, that it is C -fault
tolerant. For this we will need the following condition on the structure of the SSPD
(which will be satisfied by the SSPD we will construct later).

Fig. 5 (a) Illustrating the proof of Lemma 3.2. (b) Illustrating the proof of Lemma 3.3

Discrete Comput Geom (2009) 41: 556–582 569

Monotonicity condition Suppose that p,q are two points that are in the same set X

of some pair (Ai,Bi) of the SSPD—thus X = Ai or X = Bi—and let (Aj ,Bj) be the
unique pair in the SSPD such that p ∈ Aj and q ∈ Bj , or p ∈ Bj and q ∈ Aj . Then
the weights of Aj and Bj are both less than the weight of X.

Lemma 3.3 Assume that the SSPD satisfies the monotonicity condition. If the sepa-
ration constant s of the SSPD is taken as s := 3t+1

(cos θ− sin θ)t−1 , then the graph G is an
H-fault tolerant t-spanner.

Proof Let h be an arbitrary half-plane. To prove the lemma we must show that for
each pair of points p,q ∈ P outside h, there is a t-path, a path of length at most t

times d(p,q), connecting them in G�h. According to the definition of the SSPD,
there exists a semi-separated pair (A,B) such that p ∈ A and q ∈ B (or vice versa).

The proof is done by induction on the maximum weight of A and B .
Base case: If the maximum weight of A and B is 1, then both sets are singletons,

and therefore we must have an edge between them.
Induction hypothesis: Assume that the lemma holds for all points in pairs whose

maximum weight is less than k for some k > 1.
Induction step: Suppose that the maximum weight of A and B is k. Let DA and

DB be two disks containing A resp. B such that

d(DA,DB) ≥ s · min
(
radius(DA), radius(DB)

)

and assume without loss of generality that radius(DA) ≤ radius(DB). Let o = oA

denote the center of DA.
Let Ci be the cone with apex o that contains q . Let q ′ be the point in B(i) \ h

closest to o. According to Lemma 3.2, there is an edge between q ′ and some point
p′ in A outside h, see Fig. 5b. By the induction hypothesis, which we may apply
because of the monotonicity condition, there are t-paths from p to p′ and from q ′ to
q in G�h. By connecting these paths using the edge (p′, q ′) we obtain a path Π in
G�h. Next we prove that Π is a t-path between p and q . Set r := radius(DA) and
λ := cos θ − sin θ . For the rest of the proof, let |xy| denote the (Euclidean) distance
between points x and y.

Consider the triangle �oqq ′. Since ∠qoq ′ ≤ θ , we have

|qq ′| ≤ |oq| − (cos θ − sin θ) · |oq ′|.
The total length of Π , denoted length(Π), can now be bounded as follows:

length(Π) ≤ t · |pp′| + |p′q ′| + t · |qq ′|
≤ 2rt + (

r + |oq ′|) + t · (|oq| − (cos θ − sin θ) · |oq ′|)
= 2rt + (

r + |oq ′|) + t
(|oq| − r

) + tr − tλ · |oq ′|
≤ 3rt + (

r + |oq ′|) + t · |pq| − tλ · |oq ′|
= t · |pq| + r(3t + 1) + (1 − tλ) · |oq ′|.

Since d(DA,DB) ≥ s · r , we have |oq ′| ≥ s · r . We get

length(Π) ≤ t · |pq| + r(3t + 1) + sr(1 − tλ)

570 Discrete Comput Geom (2009) 41: 556–582

= t · |pq| + r · 3t + 1

λt − 1
· ((λt − 1) + (1 − tλ)

)

= t · |pq|.
This completes the proof of the lemma. �

Let t = 1 + ε for some small positive ε. (More precisely, we require 0 < ε < 1/2.)
Note that for 0 < θ < 1, we have cos θ − sin θ > 1 − θ − θ2/2. Hence, by taking
θ = ε/4 we get

cos θ − sin θ > 1 − θ − θ2/2 > 1 − 2θ = 1 − ε/2.

Hence, by Lemma 3.3 we have a (1 + ε)-spanner if we take

s = 3t + 1

(cos θ − sin θ)t − 1
<

6

(1 − ε/2)(1 + ε) − 1
< 24/ε.

This leads to the following theorem.

Theorem 3.1 For any set P of n points in the plane and any ε > 0, there exists a
C -fault tolerant (1 + ε)-spanner of P with O((n/ε3) logn) edges. The spanner can
be constructed in O((n/ε2) log2 n) time.

Proof By combining Proposition 2.1 and Lemma 3.3, the graph constructed by the
algorithm is C -fault tolerant. By Lemma 3.1 and with the construction algorithm pre-
sented below for constructing an SSPD of weight O(s2n logn), the size of the con-
structed graph is

∑

(A,B)∈SSPD

∣
∣E(A,B)

∣
∣ =

∑

(A,B)∈SSPD

(|A|/θ + |B|)

≤ 1

θ

∑

(A,B)∈SSPD

(|A| + |B|)

= O
(

s2

θ
n logn

)

= O
(

1

ε3
n logn

)

.

This proves the first part of the theorem. To prove the running time, let (A,B) be an
arbitrary pair in the SSPD and assume that radius(DA) ≤ radius(DB), where DA and
DB are two disks containing A and B, respectively, that satisfy the semi-separated
condition.

The first step of the algorithm can be done in O(|B| log |B|) time. In the second
step, we can compute the convex hull of A in O(|A| log |A|) time. For each set B(i),
sorting can be done in O(|B(i)| log |B(i)|). For every j , to add the noncrossing edges
between qj and the points on CH(A′), it is sufficient to connect qj to all the points

Discrete Comput Geom (2009) 41: 556–582 571

on CH(A′) which are between the two tangent lines of CH(A′) passing through qj .
Therefore the time we need for adding noncrossing edges is proportional to the num-
ber of edges times O(logn). Finally we can update CH(A′) in O(logm) time, where
m is the number of points on the convex hull of A′, using an online convex hull
algorithm, see [20, Chap. 3.3.6].

So in total the time for processing the pair (A,B) is bounded by

O
(|A| log |A| + |B| log |B| + |B| log

(|A| + |B|) + ∣
∣E(A,B)

∣
∣ logn

)
.

Hence the total running time is

O
(∑

(A,B)∈W

(|A| log |A| + |B| log |B| + |B| log
(|A| + |B|) + ∣

∣E(A,B)
∣
∣ logn

)
)

≤ O
(∑

(A,B)∈W

((|A| + |B|) logn + ∣
∣E(A,B)

∣
∣ logn

)
)

= O
(
s2n log2 n + n log2 n

)

= O
(
s2n log2 n

)
.

As we will see in the next section, we can compute the SSPD in O(s2n + n logn)

time, see Lemma 3.10, which proves the time complexity of the algorithm. �

3.2 Computing an SSPD

To compute an SSPD for a given point set P , we use a BAR-tree, as introduced by
Duncan et al. [9]. A BAR-tree for a point set P is a BSP-tree with the following
properties:

1. Each leaf region contains at most one point from P .
2. The tree has size O(n).
3. If we go down two levels in the tree, then the size of the subtree reduces with a

factor of β for some constant 1/2 < β < 1, so its depth is O(logn).
4. The region R(ν) associated with an (internal or leaf) node ν has aspect ratio at

most α for some constant α > 1, that is, there are concentric disks DI ⊂ R(ν) and
DO ⊃ R(ν) with radius(DO) = α · radius(DI).

Moreover, BAR-trees only use splitting lines that are horizontal, vertical, or diagonal,
therefore the complexity of every node’s region in a BAR-tree is constant.

Let T be a BAR-tree on the point set P . For a node ν, we use pa(ν) to denote the
parent of ν, and we use P(ν) to denote the subset of points from P that are stored
in the leaves of the subtree Tν rooted at ν. The weight of a node ν is the number of
points in P(ν) and is denoted |P(ν)|. We say that a node ν in T has weight class �

for some integer � if and only if |P(ν)| ≤ n/2� and |P(pa(ν))| > n/2�. The weight
class of the root is defined to be zero. We denote the collection of nodes of weight
class � by N(�). Obviously we have �logn� weight classes. Note that some of the
nodes in the tree may not be in any weight class; this can happen when the weight

572 Discrete Comput Geom (2009) 41: 556–582

of a node ν is almost the same as the weight of its parent. For example, this happens
when |P(pa(ν))| = n/2� for some � and |P(ν)| = n/2� − 1. It can also happen that
a node belongs to more than one weight class, namely when the weight of a node is
much smaller than the weight of its parent. The following lemma is straightforward.

Lemma 3.4 Every leaf node is in weight class �max, where �max = �logn�. Further-
more, on any root-to-leaf-path there is exactly one node with weight class � for any
0 ≤ � ≤ �max.

For a node ν ∈ N(�), we define its �-parent to be the node ν′ ∈ N(� − 1) that is
on the path from the root of T to ν (including ν itself). We denote the �-parent of
ν by pa(�, ν). Observe that ν can be its own �-parent, namely when ν ∈ N(�) and
ν ∈ N(� − 1). By Lemma 3.4, if ν ∈ N(�), then one of its ancestors (possibly itself)
must be in weight class � − 1, so it must have an �-parent. If μ is the �-parent of ν,
then we call ν an �-child of μ.

For a node ν in the BAR-tree, the region corresponding to ν is denoted by R(ν)

and for a region R, we let diam(R) denote the diameter of the region R. As mentioned
before, all nodes in the BAR-tree have bounded aspect ratio, that is, all aspect ratios
are bounded by some fixed constant α.

Lemma 3.5 If d(R(ν), R(μ)) ≥ (s+1)α
2 · min{diam(R(ν)),diam(R(μ))}, then there

are two disks Dν ⊃ R(ν) and Dμ ⊃ R(μ) such that

d(Dν,Dμ) ≥ s · min
{
radius(Dν), radius(Dμ)

}
.

Proof Without loss of generality assume that diam(R(ν)) ≤ diam(R(μ)). Let h be
a half-plane which contains R(μ) such that the distance between h and R(ν) is
d(R(ν), R(μ)). Note that the half-plane h can be viewed as a disk with infinite
radius that contains R(μ). Now let Dν and DI be two concentric disks such that
DI ⊂ R(ν) ⊂ Dν with radius(Dν)/ radius(DI) = α, see Fig. 6. It is easy to see that

2 radius(DI) ≤ diam
(

R(ν)
) ≤ 2 radius(Dν).

Then

d(Dν,h) = d(DI ,h) − (
radius(Dν) − radius(DI)

)

= d(DI ,h) − (α − 1) radius(DI)

≥ d(DI ,h) − α · radius(DI)

≥ d(DI ,h) − α

2
· diam

(
R(ν)

)

≥ d
(

R(ν), R(μ)
) − α

2
· diam

(
R(ν)

)
.

Therefore by setting Dμ = h we have

d(Dν,Dμ) ≥ d
(

R(ν), R(μ)
) − α

2
· diam

(
R(ν)

)

Discrete Comput Geom (2009) 41: 556–582 573

Fig. 6 Illustrating the proof of
Lemma 3.5

≥ (s + 1)α

2
· diam

(
R(ν)

) − α

2
· diam

(
R(ν)

)

≥ s · α
2

· diam
(

R(ν)
)

≥ s · α · radius(DI)

= s · radius(Dν)

≥ s · min
{
radius(Dν), radius(Dμ)

}
.

So we are done. �

Now we construct an SSPD S of the point set P using the following algorithm.

1. Construct a BAR tree T on P . Let α be the maximum aspect ratio of the region
R(ν) for any node ν ∈ T . Compute the weight classes of all nodes in T .

2. For each weight class � with 0 ≤ � ≤ �max, do the following: add to S all pairs
(P (ν),P (μ)) such that

(i) ν,μ ∈ N(�)

(ii) ν and μ are leaves or d(R(ν), R(μ)) ≥ (s+1)α
2 · min{diam(R(ν)),

diam(R(μ))}, and
(iii) d(R(pa(�, ν)), R(pa(�,μ))) <

(s+1)α
2 · min{diam(R(pa(�, ν))),

diam(R(pa(�,μ)))}.

Lemma 3.6 S is an SSPD for P with respect to s.

Proof By Lemma 3.5, all the pairs reported by the algorithm are semi-separated. The
only thing that remains to be verified is that for every pair of points p,q, there is a
unique pair (P (ν),P (μ)) ∈ S such that p ∈ P(ν) and q ∈ P(μ), or vice-versa.

For any 0 ≤ � ≤ �max, define ν(p, �) and ν(q, �) to be the nodes of N(�) on
the search path to p and q , respectively. Observe that these nodes exist and are
uniquely defined by Lemma 3.4. We have ν(p,0) = ν(q,0) = root(T), so the sets
P(ν(p,0)) and P(ν(q,0)) are the same and therefore not semi-separated. On the
other hand, ν(p, �max) and ν(q, �max) are leaves, and so the sets P(ν(p, �max)) and
P(ν(q, �max)) are singletons, and therefore it fulfills condition (ii) of the algorithm.

574 Discrete Comput Geom (2009) 41: 556–582

Hence, there must be a value � and two nodes ν(p, �) and ν(q, �) such that they fulfill
conditions (ii) and (iii) of the algorithm. The region of any node ν is contained in the
region of its parent, which is easily seen to imply that � is unique. �

To bound the weight of the SSPD, we first prove two auxiliary lemmas.

Lemma 3.7 A node ν in T can be an �-parent of at most a constant number of nodes
in T .

Proof Consider a node ν ∈ N(�−1) and let ν′ be a node such that ν = pa(�, ν′). Then
ν′ is a node in Tν (the subtree of T rooted at ν) in weight class �. Note that no other
node than ν′ in Tν′ can have ν as its �-parent. Recall that the weight of a node reduces
with a factor of β when we go down two levels in a BAR-tree. Since ν′ ∈ N(�), its
(normal) parent has weight at least n/2�. On the other hand, ν ∈ N(� − 1), so the
weight of ν is at most n/2�−1. Hence, the path between ν and ν′ consists of at most
2k links, where βk = 1/2. It follows that the total number of nodes in T that have ν

as an �-parent is bounded by 22k , which is a constant since k is a constant. �

Lemma 3.8 Let S(�) be the set of all pairs (ν,μ) such that ν,μ ∈ N(�) and
d(R(ν), R(μ)) <

(s+1)α
2 ·min{diam(R(ν)),diam(R(μ))}, where 0 ≤ � ≤ �max. Then

|S(�)| = O(α4(s + 1)2 · 2�) and

∑

(ν,μ)∈S(�)

(∣
∣P(ν)

∣
∣ + ∣

∣P(μ)
∣
∣
) = O

(
α4(s + 1)2 · n)

.

Proof We reorder the nodes in the pairs (ν,μ) such that

diam
(

R(ν)
) ≤ diam

(
R(μ)

)
.

We claim that any node ν appears in a constant number of pairs as the first element of
the pair. To show this, let (ν,μ) be an arbitrary ordered pair. Let DP(ν) be the smallest
enclosing disk of P(ν), and let o be its center. Consider the annulus A between the
disks D1 and D2 with center o and radii r1 := ((s + 1)α + 1) · radius(DP(ν)) and
r2 := r1 + radius(DP(ν)). Note that

diam
(

R(ν)
)
/2 ≤ radius(DP(ν)) ≤ diam

(
R(ν)

)
.

Since

d
(

R(ν), R(μ)
)
<

(s + 1)α

2
· diam

(
R(ν)

)
,

the region R(μ) intersect D1—see Fig. 7. Now we have two cases:

Discrete Comput Geom (2009) 41: 556–582 575

Fig. 7 Illustrating the proof of
Lemma 3.8

Case 1: The region R(μ) lies partially outside D2. By the Packing Lemma, [9,
Lemma 3.2] this can happen for O(α2(r1/(r2 − r1))) = O(α3(s + 1)) regions.

Case 2: In this case the region R(μ) lies inside D2. Because the aspect ratio of the
region R(μ) is at most α, there are two disks DI and DO such that DI ⊂ R(μ) ⊂ DO

and area(DO) ≤ α2 · area(DI), where area(A) denotes the area of the region A.
Therefore

area
(

R(μ)
) ≥ area(DI)

≥ 1

α2
· area(DO)

= 1

α2
· π(

radius(DO)
)2

≥ 1

4α2
· π(

diam
(

R(μ)
))2

≥ 1

4α2
· π(

diam
(

R(ν)
))2

≥ πr2
2

4α2 · ((s + 1)α + 2)2
.

On the other hand, the area of D2 is πr2
2 , which means that we can have at most

O(α4(s + 1)2) such regions.
Hence in total we can have O(α4(s + 1)2) pairs that have ν as the first element.

Since |N(�)| = O(2�), we can have O(2�) nodes as the first element of the pair so
|S(�)| = O(α4(s + 1)2 · 2�). The lemma follows since |P(ν)| ≤ n/2� for each ν ∈
N(�). �

Corollary 3.1 The number of pairs in the SSPD S generated by the construction
algorithm is O(α4(s + 1)2 · n).

Proof By the construction algorithm, if (P (ν),P (μ)) ∈ S and ν,μ ∈ N(�), then
(pa(�, ν),pa(�,μ)) ∈ S(� − 1). By combining this with Lemma 3.7, we conclude

576 Discrete Comput Geom (2009) 41: 556–582

that the number of pairs in S is bounded by O(
∑logn

�=0 |S(�)|). Using Lemma 3.8, we
have

|S| = O
(logn∑

�=0

∣
∣S(�)

∣
∣

)

= O
(logn∑

�=0

α4(s + 1)2 · 2�

)

= O
(
α4(s + 1)2 · n)

. �

Now we are finally ready to bound the weight of S .

Lemma 3.9 For the SSPD S generated by the construction algorithm, we have

∑

(ν,μ)∈S

(∣
∣P(ν)

∣
∣ + ∣

∣P(μ)
∣
∣
) = O

(
α4(s + 1)2 · n logn

)
.

Proof Since the number of weight classes in T is O(logn), it suffices to prove that
for every fixed �, it holds that

∑

(ν,μ)∈S
ν,μ∈N(�)

(∣
∣P(ν)

∣
∣ + ∣

∣P(μ)
∣
∣
) = O

(
α4(s + 1)2n

)
. (1)

Obviously |P(ν)| ≤ |P(pa(�, ν))| for each node ν, so we can bound (1) by

∑

(ν,μ)∈S
ν,μ∈N(�)

(∣
∣P

(
pa(�, ν)

)∣
∣ + ∣

∣P
(
pa(�,μ)

)∣
∣
)
. (2)

From the algorithm we know that

d
(

R
(
pa(�, ν)

)
, R

(
pa(�,μ)

))

<
(s + 1)α

2
· min

{
diam

(
R

(
pa(�, ν)

))
,diam

(
R

(
pa(�,μ)

))}
.

Furthermore, by Lemma 3.7 each node can be an �-parent of a constant number of
nodes. Hence, (2) can be bounded by

∑

(ν,μ)∈S(�−1)

O
(∣
∣P(ν)

∣
∣ + ∣

∣P(μ)
∣
∣
)
, (3)

where S(� − 1) is the set of all pairs (ν,μ) such that ν,μ ∈ N(� − 1) and

d
(

R(ν), R(μ)
)
<

(s + 1)α

2
· min

{
diam

(
R(ν)

)
,diam

(
R(μ)

)}
.

Discrete Comput Geom (2009) 41: 556–582 577

According to Lemma 3.8, summation (3) is O(α4(s + 1)2 · n), which completes the
proof of the lemma. �

Lemma 3.10 The SSPD of a set P of n points w.r.t. a constant s can be computed in
O(s2n + n logn) time.

Proof The BAR tree T and the weight classes of nodes of T require O(n logn) time
to compute [9]. Then we make a tree T ′ from T such that the level of each node in
T ′ represent its weight class. We do this by making the following changes in T .

1. Remove all the nodes ν with no weight class from the tree and connect the children
of ν (if exist) to the parent of ν.

2. If a node appears in k weight classes (k > 1), then repeat it k times.

By Lemma 3.7, each node in the tree T ′ has constant degree, and also the depth of
the tree is O(logn).

Using an algorithm similar to the algorithm for constructing a WSPD, we can
construct an SSPD. That is, for each internal node ν of the tree T ′, run the algorithm
FindPairs(ν1, ν2), where ν1 and ν2 are the children of ν. This algorithm tests whether
the pair satisfies condition (ii) of the construction described just before Lemma 3.6.
If they do, it reports the node pair. Otherwise it recurses on the children of ν1 and ν2,

i.e., for each child μ1 of ν1 and each child μ2 of ν2, it calls FindPairs(μ1,μ2).
Via similar arguments as in the analysis for the WSPD, the running time of the

algorithm can be shown to be O(m), where m is the size of the SSPD computed by
the algorithm. �

The following theorem summarizes the results on the SSPD construction.

Theorem 3.2 Given a set P of n points in the plane and s > 0, we can compute an
SSPD w.r.t. s of weight O(s2n logn) in time O(s2n + n logn).

4 Fault-Tolerant Geodesic Spanners

We now consider the problem of constructing fault-tolerant geodesic (1+ε)-spanners
for a set P of n points in the plane. Here we require that between any two points
u,v ∈ P outside the region fault F , there is a path in G�F whose length is at most
t times the geodesic distance between u and v in R

2 \ F . As remarked in the in-
troduction, fault-tolerant geodesic spanners do not exist unless we are allowed to
use Steiner points. As a simple example, consider a set P = {p,q} of two points.
A spanner G without Steiner points would have to connect these points by an edge.
However, this edge can be destroyed by an area fault F , leading to a situation where
dG�F (p,q) = ∞, whereas the geodesic distance between p and q in R

2 \F is finite.
Even if we are allowed to add the Steiner points, it is easy to see that a finite-size
fault-tolerant geodesic (1 + ε)-spanner does not exist when F is the family C of all
convex sets. To see this, consider two points with a convex but skinny region fault
in between. The number of Steiner points depends on the aspect ratio of the region.
Hence, we restrict the faults to the family D of disks in the plane.

578 Discrete Comput Geom (2009) 41: 556–582

Fig. 8 The Steiner points added for u,v

Our method for constructing a fault-tolerant geodesic spanner works as follows.
We first augment P with a set of 4(n − 1) Steiner points as described in Sect. 2. This
way we can get an O(n/ε2) size WSPD consisting of pairs (A,B) where the convex
hull of both A and B have at most four vertices. Now fix a pair (A,B). For every pair
of points u,v, where u is a vertex of CH(A) and v is a vertex of CH(B), we will add
a collection of O(1/ε3) Steiner points with O(1/ε4) edges between them to ensure
the following: whenever both u and v are outside the fault disk D, there is a path
connecting u and v through those Steiner points and outside D whose length is at
most (1 + ε) times the geodesic distance between u and v. This is sufficient because
whenever there are points p ∈ A and q ∈ B outside D, there are convex hull points
u ∈ CH(A) and v ∈ CH(B) outside D. Hence, we can go from p to u with a short
path (by induction), then from u to v (by construction), and then from v to q (by
induction).

Next we describe how to add Steiner points for the pair u,v. Without loss of gener-
ality we assume u and v are on a horizontal line at distance 1. Consider a unit square
placed so that uv partitions it into two equal halves. We partition this square into a
regular (1/ε) × (1/ε) grid whose cells have size ε × ε—we assume for simplicity
that 1/ε is an integer—and we put 1/ε2 equally-spaced Steiner points on each grid
line, as shown in Fig. 8. Notice that each grid cell has 1/ε Steiner points on each
of its sides and that we have O(1/ε3) Steiner points in total. For each grid cell, we
add edges between every pair of Steiner points on its boundary, thus adding O(1/ε2)

edges per cell and O(1/ε4) edges in total.
It remains to prove that for every pair of points, say u and v, we can always get

a path whose length is close to their geodesic distance when we have a disk fault D.
This can be argued as follows. Assume without loss of generality that the center of D

lies below (or on) the line through u and v. Then the geodesic between u and v will
go around D on the top side. Let D′ be the disk with the same center as D but with
radius r + √

2ε, where r is the radius of D. Note that D′ may contain u or v or both.
Let ∂D and ∂D′ denote the boundaries of D and D′, respectively. Because the

diagonal of the grid cells is
√

2ε and we have the same distance between D and D′,
we have:

Observation 4.1 No grid cell can intersect both the interior of D and ∂D′.

Discrete Comput Geom (2009) 41: 556–582 579

Fig. 9 The paths Π and Π ′

The geodesic from u to v consists of a straight line segment connecting u to some
point x on ∂D, followed by a circular arc along ∂D from x to some point y, denoted
by

�
xy, followed by a straight line segment connecting y to v. Draw two rays from o,

the common center of D and D′, through x and y, and let x′ and y′ denote the points
where these rays intersect ∂D′. Next, draw the lines tangent to D′ at x′ and y′—these
are parallel to ux and yv, respectively—and let u′ and v′ be the intersections of these
lines with the vertical lines through u and v, see Fig. 9. Finally, define Π to be the
path consisting of the segments uu′ and u′x′, followed by the arc along ∂D′ from x′
to y′, followed by the segments y′v′ and v′v.

From Π we construct a path Π ′ that uses the edges in our spanner. To this end, let
p1,p2, . . . , pk denote the intersection points of Π with the grid lines, ordered from
u to v, see Fig. 9. Note that u′ = p1 and v′ = pk . For each intersection point pi , let
p′

i be the closest Steiner point above or on Π on the same grid line. We define Π ′ to
be the path through p′

1, . . . , p
′
k . Since each edge in Π ′ is inside a grid cell intersected

by ∂D′, by Observation 4.1, the path Π ′ does not intersect D.
It remains to show that Π ′ approximates the geodesic distance. Firstly we show

the length of the path Π , denoted by length(Π), is roughly the same as the geodesic
distance between u and v. Throughout this section we denote the (Euclidean) distance
between points x and y by |xy|.

Lemma 4.1 If γ is the geodesic distance between u and v, then

length(Π) ≤ (
1 + (π + 2)

√
2ε

)
γ.

Proof By Fig. 9, it is clear that |uu′| + |u′x′| ≤ |ux| + √
2ε and |vv′| + |v′y′| ≤

|vy| + √
2ε. Let Θ = ∠xoy be the smaller angle between ox and oy; then we have

length
(�

x′y′) = (r + √
2ε)Θ

= rΘ + √
2εΘ

580 Discrete Comput Geom (2009) 41: 556–582

= length
(�
xy

) + √
2εΘ

≤ length
(�
xy

) + √
2πε.

Therefore

length(Π) = |uu′| + |u′x′| + length
(�

x′y′) + |y′v′| + |v′v|
≤ |ux| + √

2ε + length
(�
xy

) + √
2πε + |vy| + √

2ε

≤ γ + (2
√

2 + √
2 π)ε

≤ (
1 + (π + 2)

√
2ε

)
γ (since γ ≥ 1).

Note that in the case where u or v, or both, lie inside D′, the same arguments can be
used. �

Now we show that Π ′ approximates Π .

Lemma 4.2 The part of the path Π between u′ and v′ intersect at most
(2 · length(Π) + 1)/ε grid cells.

Proof If the path Π intersects one cell in each column, we are done. Other-
wise Π intersect at least two cells in the same column. It is easy to see that
the length of the part of the path Π which lies inside any two consecutive
cells in the column is at least ε. Therefore in total it can intersect at most
(2 · length(Π) + 1)/ε cells. �

Lemma 4.3 length(Π ′) ≤ (1 + 6ε) length(Π).

Proof Let �i be the length of the part of Π inside the ith cell and (p′
i , p

′
i+1) be the

edge on Π ′ in the same cell. Then obviously |p′
ip

′
i+1| ≤ �i + 2ε2. So

length(Π ′) = |up′
1| +

k−1∑

i=1

|p′
ip

′
i+1| + |p′

kv|

≤ |uu′| + ε2 +
k−1∑

i=1

(
�i + 2ε2) + |v′v| + ε2

=
(

|uu′| +
k−1∑

i=1

�i + |v′v|
)

+
k−1∑

i=1

2ε2 + 2ε2

≤ length(Π) + 2kε2

≤ length(Π) + 2
(
2 · length(Π) + 1

)
ε (Lemma 4.2)

≤ (1 + 6ε) length(Π)
(
since 1 ≤ length(Π) ≤ 2

)
. �

We obtain the following theorem.

Discrete Comput Geom (2009) 41: 556–582 581

Theorem 4.1 For any set P of n points and any ε > 0, there exists a
D-fault tolerant geodesic Steiner (1 + ε)-spanner of P with O(n/ε6) edges that
uses O(n/ε5) Steiner points.

Proof In the procedure of constructing a D-fault tolerant spanner, we added O(n)

Steiner points to have a WSPD of size O(n/ε2) such that the convex hull of each set
in the WSPD contains at most four points. Then for each pair (A,B) in the WSPD and
for each pair of points on CH(A) and CH(B), we added O(1/ε3) Steiner points and
O(1/ε4) edges between them. Therefore in total we added O(n/ε5) Steiner points,
and the graph contains O(n/ε6) edges. �

5 Concluding Remarks

We introduced the concept of region-fault tolerant spanners for planar point sets and
proved the existence of region-fault tolerant spanners of small size. We showed that
for any set of n points in the plane, we can construct a C -fault tolerant spanner of
size O(n logn) in O(n log2 n) time. The main open problem is to determine whether
our O(n logn) bound on the spanner size for arbitrary point sets can be improved
to O(n).

Our spanner construction for arbitrary point sets uses the SSPD, a relaxation of
the WSPD. A similar variant with weaker properties, the SSD, was introduced by
Varadarajan [29], who used it to solve min-cost perfect matching for points in the
plane. His algorithm runs in

√
n phases, where each phase takes time proportional

to the weight of the SSD plus the time it takes to compute the SSD. Since our
SSPD satisfies the conditions of Varadarajan’s SSD, and we can compute it more
quickly, we can improve the running time the min-cost perfect matching algorithm
from O(n3/2 log5 n) to O(n3/2 log2 n).

An interesting question is the following: given a (1 + ε)-spanner G with n vertices
and m edges, how can we check whether it is C -fault tolerant (1 + ε)-spanner? It is
not hard to see that the graph G is C -fault tolerant if it is H′-fault tolerant, where H′
is a family of O(n2) half-planes. Using a naïve approach for checking all the half-
planes leads to an algorithm which in O(mn3 + n4 logn) time using O(m) space can
find the answer. It would be interesting to see if this can be improved.

In our approach, we used straight line segments as edges in our spanners. For
geodesic spanners, it is interesting to see what happens if we are allowed to add
curved edges.

Acknowledgements The authors would like to thank Michiel Smid for pointing out the lower bound on
the weight of an SSPD and the anonymous referees for many insightful comments and suggestions.

References

1. Bollobás, B., Scott, A.: On separating systems. Eur. J. Comb. 28(4), 1068–1071 (2007)
2. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph problems in higher dimen-

sions. In: SODA’93: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 291–300. Society for Industrial and Applied Mathematics, Philadelphia (1993)

582 Discrete Comput Geom (2009) 41: 556–582

3. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J. ACM 42, 67–90 (1995)

4. Chew, L.P.: There is a planar graph almost as good as the complete graph. In SCG’86: Proceedings
of the 2nd Annual ACM Symposium on Computational Geometry, pp. 169–177 (1986)

5. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In STOC’87: Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, pp. 56–65 (1987)

6. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. In: SCG’03: Proceedings of the 19th Annual
ACM Symposium on Computational Geometry, pp. 1–10. ACM, New York (2003)

7. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput.
Geom. Appl. 7, 297–315 (1997)

8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and
Applications, 3rd edn. Springer, Berlin (2008)

9. Duncan, C.A., Goodrich, M.T., Kobourov, S.: Balanced aspect ratio trees: Combining the advances
of k-d trees and octrees. J. Algorithms 38, 303–333 (2001)

10. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computa-
tional Geometry, pp. 425–461. Elsevier, Amsterdam (2000)

11. Fischer, J., Har-Peled, S.: Dynamic well-separated pair decomposition made easy. In CCCG’05: Pro-
ceedings of the 17th Canadian Conference on Computational Geometry, pp. 235–238 (2005)

12. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In: Gonzalez, T. (ed.) Hand-
book on Approximation Algorithms and Metaheuristics. Chapman & Hall, London (2007)

13. Hansel, G.: Nombre minimal de contacts de fermeture nécessaires pour réaliser une fonction
booléenne symétrique de n variables. C. R. Acad. Sci. Paris 258, 6037–6040 (1964). Russian transl.,
Kibern. Sb. (Nov. Ser.) 5, 47–52 (1968)

14. Har-Peled, S.: On the expected complexity of random convex hulls. Technical Report 330/98, School
Math. Sci., Tel-Aviv Univ., Tel-Aviv, Israel (1998)

15. Keil, J.M.: Approximating the complete Euclidean graph. In: SWAT’88: Proceedings of the 1st Scan-
dinavian Workshop on Algorithm Theory. Lecture Notes in Computer Science, vol. 318, pp. 208–213.
Springer, Berlin (1988)

16. Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms for constructing fault-tolerant span-
ners. Algorithmica 32, 144–156 (2002)

17. Lukovszki, T.: New results of fault tolerant geometric spanners. In: WADS’99: Proceedings of the
6th Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 1663,
pp. 193–204. Springer, Berlin (1999)

18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge
(2007)

19. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
20. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)
21. Rényi, A., Sulanke, R.: Über die konvexe hülle von n zufällig gerwähten punkten I. Z. Wahrschein-

lichkeitstheor. Verw. Geb. 2, 75–84 (1963)
22. Ross, S.: A First Course in Probability, 5th edn. Prentice-Hall, New York (1998)
23. Salowe, J.S.: Constructing multidimensional spanner graphs. Int. J. Comput. Geom. Appl. 1, 99–107

(1991)
24. Salowe, J.S.: Enumerating interdistances in space. Int. J. Comput. Geom. Appl. 2(1), 49–59 (1992)
25. Smid, M.: Closest point problems in computational geometry. In: Sack, J.-R. (ed.) Handbook of Com-

putational Geometry, pp. 877–935. Elsevier, Amsterdam (2000)
26. Vaidya, P.M.: Minimum spanning trees in k-dimensional space. SIAM J. Comput. 17(3), 572–582

(1988)
27. Vaidya, P.M.: An O(n logn) algorithm for the all-nearest-neighbors problem. Discrete Comput.

Geom. 4, 101–115 (1989)
28. Vaidya, P.M.: A sparse graph almost as good as the complete graph on points in K dimensions.

Discrete Comput. Geom. 6(4), 369–381 (1991)
29. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching in the plane. In

FOCS’98: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science,
pp. 320–331 (1998)

	Region-Fault Tolerant Geometric Spanners
	Abstract
	Introduction
	Constructing C-Fault Tolerant Spanners Using the WSPD
	The Well-Separated Pair Decomposition
	Constructing a C-Fault Tolerant Spanner
	Linear-Size Spanners for Special Cases
	C-Fault Tolerant Steiner Spanners

	C-Fault Tolerant Spanners for Arbitrary Point Sets
	SSPDs and Fault-Tolerant Spanners
	Monotonicity condition

	Computing an SSPD

	Fault-Tolerant Geodesic Spanners
	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

