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Abstract In Rao (Proceedings of the 15th Annual Symposium on Computational
Geometry, pp. 300–306, 1999), it is shown that every n-point Euclidean metric with
polynomial aspect ratio admits a Euclidean embedding with k-dimensional distortion
bounded by O(

√
logn logk), a result which is tight for constant values of k. We show

that this holds without any assumption on the aspect ratio and give an improved bound
of O(

√
logn(log k)1/4). Our main result is an upper bound of O(

√
logn log logn)

independent of the value of k, nearly resolving the main open questions of Dunagan
and Vempala (Randomization, Approximation, and Combinatorial Optimization, pp.
229–240, 2001) and Krauthgamer et al. (Discrete Comput. Geom. 31(3):339–356,
2004). The best previous bound was O(logn), and our bound is nearly tight, as even
the two-dimensional volume distortion of an n-vertex path is �(

√
logn).

Keywords Finite metric spaces · Approximation algorithms · Bi-Lipschitz
geometry

1 Introduction

In the geometry of finite metric spaces, bi-Lipschitz mappings between pairs of
metric spaces play a central role. Given metric spaces (X,dX), (Y, dY ), and a map
f : X → Y , one defines the Lipschitz norm of f by

‖f ‖Lip = sup
x �=y∈X

dY (f (x), f (y))

dX(x, y)
,
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i.e., the maximum amount by which distances are expanded under f . If f is injective,
we define the distortion by Dst(f ) = ‖f ‖Lip · ‖f −1‖Lip. If ‖f ‖Lip ≤ 1, we say that
f is nonexpansive. In the present paper, we will be concerned primarily with the case
where Y = L2 and X is finite. In this case, one defines c2(X) = inff :X↪→L2 Dst(f ),
where the infimum is over all injective maps from X into a Hilbert space. This quan-
tity is referred to as the Euclidean distortion of X. In his study of the graph bandwidth
problem, Feige [7] introduced a higher-dimensional analogue of distortion for maps
into Euclidean spaces which is useful for controlling the behavior of finite subsets un-
der random projections (for a nice discussion of this and its application to bandwidth,
see [15, Chap. 15]).

For a k-point subset T ⊆ R
k−1, let conv(T ) denote the convex hull of T , and define

Evol(T ) = volk−1(conv(T )), where volk−1 denotes the (k−1)-dimensional Lebesgue
measure. The volume of an arbitrary k-point metric space S, denoted Vol(S), is then
defined as the supremum of Evol(�(S)) over all nonexpansive maps � : S → R

k−1.
Given a nonexpansive map f : X → L2, we define the (k −1)-dimensional distortion
of f by

Dstk−1(f ) = sup
S⊆X:|S|=k

[
Vol(S)

Evol(f (S))

] 1
k−1

.

In words, we measure how well f achieves the maximal Euclidean volume simulta-
neously for all subsets of size k. Observe that the one-dimensional distortion corre-
sponds with the standard notion, i.e., Dst1(f ) = Dst(f ), which considers only pairs
of points. For larger values of k, Dstk measures the distortion of higher-order struc-
tures in X. We define ck

2(X) = inff :X→L2 Dstk(f ), where the infimum is over all
injective, nonexpansive maps f . This quantity is called the k-dimensional volume
distortion of X.

For a nonexpansive map f : X → L2, we define the rigidity of f , written
rigidity(f ), as the minimum value R such that the following holds: For every x ∈ X,
Y ⊆ X, we have

dist2
(
f (x), span

{
f (y)

}
y∈Y

) ≥ d(x,Y )

R
.

We call such a map R-rigid. Finally, define r2(X) = inf{rigidity(f ) | f : X ↪→ L2}. It
is an easy (but nontrivial) observation that ck

2(X) ≤ r2(X) for any k ≤ |X| (see, e.g.,
[11, Sect. 2]).

Previous work The asymptotics of ck
2(X) and r2(X) as functions of n = |X| are

well studied because of their intrinsic geometric appeal and the application of bounds
on ck

2(X) to graph-theoretic layout problems [5, 7, 18]. The first bounds, given by
Feige [7], were based on a new analysis of Bourgain’s embedding [3] and showed that
ck

2(X) ≤ O(logn + √
k log k logn) for any n-point metric space X. Later, Rao [17]

showed that ck
2(X) ≤ O(logn)3/2 for any 1 ≤ k ≤ n. (Rao’s paper does not contain

this result, but as observed by A. Gupta, it follows from his work in combination
with known metric partitioning techniques [2, 14].) In fact, using Rao’s technique,
one obtains the stronger bound r2(X) ≤ O(logn)3/2. Finally, Krauthgamer et al. [12]
gave the optimal bound r2(X) ≤ O(logn). (We remark that this bound is a special
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case of our analysis for the Euclidean subsets, see Corollary 3.6.) The matching lower
bound (based on expander graphs) is proved in [11, Sect. 3.5].

The Euclidean Case One natural case, which arises in the analysis of a semi-definite
program for bandwidth [5], occurs when X is an n-point subset of some Euclidean
space. The rounding algorithm of [5] proceeds in three steps (following Feige’s orig-
inal algorithm [7]):

1. Solve an SDP for the graph bandwidth problem, applied to a graph on n vertices.
This yields an n-point subset S ⊆ R

n.
2. Embed the subset S back into R

n using an embedding f with small volume dis-
tortion.

3. Project the subset f (S) ⊆ R
n onto a random line and output the induced linear

ordering.

Step (2) is a pre-processing step used to ensure that the set of points behaves well
under random projection. We refer to [5, 7, 15, 18] for details about graph bandwidth,
and how volume distortion relates to random projections.

For the Euclidean case, Rao [17] exhibited the bound ck
2(X) ≤ O(

√
logn logk),

with the caveat that the ratio of the maximum to minimum pairwise distance in
X must be bounded by some polynomial in n. Furthermore, this bound is essen-
tially tight for constant values of k, as exhibited independently by Dunagan and
Vempala [5], and Krauthgamer, Linial, and Magen [11]: If Pn is the path met-
ric on n-points, then c2

2(Pn) = �(
√

logn). In those papers, it is asked whether
ck

2(X) ≤ O(
√

logn) for every n-point subset of some Euclidean space and every
value 1 ≤ k ≤ n. In the present work, we nearly resolve this open problem.

Theorem 1.1 For any n-point subset X ⊆ R
n, we have r2(X) = O(

√
logn log logn).

In particular, ck
2(X) = O(

√
logn log logn) for any 1 ≤ k ≤ n.

Furthermore, for constant values of k, we achieve the optimal distortion without
requiring bounds on the ratio of maximum to minimum distance in X.

Theorem 1.2 For any n-point subset X ⊆ R
n and 1 ≤ k ≤ n, ck

2(X) =
O(

√
logn(logk)

1
4 ).

Clearly this result is dominated by the preceding theorem for k 
 2(log logn)4
. These

theorems are proved in Sects. 4.1 and 4.2, respectively. We remark that every step of
the proofs can be made algorithmic (i.e., can be carried out in time polynomial in n)
in a straightforward way. Using the latter theorem in the algorithm of [5] yields a
marginal improvement of O(log logn)1/4 to the best-known approximation ratio for
graph bandwidth. We obtain only this small improvement because in their analysis,
one takes k = �(logn).

Our approach makes a connection between the value of r2(X) and a seemingly
simpler parameter which we now define.
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Definition 1.3 For a number d ∈ N, let h(d) be the smallest value such that there ex-
ists a nonexpansive map Fd : R

d → L2 satisfying the following conditions for every
x ∈ R

d .

1. ‖Fd(x)‖2 ≤ 30/h(d).
2. If B(x,1) is the ball of radius 1 around x, then

dist2
(
Fd(x), span

{
Fd(y)

}
y∈Rd\B(x,1)

) ≥ 1

h(d)
,

where dist2(x, S) = infy∈S ‖x − y‖2 for a subset S ⊆ L2.

The value 30 is somewhat arbitrary (as any large enough constant would suffice).

Observe that h(·) is monotone in the sense that h(d + 1) ≥ h(d) for all d ≥ 1,
since R

d ⊆ R
d+1 with the canonical identification. The connection between h(d) and

r2(X) is contained in the following theorem.

Theorem 1.4 If h(d) ≤ O(dε) for some ε ≥ 1
2 , then

sup
{
r2(X) : X ⊆ L2, |X| = n

} ≤ O(logn)ε log logn.

At the highest level, the proof of Theorem 1.4 constructs a rigid embedding for
X ⊆ R

n by decomposing it into various subsets (these subsets are formed from a
combination of random partitioning and variable-rate random sampling), projecting
such a subset into a low-dimensional subspace and then applying a variant of an
appropriate map Fd : R

d → L2 from the family defined above. The different embed-
dings are then glued together using smooth partitions of unity; see Sect. 1.2 for a
more detailed proof overview.

Our second contribution, which completes the proof, is a bound on the value
of h(d).

Theorem 1.5 h(d) = O(
√

d).

Theorem 1.5 is proved in Sect. 2, while the transference argument of Theorem 1.4
combines results from Sects. 2 and 3, and is completed in Sect. 4. After introduc-
ing some preliminaries, we present an overview of the proof in Sect. 1.2. Finally,
in Sect. 4.3, we outline an approach which might achieve the optimal bound of
O(

√
logn).

1.1 Preliminaries

For a metric space (X,d) and a subset S ⊆ X, we write Nδ(S) = {x ∈ X :
d(x,S) ≤ δ}. We write B(x, r) = {x ∈ X : d(x, y) ≤ r} for the closed ball of radius
R about x, and A(x, r1, r2) = B(x, r2)\B(x, r1).
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Hilbert Spaces and Random Mappings Throughout the paper, L2 represents a sep-
arable, infinite-dimensional Hilbert space. Given a Hilbert space Z and two maps
f,g : X → Z, we define the map f ⊕g : X → (Z⊕Z) by (f ⊕g)(x) = (f (x), g(x)).
We extend this definition to more than two maps (and even countably infinite sums)
in the obvious way. If Z = L2, we will routinely view f ⊕ g as a function taking
values in L2 (under some canonical isomorphism). Of course, if X is finite (as will
usually be the case), one can assume that Z = R

|X|−1.
Often, it will be useful to construct embeddings into Hilbert spaces of random

variables. Given a probability space (�,Pr), we let L2(�,Pr) denote the space of
all L2-valued random variables defined (and measurable) with respect to (�,Pr).

Given such A ∈ L2(�,Pr), one has ‖A‖L2(�,Pr) =
√

E�‖A‖2
2. If X is finite, then one

can often convert a mapping f : X → L2(�,Pr) to a map f ′ : X → R
d by randomly

sampling coordinates from the distribution of the embedding. In all our constructions,
poly(k, log |X|) random samples suffice when trying to preserve the k-dimensional
volume distortion achieved by f .

Decomposability We now recall the notion of padded decomposability. Given a
partition P of X and x ∈ X, we denote by P(x) ∈ P the unique element of P to
which x belongs. In what follows we sometimes refer to P(x) as the cluster of x.
Following [12], we define the modulus of padded decomposability of X, denoted αX ,
as the least constant α > 0 such that for every τ > 0, there is a distribution ν over
partitions of X with the following properties.

1. For all P ∈ supp(ν) and all C ∈ P , we have that diam(C) < τ .
2. For every x ∈ X, we have that

ν
{
P : B(x, τ/α) ⊆ P(x)

} ≥ 1

2
.

The results of [2, 14] imply that αX = O(log |X|), and this will be used in our proof.

1.2 Proof Overview

We recall that our goal is to prove that for every n-point subset X ⊆ R
n, we have

r2(X) ≤ O(
√

logn log logn). Our approach breaks into three steps.
1. Handling a single scale. We show that there exists a constant C > 0 such that

for every finite subset S ⊆ L2 and every τ ≥ 0, there exists a nonexpansive map
fS,τ : S → L2 such that for every x ∈ S,

dist2
(
fS,τ (x), span

{
fS,τ (y)

}
y∈S\B(x,τ)

) ≥ τ

C
√

log |S| . (1)

This is done by first obtaining a bi-Lipschitz projection of S into a k = O(log |S|)-
dimensional Euclidean space [9]. Once in R

k , we ignore the set S and concentrate on
proving (1) for all x ∈ R

k . This is crucial since our bound on the Lipschitz constant
of fS,τ will depend on the fact that R

k is a geodesic space (or at least “coarsely”
geodesic at scales smaller than τ/k).
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Our construction then proceeds using a method of “local random projections”
introduced by Rao [17]. Essentially, using Rao’s method, we are able to enjoy the
benefits of random projection for close pairs of points, while maintaining complete
independence for pairs x, y ∈ R

k with ‖x −y‖2 
 τ . This independence is necessary
to achieve the strong lower bound required by (1). We remark that Rao’s analysis is

only able to obtain the bound (1) with
√

log |S| replaced by (log |S|) 3
4 .

2. Passing to a dependence on the local growth ratio. The next goal is to obtain,
for every τ ≥ 0, a nonexpansive map ϕτ : X → L2 which satisfies

dist2
(
ϕτ (x), span

{
ϕτ (y)

}
y∈X\B(x,τ)

) ≥ τ

C

√
log |B(x,τ)|

|B(x,τ/4)|
. (2)

The actual lower bound we obtain is slightly weaker (this is one source of the extra
O(log logn) term in our result).

This is done by extending the framework of [1] for smoothly piecing together
global single-scale maps from maps defined only on small subsets (these subsets are
formed out of a combination of random partitioning and random sampling). There are
a number of difficulties involved in extending this to the domain of volume distortion
(as opposed to one-dimensional distortion). In applying the method of [1], we are
confronted with the problem of extending nonexpansive maps f : S → L2 from a
subset S ⊆ X to maps f̃ : X → L2 which are nonexpansive on the whole space. One
difference from [1] is our use of Kirszbraun’s extension theorem [10] for extending
Lipschitz maps between Hilbert spaces. This is necessary in our setting because the
maps produced by Step (1) above are not of Fréchet type, and thus extension is a
nontrivial issue.

A more serious difficulty arises in the process of extension: We must not only
maintain a Lipschitz bound (i.e., an upper bound on ‖ϕt‖Lip), but we must also ex-
tend the lower bound of (1) to apply to the span of larger sets of points. (Observe
that in (2) we consider y ∈ X\B(x, τ), while in (1), we have only a guarantee for
y ∈ S\B(x, τ).) Here, we make use of the power of rigid embeddings: they behave
particularly nicely under partitions of unity. By a partition of unity on a metric space
(X,d), we mean a family of maps {ρt : X → [0,1]} such that for every x ∈ X,∑

t ρt (x) = 1. Such a family is distinguished from an arbitrary set of weight func-
tions on X by the fact that we usually require some smoothness condition from each
ρt : X → [0,1]. In our case, all partitions of unity will be Lipschitz, and we will care
greatly about the norms ‖ρt‖Lip.

In order to apply the techniques of [1, 13], given a function φ : X → L2, we are
often confronted with the problem of analyzing the product function g(x) = ρt (x) ·
φ(x) (this is the map φ “localized” under the partition of unity ρt ). Bounds on ‖g‖Lip
are controlled in the usual way (the chain rule) via the quantities supx∈X ‖φ(x)‖2,
‖φ‖Lip, and ‖ρt‖Lip. However, providing good control on the lower bounds becomes
more delicate.

Fortunately, the simple inequality (where {cy} ⊆ R are real constants),
∥∥∥∥φ(x)−

∑
y∈Y

cyg(y)

∥∥∥∥
2
=

∥∥∥∥φ(x)−
∑
y∈Y

cyρt (y)φ(y)

∥∥∥∥
2
≥ dist2

(
φ(x), span

{
φ(y)

}
y∈Y

)

(3)
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allows us to freely use well-behaved partitions of unity since the {ρt (y)} multipliers
are absorbed into the span.

In particular, this allows us to “dampen” the map ϕτ away from various subsets
S ⊆ X, while absorbing this dampening into the span (see Claim 3.7).

3. Gluing for volume distortion. The last step in the proof is to establish an ana-
logue of the scale gluing methodology of [12, 13] for embeddings with small volume
distortion, as opposed to bi-Lipschitz embeddings. This is taken up in Sect. 3. Since
our embeddings are not of Fréchet type, our starting point is the author’s work [13]
based on combining single-scale embeddings under partitions of unity. We are able
to adapt those techniques to our setting by again using the observation (3) above (see
Theorem 3.5).

This allows us to transform the ensemble of maps {ϕτ }τ≥0 from (2) into a genuine
rigid embedding that simultaneously handles all the scales.

2 Local Random Projections

This section contains most of our results specifically about the geometry of finite-
dimensional Euclidean spaces. First, we prove Theorem 1.5, yielding the estimate
h(d) = O(

√
d). In fact, for simplicity, we will only prove it for compact subsets

Z ⊆ R
d . The general case follows by a standard argument which we omit for the sake

of simplicity. We remark that the compact case is all that is required for applications
throughout the paper.

Lemma 2.1 There exists a constant β ∈ (0,1) such that the following holds. Let
τ ≥ 0 and d ∈ N be given, and let Z ⊆ R

d be a compact subset. Then there exists a
map F : R

d → L2 such that

1. ‖F‖Lip ≤ 1.
2. ‖F(x)‖2 ≤ 28βτ/

√
d for all x ∈ Z.

3. For all x ∈ Z, denoting C(x) = Z\B(x, τ),

dist2
(
F(x), span

{
F(y)

}
y∈C(x)

) ≥ βτ√
d

.

Proof Without loss of generality, we assume that d ≥ 3. We may assume that Z is
convex by simply replacing Z with the closure of its convex hull. Clearly we may also
assume that Nτ (Z) ⊆ B for some closed ball B of sufficiently large radius R. Let vold
denote the d-dimensional Lebesgue measure normalized so that vold(B) = 1. Let T

be a uniformly random m-point subset of B, where m = vold(B)/vold(B(x, τ/4))

(we may assume that m is an integer by enlarging B). Thus for every z ∈ Z, we have
E|T ∩ B(z, τ/4)| = 1.

We now define the random mapping γ : Z → R by

γ (x) = min

(
max

{
0,dist2(x, T ) − τ

4

(
1 − 2

d

)}
,

τ

2d

)
. (4)
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By standard volume arguments, we have

vold

(
B

(
x,

τ

4

)∖
B

(
x,

(
1 − 1

d

)
τ

4

))
≈ vold

(
B

(
x,

(
1 − 2

d

)
τ

4

))

up to constant factors (independent of the dimension d). So for x ∈ Z, we expect
γ (x) to take each of the values 0 and τ

4d
, with constant probability (correspond-

ing to the events dist2(x, T ) ≤ (1 − 2
d
) τ

4 and dist2(x, T ) ≥ (1 − 1
d
) τ

4 , respectively).
Furthermore, if ‖x − y‖2 ≥ τ , we expect that γ (x) and γ (y) behave essentially in-
dependently. The truncation of γ (x) at τ

2d
ensures that, conditioned on the value

|B(x, τ/4) ∩ T |, γ (x) and γ (y) are indeed independent. We will use this indepen-
dence between γ (x) and {γ (y)}y∈Z\B(x,τ) to achieve a good embedding.

Define � : Z → L2(Bm) by �(x) = γ (x), so that

∥∥�(x)
∥∥

L2(Bm)
=

√
E

∣∣γ (x)
∣∣2

.

Fix some x ∈ Z and values {cy}y∈C(x) ⊆ R. Let Eclose be the event that
|B(x, τ/4) ∩ T | = 1, and note that Pr(Eclose) ≥ 1

5 . Now observe that after condi-
tioning on Eclose, the values {γ (y)}y∈C(x) are mutually independent of γ (x). This
follows because if dist2(y, T ) ≥ τ/2, then γ (y) = τ/(2d). Since ‖x − y‖2 ≥ τ for
every y ∈ C(x), the value of dist2(x, T ) cannot affect γ (y), conditioned on Eclose.
Thus we will be able to establish a lower bound if we can exhibit some variation
in the value of γ (x), conditioned on Eclose. Define Ein = {dist2(x, T ) ≤ (1 − 2

d
) τ

4 }
and Eout = {dist2(x, T ) ≥ (1 − 1

d
) τ

4 }. Simple volume computations show that Pr[Ein |
Eclose],Pr[Eout | Eclose] ≥ 1

8 . Finally, note that if Ein occurs, then γ (x) = 0, and if Eout
occurs, then γ (x) ≥ τ/(4d).

It follows that
∥∥∥∥�(x) −

∑
y∈Y

cy�(y)

∥∥∥∥
2

L2(Bm)

= E

∣∣∣∣γ (x) −
∑
y∈Y

cyγ (y)

∣∣∣∣
2

≥ Pr[Eclose] · E

[∣∣∣∣γ (x) −
∑
y∈Y

cyγ (y)

∣∣∣∣
2 ∣∣∣ Eclose

]

≥ Pr[Eclose] · min
{
Pr[Ein | Eclose],Pr[Eout | Eclose]

} ·
(

1

2
· τ

4d

)2

≥
(

τ

56d

)2

,

where the penultimate inequality follows from the fact that
∑

y∈Y cyγ (y) is indepen-
dent of γ (x) when conditioned on Eclose. We conclude that

dist2
(
�(x), span

{
�(y)

}
y∈C(x)

) ≥ τ

56d
. (5)



598 Discrete Comput Geom (2009) 41: 590–615

For every x ∈ Z, we have ∥∥�(x)
∥∥

L2(Bm)
≤ τ

2d
, (6)

since γ (x) ≤ τ
2d

with probability 1. We will now establish the following claim.

Claim 2.2 For some constant C ≥ 1, ‖�‖Lip ≤ C/
√

d .

Assuming the claim, we finish the proof using the following classical theorem of
Kirszbraun [10].

Theorem 2.3 Let H,H ′ be Hilbert spaces, S ⊆ H , and f : S → H ′ a Lipschitz map.
Then there exists an extension f̃ : H → H ′ such that f̃ |S = f and ‖f̃ ‖Lip ≤ ‖f ‖Lip.

Using Theorem 2.3, we obtain a map �̃ : R
d → L2 such that ‖�̃‖Lip = ‖�‖Lip

and �̃|Z = �. Finally, we set F = (
√

d/C) · �̃. Observe that this rescaling satisfies
‖F‖Lip ≤ 1 and improves the lower bound (5) to satisfy condition (3) of Lemma 2.1
with β = 1

56·C . We now move onto the proof of the claim.

Proof of Claim 2.2 In what follows, we use ‖ · ‖ = ‖ · ‖2 to denote the 2-norm
on R

d . Recall that, for x, y ∈ Z, we wish to prove that ‖�(x) − �(y)‖L2(Bm) ≤
C√
d
‖x − y‖ for some fixed constant C > 0. The idea is that we can think of the

map x �→ dist2(x, T ) like a “local” projection onto a randomly oriented direction (in-
deed, the closest point to x from T has a spherically symmetric distribution about x,
conditioned on dist2(x, T ) ≤ τ ). If x, y ∈ Z share the same closest point, then they
experience the same “projection.” The only caveat is that, conditioned on x and y

sharing the same closest point, the distribution of that point is no longer spherically
symmetric with respect to x or y.

In proving the claim, we may assume that ‖x − y‖ ≤ δ for any δ > 0. If the
Lipschitz condition holds for such x, y, then it holds for all pairs as follows. Let
x′, y′ ∈ Z be arbitrary, and let � be the line connecting x′, y′. Since Z is con-
vex, we have � ⊆ Z. Let x′ = x1, x2, . . . , xk = y′ be a subdivision of � such that
‖xi − xi+1‖ ≤ δ for every 1 ≤ i ≤ k − 1. Observe that under our assumptions,

∥∥�(x′) − �(y′)
∥∥

L2(Bm)
≤

k−1∑
i=1

∥∥�(xi) − �(xi+1)
∥∥

L2(Bm)

≤ C√
d

k−1∑
i=1

‖xi − xi+1‖ = C√
d

‖x′ − y′‖.

Before proceeding, we need to apply the following standard volume estimate.

Lemma 2.4 If u,v ∈ R
d and s > 0, then

vold(B(u, s) ∩ B(v, s))

vold(B(u, s))
≥ 1 − 4

√
d‖u − v‖

s
.
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Let Eshare be the event that x and y share the same closest point in T , i.e., there
exists z ∈ T such that ‖x − z‖ = dist2(x, T ) and ‖y − z‖ = dist2(y, T ) (having
a nonunique closest point is an event of measure zero, which we ignore). Using
Lemma 2.4, there exists some δ > 0 such that if ‖x −y‖ ≤ δ, then Pr(Eshare) ≥ 1− 1

d
.

To see this, observe that for any R > 0, if dist2(x, T ) = R, then Eshare happens un-
less there is a sample point in B(y,R)\B(x,R), and the probability of this can be
bounded using Lemma 2.4.

Proposition 2.5 For δ > 0 small enough and for every x, y ∈ Z with ‖x − y‖ ≤ δ,
we have

E
[∣∣γ (x) − γ (y)

∣∣2 ∣∣ Eshare,dist2(x, T ),dist2(y, T ) ≤ τ
] ≤ ‖x − y‖2

�(d)
.

Proof Let z ∈ T be the closest point to x from T , and assume without loss that
z /∈ {x, y}. Let u ∈ Sd−1 be a uniformly chosen unit vector. By standard arguments,
we have the bound

Pr

[∣∣〈x − y,u〉∣∣2
> t

‖x − y‖2

d

]
≤ 2e−t/2,

see, e.g., [15, Chap. 14]. Observe that when z ∈ B(x, τ), the random vector x−z
‖x−z‖ is

distributed identically to u, so using the fact that Pr(Eshare) ≥ 1
2 (assuming δ small

enough),

Pr

[∣∣∣∣
〈
x − y,

x − z

‖x − z‖
〉∣∣∣∣

2

> t
‖x − y‖2

d

∣∣∣ Eshare,dist2(x, T ) ≤ τ

]
≤ 4e−t/2. (7)

Indeed, the same bound holds with the roles of x and y exchanged. Finally, we ob-
serve that if Eshare occurs, then

∣∣γ (x) − γ (y)
∣∣ ≤ ∣∣dist2(x, T ) − dist2(y, T )

∣∣ = ∣∣‖x − z‖ − ‖y − z‖∣∣
≤

∣∣∣∣
〈
x − y,

x − z

‖x − z‖
〉∣∣∣∣ +

∣∣∣∣
〈
x − y,

y − z

‖y − z‖
〉∣∣∣∣. (8)

The last inequality may be easily checked for z = (0,0), x, y ∈ R
2. Combining (7)

and (8) and integrating over t easily yield the desired expectation bound. �

Let E = {Eshare,dist2(x, T ),dist2(y, T ) ≤ τ }, and note that Pr(E ) ≥ 1 − 1
2d

using
the fact that Pr(B(x, τ ) ∩ T = ∅) ≤ 4−d (and a similar bound holds for y, even con-
ditioned on dist2(x, T ) ≤ τ ). Now, observe that

∣∣γ (x) − γ (y)
∣∣ ≤ ∣∣dist2(x, T ) − dist2(y, T )

∣∣ ≤ ‖x − y‖,

hence using Proposition 2.5,
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∥∥�(x) − �(y)
∥∥2

L2(Bm)
= E

∣∣γ (x) − γ (y)
∣∣2

≤ Pr(E ) · E
[∣∣γ (x) − γ (y)

∣∣2 ∣∣ E
] + (

1 − Pr(E )
) · ‖x − y‖2

≤ ‖x − y‖2

�(d)
.

It follows that ‖�‖Lip ≤ 1/�(
√

d). �

Our bound on ‖�‖Lip completes the proof. �

3 Gluing for Volume-Preserving Embeddings

This sections concerns the following two theorems. First, we need a definition. Given
a metric space (X,d) and a 1-Lipschitz map ϕ : X → L2, we define rigidity≤k(ϕ) to
be the smallest value R ≥ 0 such that for every S ⊆ X with |S| ≤ k, we have

dist2
(
ϕ(x), span

{
ϕ(y)

}
y∈S

) ≥ d(x,S)

R
.

For a space X, we define rigidity≤k(X) to be the infimal value of rigidity≤k(ϕ) over all
1-Lipschitz maps ϕ : X → L2. We recall that ck

2(X) ≤ rigidity≤k(X) (see [7, 11]).

Theorem 3.1 Let (X,d) be an n-point metric space, let A be a collection of subsets
of X, and let R ≥ 1. Suppose that for every τ ≥ 0, there exists a 1-Lipschitz map
ψτ : X → L2 which satisfies the following.

1. For every x ∈ X, ‖ψτ (x)‖2 ≤ τ .
2. For every x ∈ X and every subset S ∈ A,

dist2
(
ψτ (x), span

{
ψτ (y)

}
y∈S\B(x,τ)

) ≥ τ/R.

Then there exists a 1-Lipschitz map ϕ : X → L2 such that, for every x ∈ X and every
S ∈ A,

dist2
(
ϕ(x), span

{
ϕ(y)

}
y∈S

) ≥ d(x,S)

O(
√

R logn)
.

In particular, if A = {S ⊆ X : |S| ≤ k}, then rigidity≤k(ϕ) = O(
√

R logn), hence also
ck

2(X) ≤ O(
√

R logn).

The next theorem is more technical, so we begin with an informal description.
We assume the existence of maps ψS,τ : X → L2 which are “volume-preserving” for
points in S ⊆ X at scale τ , where the volume distortion depends only on |S|. The
theorem glues these maps together to obtain a map which is volume-preserving for
all points at all scales.
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Theorem 3.2 Let X be an n-point metric space. Let L > 0, ε ∈ [ 1
2 ,1], and β ≤ 1

2 be
constants. Suppose that for every τ ≥ 0 and every subset S ⊆ X, there is a 1-Lipschitz
map ψS,τ : X → L2 satisfying the following. Let δS = β(log |S|)−ε .

1. For every x ∈ X, ‖ψS,τ (x)‖2 ≤ LδSτ.

2. For every x ∈ S,

dist2
(
ψS,τ (x), span

{
ψS,τ (y) : y ∈ NLδSτ (S)\B(x, τ)

}) ≥ δSτ.

Then there exists a map ϕ : X → L2 with rigidity(ϕ) = O((logn)ε log logn).

3.1 Proof of Theorem 3.1

3.1.1 The Quotient-Decomposition Technique

In this section, we handle a base case. First, we recall a result that follows from the
techniques of [17], together with the decomposition theorem of [4, 6], and which
first appeared in [12]. We say that a measure μ on a finite space X is nondegenerate
if μ(x) > 0 for every x ∈ X.

Theorem 3.3 Let X be a finite metric space, let μ be a nondegenerate measure on
X, and let τ > 0. Then there exists a 1-Lipschitz map γτ : X → L2 such that for every
x ∈ X, ‖γτ (x)‖2 ≤ τ and

dist2
(
γτ (x), span

{
γτ (y)

}
y∈X\B(x,τ)

) ≥ τ

O(1 + log μ(B(x,τ))
μ(B(x,τ/4))

)
.

For a metric space (X,d), we define the ε-path quotient of X to be the metric
space (Xε, dε) which is defined as follows. Xε is the set of equivalence classes of X

under the transitive closure of the relation defined by x ∼ε y ⇔ d(x, y) ≤ ε, while
dε is the path metric in Xε (with respect to d): For x ∈ X, let x̄ ∈ Xε represent the
equivalence class of x; then for x, y ∈ X, we define

dε(x̄, ȳ) = inf

{
k−1∑
i=0

d(xi, xi+1) : k ∈ N, x0 ∈ x̄, xk ∈ ȳ, xj ∈ X,0 ≤ j ≤ k

}
,

where as usual for A,B ⊆ X, d(A,B) = infa∈A,b∈B d(a, b). Also, starting from a
measure μ on X, there is natural induced measure με on Xε defined by με(x̄) =∑

x∈x̄ μ(x).
We now prove the main theorem of this section. The result is essentially known

but has not appeared anywhere previously. The proof relies on quotients to retain
a bound on the Lipschitz constant of the embedding (see, e.g., [2, 15]) and the ob-
servation from [8] that “volume growth” at one scale is roughly maintained under
path-quotients.
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Theorem 3.4 Let (X,d) be an n-point metric space. Then there exists a map � :
X → L2 satisfying ‖�‖Lip ≤ O(

√
logn), and for every x ∈ X and every k ∈ Z,

dist2
(
�(x), span

{
�(y)

}
y∈X\B(x,2k)

) ≥ 2k

O(1 + log[ |B(x,2k)|
|B(x,2k−3)| ])

.

Proof For each k ∈ Z, define εk = 2k−1/n. Letting Bε(·, ·) represent balls in (Xε, dε),
we have the following two sets of inequalities.

1. For every x ∈ X, μεk
(Bεk

(x̄,2k−1)) ≤ μ(B(x,2k)).

This follows from the fact that for x, y ∈ X, one has

dεk
(x̄, ȳ) ≥ d(x, y) − (n − 1) · εk ≥ d(x, y) − 2k−1, (9)

because every shortest path in X has at most n − 1 steps (thus at most (n − 1) · εk

distance is contracted in the quotient). The second family of inequalities follows triv-
ially:

2. For every x ∈ X, μεk
(Bεk

(x̄,R)) ≥ μ(B(x,R)) for every R ≥ 0.

In particular, combining (1) and (2), we see that for x ∈ X,

log

[
μεk

(Bεk
(x̄,2k−1))

μεk
(Bεk

(x̄,2k−3))

]
≤ log

[
μ(B(x,2k))

μ(B(x,2k−3))

]
.

Now, let μ(·) = | · | be the counting measure on X. Applying Theorem 3.3 to
(Xεk

, dεk
) and μεk

with τ = 2k−1, we obtain a 1-Lipschitz map γk : Xεk
→ L2. We

may clearly think of γk as a map also on X by defining γk(x) = γk(x̄). Finally, we
define � : X → �2(L2) by

�(x) =
⊕
k∈Z

[
γk(x) − γk(x0)

]
,

where x0 ∈ X is some fixed basepoint.
To see that � is well defined (i.e., that the 2-norm of �(x) is bounded for every

x ∈ X), let x, y ∈ X be fixed, and let k0 ∈ Z be such that d(x, y) ∈ [2k0 ,2k0+1]; then

∑
k∈Z

∥∥γk(x) − γk(y)
∥∥2

2 =
∑

k≤�log2 n�+k0+2

∥∥γk(x) − γk(y)
∥∥2

2 (10)

≤
∑
k<k0

22k +
�log2 n�+k0+2∑

k=k0

d(x, y)2 (11)

≤ O(logn) · d(x, y)2, (12)

where in (10) we have used the fact that for k ≥ �log2 n� + k0 + 2, we have
εk ≥ 2k0+1 ≥ d(x, y), hence γk(x) = γk(y) because x and y belong to the same
equivalence class of Xεk

, in (11) we have used ‖γk(x)‖2 ≤ 2k−1 and ‖γk‖Lip ≤ 1
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from Theorem 3.3, and in (12) we evaluated a geometric sum. It follows that
‖�‖Lip ≤ O(

√
logn).

Now, fix x ∈ X and k ∈ Z. Observe that by (9), we have d(x, y) ≥ 2k ⇒
dεk

(x̄, ȳ) ≥ 2k−1. It follows that

dist2
(
�(x), span

{
�(y)

}
y∈X\B(x,2k)

)
≥ dist2

(
γk−1(x), span

{
γk−1(y)

}
y∈X\B(x,2k)

)
≥ dist2

(
γk−1(x̄), span

{
γk−1(ȳ)

}
ȳ∈Xεk

\Bεk
(x̄,2k−1)

)

≥ 2k

O(1 + log[μεk
(Bεk

(x̄,2k−1))

μεk
(Bεk

(x̄,2k−3))
])

≥ 2k

O(1 + log[ |B(x,2k)|
|B(x,2k−3)| ])

.

�

3.1.2 Multi-Scale Gluing

In this section, we prove some multi-scale gluing lemmas for volume-preserving em-
beddings and finish the proof of Theorem 3.1. The following theorem adapts a con-
struction of the author [13] to the case of volume-preserving maps.

Theorem 3.5 (Gluing for rigidity) Let (X,d) be an n-point metric space and
A,B ≥ 1, η > 0, and for every m ∈ Z, let φm : X → L2 be a 1-Lipschitz map such
that ‖φm(x)‖2 ≤ η · 2m/B for every x ∈ X. Then there is a map ϕ : X → L2 satisfy-
ing

1. ‖ϕ‖Lip ≤ O(η
√

logn log(AB)).
2. For every x ∈ X, m ∈ Z, and Y ⊆ X,

dist2
(
ϕ(x), span

{
ϕ(y)

}
y∈Y

)

≥
√⌊

log
|B(x,2m+1A)|
|B(x,2m/B)|

⌋
· dist2

(
φm(x), span

{
φm(y)

}
y∈Y

)
.

Proof First, we restate the construction of [13] in a slightly modified form. Let ρ :
X → R≥0 be any 2B-Lipschitz map with ρ ≡ 1 on [1/B,2A] and ρ ≡ 0 outside
[1/2B,4A]. For x ∈ X and t ≥ 0, define

R(x, t) = sup
{
R : ∣∣B(x,R)

∣∣ ≤ 2t
}

and observe that R(·, t) is 1-Lipschitz for every value of t . Moreover, for each m ∈ Z,
define

ρm,t (x) = ρ

(
R(x, t)

2m

)
.
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Now, for each t ∈ {1,2, . . . , �log2 n�}, define ψt : X → �2(L2),

ψt(x) =
⊕
m∈Z

ρm,t (x) · φm(x).

Finally, let ϕ = ψ1 ⊕ ψ2 ⊕ · · · ⊕ ψ�log2 n�.
First, we bound ‖ψt‖Lip as follows.

∥∥ψt(x) − ψt(y)
∥∥2

2 =
∑
m∈Z

ρm,t (x)+ρm,t (y)>0

∥∥ρm,t (x)φ̂m(x) − ρm,t (y)φ̂m(y)
∥∥2

2.

The number of nonzero summands above is at most O(logA + logB). Furthermore,
each summand can be bounded as follows.

∥∥ρm,t (x)φ̂m(x) − ρm,t (y)φ̂m(y)
∥∥

2

≤ ∥∥φ̂m(x)
∥∥

2

∣∣ρm,t (x) − ρm,t (y)
∣∣ + ∥∥φ̂m(x) − φ̂m(y)

∥∥
2

∣∣ρm,t (y)
∣∣

≤
(

‖ρm,t‖Lip
η · 2m

B
+ ‖φm‖Lip

)
d(x, y)

≤ (2η + 1) d(x, y),

where we have used ‖ρm,t‖Lip ≤ 2−m‖ρ‖Lip ≤ 2−m+1B . Thus ‖ψt‖Lip ≤
O(η

√
log(AB)). It follows that ‖ϕ‖Lip ≤ O(η

√
logn log(AB)), as claimed.

To verify (2), fix x ∈ X, m ∈ Z, and real constants cy for y ∈ Y . Then,

∥∥∥∥ϕ(x) −
∑
y∈Y

cyϕ(y)

∥∥∥∥
2

2
=

�logn�∑
t=1

∥∥∥∥ψt(x) −
∑
y∈Y

cyψt (y)

∥∥∥∥
2

2

≥
�logn�∑
t=1

∥∥∥∥ρm,t (x)φm(x) −
∑
y∈Y

cyρm,t (y)φm(y)

∥∥∥∥
2

2
.

Now observe that when ρm,t (x) = 1, we have
∥∥∥∥ρm,t (x)φm(x) −

∑
y∈Y

cyρm,t (y)φm(y)

∥∥∥∥
2
≥ dist2

(
φm(x), span

{
φm(y)

}
y∈Y

)
. (13)

Hence it suffices to count the number of values of t for which ρm,t (x) = 1. By our
definitions we have that

ρm,t (x) = 1 ⇐⇒ 2m

B
≤ R(x, t) ≤ 2m+1A

⇐⇒ t ∈ [
log

∣∣B(x,2m/B)
∣∣, log

∣∣B(x,2m+1A)
∣∣].

This completes the proof since the lower bound (13) holds for �log |B(x,2m+1A)|
|B(x,2m/B)| � val-

ues of t . �
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Now we complete the proof of Theorem 3.1 along the lines of [12].

Proof of Theorem 3.1 In the applications of Theorem 3.5 that follow, we set A = 2,
B = 8, and η = 16. Let {ψτ }τ≥0 be as in the statement of the theorem, and let � :
X → L2 be the map resulting from the application of Theorem 3.5 to the ensemble
{ψ2m}m∈Z. Let γτ : X → L2 be the maps from Theorem 3.3 applied to X, and let � :
X → L2 be the result of applying Theorem 3.5 to {γ2m}m∈Z. Finally, let � : X → L2
be the map from Theorem 3.4. Consider ϕ = � ⊕ � ⊕ �.

First, we have ‖ϕ‖Lip ≤ ‖�‖Lip + ‖�‖Lip + ‖�‖Lip ≤ O(
√

logn). Now fix
x ∈ X and Y ∈ A. Let m ∈ Z be such that d(x,Y ) ∈ (2m,2m+1]. Observe that if

log |B(x,2m+3)|
|B(x,2m−3)| ≤ 1, then

dist2
(
ϕ(x), span

{
ϕ(y)

}
y∈Y

) ≥ dist2
(
�(x), span

{
�(y)

}
y∈Y

)
≥ �(1) · 2m = �(1) · d(x,Y ).

So we may assume that log |B(x,2m+3)|
|B(x,2m−3)| ≥ 1 in the arguments that follow. In this

case,

dist2
(
ϕ(x), span

{
ϕ(y)

}
y∈Y

)2

≥ dist2
(
�(x), span

{
�(y)

}
y∈Y

)2 + dist2
(
�(x), span

{
�(y)

}
y∈Y

)2

≥
⌊

log
|B(x,2m+3)|
|B(x,2m−3)|

⌋[
dist2

(
ψ2m(x), span

{
ψ2m(y)

}
y∈Y

)2

+ dist2
(
γ2m(x), span

{
γ2m(y)

}
y∈Y

)2]

≥
⌊

log
|B(x,2m+3)|
|B(x,2m−3)|

⌋[(
2m

R

)2

+
(

2m

O(1 + log |B(x,2m+3)|
|B(x,2m−3)| )

)2]

≥ �(1) · d(x,Y )2
[ log |B(x,2m+3)|

|B(x,2m−3)|
R2

+ 1

log |B(x,2m+3)|
|B(x,2m−3)|

]
≥ �(1) · d(x,Y )2

R
,

where the last line follows from the AM-GM inequality. If we now replace ϕ by
1

‖ϕ‖Lip
ϕ, where ‖ϕ‖Lip ≤ O(

√
logn), then ϕ becomes 1-Lipschitz, and the proof is

complete. �

One corollary of Theorem 3.1 is the optimal bound for general n-point metric
spaces.

Corollary 3.6 For any n-point metric space (X,d), one has r2(X) ≤ O(logn).

Proof Apply Theorem 3.1 with A = 2X to the ensemble of maps {γτ } from
Lemma 3.3 (with the counting measure μ(·) = | · |). �
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3.2 Proof of Theorem 3.2

The proof of Theorem 3.2 requires most of the results of the previous section, along
with a number of other ideas. Our approach follows [1], but with new machinery
to deal with volume-preserving embeddings. The following claim gives a way of
extending our embeddings to larger distances by dampening out the effects of distant
points.

Claim 3.7 Let (X,d) be a metric space, and suppose that for some number ε > 0,
we have a map ψ : X → L2 such that ‖ψ‖Lip ≤ 1, and ‖ψ(x)‖2 ≤ εL for all x ∈ X.
Let S,U ⊆ X, and suppose that for x ∈ S, we have

dist2
(
ψ(x), span

{
ψ(y)

}
y∈U

) ≥ ε.

Define U ′ = U ∪ (X\NεL(S)). Then there exists a map ϕ : X → L2 which satisfies
‖ϕ‖Lip ≤ 1, ‖ϕ(x)‖2 ≤ εL for every x ∈ X, and for any x ∈ Nε/4(S),

dist2
(
ϕ(x), span

{
ϕ(y)

}
y∈U ′

) ≥ ε/4.

Proof Let ρ(x) = max(0,1 − d(x,S)/(εL)) so that ‖ρ‖Lip ≤ 1/εL, and define
ϕ(x) = 1

2ρ(x)ψ(x). Then for every x, y ∈ X,

∥∥ϕ(x) − ϕ(y)
∥∥

2 ≤ 1

2

(∣∣ρ(x)
∣∣ · ‖ψ‖Lip + ∥∥ψ(y)

∥∥
2 · ‖ρ‖Lip

)
d(x, y) ≤ d(x, y).

Now, suppose that x ∈ Nε/4(S), and {cy}y∈U ′ ⊆ R. Let x′ ∈ S be such that
d(x, x′) ≤ ε/4, and recall that y /∈ NεL(S) implies ρ(y) = 0, hence∥∥∥∥ϕ(x) −

∑
y∈U ′

cyϕ(y)

∥∥∥∥
2

≥
∥∥∥∥ϕ(x′) −

∑
y∈U ′

cyϕ(y)

∥∥∥∥
2
− ∥∥ϕ(x) − ϕ(x′)

∥∥
2

≥ 1

2

∥∥∥∥ψ(x′) −
∑
y∈U

cyρ(y)ψ(y)

∥∥∥∥
2
− ε/4

≥ 1

2
dist2

(
ψ(x′), span

{
ψ(y)

}
y∈U

) − ε/4

≥ ε/2 − ε/4 = ε/4. �

The first step is to reduce the number of points we need to embed by randomly
sampling a reasonably dense subset of our space. We will need to use different
sampling rates in different regions of the space (depending upon the local volume
growth), and thus we arrive at different guarantees corresponding to the various sub-
sets Tτ (A; k) defined below.

Lemma 3.8 Assume that X satisfies the conditions of Theorem 3.2 and suppose that
A ⊆ X and k ≥ 2. Define

Tτ (A; k) =
{
x ∈ A : |A| ≤ k

∣∣∣∣B
(

x,
βτ

4(log k)ε

)∣∣∣∣
}
. (14)
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Then there exists a 1-Lipschitz map λA,k : X → L2 such that

dist2
(
λA,k(x), span

{
λA,k(y)

}
y∈X\B(x,τ)

) ≥ βτ

8(logk)ε
,

whenever x ∈ Tτ (A; k). Furthermore, for all x ∈ X, ‖λA,k(x)‖2 ≤ LδSτ .

Proof Let S be a uniformly random subset S ⊆ A with |S| = min{|A|, k}. Let hS :
X → L2 be the map defined by applying Claim 3.7 to the map ψS,τ : X → L2. Let
μ be the distribution over which the random subsets S ⊆ A are defined, and let λA,k :
X → L2(μ) be given by λA,k(x) = hS(x). Observe that ‖λA,k‖Lip ≤ 1 because this
is true of each ψS,τ , and hence by Claim 3.7, it is also true of each hS .

Fix x ∈ Tτ (A; k). Then by the definition of Tτ (A; k), with probability at least 1/e,
we have

S ∩ B

(
x,

βτ

4(log k)ε

)
�= ∅. (15)

Letting ε = δSτ , we see that conditioned on (15), x ∈ Nε/4(S). Setting U =
NεL(S)\B(x, τ), we have in this case (by assumption (2) on the map ψS,τ in Theo-
rem 3.2)

dist2
(
ψS,τ (x), span

{
ψS,τ (y)

}
y∈U

) ≥ δSτ = ε.

It follows that in the statement of Claim 3.7, U ′ = U ∪ (X\NεL(S)) = X\B(x, τ).
So that with probability 1/e, we have

dist2
(
hS(x), span

{
hS(y)

}
y∈X\B(x,τ)

) ≥ βτ

4(logk)ε
.

Hence for any x ∈ Tτ (A; k),

dist2
(
λA,k(x), span

{
λA,k(y)

}
y∈X\B(x,τ)

) ≥ 1√
e

· βτ

4(logk)ε
≥ βτ

8(logk)ε
. �

Our next step is to construct embeddings separately for different localities of the
space. These local embeddings are stitched together in a smooth way using partitions
of unity derived from random partitions of the space.

Fix a finite metric space (X,d) and for K ≥ 1 and τ ≥ 0, define

Sτ (K) =
{
x ∈ X : ∣∣B(

x,8ταX

)∣∣ ≤ K

∣∣∣∣B
(

x,
βτ

4(logK)ε

)∣∣∣∣
}
,

where we recall that αX is the modulus of decomposability of X.

Lemma 3.9 (Localization) Assume that X satisfies the conditions of Theorem 3.2.
Then for every τ ≥ 0 and k ≥ 1, there exists a 1-Lipschitz map �τ,k : X → L2 such
that for every x ∈ Sτ (k),

dist2
(
�τ,k(x), span

{
�τ,k(y)

}
y∈X\B(x,τ)

) ≥ βτ

24(logk)ε
,

and ‖�τ,k(x)‖2 ≤ LδSτ for all x ∈ X.
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Proof Let D = 4ταX and take PD to be a random partition from the αX-padded
bundle for X with diameter bound D. Define a random mapping ρ : X → R by

ρ(z) = min

{
1,

d(z,X\PD(z))

τ

}
.

Clearly ‖ρ‖Lip ≤ 1/τ . For each U ∈ PD , let λU,k : X → L2 be the corresponding map
from Lemma 3.8. Also, for every such U , let σU be a {0,1}-valued Bernoulli random
variable independent of all other variables in the proof. Finally, define a random map
�τ,k : X → L2 by

�τ,k(z) = 1

2
ρ(z) · σPD(z) · λPD(z),k(z).

Clearly ‖�τ,k(x)‖2 ≤ ‖λPD(x),k(x)‖2 ≤ LδSτ for every x ∈ X. Moreover, we
claim that ‖�τ,k‖Lip ≤ 1. Indeed, fix u,v ∈ X. If PD(u) = PD(v) = U , then

∥∥�τ,k(u) − �τ,k(v)
∥∥

2

≤ 1

2

∣∣ρ(u) − ρ(v)
∣∣ · ∥∥λU,k(u)

∥∥
2 + 1

2

∥∥λU,k(u) − λU,k(v)
∥∥

2 · ∣∣ρ(v)
∣∣

≤ 1

2

(
τ‖ρ‖Lip + ‖λU,k‖Lip

)
d(u, v)

≤ d(u, v).

Otherwise, assume that PD(u) �= PD(v). In particular,

d(u, v) ≥ max
{
d
(
u,X\PD(u)

)
, d

(
v,X\PD(v)

)}
.

It follows that
∥∥�τ,k(u) − �τ,k(v)

∥∥
2 ≤ ∥∥�τ,k(u)

∥∥
2 + ∥∥�τ,k(v)

∥∥
2

≤ d(u,X\PD(u))

2τ
· τ + d(v,X\PD(v))

2τ
· τ

≤ d(u, v).

Now suppose that x ∈ Sτ (k). Observe that since diam(PD(x)) ≤ D, we have
PD(x) ⊆ B(x,2D). It follows that since x ∈ Sτ (k), we have x ∈ Tτ (PD(x); k) (re-
call (14)). Moreover, using the defining property of the αX-padded bundle, with
probability at least 1

2 , we have d(x,X\PD(x)) ≥ τ , which implies ρ(x) = 1. If
{cy}y∈X\B(x,τ) ⊆ R, then

E

∥∥∥∥�τ,k(x) −
∑
y

cy�τ,k(y)

∥∥∥∥
2

2

≥ 1

2
E

[∥∥∥∥�τ,k(x) −
∑
y

cy�τ,k(y)

∥∥∥∥
2

2

∣∣∣ ρ(x) = 1

]
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= 1

2
E

′
[∥∥∥∥σPD(x)

(
λPD(x),k(x) −

∑
y∈PD(x)

cyρ(y)λPD(x),k(y)

)

−
∑

y /∈PD(x)

σPD(y)cyρ(y)λPD(y),k(y)

∥∥∥∥
2

2

]
,

where E
′[·] = E[· | ρ(x) = 1], and we recall that y ∈ PD(x) ⇒ PD(y) = PD(x).

Now, observe that the values {σPD(y), ρ(y), λPD(y),k(y)}y /∈PD(x) are independent of
the random variable σPD(x). We use the following simple fact: If A,B are (possi-
bly dependent) real-valued random variables and σ is an independent {0,1}-valued
Bernoulli random variable, then E|σA − B|2 ≥ 1

4E|A|2 (in particular, by integrating,
the same holds if A,B are random elements in some Hilbert space). It follows that
the last line of the above expression is at least

1

8
E

′
∥∥∥∥λPD(x),k(x) −

∑
y∈PD(x)

cyρ(y)λPD(x),k(y)

∥∥∥∥
2

2

≥ 1

8
E

′[dist2
(
λPD(x),k(x), span

{
λPD(x),k(y)

}
y∈X\B(x,τ)

)2] ≥ 1

8

(
βτ

8(logk)ε

)2

,

where the final line follows from Lemma 3.8.
Denoting by (�,μ) the probability space on which �τ,k is defined, we can think

of �τ,k as a mapping of X into the Hilbert space L2(L2,μ) for which we have just
argued that

dist2
(
�τ,k(x), span

{
�τ,k(y)

}
y∈X\B(x,τ)

) ≥ βτ

8
√

8(log k)ε
≥ βτ

24(logk)ε
. �

Now we complete the proof of Theorem 3.2 along the lines of [1].

Proof of Theorem 3.2 We claim that for every K ∈ [2, n], there exists a map fK :
X → L2 which satisfies

1. ‖fK‖Lip ≤ O(L
√

logn · log logn).
2. For every m ∈ Z and x ∈ S2m(K), we have

dist2
(
fK(x), span

{
fK(y)

}
y∈X\B(x,2m)

)

≥
√⌊

log
|B(x,2m+3αX)|

|B(x,β2m−2/(logK)ε)|
⌋

· β2m

24(logK)ε
.

Indeed, fK is obtained from an application of Theorem 3.5 to the mappings
{�2m,K }m∈Z from Lemma 3.9 with A = 4αX and B = 4(logK)ε/β (and using the
fact that αX = O(logn)).

Observe that for every m ∈ Z, S2m(n) = X. Hence, defining K0 = n and Kj+1 =√
Kj , as long as Kj ≥ 4, we obtain mappings f0, . . . , fj : X → L2 satisfying
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1. ‖fj‖Lip ≤ O(L
√

logn · log logn).
2. For all x ∈ S2m(Kj )\S2m(Kj+1), we have

dist2
(
fj (x), span

{
fj (y)

}
y∈X\B(x,2m)

)

≥
√⌊

log
|B(x,2m+3αX)|

|B(x,β2m−2/(logKj)ε)|
⌋

· β2m

24(logKj)ε

≥ √�logKj+1� · β2m

24(logKj)ε
(16)

≥ β2m

48(logKj)
ε− 1

2

, (17)

where in (16) we used the fact that x /∈ S2m(Kj+1), and in (17) we used the fact that
Kj+1 = √

Kj ≥ 2.
This procedure ends after N steps, where N ≤ O(log logn). Every x ∈ S2m(KN)

satisfies

∣∣B(x,2m+3αX)
∣∣ ≤ 4

∣∣B(
x,β2m

/[
4(logK)ε

])∣∣.
In particular, |B(x,2m)| ≤ 4|B(x,2m−3)|. By Theorem 3.4, there is a mapping fN+1 :
X → L2 with ‖fN+1‖Lip ≤ O(

√
logn) and such that for x ∈ S2m(KN), we have

dist2
(
fN+1(x), span

{
fN+1(y)

}
y∈X\B(x,2m)

) ≥ 2m/O(1).

(This follows because, for such x, we have log |B(x,2m)|
|B(x,2m−3)| = O(1).)

Let M = maxj=1,...,N+1 ‖fj‖Lip. Consider the map � = 1
M

√
N+1

⊕N+1
j=0 fj ,

which has ‖�‖Lip ≤ 1. Recall that M
√

N + 1 ≤ O(
√

logn log logn). Let x ∈ X, Y ⊆
X be arbitrary, and choose m ∈ Z such that d(x,Y ) ∈ (2m,2m+1]. If x ∈ S2m(KN),
then

dist2
(
�(x), span

{
�(y)

}
y∈Y

)
≥ dist2

(
�(x), span

{
�(y)

}
y∈X\B(x,2m)

)

≥ 1

M
√

N + 1
dist2

(
fN+1(x), span

{
fN+1(y)

}
y∈X\B(x,2m)

)

≥ 2m

O(1)M
√

N + 1
≥ d(x,Y )

O(
√

logn log logn)
.

Otherwise, without loss of generality there is j ∈ {0, . . . ,N − 1} such that x ∈
S2m(Kj )\S2m(Kj+1), in which case by (17)
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dist2
(
�(x), span

{
�(y)

}
y∈Y

) ≥ dist2
(
�(x), span

{
�(y)

}
y∈X\B(x,2m)

)

≥ 1

M
√

N + 1
dist2

(
fj (x), span

{
fj (y)

}
y∈X\B(x,2m)

)

≥ d(x,Y )

O(logn)ε log logn
.

It follows that rigidity(�) ≤ O(logn)ε log logn. �

4 Upper Bounds for Rigid Embeddings

4.1 The Transference Theorem

Now we finish our proof of the transference theorem (Theorem 1.4). For the sake of
simplicity, we may assume that h(d) ≥ 50 for all d ≥ 1.

Lemma 4.1 There exists a constant C ≥ 1 such that the following holds. Let H be
a Hilbert space, and suppose that S ⊆ H with |S| = k. Let τ ≥ 0 be given, and let
δ = τ/(4 · h(C logk)), where h(·) is from Definition 1.3. Then there exists a map
ϕ : H → L2 such that ‖ϕ‖Lip ≤ 1 and ‖ϕ(x)‖2 ≤ 30δ for all x ∈ H and such that for
all x ∈ S, we have

dist2
(
ϕ(x), span

{
ϕ(y) : y ∈ N30δ(S)\B(x, τ)

}) ≥ δ.

Proof Using the Johnson–Lindenstrauss flattening lemma [9], there exists a map g :
S → R

d with d = C logk such that ‖g‖Lip ≤ 1 and ‖g−1‖Lip ≤ 2, where C ≥ 1 is a
universal constant. By the Kirszbraun extension theorem [10], there exists g̃ : H →
R

d with ‖g̃‖Lip ≤ 1 and g̃(x) = g(x) for x ∈ S.
Now, let Z ⊆ R

d be a compact set which contains Nτ (Im(g)) (this set is bounded
because S, and hence Im(g), is finite). Let F : R

d → L2 be a 1-Lipschitz map satis-
fying the following.

1. For every x ∈ R
d , ‖F(x)‖2 ≤ 30τ

4h(d)
= 30δ.

2. For every x ∈ Z,

dist2
(
F(x), span

{
F(y)

}
y∈Z\B(x,τ/4)

) ≥ τ

4h(d)
= δ. (18)

Such a map follows immediately from the definition of h(·) after scaling by τ/4.
Finally, define ϕ : H → L2 by ϕ(x) = F(g̃(x)). We now make the following obser-
vations.

1. ‖ϕ‖Lip ≤ ‖F‖Lip · ‖g̃‖Lip ≤ 1.
2. For every x ∈ H , ‖ϕ(x)‖2 = ‖F(g̃(x))‖2 ≤ 30δ.

3. For every x ∈ S,

dist2
(
ϕ(x), span

{
ϕ(y) : y ∈ N30δ(S)\B(x, τ)

}) ≥ δ.
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To see this, fix x ∈ S and suppose that y ∈ N30δ(S)\B(x, τ). Let y′ ∈ S satisfy
‖y − y′‖H ≤ 30δ. Then clearly ‖g̃(y) − g̃(y′)‖2 ≤ ‖y − y′‖H ≤ τ , implying that
g̃(y) ∈ Nτ (Im(g)) ⊆ Z. Furthermore,

∥∥g̃(x) − g̃(y)
∥∥

2 ≥ ∥∥g̃(x) − g̃(y′)
∥∥

2 − ∥∥g̃(y) − g̃(y′)
∥∥

2

≥ 1

2
‖x − y′‖H − 30δ (19)

≥ 1

2

(‖x − y‖H − ‖y − y′‖H

) − 30δ

≥ τ/2 − 45δ > τ/4, (20)

where in (19), we use the fact that ‖g−1‖Lip ≤ 2, and in (20), we use the assump-
tion that h(d) ≥ 50.

To finish, write

dist2
(
ϕ(x), span

{
ϕ(y) : y ∈ N30δ(S)\B(x, τ)

})
= dist2

(
F

(
g̃(x)

)
, span

{
F

(
g̃(y)

) : y ∈ N30δ(S)\B(x, τ)
})

≥ dist2
(
F

(
g̃(x)

)
, span

{
F(y) : y ∈ Z\B(

g̃(x), τ/4
)}) ≥ δ,

where in the final line, we use the fact that for every y ∈ N30δ(S)\B(x, τ), we
have shown above that g̃(y) ∈ Z\B(g̃(x), τ/4), and to finish we have employed
estimate (18). �

Now we can finish the proof of Theorem 1.4.

Proof of Theorem 1.4 Suppose that h(d) ≤ C ·dε for some constant C ≥ 1 and ε ≥ 1
2 ,

and let X ⊆ L2 with |X| = n. In this case, applying Lemma 4.1 to a subset S ⊆ X

and a value τ ≥ 0 yields a 1-Lipschitz map ψS,τ : X → L2 satisfying ‖ψS,τ (x)‖2 ≤
30δSτ and

dist2
(
ψS,τ (x), span

{
ψ(y) : y ∈ N30δSτ (S)\B(x, τ)

}) ≥ δSτ

for x ∈ S and some δS ≥ 1/O(log |S|)ε . Applying Theorem 3.2 to this ensemble of
maps shows that rigidity(X) ≤ O(logn)ε log logn. �

Applying Theorem 1.4 with the result of Theorem 1.5 immediately yields our
desired bound.

Corollary 4.2 For any n-point subset X ⊆ L2, rigidity(X) ≤ O(
√

logn log logn).

4.2 Optimal Bounds for Constant Values of k

Now we prove Theorem 1.2. In fact, we prove a slightly stronger estimate (see the
beginning of Sect. 3 for the definition of rigidity≤k). We recall that for k = O(1),
the theorem is optimal up to a universal constant since rigidity≤2(Pn) ≥ c2

2(Pn) ≥
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�(
√

logn), where Pn is the path metric on an n-point path [5, 11], and clearly
rigidity≤1(Pn) = c2(Pn) = 1. (Map the kth point of Pn to (k, �) ∈ R

2 and let � → ∞.
The rigidity goes to 1.)

Theorem 4.3 For any n-point subset X ⊆ L2, we have rigidity≤k(X) ≤
O(

√
logn(logk)1/4).

Proof We may clearly assume that X ⊆ R
n. Let P̃n,d : R

n → R
d be a projection onto

a random d = O(log k)-dimensional subspace, let Pn,d =
√

n
d

· P̃n,d , and let Zn,d ⊆
R

d a compact set such that Pn,d(X) ⊆ Zn,d . Let Fd,τ : R
d → L2 be a random

1-Lipschitz map satisfying the following conditions for some 1
30 ≥ δ ≥ 1/O(

√
d).

1. For every x ∈ R
d , ‖Fd,τ (x)‖2 ≤ 30δτ ≤ τ.

2. For every x ∈ Zn,d ,

dist2
(
Fd,τ (x), span

{
Fd,τ (y)

}
y∈Zn,d\B(x,τ/4)

) ≥ δτ.

The existence of such a map follows from Theorem 1.5. (For those worried about
measurability, note that since X is finite, we may actually choose a finite collection
of projections P

(1)
n,k , . . . ,P

(N)
n,k in the arguments that follow. In fact, N = O(logn)

suffices; see [9, 16]. In this case, choosing a random projection consists of choos-
ing some P

(i)
n,k uniformly at random.)

Observe that for every x ∈ X, Fd,τ (Pn,d(x)) is an L2-valued random variable. Let
H be the Hilbert space of L2-valued random variables over the probability space

on which {Fd,τ (Pn,d(x))}x∈X is defined, equipped with norm ‖X‖H =
√

E‖X‖2
2.

We define ψτ : X → H by ψτ (x) = Fd,τ (Pn,d(x)). First, we have, for every x ∈ X,
‖ψτ (x)‖H ≤ τ since ‖Fd,τ (y)‖2 ≤ τ for every y ∈ R

d . Secondly, for x, y ∈ X,

∥∥ψτ (x) − ψτ (y)
∥∥2

H
= E

∥∥Fd,τ

(
Pn,d(x)

) − Fd,τ

(
Pn,d(y)

)∥∥2
2

≤ E
∥∥Pn,d(x) − Pn,d(y)

∥∥2
2

= ‖x − y‖2
2,

implying that ‖ψτ‖Lip ≤ 1.
Now, fix x ∈ X and consider any subset S ⊆ X with |S| = k. From [9], by choosing

d = O(log k) large enough, we know that with probability at least 1
2 over the choice

of Pn,d : R
n → R

d , we have, for every y ∈ S, ‖Pn,d(x) − Pn,d(y)‖2 ≥ 1
2‖x − y‖2.

Call this event Ex,S . It follows that

dist2
(
ψτ (x), span

{
ψτ (y)

}
y∈S\B(x,τ)

)2

= E
[
dist2

(
Fτ,d

(
Pn,d(x)

)
, span

{
Fτ,d

(
Pn,d(y)

)}
y∈S\B(x,τ)

)2]

≥ 1

2
E

[
dist2

(
Fτ,d

(
Pn,d(x)

)
, span

{
Fτ,d

(
Pn,d(y)

)}
y∈S\B(x,τ)

)2 ∣∣ Ex,S

]
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≥ 1

2
E

[
dist2

(
Fτ,d

(
Pn,d(x)

)
, span

{
Fτ,d(z)

}
z∈Zn,d\B(Pn,d (x),τ/4)

)2 ∣∣ Ex,S

]

≥ 1

2
δ2τ 2,

where the penultimate line follows from the fact that, conditioned on Ex,S , y ∈
S\B(x, τ) ⇒ Pn,d(y) ∈ Z\B(Pn,d(x), τ/4). We conclude that

dist2
(
ψτ (x), span

{
ψτ (y)

}
y∈S\B(x,τ)

) ≥ τ

O(
√

logk)
.

Applying Theorem 3.1 to the ensemble {ψτ : X → L2}τ≥0 with A = {S ⊆ X :
|S| ≤ k}, we conclude the existence of a map ϕ : X → L2 with rigidity≤k(ϕ) ≤
O(

√
logn(logk)1/4). �

4.3 Discussion

We remark that to prove r2(X) ≤ O(
√

log |X|) for any finite subset X ⊆ L2, it suf-
fices to show the existence of the following ensemble of maps. For every τ ≥ 0, there
should exist a 1-Lipschitz map ψτ : X → L2 satisfying both ‖ψτ (x)‖2 ≤ O(1)τ for
all x ∈ X and

dist2
(
ψτ (x), span

{
ψτ (y)

}
y∈S\B(x,τ)

) ≥ �(1) · τ√
1 + log |B(x,ατ)|

|B(x,βτ)|

for every x ∈ X with two fixed constants α > β > 0. One may now apply Theorem 3.5
to finish.
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