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Abstract We construct an n-dimensional polytope whose boundary complex is com-
pressed and whose face numbers for any pulling triangulation are the coefficients of
the powers of (x − 1)/2 in the nth Legendre polynomial. We show that the non-
central Delannoy numbers count all faces in the lexicographic pulling triangulation
that contain a point in a given open generalized orthant. We thus provide a geomet-
ric interpretation of a relation between the central Delannoy numbers and Legendre
polynomials, observed over 50 years ago (Good in Proc. Camb. Philos. Soc. 54:39–
42, 1958; Lawden in Math. Gaz. 36:193–196, 1952; Moser and Zayachkowski in
Scr. Math. 26:223–229, 1963). The polytopes we construct are closely related to the
root polytopes introduced by Gelfand et al. (Arnold–Gelfand mathematical seminars:
geometry and singularity theory, pp. 205–221. Birkhauser, Boston, 1996).

Keywords Legendre polynomials · Delannoy numbers · Root polytopes ·
Compressed triangulations · Catalan numbers · Central binomial coefficients ·
Centrally symmetric polytopes

1 Introduction

The Delannoy numbers, introduced by Henri Delannoy [5] more than a hundred years
ago, became recently a subject of renewed interest. More than 50 years ago, a some-
what mysterious connection was noted between the central Delannoy numbers and
Legendre polynomials [8, 14, 15]. Until recently, this relation was mostly dismissed
as a “coincidence”. The first interpretation was given by the present author [11] who
noted that the central Delannoy numbers also form the diagonal in an asymmetric
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variant of the Delannoy table where all elements are obtainable via substitution into
Jacobi polynomials, generalizing Legendre polynomials.

The subject of the present paper is a geometric interpretation of the relation be-
tween the central Delannoy numbers and the Legendre polynomials. For that pur-
pose, we construct an n-dimensional polytope Ln for each n, such that Ln has a
compressed boundary complex, thus all its pulling triangulations have the same face
numbers. Multiplying the number of (j − 1)-dimensional faces by ((x − 1)/2)j and
summing over j yields the nth Legendre polynomial, and substituting x = 3 gives the
number of all faces. This number is also the central Delannoy number dn,n. The main
result of this paper is that, for the lexicographic pulling triangulation of Ln, the non-
central Delannoy number dn,n−i counts the number of all faces that contain at least
one point in the open generalized orthant defined by requiring the first i coordinates
to be negative.

The Legendre polytope Ln is defined as the intersection of an n-dimensional cross-
polytope and a hyperplane in Sect. 4. To prepare this definition, Sect. 3 explores a few
facts that always hold when we consider the intersection of a centrally symmetric
polytope and a hyperplane that contains the origin but no vertex. The graphs we
introduce are directed generalizations of the variants of some graphs that appear in
the work of Gelfand, Graev, and Postnikov [7], the key Lemma 3.4 is a generalization
of a result originally due to Kapranov, Postnikov, and Zelevinski (see the first half of
Lemma 12.5 in [16]).

The Legendre polytope Ln may be represented as the convex hull of the root poly-
tope PA+

n
and its negative. The root polytopes PA+

n
were first studied by Gelfand,

Graev and Postnikov [7]. Results on these polytopes were generalized by Post-
nikov [16] and Wungkum Fong [6]. The main difference between the root polytopes
and Legendre polytopes is that PA+

n
contains the origin as a vertex whereas Ln con-

tains the origin as an interior point, to which it is symmetric. In Sect. 4, we observe
that some results in [7] may be restated as saying that all pulling triangulations of a
root polytope that contain the origin as the least vertex are compressed. In this form,
the statement is a direct consequence of a statement of Stanley [18] and the well-
known result [9] stating that the incidence matrix of every directed graph is totally
unimodular. This approach easily generalizes to the directed graphs we use to model
the faces in the Legendre polytope; thus, we are able to show that every pulling trian-
gulation of the boundary of the Legendre polytope that uses only the vertices is also
compressed.

We compute the face numbers of a pulling triangulation of a Legendre polytope
and of a root polytope in Sect. 5. For the Legendre polytope, this is easily done using
the lexicographic order to pull the vertices, but the implied combinatorial enumera-
tion problem does not seem to have a nice variant for root polytopes. On the other
hand, the face numbers in the triangulation with respect to the revlex order may be
counted with relative ease for the root polytopes, and this argument has a generaliza-
tion to Legendre polytopes, relying on the result for the root polytopes.

Our main result is in Sect. 6 where we establish the above stated geometric inter-
pretation of the Delannoy numbers.

It is our hope that the approach developed here will be inspiring for researchers of
generalized root polytopes, perhaps the centrally symmetric variants of those poly-
topes will turn out to be as interesting as the Legendre polytopes. We also hope that
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the results will enhance the interest of experts of lattice path enumeration in poly-
hedral face enumeration. Further remarks and suggestions may be found in the con-
cluding Sect. 7.

2 Preliminaries

2.1 Delannoy Numbers

The Delannoy array (di,j : i, j ∈ Z), introduced by Henri Delannoy [5] may be de-
fined by the recursion formula

di,j = di−1,j + di,j−1 + di−1,j−1 (1)

with the conditions d0,0 = 1 and di,j = 0 if i < 0 or j < 0. The significance of
these numbers is explained within a historic context in the paper “Why Delannoy
numbers?”[2] by Banderier and Schwer. The diagonal elements (dn,n : n ≥ 0) in this
array are the (central) Delannoy numbers (A001850 of Sloane [17]). These numbers
are known through the books of Comtet [4] and Stanley [19], but it is Sulanke’s pa-
per [20] that gives the most complete enumeration of all known uses of Delannoy
numbers (a total of 29 configurations). For more information and a detailed bibli-
ography we refer the reader to the above mentioned sources. Perhaps the simplest
interpretation of the Delannoy number di,j is that it is the number of lattice paths
from (0,0) to (i, j) using the steps (1,0), (0,1) and (1,1).

2.2 Legendre Polynomials and Their Connection to the Delannoy Numbers

The nth Legendre polynomial Pn(x) is a special case of the nth Jacobi polynomial
P

(α,β)
n (x) which may be defined by the Rodrigues formula

P (α,β)
n (x) = (−2)−n(n!)−1(1 − x)−α(1 + x)−β dn

dxn

(
(1 − x)n+α(1 + x)n+β

)
.

Substituting α = β = 0 yields Pn(x) [3, Chap. V, (2.2)]. In the classical literature, the
above definition is of P

(α,β)
n (x) is usually accompanied by the restriction α > −1,

β > −1, “for integrability purposes” [3, Chap. V, (2.1)], but the definition works for
any α, β .

Equivalently, we may define the Jacobi polynomials by

P (α,β)
n (x) =

∑

k

(
n + α

k

)(
n + β

k

)(
x − 1

2

)n−k(
x + 1

2

)k

.

For a nonnegative integer α, a Jacobi polynomial may be also given in the form

P (α,β)
n (x) =

∑

j

(
n + α + β + j

j

)(
n + α

j + α

)(
x − 1

2

)j

. (2)
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See, e.g., Wilf [22, Chap. 4, Exercise 15 (b)]. Thus, Pn(x) satisfies

Pn(x) =
∑

j

(
n + j

j

)(
n

j

)(
x − 1

2

)j

. (3)

The following connection between the central Delannoy numbers and Legendre poly-
nomials has been known for at least half a century [8, 14, 15]:

dn,n = Pn(3), (4)

but no combinatorial explanation was found; there even seemed to be a consensus that
this equation is rather a “coincidence”. Banderier and Schwer [2] note that there is no
“natural” correspondence between Legendre polynomials and the original lattice path
enumeration problem associated to the Delannoy array, while Sulanke [20] states that
“the definition of Legendre polynomials does not appear to foster any combinatorial
interpretation leading to enumeration”. The present author has found a combinatorial
interpretation in [11]; this interpretation involves, however, a variant of the Delannoy
numbers whose table coincides on the main diagonal only.

2.3 Triangulation by Pulling the Vertices

Let P be a polytopal complex and L a set of points containing the set of vertices
of P . Let < be a linear order on L. The pulling triangulation �L,<(P ) with respect
to L is defined recursively as follows. We set �L,<(P ) = P if P consists of a single
vertex. Otherwise, let v1 be the least element of L with respect to < and set

�L,<(P ) = �(P \ v1) ∪
⋃

F

{
conv

({v1} ∪ G
) : G ∈ �(

P (F )
)}

.

Here the union runs over the facets F not containing v1 of the maximal faces of P
which contain v1. The complex P \ v1 consists of all faces of P not containing v1,
P (F ) consists of all faces of P contained in F . The triangulations �(P \ v1) and
�(P (F )) are with respect to L \ {v1} and the restriction of <. This very general
definition is given by Athanasiadis [1]. In most papers where this notion is used, L

either equals the vertex set, or some additional assumptions are made. For example,
Sullivant [21] makes a definition where P is the face complex of a lattice polytope P ,
and L is the set of lattice points in P . In the event when L equals the vertex set
of P , we will write �< instead of �L,< and refer to the triangulation as a pulling
triangulation that uses only the vertices of P .

The numbers of different dimensional faces in �L,<(P ) are hard to compute in
general. In one important special case, however, Stanley [18] has shown how to cal-
culate these numbers. Assume that P is the face complex of a polytope P whose
vertices have integer coordinates and let L = V (P ). The order < is compressed if all
facets in �<(P ) have the same minimal volume. The face numbers of �<(P ) are the
same for any compressed order <.

Stanley gave the following example of a compressed order [18, Example 2.4 (a)].
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Proposition 2.1 (Stanley) Suppose that one of the vertices of P is the origin and
that the matrix whose rows are the vertices of P is totally unimodular. Let < be any
ordering on V (P ) such that the origin is the least vertex with respect to V (P ). Then
< is compressed.

3 Non-Degenerate Central Sections of Centrally Symmetric Polytopes

Throughout this section we assume that P ⊂ R
n is a centrally symmetric polytope of

dimension n, centered at the origin. Let H be a hyperplane containing the origin and
not containing any vertex of P . We call the polytope Q := P ∩ H a non-degenerate
central section of the polytope P .

Assume that H is given by the equation
∑n

i=1 λixi = 〈λ |x〉 = 0 where the xi ’s are
the coordinate functions. The vertex set V (P ) of P is then the union of two disjoint
sets V+(P ) := {(x1, . . . , xn) ∈ V (P ) : 〈λ |x〉 > 0} and V−(P ) := {(x1, . . . , xn) ∈
V (P ) : 〈λ |x〉 < 0} = −V+(P ). Each vertex of Q is of the form H ∩ [u,−v] where
[u,−v] is the line segment connecting u ∈ V+(P ) and −v ∈ V−(P ). Obviously,
[u,−v] must be an edge of P . We may thus represent the vertex set of Q = P ∩ H

by a graph G = G(P,H) on the vertex set V (G) := V+(P ) and letting (u, v) be a
directed edge in G exactly when [u,−v] ∩ H is a vertex of Q. Since P has no edge
of he form [u,−u], the graph G(P,H) contains no loops.

Lemma 3.1 Each vertex of Q is represented by a unique edge (u, v) in G(P,H).

In fact, if [u1,−v1] ∩ H = [u2,−v2] ∩ H then the edges [u1,−v1] and [u2,−v2]
intersect in an interior point and can not be edges of P .

Each face of Q is of the form F ∩ H where F is a face of P , and the set V (F)

of the vertices of F is a subset of V (P ). Introducing V+(F ) := V+(P ) ∩ V (F) and
V−(F ) := V−(P ) ∩ V (F), each vertex of F ∩ H is of the form [u,−v] ∩ H where
u ∈ V+(F ) and −v ∈ V−(F ). Since the set of vertices F ∩ H is a subset of the set of
vertices of Q, each vertex [u,−v]∩H of F ∩H must satisfy that (u, v) is an edge of
G(P,H). Conversely, if (u, v) is an edge in G(P,H), u ∈ V+(F ) and −v ∈ V−(F )

then the segment [u,−v] is a subset of F and [u,−v] ∩ H is a vertex in F ∩ H .

Definition 3.2 Let G be a directed graph on the vertex set V (G), edge set E(G) with
no multiple edges. Let S and T be disjoint subsets of V . The directed restriction of
G to (S,T ) is the digraph with vertex set S ∪ T with edge set {(s, t) ∈ E(G) : s ∈
S, t ∈ T }.

We obtained the following description of the face structure of Q = P ∩ H .

Proposition 3.3 Assume the vertices of Q = P ∩ H are represented by the edges
of the graph G = G(P,H). Given a face F of P , the vertices contained in the face
F ∩ H of Q are represented by the edges in the directed restriction of G(P,H) to
(V+(F ),−V−(F )).
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Assume from now on that P is simplicial. Then, for each face F ⊂ P , [u,−v] is
an edge if u ∈ V+(F ) and −v ∈ V−(F ). Thus, the directed restriction of G(P,H)

to (V+(F ),−V−(F )) is a complete bipartite graph with each edge directed towards
its endpoint in V−(F ). The following lemma generalizes a result of Kapranov, Post-
nikov, and Zelevinski (see the first half of Lemma 12.5 in [16]).

Lemma 3.4 Let F ⊂ P be a face of P . A subset S of the edges of the directed
restriction of G(P,H) to (V+(F ),−V−(F )) represents a simplex if and only if, dis-
regarding the orientation of the edges, the set S contains no cycle.

Proof Observe first that for any vi ∈ V+(F ) and −vj ∈ V−(F ), the intersection vi,j

of H with [vi,−vj ] is given by

vi,j = 〈λ |vj 〉
〈λ |vi + vj 〉vi − 〈λ |vi〉

〈λ |vi + vj 〉vj .

The set {vi,j : (vi, vj ) ∈ S} is affinely dependent if and only if there exist coefficients
αi,j , not all zero, such that

∑

(vi ,vj )∈S

αi,j vi,j = 0 and
∑

(vi ,vj )∈S

αi,j = 0

hold. Since F is a simplex, the set of vectors V+(F )∪V−(F ) is linearly independent.
Thus, the condition on affine dependence is equivalent to stating

∑

j

αi,j

〈λ |vj 〉
〈λ |vi + vj 〉 = 0 for all vi , (5)

∑

i

αi,j

〈λ |vi〉
〈λ |vi + vj 〉 = 0 for all −vj , and (6)

∑

i,j

αi,j = 0. (7)

Assume first that S contains no cycle, yet it represents an affinely dependent set.
Then there is either a vi ∈ V+(F ) or a vj ∈ −V−(F ) belonging to a unique edge
(vi, vj ) ∈ S. For such an i (resp., j), Condition (5) (resp., (6)) may be only fulfilled
by setting αi,j = 0 which allows to remove (vi, vj ) from S. The set S′ := S \{(vi, vj )}
still contains no cycles, and the restriction of the αi,j ’s to S′ exhibits that S′ still rep-
resents an affinely dependent set. Repeating this argument finitely many times we
reach a contradiction. Therefore, cycle-free sets of edges represent affinely indepen-
dent sets.

Assume now that the set S contains a cycle. Ignoring the orientation of the edges
yields a bipartite graph, thus our cycle has even length 2m for some m. Label the ver-
tices v1, . . . , v2m along the cycle in such a way that the odd indexed vertices belong
to V+(F ), the rest belongs then to −V−(F ). The set of directed edges covered by our
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cycle is {(v1, v2), (v3, v2), (v3, v4), (v4, v3), . . . , (v2m−1, v2m), (v1, v2m)}. Define the
coefficients αi,j by setting

α2i−1,2i := 〈λ |v2i−1 + v2i〉
〈λ |v2i−1〉〈λ |v2i〉 for i = 1, . . . ,m,

α2i+1,2i := − 〈λ |v2i+1 + v2i〉
〈λ |v2i+1〉〈λ |v2i〉 for i = 1, . . . ,m − 1, and

α1,2m := − 〈λ |v1 + v2m〉
〈λ |v1〉〈λ |v2m〉 .

Set all other αi,j ’s to zero. It is easy to verify that the resulting set coefficients satisfies
(5), (6) and (7). In fact, introducing v0 := v2m and writing our indices “modulo 2m”
we get

α2i−1,2i

〈λ |v2i〉
〈λ |v2i−1 + v2i〉 + α2i−1,2i−2

〈λ |v2i−2〉
〈λ |v2i−1 + v2i−2〉

= 1

〈λ |v2i−1〉 − 1

〈λ |v2i−1〉 = 0;

thus, (5) is satisfied for all v2i−1 where i = 1,2, . . . ,m. The verification of (6)
is similar. To verify (7) it is worth observing that α2i−1,2i may be rewritten as
1/〈λ |v2i−1〉 + 1/〈λ |v2i〉 thus the sum of all α2i−1,2i ’s is

∑2m
j=1 〈λ |vj 〉, whereas

the sum of all α2i+1,2i ’s is completely similarly −∑2m
j=1 〈λ |vj 〉. Therefore, if S con-

tains a cycle, the vertices of F represented by the edges of this cycle form an affinely
dependent set. �

4 Legendre Polytopes, Root Polytopes PA+
n

, and Their Pulling Triangulations

The standard cross-polytope On+1 ⊂ R
n+1 is the convex hull of {e0,−e0, . . . ,

en,−en}, where ei is the ith standard basis vector. We start with index 0 for tech-
nical reasons. For integrality reasons, we will work with 2On+1, the convex hull of
{2e0,−2e0, . . . ,2en,−2en}.

Definition 4.1 We define the Legendre polytope Ln as the non-degenerate central
section of 2On+1 with the hyperplane

Hn :=
{

(x0, . . . , xn) :
n∑

i=0

xi = 0

}

.

It is easy to see that the vertices of Ln are all points of the form ei − ej where
i �= j . Using the observations of Sect. 3, we may encode each vertex of Ln by
an edge (2ei,2ej ). The graph G(Ln,Hn) is then the complete digraph on the ver-
tex set {2e0, . . . ,2en}, containing all directed edges (2ei,2ej ) where i �= j . Each
proper face of Ln is of the form F ∩ Hn where F is a face of 2On+1. A subset of
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{2e0,−2e0, . . . ,2en,−2en} is the vertex set of a face F of 2On+1 exactly when it
does not contain both 2ei and −2ei for some i. In particular, each facet of 2On+1
is of the form {ε02e0, . . . , εn2en} where ε0, . . . , εn ∈ {1,−1}. Thus, we may observe
the following.

Lemma 4.2 A set S ⊂ {(2ei,2ej ) : i �= j} of edges represents all vertices in a facet of
the boundary ∂Ln of Ln if and only if there is a proper subset A of A ⊂ {2e0, . . . ,2en}
such that S consists of all edges starting in A and ending in {2e0, . . . ,2en} \ A.

This lemma may be rephrased in terms of admissibility, originally introduced by
Gelfand, Graev and Postnikov [7] for root polytopes.

Definition 4.3 We call a set S of edges in a directed graph G on the vertex set ad-
missible if there is no vertex v such that both (u, v) ∈ G (v,w) ∈ G hold for some
vertices u and w.

Lemma 4.2 is equivalent to the following.

Lemma 4.4 A set S ⊂ {(2ei,2ej ) : i �= j} of edges represents a subset of the vertex
set of a face in ∂Ln if and only if it is admissible.

Proof Clearly, facets of ∂Ln are represented by admissible sets. Conversely, given an
admissible set S, let A be the set of all vectors 2ei such that (2ei,2ej ) ∈ S for some j .
Then S is easily seen to be a subset of the facet whose vertex set is represented by all
edges starting in A and ending in {2e0, . . . ,2en} \ A. �

The convex hull of the origin 0 and the vertex set {ei − ej : i < j} is the root
polytope PA+

n
, first studied by Gelfand, Graev and Postnikov [7]. Results on these

polytopes were extended to more general root polytopes by Postnikov [16] and (to
the root systems Bn, Cn, and Dn) by Wungkum Fong [6]. Since all vertices of Ln not
belonging to PA+

n
form V (−PA+

n
) \ {0}, we may think of Ln as the convex hull of

PA+
n

and −PA+
n

. The set of facets of ∂Ln may be partitioned into three classes:

(1) The facets of PA+
n

not containing the origin.
(2) The facets of −PA+

n
not containing the origin.

(3) Facets which contain at least one vertex of PA+
n

and one vertex of −PA+
n

.

In our notation, the elements of V (PA+
n
)\{0} are denoted by directed edges (2ei,2ej )

where i < j . All edges are directed from the lower index edge towards the higher
index, thus one may omit indicating the orientation, and use (i, j) as a shorthand for
(2ei,2ej ). This is the notation used in [7]. All facets of PA+

n
contain 0 since PA+

n

is a cone over 0. The faces of PA+
n

that do not contain 0 are subsets of ∂Ln, their
union is PA+

n
∩ ∂Ln. By Lemma 4.4, a set of vertices contained in a face of Ln must

be represented by an admissible set of edges, and here our notion of admissibility
specializes to the definition given in [7].

As seen in Lemma 3.4 (or Lemma 12.5 in [16]), a set of vertices contained in a
face of PA+

n
∩ ∂Ln is affinely independent if and only if the associated edges form no



Discrete Comput Geom (2009) 42: 705–721 713

cycle. In particular, facets in any triangulation of PA+
n

are associated with admissible
trees on the vertex set {2e0, . . . ,2en}. The vertex sets represented by these trees are
facets in triangulations of PA+

n
∩ ∂Ln, coning over 0 yields all triangulations of PA+

n
.

There are two triangulations of PA+
n

∩ ∂Ln explicitly given in [7]: the standard and
the anti-standard triangulation. The standard triangulation is associated to the set of
all admissible trees having no intersections: the edges (2ei,2ej ) and (2ek,2el) are
intersecting if i < k < j < l holds. The anti-standard triangulation is associated to
the set of all admissible trees having no enclosed edges: (2ei,2ej ) and (2ek,2el) are
enclosed if i < k < l < j holds.

Both the standard and anti-standard triangulations are pulling triangulations
of PA+

n
.

Definition 4.5 The revlex order on V (PA+
n
) \ {0} is defined by setting (2ei,2ej ) <

(2ek,2el) if j < l or j = l and i > k. The lexicographic order on V (PA+
n
) \ {0} is

defined by setting (2ei,2ej ) < (2ek,2el) if i < k or i = k and j < l.

Lemma 4.6 The standard triangulation of PA+
n

is the pulling triangulation with L =
V (PA+

n
) and the revlex order on V (PA+

n
) \ {0} extended to V (PA+

n
) by making 0 the

least element.

Proof Since 0 is the least element, the pulling triangulation is a cone over it, the same
holds also for the standard triangulation. We are left to show that the family of facets
of PA+

n
∩ ∂Ln whose vertex set is represented by standard trees is exactly the family

of facets in the revlex pulling triangulation of PA+
n

∩ ∂Ln. Consider a facet F of the
revlex pulling triangulation. The vertices of F are represented by an admissible tree
T on {2e0, . . . ,2en}. Assume, by way of contradiction that (2ei,2ej ) and (2ek,2el)

are crossing edges in T , satisfying i < k < j < l. The edge (2ei,2ej ) represents the
vertex ei − ej , the edge (2ek,2el) represents the vertex ek − el in Ln. These two
vertices, together with ei − el and ek − ej form a square on the boundary of Ln. In
fact, the four points belong to Hn and the convex hull of {2ei,−2ej ,2ek,−2el}, a
2-face of 2On. No other eu − ev belongs to this intersection. This square is also a
face of PA+

n
. The least vertex in the revlex order is the face represented by (2ek,2ej ),

when we pull it, an edge between ei − el and ek − ej arises. This makes the adding
of the other diagonal between ei − ej and ek − el at a later pulling stage impossible.

We have shown that every facet in the revlex pulling triangulation is also a facet in
the standard triangulation. The converse must also be true since both triangulations
triangulate the same polytope, using the same vertices. �

Lemma 4.7 The anti-standard triangulation of PA+
n

is the pulling triangulation with
L = V (PA+

n
) and the lex order on V (PA+

n
) \ {0} extended to V (PA+

n
) by making 0 the

least element.

The proof of this lemma is similar to the previous one and omitted.
It was observed in [7] that the facets in the standard and anti-standard triangula-

tions have all the same minimal volume. In fact, Lemma 5.3 in [7] states that every
simplex associated to an admissible tree has the same minimal volume. This may be
rephrased as follows:
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Proposition 4.8 (Gelfand–Graev–Postnikov) Any pulling triangulation �L,<(PA+
n
)

of PA+
n

satisfying L = V (PA+
n
) and that 0 is the least element in the order, is com-

pressed.

Proposition 4.8 is also an easy consequence of Proposition 2.1 and the following
well-known result.

Theorem 4.9 (Heller) The incidence matrix of a directed graph is totally unimodular.

See [9] and [10]. In fact, the rows of the matrix whose rows are the vertices of
V (PA+

n
) are the rows of incidence matrix of the directed graph consisting of all edges

(2ei,2ej ) where i < j , plus there is an extra row, consisting of zeros only and not
changing the total unimodularity property.

The proof of Proposition 4.8 that relies on Proposition 2.1 and Theorem 4.9 ex-
tends easily to a similar statement on the Legendre polytope.

Theorem 4.10 Any pulling triangulation �L,<(Ln) of Ln satisfying L =
V (Ln) ∪ {0} and that 0 is the least element in the order, is compressed.

Proof Since 0 is the least point in the order, each facet in the pulling triangulation
�L,<(Ln) arises as the join of 0 and a facet in a pulling triangulation of a facet of
∂Ln. Thus, it is sufficient to prove that for any facet F of ∂Ln, any pulling triangu-
lation �L,<(conv(F ∪ {0})) of conv(F ∪ {0}), satisfying L = V (conv(F ∪ {0})) and
that 0 is the least element in the order, is compressed. This auxiliary statement is an
immediate consequence of Proposition 2.1, Theorem 4.9, and the fact that the row
matrix associated to the vertices of F is the incidence matrix of a digraph. �

Since pulling the interior point 0 results in coning over a pulling triangulation of
∂Ln, an immediate consequence of Theorem 4.10 is the following.

Corollary 4.11 All pulling triangulations of ∂Ln (using only the vertices) have the
same face numbers.

5 The F -Polynomials of the Pulling Triangulations

In this section, we compute the face numbers in any pulling triangulation �<(∂Ln)

of ∂Ln that uses only the vertices of Ln. By Corollary 4.11, we only need to find
these numbers for one linear order on the vertices. The easiest to use seems the lex-
icographic order: we set (2ei,2ej ) < (2ek,2el) if i < k or i = k and j < l. In the
previous section, this order was considered for PA+

n
only, now we extend it to all

vertices of Ln.

Lemma 5.1 A set of vertices {(2es1,2et1), (2es2 ,2et2), . . . , (2esj ,2etj )}, satisfying
(2es1,2et1) < · · · < (2esj ,2etj ) in the lexicographic order, is a face of �<(∂Ln) if
and only if the following holds:
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(i) The sets {s1, . . . , sj } and {t1, . . . , tj } are disjoint.
(ii) We have t1 ≤ · · · ≤ tj .

Proof By Lemma 4.4, Condition (i) is equivalent to stating that {(2es1,2et1),

(2es2,2et2), . . . , (2esj ,2etj )} is contained in some face of ∂Ln. By (2es1,2et1) <

· · · < (2esj ,2etj ) we must have s1 ≤ · · · ≤ sj . Condition (ii) is sufficient since it
guarantees that esi − eti is the lexicographically least vertex in

Hn ∩ conv
({2esi ,2esi+1, . . . ,2esj ,−2eti ,−2eti+1, . . . ,−2etj }

)
for i = 1, . . . , j ,

the smallest face of ∂Ln containing {esi − eti , esi+1 − eti+1, . . . , esj − etj }. Using
this observation, sufficiency may be shown by an easy induction. Condition (ii) is
also necessary. Assume, by way of contradiction, that we have ti > ti+1 for some i.
By (2esi ,2eti ) < (2esi+1,2eti+1) we must have si < si+1. Just like in the proof of
Lemma 4.6, the vertices esi − eti , esi − eti+1 , esi+1 − eti and esi+1 − eti+1 form a square
on the boundary of Ln. The least vertex is esi − eti+1 , when we pull it, and edge
connecting it to esi+1 − eti arises. Thus, there cannot be an edge connecting esi − eti

and esi+1 − eti+1 in the pulling triangulation since this other diagonal would cross the
previous one. �

Theorem 5.2 The number of (j − 1)-dimensional faces in any pulling triangulation
of ∂Ln that uses only the vertices of Ln is

fj−1
(�<(∂Ln)

) =
(

n + j

j

)(
n

j

)
.

Proof As noted above, it is sufficient to consider the pulling triangulation with re-
spect to the lexicographic order. By Lemma 5.1, selecting a (j − 1)-face in that tri-
angulation is equivalent to performing the following two steps:

(1) Select two disjoint nonempty subsets {s1, . . . , sj } and {t1, . . . , tj } of {0, . . . , n}.
(2) Select the values of s1 ≤ · · · ≤ sj and t1 ≤ · · · ≤ tj . Here, for each i < j either

si = si+1 or ti = ti+1 is allowed, but both cannot occur simultaneously.

If we choose {s1, . . . , sj } to have u elements and {t1, . . . , tj } to have v elements,
then there are

(
n+1

u,v,n+1−u−v

)
ways to perform the first step. Given {s1, . . . , sj } and

{t1, . . . , tj }, performing the second step is equivalent to selecting a lattice path of
length j −1 from (s1, t1) to (sj , tj ) in {s1, . . . , sj }×{t1, . . . , tj } such that in each step
we increase either the s-value, or the t value, or both, to the next available element.
We will have j − u steps when we increase only the s-coordinate, j − v steps when
we only increase the right coordinate and u + v − j − 1 steps when we increase both
coordinates. There are

(
j−1

j−u,j−v,u+v−j−1

)
ways to perform this step. Thus, we obtain

fj−1
(�<(∂Ln)

) =
∑

u,v

(
n + 1

u,v,n + 1 − u − v

)(
j − 1

j − u, j − v,u + v − j − 1

)
. (8)

The sum on the right hand side is also the number of ways to select a pair (U,V ) of
disjoint subsets in an (n + 1)-element set (here |U | = u and |V | = v) and to com-
plement each set to a j element set such that they remain disjoint, and the added
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elements come from a new (j − 1)-element set. Equivalently, one may choose two
disjoint j -element subsets in an n + j -element set, which may be done

(
n + j

j, j, n − j

)
=

(
n + j

j

)(
n

j

)
ways. �

Theorem 5.2 is the main reason behind the name “Legendre polytope”. To justify
it, let us introduce the F -polynomial of a simplicial complex � by the formula

F�(x) :=
d∑

j=0

fj−1

(
x − 1

2

)j

.

Here (d − 1) is the dimension of the simplicial complex and fj−1 is the number
of (j − 1)-dimensional faces. This polynomial was shown to be related to certain
orthogonal polynomials for the order complexes of some spherical posets in [12] and
for a triangulation in [13].

Corollary 5.3 The F -polynomial of any pulling triangulation of ∂Ln that uses only
the vertices of Ln is Pn(x), the nth Legendre polynomial.

We conclude this section by computing the face numbers in any pulling triangula-
tion of PA+

n
∩ ∂Ln that uses only the vertices. The pulling triangulations of the root

polytope PA+
n

whose least element is 0 are obtained from the pulling triangulations
of PA+

n
∩ ∂Ln via coning over 0. At the level of the F -polynomials, coning over a

single vertex induces multiplication by a factor of (x + 1)/2.

Theorem 5.4 The number of (j − 1)-dimensional faces in any pulling triangulation
of PA+

n
∩ ∂Ln that uses only the vertices is

fj−1
(�<(PA+

n
∩ ∂Ln)

) = 1

j + 1

(
n + j

j

)(
n

j

)
.

Proof By Proposition 4.8, we may restrict ourselves to the standard triangulation,
induced by the revlex order. Introducing f (n, j) as a shorthand for fj−1(�<(PA+

n
∩

∂Ln)), we have

f (n, j) =
∑

0≤u<v≤n

j−1∑

k=0

f (v − u − 1, k) · f (n − v, j − k − 1). (9)

In fact, f (n, j) is the number of ways to select a system of j edges (2es,2et ) on
the vertex set {2e0, . . . ,2en} such that s < t is satisfied for each edge and the edges
are pairwise non-crossing. Let (2eu,2ev) represent the least vertex of a face in the
revlex order. Then 2eu is the leftmost left end in our system of edges, and 2ev is
the rightmost right end of an edge starting in 2eu. By the non-crossing property, the
remaining edges may be partitioned into two classes:
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(1) Edges (2es,2et ) satisfying u < s < v: for these we must have s < t ≤ v. These
form a system of k non-crossing edges on {2eu,2eu+1, . . . ,2ev} for some 0 ≤
k ≤ j − 1, so there are f (v − u − 1, k) ways to select them.

(2) Edges (2es,2et ) satisfying s = u or s ≥ v + 1. (By admissibility, s = v is not
allowed.) By the choice of v, s = u implies t > v. Let us replace each edge
(2eu,2et ) in this class with (2ev,2et ). (This cannot create duplicate edges since
originally no edge started at ev .) We obtain a system of j − k − 1 non-crossing
edges on {2ev,2ev+1, . . . ,2en}. Conversely, given any system of j − k − 1 non-
crossing edges on {2ev,2ev+1, . . . ,2en}, we may uniquely recover a system in
our second class by replacing each (2ev,2et ) by (2eu,2et ). Thus, there are f (n−
v, j − k − 1) ways to select the edges in this class.

The initial condition on the numbers f (n, j) is f (n,0) = 1, easy substitution into (9)
gives f (n,1) = (

n+1
2

)
. We may use (9) to prove by induction on j that f (n, j) is of

the form Cj

(
n+j
2j

)
where the number Cj does not depend on n. In fact, the statement

is true for j = 0 and j = 1 and the induction step is the following:

f (n, j) =
∑

0≤u<v≤n

j−1∑

k=0

Ck

(
v − u − 1 + k

2k

)
· Cj−k−1

(
n − v + j − k − 1

2j − 2k − 2

)

=
j−1∑

k=0

CkCj−k−1

∑

0≤u<v≤n

(
v − u − 1 + k

2k

)(
n − v + j − k − 1

2j − 2k − 2

)

=
j−1∑

k=0

CkCj−k−1

(
n + j

2j

)
.

We have also shown that the numbers Cj satisfy Cj = ∑j−1
k=0 CkCj−k−1. This, to-

gether with C0 = C1 = 1, implies that Cj is the j th Catalan number, and we have

f (n, j) = 1

j + 1

(
2j

j

)(
n + j

2j

)
= 1

j + 1

(
n + j

j

)(
n

j

)
,

as stated. �

We should note that Theorem 5.2 also has a proof, analogous to the proof of The-
orem 5.4, that relies on the following extension of the revlex order to the vertex set
of Ln: we set (2ei,2ej ) < (2ek,2el) if one of the following holds:

(i) max(i, j) < max(k, l).
(ii) max(i, j) = max(k, l) and min(i, j) > min(k, l).

(iii) {i, j} = {k, l} and i < j and k > l.

In other words, we take the revlex order on {(2ei,2ej ) : 0 ≤ i < j ≤ n} and insert
each (2ej ,2ei) satisfying j > i right above (2ei,2ej ). It is easy to see that the result-
ing triangulation consists of all faces whose representation as a graph does not con-
tain any pair (2ei,2ej ), (2ek,2el) with any of the following properties: i < k < j < l,
l < j < k < i, i < l < j < k, l < i < k < j , i < l < k < j , j < k < l < i. The first
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four forbidden patterns here form the list of all ways two edges can cross, the last
two forbids exclude the possibility of two nested edges to have opposite directions.
Introducing g(n, j) as a shorthand for fj−1(∂Ln), an argument similar to the one in
the proof of Theorem 5.4 yields

g(n, j) = 2
∑

0≤u<v≤n

j−1∑

k=0

f (v − u − 1, k)g(n − v, j − k − 1).

Here f (n, j) = 1
j+1

(
n+j
j

)(
n
j

)
, by Theorem 5.4. In analogy to the proof seen there,

we may show by induction that the numbers g(n, j) are of the form Bj

(
n+j
2j

)
, where

the numbers Bj are independent of n, satisfy the initial condition B0 = 1, B1 = 2,

and the recursion formula Bj = ∑j−1
k=0 BjBj−k−1. Thus, Bj is the central binomial

coefficient
(2j

j

)
and g(n, j) = (2j

j

)(
n+j
2j

)
.

Remark 5.5 The number of facets in any pulling triangulation of PA+
n

∩ ∂Ln is the
Catalan number Cn, as it was already stated in [7]. As a consequence of Theorem 5.2,
the number of facets in any pulling triangulation of ∂Ln is the central binomial coef-
ficient

(2n
n

)
. The relation between the root polytope PA+

n
and the Legendre polytope

Ln is thus a “geometric enhancement” of the relation between the Catalan numbers
and central binomial coefficients, and this undercurrent seems especially highlighted
by the use of the revlex order. It is unknown to the present author, whether the lex
order could also be used efficiently to establish such a connection.

In analogy to Corollary 5.3 we have the following consequence of Theorem 5.4.

Corollary 5.6 The F -polynomial of any pulling triangulation of PA+
n

∩∂Ln that uses

only the vertices is P
(1,−1)
n (x)/(n + 1). Here P

(1,−1)
n (x) is a Jacobi polynomial.

In fact, by Theorem 5.4 we obtain the F -polynomial

n∑

j=0

1

j + 1

(
n + j

j

)(
n

j

)(
x − 1

2

)j

= 1

n + 1

n∑

j=0

(
n + j

j

)(
n + 1

j + 1

)(
x − 1

2

)j

.

The right hand side is P
(1,−1)
n (x)/(n + 1), by (2).

6 Delannoy Numbers and Generalized Orthants in the Legendre Polytope

Since the Delannoy number dn,n−i enumerates the number of lattice paths from (0,0)

to (n,n − i), using only steps (1,0), (0,1) and (1,1), the following equality is obvi-
ous:

dn,n−i =
n−i∑

k=0

(
n + k

n − i − k, k + i, k

)
=

n−i∑

k=0

(
n + k

k + i

)(
n − i

k

)
. (10)
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Here k is the number of (0,1)-steps, k + i is the number of (1,0) steps and n − i − k

is the number of (1,1) steps. Inspired by (8), let us rewrite
(
n+k
k+i

)(
n−i
k

)
as follows:

(
n + k

k + i

)(
n − i

k

)

=
n−i+1∑

u=1

(
n − i + 1

u

)(
k + i − 1

k + i − u

)∑

v

(
n − i + 1 − u

v

)(
u − 1

k − v

)

=
∑

u,v

(
n − i + 1

u,v,n − i + 1 − u − v

)(
k + i − 1

k + i − u, k − v,u + v − k − 1

)
.

Using the above formula, we may observe that
(
n+k
k+i

)(
n−i
k

)
is the number of ways to

perform the following procedure:

(1) For some u and v, select an u-element subset U and a v-element subset V of
{i, i + 1, . . . , n} such that U and V are disjoint (

(
n−i+1

u,v,n−i+1−u−v

)
ways).

(2) Add {0,1, . . . , i − 1} to V , and select s1 ≤ · · · ≤ sk+i and t1 ≤ · · · ≤ tk+i such
that {s1, . . . , sk+i} = U , {t1, . . . , tk+i} = V ∪ {0,1, . . . , i − 1} and (2es1,2et1) <

· · · < (2esk+i
,2etk+i

) is a strictly increasing chain in the lexicographic order.

The second phase may be performed in
(

k+i−1
k+i−u,k−v,u+v−k−1

)
ways since it will hap-

pen k − v times that we increase only the first coordinate, k + i − u times that we
only increase the second coordinate, and u + v − k − 1 times that we increase both
coordinates. In analogy to Theorem 5.2, we obtained the following result.

Theorem 6.1 The number of those (k+ i −1)-dimensional faces in the lexicographic
pulling triangulation of ∂Ln (using only the vertices of Ln) which contain at least one
vertex of the form es − et for each t ∈ {0,1, . . . , i − 1} is

(
n+k
k+i

)(
n−i
k

)
.

Note that this theorem includes Theorem 5.2 as the special case i = 0. However,
we have this generalization for the lexicographic pulling triangulation only. As a
consequence of (10) and Theorem 6.1 we have the following result.

Corollary 6.2 The Delannoy number dn,n−i is the number of all those faces in the
lexicographic pulling triangulation of ∂Ln which contain at least one vertex of the
form es − et for each t ∈ {0,1, . . . , i − 1}.

In particular, dn,n is the number of all faces in the lexicographic pulling triangula-
tion of ∂Ln and thus equal to Pn(3), by Corollary 5.3.

Corollary 6.2 has the following geometric interpretation.

Theorem 6.3 For i > 0, the Delannoy number dn,n−i is the number of all faces F in
the lexicographic pulling triangulation of ∂Ln that contain at least one point in the
generalized orthant {(x0, . . . , xn) : x0 < 0, x1 < 0, . . . , xi < 0}.

Proof A face in �<(∂Ln) contains at least one vertex of the form es − et for each
t ∈ {0,1, . . . , i − 1} if and only if it contains a point (x0, . . . , xn) satisfying x0 < 0,
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x1 < 0, . . . , xi−1 < 0. In fact, if there exist vertices of the form es0 − e0, es1 − e1, . . . ,
esi−1 − ei−1 then the coordinates (x0, . . . , xn) of the point 1

i

∑i−1
j=0(esj − ej ) satisfy

x0 < 0, x1 < 0, . . . , xi−1 < 0. Conversely, if there is a point (x0, . . . , xn) satisfying
x0 < 0, x1 < 0, . . . , xi−1 < 0 in the convex hull, then for each j ≤ i −1 the inequality
xj < 0 forces the existence of a vertex (esj − ej ) in the triangulation. �

Theorem 6.3 motivates calling the generalized orthants {(x0, . . . , xn) : x0 < 0,

x1 < 0, . . . , xi < 0} ∩ Ln Delannoy orthants of the Legendre polytope.

7 Concluding Remarks

Fundamentally, there are two ways to define a polytope: as a convex hull of vertices,
or as an intersection of half-spaces and hyperplanes. It appears that the root polytopes
introduced by Gelfand, Graev, and Postnikov [7] are most easily generalized in terms
of the first approach: one replaces the set of vertices with a set that has a more com-
plicated geometry, but still many symmetries. Legendre polytopes, however, are very
naturally generalized in terms of the second approach, in fact, we obtained the defini-
tion of a Legendre polytopes by specializing the general approach outlined in Sect. 3.
It seems reasonable to expect that non-degenerate central sections of other centrally
symmetric polytopes will have interesting geometric and combinatorial properties.
Lemma 3.4 indicates that the digraph generalization of the graphical approach that
can be found in [7] is suitable to visualize the face structure of any non-degenerate
central section of any simplicial centrally symmetric polytope.

In our work it was convenient to know that face enumeration in a pulling triangu-
lation does not depend on the order of vertices because of Stanley’s example [18] and
a well-known unimodularity result. The question naturally arises: under which condi-
tions can we guarantee that a non-degenerate central section of a centrally symmetric
polytope is compressed? Here the term “compressed” seems to be most naturally de-
fined in terms of considering all pulling triangulations that use the vertices, the origin,
and make the origin the least point in the order. In particular, is it true that, subject to
assumptions, a non-degenerate central section of a compressed centrally symmetric
polytope is compressed?

Our main result on the Delannoy numbers counting certain faces in the Legen-
dre polytope applies to the lexicographic pulling triangulation only. It seems worth
exploring whether an analogous result exists for the revlex pulling triangulation, or
whether there is a result that can be stated independently of the order on the vertices.

Acknowledgements I wish to thank Alexander Postnikov and Richard Stanley, for valuable background
information on root polytopes. This work was supported by the NSA grant # H98230-07-1-0073.
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