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Abstract Given a metric M = (V , d), a graph G = (V ,E) is a t-spanner for M if
every pair of nodes in V has a “short” path (i.e., of length at most t times their actual
distance) between them in the spanner. Furthermore, this spanner has a hop diameter
bounded by D if every pair of nodes has such a short path that also uses at most D

edges. We consider the problem of constructing sparse (1 + ε)-spanners with small
hop diameter for metrics of low doubling dimension.

In this paper, we show that given any metric with constant doubling dimension
k and any 0 < ε < 1, one can find (1 + ε)-spanner for the metric with nearly linear
number of edges (i.e., only O(n log∗ n+nε−O(k)) edges) and constant hop diameter;
we can also obtain a (1 + ε)-spanner with linear number of edges (i.e., only nε−O(k)

edges) that achieves a hop diameter that grows like the functional inverse of Ack-
ermann’s function. Moreover, we prove that such tradeoffs between the number of
edges and the hop diameter are asymptotically optimal.
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1 Introduction

The study of finite metrics and their properties has been a very fruitful area of re-
search, with applications to many different problems. Many commonly arising prob-
lems (e.g., clustering, near-neighbor finding, network routing, just to name a few)
deal with sets of points on which a distance function has been defined, and one wants
to store and process this metric in different ways.

However, metrics vary in their “complexity”: some metrics, like the well-
understood Euclidean spaces, seem to be intrinsically simpler to manipulate than
others (say �1 space), which in turn are simpler than arbitrary metrics. Hence, merely
using the number of points n in a given metric space to quantify the performance of
algorithms (e.g., running time or quality of the output) seems too pessimistic. To this
end, there has been much recent interest in defining a notion of “dimension” for ar-
bitrary metrics and devising algorithms whose behavior degrades gracefully as the
dimension of the input metric increases.

One such notion of dimension has been that of the doubling dimension [5, 11, 13].
The doubling dimension of a metric M = (V , d) is the minimum value k such that
every ball B in the metric can be covered by 2k balls of half the radius of B . This can
be seen as a generalization of Euclidean dimension to arbitrary metric spaces; indeed,
it is not difficult to see that R

k equipped with any of the �p norms has doubling
dimension Θ(k).

Apart from being a generalization of the �p notion of dimension, designing al-
gorithms that use only the doubling properties (instead of the geometry of R

k) has
other advantages. For instance, the notion of doubling dimension is fairly resistant to
small perturbations in the distances: if one takes a distance matrix of a set of points
in �k

p and slightly changes some of the entries, then the doubling dimension does not
change by much, but the metric may not remain isometrically embeddable in �p (into
any number of dimensions). To this end, there has been much interest in understand-
ing this notion of dimension and in generalizing algorithms to adapt gracefully to the
dimension of the input metric; see, e.g., [7, 10–12, 14–16, 23]

In this paper, we will focus on obtaining sparse representations of metrics: these
are called spanners, and they have been studied extensively for both general and
Euclidean metrics. Formally, a t-spanner for a metric M = (V , d) is a weighted
undirected graph G = (V ,E) such that the distances according to dG (the shortest-
path metric of G) are close to the distances in d : specifically, d(u, v) ≤ dG(u, v) ≤
t d(u, v). Clearly, one can take a complete graph and obtain t = 1, and hence the
quality of the spanner is typically measured by how few edges can G contain whilst
maintaining a stretch of at most t . The notion of spanners has been widely studied
for general metrics (see, e.g. [3, 8, 19]) and for geometric distances (see, e.g., [4, 6,
22, 25]).

Very recently, there have been good constructions of spanners for doubling metrics
as well: given a metric with doubling dimension dim, the results of Chan et al. [7], and
independently, those of Har-Peled and Mendel [12] show how to construct (1 + ε)-
spanners with n(1 + 1/ε)O(dim) edges. (Here, as in the rest of the paper, |V | = n is
the number of points in the metric.)
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Our Results In this paper, we extend these results to find spanners that also have
small hop diameter. A t-spanner has hop diameter D if every pair u,v ∈ V are con-
nected by some path in G having length at most t d(u, v), and furthermore there are
at most D edges on this path. We prove upper bounds as well as essentially matching
lower bounds in this paper.

Theorem 1 (Upper bound) Given a metric M = (V , d) with n = |V | and dou-
bling dimension dim, and a positive integer m, there exists a (1 + ε)-spanner with
m + (2 + 1

ε
)O(dim)n edges and hop diameter O(α(m,n)), where α is the inverse of

Ackermann’s function. Such a spanner can be constructed in 2O(dim)n logn time.

Remark 1 For the number of edges in the theorem, the term (2 + 1
ε
)O(dim)n can be

viewed as responsible for preserving distances, while the extra m edges are respon-
sible for the short hop diameter. Note that the result above allows us to trade off the
number of edges in the spanner with the hop diameter: if we desire only a linear num-
ber of edges, then the hop diameter goes as α(n), and as we increase the number of
edges, the hop diameter decreases.

After proving this result (which turns out to be fairly straight-forward given known
techniques), we then turn to the lower bound and show that the trade-off in Theorem 1
is essentially tight.

Theorem 2 (Lower bound) For any ε > 0, there are infinitely many integers n such
that there exists a metric M induced by n points on the real line for which any (1+ε)-
spanner for M with at most m edges has hop diameter at least Ω(α(m,n)).

Our Techniques and Related Work The upper bound in Theorem 1 generalizes a
result of Arya et al. [4] for Euclidean spaces. Indeed, the proof of our result is not
difficult given previously known techniques. The basic idea is to first construct a net-
tree representing a sequence of nested nets of the metric space: this is fairly standard
and has been used earlier, e.g., in [7, 16, 23]. A nearly-linear-time construction of net-
trees is given by Har-Peled and Mendel [12]. A second phase then adds some more
edges in order to “short-cut” paths in this net tree which have too many hops. The
techniques we use are based on those originally used by Yao [26] for range queries
on the line and on the extensions to trees due to Chazelle [9]. As pointed out by Arya
et al. [4], a similar construction was given by Alon and Schieber [2].

While lower bounds for some special cases of hop diameter were known (e.g., an
exercise in [17, Exercise 12.10 in Chap. 12] states that for any ε > 0, there exists an n-
point metric for which any (1 + ε)-spanner with hop diameter 2 must contain at least
Ω(n logn) edges), there are no previously known general lower bounds which show
the existence of metrics with low doubling (or Euclidean) dimension that require
many edges in order to get low hop-diameter (1+ε)-spanners. We first consider lower
bounds for binary “hierarchically well-separated” trees (HSTs), where the length of
an edge from each node to its child node is much smaller than that to its parent
node: this well-separation ensures that low-stretch paths must be “well behaved”,
i.e., the low-stretch path between vertices in any subtree cannot escape the subtree,
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thus allowing us to reason about them. Our lower bound result for line metrics then
follows from the fact that binary HSTs with large separation embed into the real line
with small distortion. We note that the lower bounds for the range-query problem
given by Yao [26] and Alon and Schieber [2], while inspiring our work, directly apply
to our problem only for the case ε = 0; i.e., for the case where we are not allowed
to introduce any further stretch in the second, “short-cutting” phase. Thus Theorem 2
can be seen as generalizing Yao’s lower bound proof to all ε > 0.

Other Related Work Previously known algorithms to obtain low-stretch spanners
for doubling metrics [7, 12] have a hop diameter of Ω(logΔ), where Δ is the aspect
ratio of the metric; in fact, there are constructions of spanners in Chan et al. [7]
with (1 + 1/ε)dim degree (i.e., constant degree for doubling metrics), and it trivially
follows that such spanners must have a hop diameter of Ω(logΔ). Abraham et al. [1]
study compact routing on Euclidean metrics, and their construction also essentially
gives a (1 + ε)-spanner with Oε(n) edges1 that has hop diameter O(logΔ) with high
probability.

Low-stretch spanners with small hop diameter are potentially useful in network
routing protocols. For example, many wireless ad-hoc networks find paths that min-
imize hop count [18, 20, 21]. Our results may be useful in such situations to build
sparse networks admitting paths having few hops and low stretch simultaneously.

2 Preliminaries and Notation

We consider a finite metric M = (V , d) where |V | = n. A metric has doubling di-
mension [11] at most k if for every R > 0, every ball of radius R can be covered by
2k balls of radius R

2 .

Definition 3 ((1+ε)-spanner) Let (V , d) be a finite metric. Suppose that G = (V ,E)

is an undirected graph such that each edge {u,v} ∈ E has weight d(u, v), and
dG(u, v) is the length of the shortest path between vertices u and v in G. The graph
G or, equivalently, the set E of edges is a (1 + ε)-spanner for (V , d) if for all pairs u

and v, dG(u, v)/d(u, v) ≤ 1 + ε.

A (1 + ε)-path in the metric M = (V , d) between u and v is one with length at
most (1 + ε)d(u, v). Thus a (1 + ε)-spanner is an undirected graph G = (V ,E) that
contains a (1 + ε) path for each pair of nodes in V .

Definition 4 (Hop diameter) A (1 + ε)-spanner is said to have hop diameter at most
D if for every pair of nodes, there exists a (1 + ε)-path in the spanner between them
having at most D edges or hops.

We will use hierarchical trees to analyze the properties of spanners.

1We use Oε(·) to denote that the constant in the big-O notation depends on ε.
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Definition 5 (Hierarchical tree) A hierarchical tree for a set V is a pair (T ,ϕ), where
T is a rooted tree, and ϕ is a labeling function ϕ : T → V that labels each node of T

with an element in V , such that the following conditions hold.

1. Every leaf is at the same depth from the root.
2. The function ϕ restricted to the leaves of T is a bijection into V .
3. If u is an internal node of T , then there exists a child v of u such that ϕ(v) = ϕ(u).

This implies that the nodes mapped by ϕ to any x ∈ V form a connected subtree
of T .

We also use net trees; Har-Peled and Mendel [12] defined another variation of net
trees, which can be constructed in 2O(k)n logn time. Recall that an r-net for a set V

is a subset S of V such that every point in V has a point in S within a distance of at
most r away, and any two different points in S are at a distance of more than r away
from each other.

Definition 6 (Net-tree) A net tree for a metric (V , d) is a hierarchical tree (T ,ϕ) for
the set V such that the following conditions hold.

1. Let Ni be the set of nodes of T that have height i. (The leaves have height 0.)
Suppose that δ is the minimum pairwise distance in (V , d). Let 0 < r0 < δ/2 and
ri+1 = 2ri for i ≥ 0. Then, for i ≥ 0, ϕ(Ni+1) is an ri+1-net for ϕ(Ni).

2. Let node u ∈ Ni , and let its parent node be pu. Then, d(ϕ(u),ϕ(pu)) ≤ ri+1.

It is proved in [7] (see also [12]) that a metric with bounded doubling dimension
has a sparse spanner. This result can be rephrased in terms of net trees in the following
theorems.

Theorem 7 [7] Suppose that a finite metric M = (V , d) with doubling dimension
bounded by dim is given. Let ε > 0 and (T ,ϕ) be any net tree for M . For each i ≥ 0,
let

Ei :=
{
{u,v} | u,v ∈ ϕ(Ni), d(u, v) ≤

(
4 + 32

ε

)
· ri

}
.

(Here Ni, ri are as in Definition 6.) Then Ê := ∪iEi forms a (1 + ε)-spanner for
(V , d), and |Ê| ≤ (2 + 1

ε
)O(dim)|V |.

Theorem 8 Consider the construction in Theorem 7. For any x, y in V , the spanner
Ê contains a (1 + ε)-path of the following form. If x0 and y0 are the leaf nodes in T

with ϕ(x0) = x and ϕ(y0) = y, and xi and yi are the ancestors of x0 and y0 at height
i ≥ 1, then there exists i∗ such that the path

x = ϕ(x0), ϕ(x1), . . . , ϕ(xi∗), ϕ(yi∗), . . . , ϕ(y1), ϕ(y0) = y

is a (1 + ε)-path (after removing repeated vertices).
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3 Adding Few Extra Edges to Ensure Small Hop Diameter

Observe that our spanner in Theorem 7 has (2 + 1
ε
)O(dim) · n edges and hence is

optimal (with respect to n) in terms of the sparsity achieved while preserving shortest
path distance. It is easy to check that the number of hops in a (1 + ε)-path obtained
in Theorem 8 is Θ(logΔ), where Δ is the aspect ratio of the metric (V , d) (i.e., the
ratio of the maximum to the minimum pairwise distances). Indeed, the net tree (T ,ϕ)

has a height of Θ(logΔ), and in general, a (1 + ε)-path can have Ω(logΔ) hops.
Before we begin in earnest to investigate how many extra edges are required in

order to achieve small hop diameter, let us make a simple observation. For each node
u in the tree T , let Lu be the set of leaves under u. For each node u, suppose that
we add an edge between ϕ(u) and every point in ϕ(Lu). Since the tree has O(logΔ)

levels, the number of extra edges added is O(n logΔ), while the hop diameter of the
augmented spanner is at most 3. In the next section, we will build on this idea to show
how one can reduce the number of additional edges to O(n logn) (independent of the
aspect ratio Δ) and achieve the same hop diameter.

3.1 A Warm-up: Obtaining O(logn) Hop Diameter

Notice that Theorem 7 holds for any net tree (T ,ϕ). Hence, by choosing a net tree
more carefully, we could possibly improve the trade-off between the hop diameter of
the spanner and its size. Indeed, we show in the next theorem that we can improve the
parameter logΔ to logn in both cases. (Note that if a metric has constant doubling
dimension, logΔ = Ω(logn).)

Theorem 9 Suppose that (V , d) is a finite metric, where |V | = n. Then, there exists
a net tree (T ,ϕ) from which the spanner Ê constructed in the manner described in
Theorem 7 has the following properties.

1. The hop diameter of the spanner Ê is O(logn).
2. It is possible to add n(�log2 n	 − 1) extra edges such that for each u in the set N0

of leaves in T and any ancestor v of u, there is an edge between ϕ(u) and ϕ(v)

in the case where ϕ(u) 
= ϕ(v). In particular, the hop diameter of the spanner is
reduced to 3.

Proof We describe a way to construct a net tree (T ,ϕ). Let N0 be the set of leaves
for which there is a one-one correspondence ϕ onto V .

Suppose that we have obtained the set Ni of nodes of height i. We would be done if
|Ni | = 1. Otherwise, we would obtain an ri+1-net for ϕ(Ni) in the following way. We
show a way to greedily construct a net for a set. Start with a list L initially containing
all the nodes in Ni ordered so that a node containing more leaves in its subtree would
appear earlier.

As long as the list L is not empty, we repeat the following process. Remove the
first node u in the remaining list, form a new node v ∈ Ni+1 such that ϕ(v) := ϕ(u),
and set the parent of u to be v. For each node w in the remaining list L such that
d(ϕ(w),ϕ(v)) ≤ ri+1, remove w from list L and set the parent of w to be v.
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Claim 10 For each z ∈ N0, let Az be the set of its ancestors in T . Then,
|ϕ(Az)| ≤ �log2 n	 + 1. In particular, |ϕ(Az) \ {ϕ(z)}| ≤ �log2 n	.

Proof Let ai be the ancestor of z in Ni . Suppose that there exists i such that ϕ(ai) 
=
ϕ(ai+1). It follows that the node ai must have a sibling c for which ϕ(c) = ϕ(ai+1)

and whose subtree contains at least as many leaves as the subtree at ai does. Hence,
the subtree at ai+1 contains at least twice as many leaves as ai does. Thus there can
be at most �log2 n	 values of i for which ϕ(ai) 
= ϕ(ai+1). �

For the first part of the theorem, it follows that the (1 + ε)-path guaranteed in
Theorem 8 has the number hops at most 2�log2 n	 + 1.

For the second part of the theorem, for every z ∈ N0, we add an edge between ϕ(z)

and every point in ϕ(Az) \ {ϕ(z)}. Note that |ϕ(Az)\{ϕ(z)}| ≤ �log2 n	. Suppose that
y is the lowest ancestor of z such that ϕ(z) 
= ϕ(y) and that x is the ancestor of z that
is also the child of y. Then, observe that the spanner Ê already includes the edge
between ϕ(y) and ϕ(x) = ϕ(z). Hence, for each vertex z, we actually only need to
add at most �log2 n	 − 1 extra edges. The (1 + ε)-path in Theorem 7 can be reduced
to x = ϕ(x0), ϕ(xi∗), ϕ(yi∗), ϕ(y0) = y, which has 3 hops. �

In the following section, we will investigate the tradeoff between the hop diameter
of a spanner and the number of edges, this time using any given net tree instead.

3.2 The General Upper Bound

In this section, we assume that the given metric (V , d) has doubling dimension
bounded by k. Given a net tree (T ,ϕ) for the metric, suppose that ET is the spanner
obtained in Theorem 7. Note that ET is dependent on the stretch parameter ε. How-
ever, for ease of notation, we would leave out the dependency on ε throughout this
section.

The approach we use is similar to that used by Arya et al. [4] for Euclidean metrics,
which is a subclass of doubling metrics. Instead of using net trees, they worked with
“dumbbell trees,” which have similar properties. Applying a construction from [2, 9]
to “shortcut” edges in the net-tree, we can show that one can add few extra edges to
ET in order to achieve small hop diameter. Moreover, as shown in [2], this can be
done in O(n logn) time.

We first consider how to add extra edges to a tree such that every pair of nodes has
a path with a small number of hops between them.

Definition 11 Define g(m,n) to be the minimum i such that for any tree metric2 with
vertex set V , where |V | = n, there exists a spanner P with m edges that preserves all
pairwise distances exactly (and hence P is a 1-spanner), and for any pair of points,
there is a shortest path in P with i hops.

2A tree metric is a metric induced by the shortest distance between the nodes in a tree whose edges have
nonnegative weights.
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Lemma 12 Suppose that a metric (V , d) with n points has a net tree (T ,ϕ), and
suppose that ET is the (1 + ε)-spanner obtained in Theorem 7. Then, it is possible
to add m extra edges to ET such that the hop diameter of the new spanner is at most
2g(m,n) + 1.

Proof Suppose that u is an internal node of T that has a child v such that ϕ(u) =
ϕ(v). We contract the edge {u,v} by merging the two nodes u and v and renaming
the new node v′ such that ϕ(v′) = ϕ(v). We repeat the process to obtain the resulting
tree T ′ with the vertex set V (simply by renaming the vertices under the mapping ϕ).
Note that the tree T ′ is no longer a net tree or a hierarchical tree. We assign the node
ϕ(r) to be the root of T ′, where r is the root of T . Observe that if u is an ancestor of
v in T , then ϕ(u) is an ancestor of ϕ(v) in T ′.

Consider the tree T ′ with unit weights on its edges. By the definition of g, there
is a spanner F on T ′ that preserves all pairwise distances such that for every pair of
nodes, there is a shortest path with at most g(m,n) hops. We add the following set of
edges to the spanner ET :

EF := {{
ϕ(a),ϕ(b)

} : {a, b} ∈ F
}
.

Suppose that x and y are points in V , x0 and y0 are the leaf nodes in T such that
ϕ(x0) = x and ϕ(y0) = y, and xi and yi are the ancestors in T at height i for x0
and y0, respectively. By Theorem 8, there exists i∗ such that the following points
form a (1 + ε)-path P0 after removing repeated points:

x = ϕ(x0), ϕ(x1), . . . , ϕ(xi∗), ϕ(yi∗), . . . , ϕ(y1), ϕ(y0) = y.

Suppose that xi∗ and yi∗ are contracted to x̂ and ŷ, respectively, in T ′.
By the choice of F , there exist at most g(m,n) − 1 intermediate vertices {vi}ki=1
on the path from x0 to x̂ in T ′ such that {x0, v1}, {vi, vi+1} (1 ≤ i < k) and
{vk, x̂ } are in F . Hence, we have a path with at most g(m,n) hops from x to ϕ( x̂ ):
x = ϕ(x0), ϕ(v1), ϕ(v2), . . . , ϕ(vk), ϕ( x̂ ). Since this sequence of points is a subse-
quence of ϕ(x0), ϕ(x1), . . . , ϕ(xi∗), it follows that the length of this path is at most
that of the sub-path from ϕ(x0) to ϕ(xi∗) in P0.

Similarly, there is a path with at most g(m,n) hops from ϕ( ŷ ) to y whose length
is at most that of the corresponding sub-path in P0. Hence, there is a (1 + ε)-path
with at most 2g(m,n) + 1 hops from x to y in the spanner ET ∪ EF . �

Theorem 13 (Chazelle [9]) For m ≥ 2n, g(m,n) = O(α(m,n)), where α is the func-
tional inverse of Ackermann’s function.

Definition 14 (Ackermann’s function [24]) Let A(i, j) be a function defined for in-
tegers i, j ≥ 0 as follows:

A(0, j) = 2j for j ≥ 0,

A(i,0) = 0,A(i,1) = 2 for i ≥ 1,

A(i, j) = A
(
i − 1,A(i, j − 1)

)
for i ≥ 1, j ≥ 2.

Define the function α as α(m,n) = min{i | i ≥ 1, A(i,4�m/n
) > log2 n}.
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From Lemma 12 and Theorem 13 we obtain the following theorem.

Theorem 15 Suppose that a metric (V , d) with n points has a net tree (T ,ϕ), and
suppose that ET is the (1 + ε)-spanner obtained in Theorem 7. Then, it is possible
to add m extra edges to ET such that the hop diameter of the new spanner is at most
O(α(m,n)).

Observing that A(2,4 log∗ n) > log2 n, we have the following corollary.

Corollary 16 Suppose that a metric (V , d) with n points has a net tree (T ,ϕ), and
suppose that ET is the (1 + ε)-spanner obtained in Theorem 7. Then, it is possible to
add n log∗ n extra edges to ET such that the hop diameter of the new spanner is O(1).

4 Lower Bound

We now show that the trade-off between the size of the spanner and its hop diameter
obtained in Theorem 1 is essentially optimal.

Theorem 17 For any ε > 0, for infinitely many integers n, there exists a metric M

induced by n points on the real line such that any (1 + ε)-spanner with m edges on
the metric M has hop diameter Ω(α(m,n)).

Our general approach is first consider a family of metrics, each of which is in-
duced by some binary “hierarchically well-separated tree” (HST). We define a func-
tion G(i, j) that is a variant of Ackermann’s function such that if a metric from the
family contains n ≥ G(i, j) points, then any spanner on the metric with hop diame-
ter bounded by i + 1 must have more than Ω(jn) edges. The relationship between
G(i, j) and Ackermann’s function is used to obtain the lower bound for HSTs. The
proof technique we used is an extension of that used in Yao’s paper [26]. Our lower
bound result for line metrics then follows from the fact that binary HSTs with large
separation embed into the real line with small distortion.

Remark 2 For technical reasons, we assume that a spanner contains a self-loop for
every point. Since any spanner must contain at least a linear number of edges, this
assumption does not affect the asymptotic lower bound.

Construction of the Family of HST Metrics For k ≥ 0, let Mk be the metric induced
by the 2k leaves of the weighted complete binary tree Tk defined as follows. Let β > 1
be the separation parameter for the HST. The tree Tk is a binary tree containing 2k

leaves such that for each internal node u at height h ≥ 1, the distance from u to any
of the leaves in the subtree rooted at u is βh−1.

The following proposition follows from the construction of the metrics Mk .

Proposition 18 Let the HST metric Mk be defined as above.

(a) Suppose that Mk is constructed with separation β ≥ 1 + ε. Let U be the subset
of points corresponding to the leaves of Tk which are the descendants of some
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internal node. Then, any (1 + ε)-path between points in U cannot contain any
point outside U .

(b) Consider Tk and suppose that h ≤ k. Suppose that T ′ is the tree obtained from Tk

by replacing each subtree rooted at an internal node of height h by a leaf whose
distance from the root is the same as before, i.e., βk−1. Then, T ′ is isomorphic
to Tk−h.

(c) For every k ≥ 0, the metric Mk with separation β ≥ 4 has doubling dimension at
most 2.

We will use Proposition 18(a) crucially in our analysis. Unless otherwise stated,
we assume that the HST metric Mk is always constructed with separation β large
enough such that the statement holds.

We prove the following theorem that states the lower bound result for the HST
metrics.

Theorem 19 For each integer k ≥ 1 and any ε > 0, there exists an HST metric Mk

with large enough separation β such that any (1 + ε)-spanner on Mk with at most m

edges has hop diameter at least Ω(α(m,n)).

We observe that HST metrics with large separation embed into the real line with
small distortion in the following claim.

Claim 20 For each integer k ≥ 1 and any ρ > 0, for sufficiently large β > 0, the HST
metric Mk with separation β embeds into the real line with distortion at most 1 + ρ.

Proof We embed the leaves associated with Mk into the real line in their natural
ordering, i.e., leaves in the subtree rooted at some internal node are clustered together
in the line. The distance between embedded points is the same as that between them
in the tree. Such an embedding does not contract distances.

Consider the expansion of the distance between a pair of leaves whose lowest
common ancestor is at height r . Hence, their distance in the tree is 2βr . Observe that
their embedded distance is at most 2 · {2r + 2r−1β + · · · + 2βr−1 + βr}. Hence, the
distortion is at most

2r + 2r−1β + · · · + 2βr−1 + βr

βr
= 2r

βr
· (β/2)r − 1

β/2 − 1
+ 1

≤ 1

β/2 − 1
+ 1,

which is at most 1 + ρ for β ≥ 2(1 + 1
ρ
). �

Now Theorem 17, the main result of this section, follows from Theorem 19 (the re-
sult for HSTs) and Claim 20 (which relates distances in the HST to those on the real
line) as follows.

Proof of Theorem 17 Suppose that n = 2k is a power of two. We construct a
line metric M with n points. Let ε′ = 2ε and ρ > 0 be small enough such that
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(1 + ε)(1 + ρ) ≤ 1 + ε′. Suppose that the HST metric Mk has large enough sepa-
ration β such that by Theorem 19, any (1 + ε′)-spanner for Mk with m edges has hop
diameter Ω(α(m,n)), and by Claim 20, Mk embeds into some line metric M with
distortion at most 1 + ρ.

Suppose that P is a (1 + ε)-spanner for metric M with m edges and hop diameter
at most D. Since (1 + ε)(1 + ρ) ≤ 1 + ε′, it follows that spanner P corresponds
to a (1 + ε′)-spanner in Mk with m edges and hop diameter at most D. Therefore,
D = Ω(α(m,n)). �

In the rest of the section, we will prove Theorem 19, the lower bound result for
the HST metrics. To this end, we define a variant of Ackermann’s function.

Definition 21 Define the function G(i, j) for i ≥ 0, j ≥ 0 to be:

G(0,0) = 0, G(0, j) = 2�log2 j
, j ≥ 1,

G(i,0) = 0, G(i,1) = 1, i ≥ 1,

G(i, j) = G(i, j − 1)G
(
i − 1,4G(i, j − 1)

)
, i ≥ 1, j ≥ 2.

Proposition 22 Suppose that G(i, j) is the function defined as above.

(a) For all i ≥ 0, j ≥ 1, G(i, j) is a power of two.
(b) For j ≥ 1, j ≤ G(0, j) ≤ 2j .

We now prove the main technical lemma for the lower bound for the HST metrics;
as we will see, the proof of Theorem 19 will follow easily from this lemma.

Lemma 23 Suppose that 2k ≥ G(i, j), where i ≥ 0 and j ≥ 1; suppose that ε > 0
and the HST metric Mk has large enough separation β . Suppose that X is a subset of
Mk such that |X| = n ≥ 1. Let ρ = n/2k . Then, any (1 + ε)-spanner for X with hop
diameter at most i + 1 must have more than 1

4ρjn edges.

Proof We prove the result by induction on the lexicographical order of (i, j).
Base cases. For i = 0, j ≥ 1, any spanner with hop diameter 1 on n points must

have exactly 1
2n(n − 1) + n edges, recalling that we require that a spanner must

contain a self-loop for each point. Hence, observing that j ≤ G(0, j) ≤ 2k by Propo-
sition 22, we conclude that such a spanner cannot have the number of edges less than
1
4ρjn ≤ 1

4n2 < 1
2n(n − 1) + n.

For i ≥ 1, j = 1, we observe that any spanner on n points must have at least n

edges. Hence, the number of edges in a spanner cannot be less than 1
4ρn ≤ 1

4n < n.
Inductive step. Suppose that X is a subset of Mk such that 2k ≥ G(i, j) for some

i ≥ 1 and j ≥ 2, where |X| = n and ρ = n/2k . For contradiction, assume that there is
a (1 + ε)-spanner E with hop diameter i + 1 for X such that |E| ≤ 1

4ρjn.
Let I be the indexing set for the subtrees of Tk , each rooted at some internal node

and containing exactly G(i, j − 1) leaves. Observing that G(i, j − 1) is a power of 2
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by Proposition 22, it follows that

|I | = 2k/G(i, j − 1) ≥ G(i, j)/G(i, j − 1)

= G
(
i − 1,4G(i, j − 1)

)
.

For each s ∈ I , let Vs be the set of leaves contained in the corresponding subtree. Let
us also define:

– E1
s := {{u,v} ∈ E : u,v ∈ Vs}, for each s ∈ I , and E1 := ∪s∈IE

1
s .

– E2 := {{u,v} ∈ E : u ∈ Vs, v ∈ Vt , s 
= t}.
We describe the high level idea to obtain a contradiction. Suppose that for each
s ∈ I , we replace the subtree containing Vs by a leaf in the same manner as Propo-
sition 18(b), then we would obtain a tree T ′ which is isomorphic to Tk̂ , where

2k̂ = |I | ≥ G(i − 1,4G(i, j − 1)).
Let Xs := X ∩ Vs and J := {s ∈ I : |Xs | ≥ 1}. Identifying each Xs with the corre-

sponding leaf in the modified tree T ′, consider the submetric of Mk̂ induced by the
nonempty Xs ’s whose point set we write as X′ := {Xs : s ∈ J }. Hence, Xs is a subset
of metric Mk , as well as a point in metric X′.

Define E′ := {{Xs,Xt } : {u,v} ∈ E2, u ∈ Xs, v ∈ Xt }. Observe that E′ is a (1+ε)-
spanner for X′ with hop diameter at most i + 1. Since we wish to apply the in-
duction hypothesis, we need to show that the size of E′ is small. Moreover, since
|I | ≥ G(i − 1,4G(i, j − 1)), the induction hypothesis can only say about spanners of
hop diameter at most i. To resolve this issue, we would remove some points in X′ and
modify the spanner appropriately so that its hop diameter is at most i. First observing
that |E′| ≤ |E2|, it suffices to show that |E2| is small.

Claim 24 |E2| < 1
4ρn.

Proof Let |Xs | = ns and ρs = ns/G(i, j − 1). Observe from Proposition 18(a) that
for each s ∈ I , any (1 + ε)-path between vertices inside Xs cannot go outside Xs .
Hence, for ns ≥ 1, it follows that E1

s is a spanner for Xs having hop diameter at
most i + 1. Applying the induction hypothesis for (i, j − 1), we have for each s,
|E1

s | > 1
4ρs(j − 1)ns . Summing over s ∈ I , we have

|E1| >
∑
s∈I

1

4
ρs(j − 1)ns ≥ 1

4
· j − 1

G(i, j − 1)

∑
s∈I

n2
s .

Observing that
∑

s∈I ns = n and the fact that x �→ x2 is a convex function, the last
term is minimized when all ns ’s are equal. Hence,

|E1| > j − 1

4G(i, j − 1)
· |I | ·

(
n

|I |
)2

= 1

4
(j − 1)ρn.

Since there are at most 1
4ρjn edges in total, it follows that |E2| < 1

4ρn. �
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Next, we describe a procedure that removes some points from X′ and modify E′
to obtain a spanner with hop diameter at most i. Note that the points from X′ are
indexed by J . The procedure labels the removed points bad.

1. Place the index set J in a list L in an arbitrary order.
2. Consider each element s in list L according to the ordering

(a) If there exists an element t appearing after s in the list L such that any (1+ε)-
path in E′ between Xs and Xt takes at least i + 1 hops
(i) Label s bad and remove it from list L.

(ii) Modify E′ so that if Xp is a point in list L closest to Xs (with respect to
the metric in X′), every edge incident on Xs will now be incident on Xp ,
i.e., Xs and Xp are merged.

(b) Move on to the next element in list L.

Any two remaining points certainly have a (1 + ε)-path with at most i hops;
otherwise, the one appearing earlier in the list would have been removed. More-
over, observe in step (ii) of the procedure that Xs and Xp are equidistant (with
respect to the metric in X′) from any other Xq ’s in the list. Hence, the length
of any (1 + ε)-path for two points still in the list does not increase. Moreover,
since we have merged Xs with Xp , the number of hops for any (1 + ε)-path
cannot increase.

Let B be the set of s ∈ J that are labelled bad. Let R := J − B be the set of
remaining indices. Let Ê be the modified edge set. It follows that Ê is a spanner with
hop diameter at most i for X̂ := {Xs : s ∈ R}. However, we need to show that not too
many bad points are removed.

Claim 25
∑

s∈R |Xs | ≥ 1
2n.

Proof For each s ∈ B , there exists t ∈ J such that any (1 + ε)-path between Xs and
Xt in E′ has at least i+1 hops. Fix b ∈ Xt and consider any a ∈ Xs , observe that there
is a (1 + ε)-path P : a = v0, v1, . . . , vl = b in E such that l ≤ i + 1. For each v, let
ϕ(v) be the unique Xq that contains it. Then, it follows that there is a (1+ε)-path P ′:
Xs = ϕ(v0), ϕ(v1), . . . , ϕ(vl) = Xt , after removing redundant Xq ’s. Hence, l = i +1,
and there are no redundant Xq ’s, otherwise there would be a (1 + ε)-path from Xs to
Xt with less than i + 1 hops. We associate a ∈ Xs with the edge {a, v1} ∈ E2.

It follows that for each s ∈ B and each a ∈ Xs , there exists some edge {a, v} ∈ E2.
Each edge can be associated with at most two points in the bad Xs ’s. Hence, we
obtain

∑
s∈B

|Xs | ≤ 2
∣∣E2

∣∣ <
1

2
ρn ≤ 1

2
n,

where the middle inequality follows from Claim 24. Hence, it follows that∑
s∈R |Xs | ≥ 1

2n. �

We can now obtain a contradiction to the induction hypothesis of Lemma 23
for (i − 1,4G(i, j − 1)), which states that if X̂ is a sub-metric of Tk̂ such that
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2k̂ ≥ G(i − 1,4G(i, j − 1)) and ρ̂ = |X̂|/2k̂ , then any (1 + ε)-spanner for X̂ with
hop diameter at most i must have more than 1

4 ρ̂(4G(i, j − 1))|X̂| edges.
Now, since for each s ∈ R, |Xs | ≤ G(i, j − 1), it follows from Claim 25

that |X̂| = |R| ≥ 1
2n/G(i, j − 1). Hence, ρ̂ := |R|/|I | ≥ 1

2ρ. Moreover, n =
ρG(i, j − 1)|I | ≤ 2|X̂|G(i, j − 1).

In conclusion, we have a subset X̂ in the metric Tk̂ such that 2k̂ = |I | ≥ G(i −
1,4G(i, j − 1)) and ρ̂ = |X̂|/|I | ≥ ρ/2. Moreover, Ê is a (1 + ε)-spanner for X̂ with
hop diameter at most i and has the number of edges less than

1

4
ρn ≤ 1

4
· (2ρ̂

) · 2
∣∣X̂∣∣G(i, j − 1) = 1

4
ρ̂

(
4G(i, j − 1)

)∣∣X̂∣∣,
obtaining the desired contradiction against the induction hypothesis for (i −
1,4G(i, j − 1)). This completes the inductive step of the proof of Lemma 23. �

If we substitute ρ = 1 in Lemma 23, we obtain the following corollary.

Corollary 26 Suppose that n = 2k ≥ G(i, j), j ≥ 1. Let ε > 0 and the HST metric
Mk have large enough separation β . Then, any (1 + ε)-spanner for Mk with hop
diameter at most i + 1 must have more than 1

4jn edges.

In order to get the desired lower bound on the hop diameter in Theorem 19, we
have to relate the function G(i, j) to the Ackermann function A(i, j); we do this via
yet another function H(i, j).

Definition 27 Define the function H(i, j) for i ≥ 0, j ≥ 0 to be:

H(0, j) = 8j3 for j ≥ 0,

H(i,0) = 0, H(i,1) = 8 for i ≥ 1,

H(i, j) = H
(
i − 1,H(i, j − 1)

)
for i ≥ 1, j ≥ 2.

Claim 28 Let H(i, j) be as defined above.

(a) For i ≥ 0, j ≥ 0, H(i, j) ≤ A(i + 4, j + 4) − 4. In particular, H(i, j) ≤
A(i + 4, j + 4).

(b) For i ≥ 0, j ≥ 0, H(i, j) ≥ 4j2G(i, j). In particular, H(i, j) ≥ G(i, j).

Proof We prove both results by induction on the lexicographic order of (i, j). Let us
prove the claim of part (a) first.

Base cases. For j ≥ 0, H(0, j) = 8j3 ≤ A(4, j + 4)− 4. For i ≥ 1, H(i,0) = 0 ≤
A(i + 4,4) − 4 and H(i,1) = 8 ≤ A(i + 4,5) − 4.

Inductive step. Suppose that i ≥ 1, j ≥ 2. Then, using the induction hypothesis,
we have

H(i, j) = H
(
i − 1,H(i, j − 1)

)
≤ A

(
i + 3,H(i, j − 1) + 4

) − 4
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≤ A
(
i + 3,A(i + 4, j + 3)

) − 4

= A(i + 4, j + 4) − 4,

which completes the inductive step of the first result.
We next prove the claim of part (b).
Base cases. For j ≥ 0, H(0, j) = 8j3 ≥ 4j2G(0, j) by Proposition 22(b). For

i ≥ 1, H(i,0) ≥ 8 · 02G(i,0), as both sides are zero; H(i,1) = 8 ≥ 4 = 4G(i,1).
Inductive step. Suppose that i ≥ 1, j ≥ 2. Then, using the induction hypothesis,

we have

H(i, j) = H
(
i − 1,H(i, j − 1)

)
≥ 4H(i, j − 1)2G

(
i − 1,H(i, j − 1)

)
≥ 4H(i, j − 1)2G

(
i − 1,4(j − 1)2G(i, j − 1)

)
.

By the induction hypothesis, H(i, j − 1) ≥ 4(j − 1)2G(i, j − 1) ≥ j2G(i, j − 1),
since j ≥ 2. Hence, H(i, j) ≥ 4j2G(i, j − 1)G(i − 1,4G(i, j − 1)) = 4j2G(i, j),
completing the induction step of the second result. �

The following claim describes some properties of the Ackermann function and a
functional inverse defined by a(x, j) := min{i | i ≥ 1,A(i, j) > x}; note that this is
different from the more commonly used functional inverse α from Definition 14.

Claim 29 Suppose that the functional inverse a is defined as above.

(a) For all j ≥ 0, if x ≥ y ≥ 0, then a(x, j) ≥ a(y, j). In particular, a(x, j) ≥
a(log2 x, j).

(b) For k ≥ 1 and x ≥ 0, a(x,4k + 4) + 1 ≥ a(x,4k).

Proof The first statement follows trivially from the fact that Ackermann’s func-
tion A(i, j) is monotone. For the proof of the second statement, suppose that
i = a(x,4k + 4). Hence, i ≥ 1 and A(i,4k + 4) > x. Observe that A(i + 1,4k) =
A(i,A(i + 1,4k − 1)) and A(i + 1,4k − 1) ≥ 24k−1 ≥ 4k + 4, since k ≥ 1 and
i ≥ 1. Hence, it follows that A(i + 1,4k) ≥ A(i,4k + 4) > x and thus a(x,4k) ≤
a(x,4k + 4) + 1, as required. �

We can now prove Theorem 19 and obtain the lower bound result for the HST
metrics.

Proof of Theorem 19 Suppose that E is a (1 + ε)-spanner E for Mk . Let j = � 4m
n


.
Then, by Corollary 26, since m ≤ 1

4jn, if G(i, j) ≤ n, the hop diameter of E is larger
than i + 1. Hence, the hop diameter of E is at least

min

{
i + 1

∣∣∣∣ G

(
i,

⌈
4m

n

⌉)
> n

}

≥ min

{
i + 1

∣∣∣∣ H

(
i,4

⌈
m

n

⌉)
> n

}
(Claim 28(b))
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≥ min

{
i + 1

∣∣∣∣ A

(
i + 4,4

⌈
m

n

⌉
+ 4

)
> n

}
(Claim 28(a))

= min

{
i

∣∣∣∣ A

(
i,4

⌈
m

n

⌉
+ 4

)
> n

}
− 3

= a

(
n,4

⌈
m

n

⌉
+ 4

)
− 3

≥ a

(
n,4

⌈
m

n

⌉)
− 4 (Claim 29(b))

≥ a

(
log2 n,4

⌈
m

n

⌉)
− 4. (Claim 29(a))

The proof is completed from the observation that a(log2 n,4�m
n

) = α(m,n),

by the definition of the functions α and a. �
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