
Discrete Comput Geom (2010) 43: 1–20
DOI 10.1007/s00454-008-9111-9

On the Maximum Number of Translates in a Point Set

Bernardo M. Ábrego ·
Silvia Fernández-Merchant · Bernardo Llano

Received: 17 January 2008 / Revised: 10 June 2008 / Accepted: 5 September 2008 /
Published online: 24 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Given a finite set P ⊆ R
d , called a pattern, tP (n) denotes the maximum

number of translated copies of P determined by n points in R
d . We give the ex-

act value of tP (n) when P is a rational simplex, that is, the points of P are ratio-
nally affinely independent. In this case, we prove that tP (n) = n − mr(n), where r is
the rational affine dimension of P , and mr(n) is the r-Kruskal–Macaulay function.
We note that almost all patterns in R

d are rational simplices. The function tP (n) is
also determined exactly when |P | ≤ 3 or when P has rational affine dimension one
and n is large enough. We establish the equivalence of finding tP (n) and the maxi-
mum number sR(n) of scaled copies of a suitable pattern R ⊆ R

+ determined by n

positive reals. As a consequence, we show that sAk
(n) = n − Θ(n1−1/π(k)), where

Ak = {1,2, . . . , k} is an arithmetic progression of size k, and π(k) is the number of
primes less than or equal to k.
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1 Introduction

Some of the most natural and important problems in Combinatorial Geometry are
those concerning repeated configurations and pattern recognition. A typical question
in the area is the following:

What is the maximum number of occurrences of a pattern among all subsets of
an n-point set in the d-dimensional space?

Here an occurrence is determined by a class of equivalence under a fixed group of
geometric transformations: translations, homotheties, congruences, similarities, and
affinities. Many of these problems were first asked by Erdős and Purdy [10, 11]. For
instance, when d = 2, the geometric group are congruences, and the pattern consists
of the endpoints of a unit segment; we obtain Erdős’ famous problem [9] (still wide
open) about the maximum number of unit segments that can be determined by a set
of n points in the plane.

In general, determining the exact maxima for these problems is hard. The only
nontrivial instances where an exact formula is known are due to Brass [5] and
van Wamelen [17], who worked with unit segments (congruences) in R

4, and to
Swanepoel [16], who very recently accomplished the impressive task of obtaining
exact formulas for the maximum number of unit segments determined by n points in
R

2d , for d ≥ 3 and for every n large enough. He also found structural properties for
the optimal sets in odd dimensions d .

In spite of this, there are very few known asymptotic formulae. In the best case,
one hopes to determine the order of magnitude for the corresponding maximum, and
even this is only known for few particular patterns and geometric transformations.
Elekes and Erdős [8] found the right order of magnitude for algebraic patterns in R

d

under homotheties and in the plane under similarities. For arbitrary patterns, their
upper bounds are almost matched by their constructions. Continuing with similar-
ities in the plane, Laczkovich and Rusza [13] classified the patterns that can have
a quadratic number of similar copies (the maximum possible), and Ábrego, Elekes,
and Fernández-Merchant [1] found structural properties on those point-sets having a
quadratic number of occurrences. The problem of similarities when d ≥ 3 gets harder.
Even for the simplest case of triangles in 3-space, we do not know the right order of
magnitude.

It is worth mentioning that the algorithmic aspect of these combinatorial questions
is motivated by real-life necessities: finding patterns among the huge amounts of
data obtained by scanners, digital cameras, electron microscopes, telescopes, etc. The
reader is encouraged to see [4, 6, 7], and [15] for further references and the current
status of both the combinatorial and the algorithmic problems.

In this paper, we consider the problem of finding the maximum number of trans-
lated copies of a pattern that can occur among n points in d-dimensional space. More
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Fig. 1 Optimal set with n = 1716 points and the maximum number of translates of P , the regular hepta-
gon

precisely, let P ⊆ R
d be a fixed finite subset of the d-dimensional real space. We re-

fer to P as a pattern. For any finite set X ⊆ R
d , let tP (X) be the number of translated

copies, or simply translates, of P contained in X. That is,

tP (X) = ∣
∣
{

P ′ ⊆ X : P ′ = v + P where v ∈ R
d
}∣
∣.

We want to determine the largest possible value of tP (X) among all n-point sets
X ⊆ R

d . We denote this by

tP (n) = max
{

tP (X) : X ⊆ R
d, |X| = n

}

.

This problem was previously considered by Brass [4]. It was also presented as a
prototype, by Pach and Sharir, for the many problems about repeated configurations
and pattern recognition treated in [15]. Brass defined the rational affine dimension,
dimQ P , of a pattern P ⊆ R

d as the dimension of the affine space generated by P .
This is precisely the rational linear dimension of the set generated by P + (−P) =
{p1 − p2 : p1,p2 ∈ P }, i.e., the size of the smallest set B such that any element
of P + (−P) is a linear combination with rational coefficients of elements of B .
Note that the rational linear dimension of a set may be larger than its rational affine
dimension, but when P contains the origin, the two dimensions coincide. Brass found
the asymptotic value of tP (n) in terms of the rational affine dimension r of P . He
proved that

tP (n) = n − Θ
(

n1−1/r
)

. (1)

Our main result gives the exact value of tP (n) when the pattern P is a rational
simplex, that is, |P | = dimQ P + 1. We remark that almost all patterns P in R

d are
rational simplices. If we were to select a pattern at random (with a fixed number
of points) from a compact subset of R

d with positive finite measure, then the pat-
tern would be a rational simplex with probability one. Some interesting patterns are
also rational simplices. For instance, a regular polygon with prime number of sides
(Fig. 1), a regular pentagonal pyramid (Fig. 2), or the set {0,1,

√
2,

√
3, e}.
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Fig. 2 Optimal set with n = 126 points and the maximum number of translates of P , the pentagonal
pyramid

To present our explicit formula we need some definitions from finite set theory.
Given positive integers r and n, there is a unique way of writing n as

n =
(

nr

r

)

+
(

nr−1

r − 1

)

+ · · · +
(

n2

2

)

+
(

n1

1

)

(2)

so that 0 ≤ n1 < n2 < · · · < nr−1 < nr are integers. Using this representation, called
the r-binomial representation of n, the r-Kruskal–Macaulay function, is defined as

mr(n) =
(

nr − 1

r − 1

)

+
(

nr−1 − 1

r − 2

)

+ · · · +
(

n2 − 1

1

)

+
(

n1 − 1

0

)

.

(See [3, 12] for details.) Our main result, proved in Sect. 2, is the following:

Theorem 1 If P is a rational simplex with dimQ(P ) = r , then

tP (n) = n − mr(n).

Since any pattern P with rational affine dimension r contains an r-dimensional
rational simplex, tP (n) ≤ n − mr(n) ≤ n − r

(r!)1/r n
1−1/r + O(n1−2/r ). Brass also

used the r-dimensional rational simplex to find an upper bound for tP (n). Implicit
in his proof [4] is the bound tP (n) ≤ n − √

π/(2�(r/2 + 1)1/r )n1−1/r , where � is
Euler’s Gamma Function. Our result improves this inequality and gives a tight lower
bound for the leading coefficient of the error term. As a way of comparing, as r → ∞,
Brass’ coefficient goes to zero, whereas ours goes to e.

We also consider the following problem about maximizing scaled copies of a pat-
tern. Let R be a fixed finite set of positive reals. Again, we refer to R as a (real)
pattern. For any finite set Y ⊆ R

+, let sR(Y ) be the number of scaled copies of R

contained in Y . That is,

sR(Y ) = ∣
∣
{

R′ ⊆ Y : R′ = λR for some λ ∈ R
+}∣

∣.
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We want to determine the value of sR(n) = max{sR(Y ) : Y ⊆ R
+, |Y | = n}.

The following result shows the equivalence of maximizing the number of scaled
copies of a real pattern and maximizing the number of translates of an equivalent
pattern. Its proof, included in Sect. 3, provides explicit ways of constructing a pat-
tern P in R

d from a pattern R of positive reals, and vice versa. Before stating the
theorem, we introduce some terminology from abstract algebra. If R is a finite set in
R

+, we denote by 〈R〉 the smallest multiplicative subgroup of R
+ containing R. By

construction 〈R〉 is a finitely generated free abelian group. That is, there is a finite
subset of 〈R〉, called a basis, which satisfies that every element of the group can be
written in one and only one way as a finite product of integer powers of the elements
in the basis. In general, a free abelian group has many different bases, but all bases
have the same cardinality, and this cardinality is called the rank of the group.

Theorem 2 Let n ∈ N. For every pattern R ⊆ R
+, there exists a pattern P ⊆ Z

d ,
where d is the rank of R, such that

sR(n) = tP (n).

Reciprocally, for every dimension d and every pattern P ⊆ R
d , there is a pattern

R ⊆ N satisfying sR(n) = tP (n). Moreover, |R| = |P |, and if 1 ∈ R, or equivalently
if 0 ∈ P , then the rank of R and the rational affine dimension of P coincide.

Before proving this theorem, at the beginning of Sect. 3, we present some of its
applications to the number of scaled copies of an arithmetic progression. Let Ak =
{1,2,3, . . . , k}; if k ≤ 4, we determine precisely sAk

(n) for every n. We also show
the following:

Theorem 3 If k ∈ N, then sAk
(n) = n − Θ(n1−1/π(k)), where π(k) is the number of

primes not exceeding k.

In Sect. 4, we concentrate on the 1-dimensional (rational affine) patterns. We es-
sentially solve the problem. We give the exact value of tP (n) for n large enough and
any pattern P with |P | ≥ 3 by showing the following:

Theorem 4 Let P = {0, a1, a2, . . . , ak+1} ⊆ Z with k ≥ 1, 0 < a1 < a2 < · · · <

ak+1 = M , and such that gcd{ai}k+1
i=1 = 1. Then

tP (n) = n − M for every n ≥ M(M − k).

We give the exact values of tP (n) for all n when |P | ≤ 3: tP (n) = n for |P | = 1 is
trivial, tP (n) = n − 1 if |P | = 2 is a consequence of Theorem 1, and for |P | = 3, we
show the following:

Theorem 5 Let P = {0, a, b} ⊆ Z with 0 < a < b and gcd(a, b) = 1. Then

tP (n) =
{

n − ⌈
√

2n + 1
4 − 1

2

⌉

if n ≤ (
b
2

)

,

n − b if n >
(
b
2

)

.
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Finally, in Sect. 5, we study 2-dimensional (rational affine) patterns with four
points. We determine t�(n) and tL(n), where � represents the pattern in R

2 con-
sisting of the four vertices of a square, and L = {(0,0), (1,0), (2,0), (0,1)}. We also
present some conjectures about the exact value of tP (n) for every set P with |P | = 4.

In this paper, we denote by N the set of positive integers and by N
∗ = N ∪ {0} the

set of nonnegative integers.

2 Proof of Theorem 1: Translates of a Rational Simplex

2.1 Preliminaries and Discretization

Let P be a finite set in R
d . By translating P if necessary, we can assume that 0 ∈ P .

Let 〈P 〉+ be the additive subgroup of R
d generated by P and {v1, v2, . . . , vr} a basis

of 〈P 〉+. Then 〈P 〉+ = {k1v1 + k2v2 + · · · + krvr : ki ∈ Z}, and, since 0 ∈ P , r is the
rational affine dimension of P . Note that any translate v + P of P is contained in
a single equivalence class v + 〈P 〉+ ∈ R

d/〈P 〉+. The following lemma restricts the
maximum for the function tP (n) to 〈P 〉+.

Lemma 1 For any finite set P ⊆ R
d ,

tP (n) = max
{

tP (X) : X ⊆ 〈P 〉+, |X| = n
}

.

Proof Take X ⊆ R
d and assume that X ⊇ X1 ∪ X2, where X1 and X2 are contained

in different classes u1 + 〈P 〉+ and u2 + 〈P 〉+, respectively. For k ∈ Z large enough,
the set X′

2 = (u1 −u2 + kv1)+X2 ⊆ u1 +〈P 〉+ has no elements in common with X.
Also X′

2 has as many translates of P as X2. Replacing X2 by X′
2 in X, we obtain a

set intersecting a fewer number of equivalence classes in R
d/〈P 〉+ and with at least

as many translates of P as X. Now, if X is contained in a single class u1 + 〈P 〉+,
consider the set (−u1)+X ⊆ 〈P 〉+. Since this set contains as many translated copies
of P as X, the identity is satisfied. �

2.2 Reduction to the Standard Simplex and Construction of Br(n)

Let Pr ⊆ R
r be the standard r-simplex consisting of 0 and the r standard basis vec-

tors e1, e2, . . . , er . If P is a rational simplex with dimQ(P ) = r , we can assume that
P = {0, v1, v2, . . . , vr} by using a suitable translation. Under the linear transforma-
tion (from 〈P 〉+ to Z

r ) that sends vi to ei , translates of P correspond to translates of
Pr . Thus, by Lemma 1, we have that

tP (n) = max
{

tP (X) : X ⊆ 〈P 〉+, |X| = n
}

= max
{

tPr (X) : X ⊆ Z
r , |X| = n

}

. (3)

We first construct an n-set Br(n) ⊆ Z
r having at least n − mr(n) translates of Pr .

Then by (3), tP (n) ≥ n−mr(n). We construct Br(n) recursively as follows. For every
n ∈ N, set B1(n) = {1,2, . . . , n}. For r ≥ 2, if n = (

nr

r

)

for some nr ∈ Z, let

Br

((
nr

r

)) = {

(x1, x2, . . . , xr ) ∈ Z
r : xi ≥ 0, xr ≥ 1,

and x1 + x2 + · · · + xr ≤ nr − r + 1
}

.
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Fig. 3 Construction of B3(n) with n = (7
3
) + (5

2
) + (2

1
) = 47 points and n − m3(n) = 27 translates of P3

Note that this set has exactly
(
nr

r

)

points. For all other values of n, consider the r-
binomial representation n = (

nr

r

)+ (nr−1
r−1

)+· · ·+ (
n2
2

)+ (
n1
1

)

and let n′ = n− (
nr

r

)

> 0.
Define

Br(n) = Br

((
nr

r

)) ∪ (

Br−1(n
′) ∗ {0}),

where Br−1(n
′) ∗ {0} consists of the points in Br−1(n

′) with an extra coordinate
zero appended to them (see Fig. 3). Observe that Br(n) has exactly n points and,
by construction, all points x = (x1, x2, . . . , xr ) satisfy that x1 + x2 + · · · + xr ≤
nr − r + 1. (This is clear for x ∈ Br(

(
nr

r

)

), otherwise x ∈ Br−1(n
′) ∗ {0} and thus

(x1 + x2 + · · · + xr−1) + xr ≤ nr−1 − (r − 1) + 1 + 0 ≤ nr − r + 1 since nr−1 < nr .)

2.3 The Number of Translates of the Standard Simplex in Br(n)

We prove that tPr (Br(n)) ≥ n − mr(n) by induction on r . If r = 1, then Br(n) =
{1,2, . . . , n}, which clearly contains n−1 copies of P1 = {0,1}, that is, tPr (Br(n)) =
n − 1 = n − m1(n). Let r ≥ 2 and assume that the result is true for r − 1. We bound
the number of points x in Br(n) such that x + Pr ⊆ Br(n), observing that different
points generate different translates of Pr . We do this first for points in Br(

(
nr

r

)

) and
then for points in Br−1(n

′) ∗ {0}.
If x ∈ Br(

(
nr

r

)

) and x1 +x2 +· · ·+xr ≤ nr −r , then x+ei ∈ Br(
(
nr

r

)

) for 1 ≤ i ≤ r .

Therefore, x + Pr ⊆ Br(
(
nr

r

)

), and thus tPr (Br(
(
nr

r

)

)) ≥ (
nr

r

) − (
nr−1
r−1

)

.
Now, suppose that x′ + Pr−1 is a translate of Pr−1 in Br−1(n

′) with x′ =
(x1, x2, . . . , xr−1). Then the point x′ ∗ {0} ∈ Br−1(n

′) ∗ {0} ⊆ Br(n), and we claim
that x′ ∗ {0} + Pr ⊆ Br(n). Indeed, for 1 ≤ i < r, we have that x′ + ei ∈ Br−1(n

′)
and then x′ ∗ {0} + ei = (x′ + ei) ∗ {0} ∈ Br−1(n

′) ∗ {0} ⊆ Br(n). In particular,
x1 +x2 +· · ·+xr−1 +1 ≤ nr − r +1, and thus x′ ∗ {0}+ er = (x1, x2, . . . , xr−1,1) ∈
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Br(
(
nr

r

)

) ⊆ Br(n). All this gives at least tPr−1(n
′) translates x + Pr in Br(n) with

x ∈ Br−1(n
′) ∗ {0}. Finally, by induction tPr−1(n

′) ≥ n′ − mr−1(n
′), and thus,

tPr

(

Br(n)
) ≥ tPr

(

Br

((
nr

r

))) + tPr−1(n
′)

≥
(

nr

r

)

−
(

nr − 1

r − 1

)

+ n′ − mr−1(n
′) = n − mr(n).

2.4 Bounding tP (n) Above

To prove the reverse inequality, tP (n) ≤ n − mr(n), we use the following result from
[2]. This inequality is tight for every r and infinitely many values of n. In [2] the
authors use this inequality to give a short proof of Macaulay’s theorem (see [12, 14]).

Lemma 2 If r ≥ 2 and 0 ≤ a < mr(n), then

mr−1(a) + mr(n − a) ≥ mr(n). (4)

Moreover, if n = (
N
r

)

for some N ≥ r , then equality in (4) occurs only when a = 0.

Let X be an n-point set in Z
r . A point x ∈ X is called a deficit point with respect

to Pr if x + Pr � X. Define dr(X) as the number of deficit points with respect to Pr

in the set X. Clearly tPr (X) = n − dr(X). We prove by induction, on r first and then
on n, that dr(X) ≥ mr(n) for all n-point sets X ⊆ Z

r . This, together with (3), gives
tP (n) = n − min{dr(X) : X ⊆ Z

r , |X| = n} ≤ n − mr(n).

If r = 1, then clearly the largest point in X ⊆ Z is a deficit point, thus d1(X) ≥
1 = m1(n). Suppose that r ≥ 2 and that the inequality holds for r − 1. If n ≤ r , then
the result is trivially true since dr(X) = n = mr(n). Assume that n ≥ r + 1 and that
the result holds for values smaller than n. By using an appropriate translation, we can
assume that the r-coordinate of every point in X is greater than zero and that there
are some points with r-coordinate equal to one. For every i ≥ 1, let Li be the points
in X with r-coordinate equal to i. Let li = |Li | and note that l1 ≥ 1.

First assume that l1 ≥ mr(n). Observe that every non-deficit point x in Li is
bijectively associated to the point x + er ∈ Li+1. Then there are at least li − li+1
deficit points in Li . Assuming that u is the largest subindex such that lu �= 0, we get
dr(X) ≥ ∑u

i=1(li − li+1) = l1 ≥ mr(n).
On the other hand, if l1 < mr(n), then, by Lemma 2, inequality (4) holds with

a = l1. This time note that every deficit point with respect to Pr−1 in Li is also a
deficit point with respect to Pr in X, which means that dr(Li) ≥ dr−1(Li). Thus
dr(X) ≥ dr−1(L1) + dr(X\L1). By induction on r , dr−1(L1) ≥ mr−1(l1), and by in-
duction on n, dr(X\L1) ≥ mr(n− l1). These, together with (4), give dr(X) ≥ mr(n).

Remark 1 The problem of classifying the n-sets X for which tPr (X) = tPr (n) is open.
The first difficulty would be to determine the pairs (a,n) for which we get identity
in (4). However, for n of a particular form, we can determine uniqueness for the
optimal sets constructed in Sect. 2.2 (in particular the sets shown in Figs. 1 and 2 are
unique).
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Proposition 1 If n = (
N
r

)

, then the set X = Br(n) is the unique n-set in Z
r (modulo

translations) for which tPr (X) = tPr (n).

Proof According to the proof of Theorem 1, dr(X) = mr(n). If l1 < mr(n) = (
N−1
r−1

)

,
then dr(X) ≥ dr−1(L1) + dr(X\L1) ≥ mr−1(l1) + mr(n − l1). Because l1 > 0, it
follows, by Lemma 2, that (4) is strict. Thus,

mr(n) = dr(X) ≥ mr−1(l1) + mr(n − l1) > mr(n),

which is impossible. For the other case, we must have l1 ≥ mr(n). Then mr(n) =
dr(X) ≥ l1 ≥ mr(n), i.e., l1 = mr(n) = (

N−1
r−1

)

. Further,

mr(n) = dr(X) ≥ dr−1(L1) + dr(X\L1) ≥ mr−1(l1) + mr(n − l1)

≥ mr−1
((

N−1
r−1

)) + mr

((
N−1

r

)) = (
N−2
r−2

) + (
N−2
r−1

) = (
N−1
r−1

) = mr(n).

Thus equality must occur everywhere. Then L1 is an optimal set for Pr−1 with
(
N−1
r−1

)

points, and X\L1 is an optimal set for Pr with
(
N−1

r

)

points. By induction, L1
and X\L1 are translates of Br−1(l1) and Br(n − l1), the optimal sets constructed in
Sect. 2.2. Moreover, to have equality in dr(X) ≥ dr−1(L1) + dr(X\L1), we need
that every non-deficit point in L1 is exactly below, in the xr coordinate, a point
from X\L1. This can only happen if L1 is the bottom layer (in the xr coordinate)
of Br(n). �

3 Equivalence Between Translates and Scaled Copies

3.1 Applications of the Equivalence

Before we present the proof of Theorem 2, we show some of its applications. In par-
ticular, we bound the maximum number of scaled copies of an arithmetic progression.
Recall that Ak = {1,2,3, . . . , k}. Clearly sA1(n) = n. Under the equivalence given
by Theorem 2, the real patterns A2 and A3 correspond to the patterns P1 = {0,1}
and P2 = {(0,0), (1,0), (0,1)}, respectively. Thus, by Theorem 1, sA2(n) = tP1(n) =
n − m1(n) = n − 1 and sA3(n) = tP2(n) = n − m2(n) = n − �

√

2n + 1
4 − 1

2� (the
last identity is an elementary calculation). Similarly, A4 corresponds to the pattern
L = {(0,0), (1,0), (2,0), (0,1)}, and thus sA4(n) = tL(n) = n − �2

√
n − 1� by The-

orem 6 (see Sect. 5). For larger arithmetic progressions, we do not have exact values
of sAk

(n). Yet, we know its asymptotic behavior in terms of the rank of 〈Ak〉 as a
multiplicative subgroup of R

+. For example, if k = 5, then A5 has rank 3 (it actu-
ally corresponds to the pattern {(0,0,0), (1,0,0), (2,0,0), (0,1,0), (0,0,1)}). Then
by (1), sA5(n) = n − Θ(n2/3). In general, using the Fundamental Theorem of Arith-
metic, any element of Ak can be multiplicatively generated by the primes within
Ak , and all these primes are necessary to generate Ak . That is, the rank of Ak is
equal to π(k), the number of primes that are less than or equal to k. Thus by (1),
sAk

(n) = n − Θ(n1−1/π(k)), proving Theorem 3.
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The values of sR(n) can be determined for other patterns. For example, if R =
{1,2,3,6}, then R corresponds, under Theorem 2, to � = {(0,0), (1,0), (1,1), (0,1)}.
By Theorem 6, sR(n) = t�(n) = n − �2

√
n − 1�. Other patterns like R = {1,

√
2,π}

correspond to the same pattern P2 as A3 (above), and thus sR(n) = n −
�
√

2n + 1
4 − 1

2�.

3.2 Proof of Theorem 2

Let R be a finite set in R
+. By dilating R, we can assume that 1 ∈ R. Recall that

〈R〉 is the multiplicative subgroup of R
+ generated by R. Let {x1, x2, . . . , xq} be a

basis of 〈R〉. Then q is the rank of 〈R〉, and 〈R〉 = {xk1
1 x

k2
2 · · ·xkq

q : ki ∈ Z}. Since any
scaled copy λR of R is contained in a single equivalence class λ〈R〉 ∈ R

+/〈R〉, we
can restrict the maximum for the function sR(n) to 〈R〉. The following lemma is the
multiplicative analogue of Lemma 1.

Lemma 3 For any finite set R ⊆ R
+,

sR(n) = max
{

sR(Y ) : Y ⊆ 〈R〉, |Y | = n
}

.

Proof Take Y ⊆ R
+ and assume that Y ⊇ Y1 ∪ Y2, where Y1 and Y2 are contained

in the different classes λ1〈R〉 and λ2〈R〉, respectively. For k ∈ Z large enough, the
set Y ′

2 = (λ1λ
−1
2 xk

1)Y2 ⊆ λ1〈R〉 has no elements in common with Y , and Y ′
2 has as

many scaled copies of R as Y2. Replacing Y2 by Y ′
2 in Y gives a set intersecting a

fewer number of equivalence classes in R
+/〈R〉 and with at least as many scaled

copies of R as Y . Now, if Y is contained in a single class λ1〈R〉 ∈ R
+/〈R〉, the set

(λ−1
1 )Y ⊆ 〈R〉 contains as many scaled copies of R as Y , proving the identity. �

The function G : 〈R〉 → Z
q given by G(x

k1
1 x

k2
2 · · ·xkq

q ) = (k1, k2, . . . , kq) is a
group isomorphism. Thus G(λR) = G(λ) + G(R) for any λ ∈ 〈R〉, and v + G(R) =
G(G−1(v)R) for any v ∈ Z

q . That is, scaled copies of R in 〈R〉 ⊆ R
+ uniquely cor-

respond to translates of G(R) in Z
q ⊆ R

q under G. Hence,

Y ⊆ 〈R〉 implies |Y | = ∣
∣G(Y)

∣
∣ and sR(Y ) = tG(R)

(

G(Y)
)

. (5)

Let P be a finite set in R
d containing 0 and with rational affine dimension r .

Assume that {v1, v2, . . . , vr} is a basis of 〈P 〉+ and consider any r distinct primes
p1,p2, . . . , pr . Then 〈p1,p2, . . . , pr 〉 = {pk1

1 p
k2
2 · · ·pkr

r : ki ∈ Z} is a multiplica-
tive subgroup of R

+, and the function F : 〈P 〉+ → 〈p1,p2, . . . , pr 〉 given by
F(k1v1 + k2v2 + · · · + krvr) = p

k1
1 p

k2
2 · · ·pkr

r is a group isomorphism. Thus F(v +
P) = F(v)F (P ) for any v ∈ 〈P 〉+, and λF(P ) = F(F−1(λ) + P) for any λ ∈
〈p1,p2, . . . , pr 〉. That is, translates of P in 〈P 〉+ ⊆ R

d uniquely correspond to scaled
copies of F(P ) in 〈p1,p2, . . . , pr 〉 ⊆ R

+. Hence,

X ⊆ 〈P 〉+ implies |X| = ∣
∣F(X)

∣
∣ and tP (X) = sF(P )

(

F(X)
)

. (6)
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By Lemma 3, (5), and Lemma 1 we have

sR(n) = max
{

sR(Y ) : Y ⊆ 〈R〉, |Y | = n
}

= max
{

tG(R)

(

G(Y)
) : Y ⊆ 〈R〉, |Y | = n

}

= max
{

tG(R)(X) : X ⊆ G
(〈R〉), |X| = n

} = tG(R)(n).

To obtain the last identity, observe that 〈G(R)〉+ ⊆ G(〈R〉) ⊆ R
q . Lemma 1

guarantees that the maximum of tG(R)(X) over all X in a subset of R
q contain-

ing 〈G(R)〉+ is exactly tG(R)(n). Moreover, since G is an isomorphism and 1 ∈ R,
G(1) = 0 ∈ G(R) and q = dimQ G(R).

Similarly, by Lemma 1, (6), and Lemma 3, together with 〈F(P )〉 ⊆ F(〈P 〉+) ⊆
R

+, we have that

tP (n) = max
{

tP (X) : X ⊆ 〈P 〉+, |X| = n
}

= max
{

sF(P )

(

F(X)
) : X ⊆ 〈P 〉+, |X| = n

}

= max
{

sF(P )(Y ) : Y ⊆ F
(〈P 〉+

)

, |Y | = n
} = sF(P )(n).

Since F is an isomorphism and 0 ∈ P , we have that F(0) = 1 ∈ F(P ) and r is the
rank of P . Finally, observe that for a suitable λ > 0, we can guarantee that λF(P ) ⊆
N, so we may assume that F(P ) ⊆ N.

4 One-Dimensional Translated Patterns

Let P ⊆ R
d be a pattern with dimQ(P ) = 1. Then all members of P are rational

multiples of a vector z ∈ R
d . Thus, using a suitable affine transformation, we can

assume that P = {0, a1, a2, . . . , ak, ak+1} ⊆ Z with 0 < a1 < a2 < · · · < ak < ak+1 =
M and gcd{ai}k+1

i=1 = 1. Clearly, if |P | = 1, then tP (n) = n. If |P | = 2, then we can
assume that P = {0,1}. By Theorem 1, tP (n) = n−m1(n) = n−1. Theorem 4 shows
that tP (n) = n − M for |P | ≥ 3 and n large enough, namely n ≥ M(M − k).

4.1 Proof of Theorem 4

Let An = {1,2,3, . . . , n}. If n ≥ M , clearly x +P ⊆ An if and only if 1 ≤ x ≤ n−M.

Thus, tP (n) ≥ tP (An) = n − M .
Now we prove that tP (n) ≤ n − M for any n-set X and n ≥ M(M − k). We study

the subset of X consisting of the first points of translates of P . Specifically, let X0 =
{x ∈ X : x + P ⊆ X}. Clearly |X0| = tP (X). We consider the residue classes of X0

modulo M . For 1 ≤ i ≤ M , let Bi = {x ∈ X0 : x + i ≡ 0(modM)}, Ci = {x ∈ X\X0 :
x + i ≡ 0(modM)}, and set xi = |Bi |, yi = |Ci |. Of course,

M
∑

i=1

(xi + yi) = n and
M
∑

i=1

xi = tP (X). (7)
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Now observe that if Bi �= ∅ and mi = maxBi , then mi + M ∈ Ci �= ∅, i.e.,

yi = 0 implies xi = 0. (8)

By definition, if x ∈ Bi ⊆ X0, then x + aj + (i − aj ) ≡ x + i ≡ 0 (modM) and
x + aj ∈ X. Thus, Bi + aj ⊆ Bi−aj

∪ Ci−aj
, that is, xi ≤ xi−aj

+ yi−aj
. Replacing i

by i + aj , we get

xi+aj
− xi ≤ yi for 0 ≤ i ≤ M − 1 and 1 ≤ j ≤ k, (9)

where the indices are taken modM .
Let I = {i : yi = 0}. If I = ∅, then tP (X) = ∑M

i=1 xi = n − ∑M
i=1 yi ≤ n − M

by (7). If I �= ∅, we may assume, using a suitable translation of X, that yM = 0.
Then by (8) xM = x0 = 0 and by (9) xaj

= 0 for all j . Let A = (a1, a2, . . . , ak); for

every N = (n1, n2, . . . , nk) ∈ (N∗)k , we define the dot product N · A = ∑k
j=1 njaj

and the norm |N | = ∑k
j=1 nj . We also define a partial order on the vectors in (N∗)k :

If N,N ′ ∈ (N∗)k , we say that N ′ ≺ N if n′
i ≤ ni for 1 ≤ i ≤ k and N ′ �= N . We claim

the following:

Claim For every 1 ≤ u < M , there is a vector N = (n1, n2, . . . , nk) ∈ (N∗)k such
that N · A ≡ u (modM) and N1 · A �≡ N2 · A(modM) for every N1 ≺ N2 � N .

Proof First, since gcd{ai}k+1
i=1 = 1, the set of vectors N ∈ (N∗)k such that N · A ≡

u (modM) is nonempty. Suppose that N ∈ (N∗)k satisfies N · A ≡ u (modM) and
minimizes |N |. Clearly, if N1 ≺ N , then |N1| < |N | and consequently N1 · A �≡
u (modM). This proves the result when N2 = N . Similarly, if 0 ≺ N ′ ≺ N , then
N ′ ·A �≡ 0 (modM). Otherwise |N −N ′| < |N | and (N −N ′) ·A ≡ u (modM). Sup-
pose that N1 ≺ N2 � N and N1 · A ≡ N2 · A(modM). Then 0 ≺ N2 − N1 ≺ N and
(N2 − N1) · A ≡ 0 (modM), which contradicts the observation above. This proves
the claim. �

Let N be a vector given by the claim. For every 1 ≤ t ≤ |N |, we define v(t) ∈
(N∗)k as

v(t) = (n1, n2, . . . , nqt , rt ,0, . . . ,0),

where 0 ≤ qt ≤ k − 1 and 1 ≤ rt ≤ nqt+1 are the unique integers such that |v(t)| =
n1 + · · ·+ nqt + rt = t . By construction 0 ≺ v(1) ≺ v(2) ≺ · · · ≺ v(|N |) = N , and by
the claim all residues modM of v(t) · A, 1 ≤ t ≤ |N | are pairwise different. By (9)
we have for 1 ≤ t ≤ |N | − 1,

xv(t+1)·A − xv(t)·A ≤ yv(t)·A.

Adding all these inequalities, since xa1 = 0, we obtain

xu = xu − xa1 = xN ·A − xv(1)·A ≤
|N |−1
∑

t=1

yv(t)·A ≤
M−1
∑

j=0

yj = n − tP (X).
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The last inequality follows from the fact that all the indices v(t) · A, 1 ≤ t ≤ |N | − 1
are pairwise different modM . If we now add all these inequalities for every u except
u = 0, a1, . . . , ak (xu is equal to zero for these values), using (7), we get

tP (X) =
M−1
∑

u=0

xu ≤ (M − k − 1)
(

n − tP (X)
)

.

Finally, since n ≥ M(M − k), we have tP (X) ≤ n − n
M−k

≤ n − M .

4.2 Proof of Theorem 5

Theorem 4 only works for n large enough. Theorem 5 gives the exact value of tP (n)

for all n when |P | = 3. In fact, Theorem 4 is implied (and improved) by Theorem 5
when M is relatively prime to some ai , 1 ≤ i ≤ k.

Let P = {0, a, b} ⊆ Z with 0 < a < b and gcd(a, b) = 1. For n ≤ (
b
2

)

, let m and
p be the unique positive integers such that n = (

m
2

) + p with 1 ≤ p ≤ m. A simple

calculation shows that m = �
√

2n + 1
4 − 1

2�. Note that 1 ≤ m ≤ b − 1. We want to
prove

tP (n) =
{

n − m if n ≤ (
b
2

)

,

n − b if n >
(
b
2

)

.
(10)

If n ≥ (
b
2

) + 1, then tP (n) ≥ tP (An) ≥ n − b, as shown in the proof of Theorem 4.

If n ≤ (
b
2

)

, we construct the n-set

Xn =
m−1
⋃

j=0

{

ai + bj : 0 ≤ i ≤ m − j − 2 + εj and εj =
{

1 if j ≤ p − 1
0 if j ≥ p

}

such that tP (Xn) = n − m.

To check that Xn has in fact n elements, we show that the sets in the union above
are pairwise disjoint, and thus |Xn| = ∑m−1

j=0 (m − j − 1) + ∑p−1
j=0 1 = (

m
2

) + p = n.
Indeed, if ai1 +bj1 = ai2 +bj2, then a(i1 − i2) = b(j1 −j2), and since gcd(a, b) = 1,
i1 ≡ i2(modb). But 0 ≤ i1, i2 < m ≤ b − 1, and thus i1 = i2 and j1 = j2.

To count the number of translates in Xn, define X′
n = {x ∈ Xn : x + P ⊆ Xn}. By

definition, tP (Xn) = |X′
n|. We claim that

X′
n ⊇

m−2
⋃

j=0

{ai + bj : 0 ≤ i ≤ m − j − 3 + εj+1}.

Indeed, suppose that x = ai + bj with 0 ≤ j ≤ m − 2 and 0 ≤ i ≤ m − j − 3 + εj+1.
Note that x ∈ Xn. Since εj+1 = 1 implies εj = 1, we have x +a = a(i +1)+bj ∈ Xn

and thus 1 ≤ i + 1 ≤ m − j − 2 + εj+1 ≤ m − j − 2 + εj . Similarly, x + b = ai +
b(j + 1) ∈ Xn, since 0 ≤ i ≤ m − (j + 1) − 2 + εj+1. Finally,

tP (Xn) = |X′
n| ≥

m−2
∑

j=0

(m − j − 2) +
p−2
∑

j=0

1 = (
m−1

2

) + p − 1
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= (
m−1

2

) + n − (
m
2

) − 1 = n − m.

Now, we argue that the right-hand side of (10) bounds tP (n) above. We follow
the proof and notation of Theorem 4 with k = 1, a1 = a, and a2 = M = b. But Bi

and Ci are somewhat different: Bi = {x ∈ X0 : x + ia ≡ 0(modb)} and Ci = {x ∈
X\X0 : x + ia ≡ 0(modb)} for 0 ≤ i ≤ b − 1. Again, let xi = |Bi |, yi = |Ci |, and
I = {i : yi = 0}. In this case, (7) and (8) still hold, and (9) becomes

xi − xi−1 ≤ yi−1, (11)

where all indices of x and y are taken modb. Again, if I = ∅, then tP (X) ≤ n −
b ≤ n − m. The same occurs if s = ∑b

i=1 yi ≥ b. From this point on, the proofs of
Theorems 4 and 5 diverge.

Suppose now that I �= ∅, s < b, and {xi}, {yi} are nonnegative integers maximiz-
ing

∑b
i=1 xi subject to the restrictions in (7), (8), and (11). If yi = 0, then by (8)

xi = 0 and then by (11) xi+1 = 0. Suppose that 1 ≤ z(1) < z(2) < · · · < z(k) are the
members of I . By a suitable translation of X, we may assume that z(1) = 1. Note that
1 ≤ k < b ≤ s. Based on our previous observation and (11), we have for 1 ≤ j ≤ k,

xz(j) = xz(j)+1 = 0 = yz(j),

xz(j)+2 ≤ yz(j)+1,

xz(j)+3 ≤ yz(j)+1 + yz(j)+2,

...

xz(j+1)−1 ≤ yz(j)+1 + yz(j)+2 + · · · + yz(j+1)−2.

Thus,

b−1
∑

i=0

xi ≤
k

∑

j=1

z(j+1)−z(j)−1
∑

u=0

yz(j)+u

(

z(j + 1) − z(j) − 1 − u
)

. (12)

(For convenience, we added zero-terms to the second sum when u = 0 or u =
z(j + 1) − z(j) + 1. Also z(k + 1) = b + 1 by convention.) The following lemma
allows us to bound the right-hand side of (12). The proof of the lemma consists of
solving a simple linear programming problem. We defer the proof of this lemma to
Sect. 4.3 and continue with the proof of the theorem.

Lemma 4 Let b, k, s ∈ Z
+ be such that 1 ≤ k < b ≤ s. Consider the function

G(y1, y2, . . . , yb) =
k

∑

j=1

z(j+1)−z(j)−1
∑

u=0

yz(j)+u

(

z(j + 1) − z(j) − 1 − u
)

, (13)

where yi ∈ N
∗, I = {i : yi = 0} = {z(1), z(2), . . . , z(k)} with 1 = z(1) < z(2) < · · · <

z(k) (z(k + 1) = b + 1 by convention), and s = ∑b
i=1 yi .

G is maximized (uniquely except for symmetries modb) by y1 = y2 = · · · = yk =
0, yk+1 = s − (b − k − 1), and yk+2 = yk+3 = · · · = yb = 1.
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By Lemma 4, we can assume that y1 = y2 = · · · = yk = 0, yk+1 = s − (b − k − 1),
and yk+2 = yk+3 = · · · = yb = 1. Then,

tP (X) =
b−1
∑

i=0

xi ≤
b−k−1
∑

u=1

yk+u(b − k − u)

≤ (

s − (b − k − 1)
)

(b − k − 1) + (
b−k−1

2

) = s(b − k − 1) − (
b−k

2

)

.

Now recall that s = n − tP (X). Thus,

tP (X) ≤ n −
(

n

b − k
+ b − k − 1

2

)

.

Let l = m if n ≤ (
b
2

)

and l = b otherwise. Note that n >
(
l
2

)

. Since k ∈ Z, we have

(b − k)(l − 1) − (
b−k

2

) = 1

2

(

l − 1

2

)2

− 1

2

(

b − k −
(

l − 1

2

))2

≤ 1

2

((

l − 1

2

)2

− 1

4

)

= (
l
2

)

.

Divide by b − k to get l − 1 ≤ (
l
2

)

/(b − k) + (b − k − 1)/2, and thus

tP (X) < n −
( (

l
2

)

b − k
+ b − k − 1

2

)

≤ n − (l − 1),

that is, tP (X) ≤ n − l, and this completes the proof of the theorem.

4.3 Proof of Lemma 4

We first establish the following:

Claim Let l ≥ 1 be an integer and z > l a real number. The expression x2 + 2x3 +
3x4 + · · · + lxl+1 subject to the conditions xi ≥ 1 and x1 + x2 + · · · + xl+1 = z is
maximized uniquely by x1 = x2 = · · · = xl = 1 and xl+1 = z − l.

Proof If xi > 1 for some i ≤ l, then let x′
l+1 = xl+1 + 1, x′

i = xi − 1, and x′
j = xj

for all other indices. Then (x′
2 + 2x′

3 + 3x′
4 + · · · + lx′

l+1) − (x2 + 2x3 + 3x4 + · · · +
lxl+1) = l(xl+1 + 1) + (i − 1)(xi − 1) − lxl+1 − (i − 1)xi = l − i + 1 ≥ 1, which
proves the claim. �

Suppose y maximizes G(y). By using a suitable rotation modb we can assume
that yb �= 0. Let sj = ∑z(j+1)

i=z(j) yi . If z(j + 1) − z(j) ≥ 2, then, by the last claim,
the j th sum in (13) is maximized uniquely when yz(j)+1 = sj − (z(j + 1) − z(j) −
2) and yz(j)+2 = yz(j)+3 = · · · = yz(j+1)−1 = 1. For the sake of brevity, let dj =
z(j + 1) − z(j). Then the j th sum in (13) equals

(sj − dj + 2)(dj − 2) + (dj −2
2

) =
(

sj (dj − 2) − (dj −1
2

))

.
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If z(j + 1)− z(j) = 1, then the j th sum in (13) is zero. Note that this agrees with the
right-hand side of the previous equality. Thus we may assume that

G(y) =
k

∑

j=1

(

sj (dj − 2) − (dj −1
2

))

.

Now suppose that sj > 0 for some j < k. Note that sj ≥ z(j + 1) − z(j) − 1 = dj −
1 ≥ 1. We will show that this is not the case where y maximizes G(y) by “moving”
the (j + 1)th zero next to the j th zero. Let y′

z(j)+1 = 0, y′
z(j)+2 = s(j) + s(j + 1) −

(z(j +2)−z(j)−3) and y′
z(j)+3 = y′

z(j)+4 · · · = y′
z(j+2)−1 = 1. All other coordinates

of y′ are the same as those of y. Then s′
j = 0, s′

j+1 = sj + sj+1, and s′
i = si for all

i �= j, j + 1. Also z′(j + 1) = z(j) + 1 and z′(i) = z(i) for all i �= j + 1, i.e., d ′
j = 1,

d ′
j+1 = dj+1 + dj − 1, and d ′

i = di for all i �= j, j + 1. Thus,

G(y′) − G(y) = s′
j+1(d

′
j+1 − 2) − (d ′

j+1−1
2

)

−
(

sj (dj − 2) − (dj −1
2

) + sj+1(dj+1 − 2) − (dj+1−1
2

))

= (sj + sj+1)(dj+1 + dj − 3) − (dj+1+dj −2
2

)

+ (dj+1−1
2

) + (dj −1
2

) − sj (dj − 2) − sj+1(dj+1 − 2)

= (dj+1 − 1)
(

sj − (dj − 1)
) + sj+1(dj − 1)

≥ sj+1(dj − 1) ≥ sj+1 ≥ 0.

Moreover, unless all the k zeros are the first k integers, repeating this operation will
eventually yield a strict inequality (one with sj+1 > 0) because yb �= 0. This com-
pletes the proof of the lemma.

5 Four-Point Sets with Rational Dimension Two

If P is a 3-point pattern, then an exact formula for tP (n) follows from Theorem 1
if dimQ P = 2 or from Theorem 5 if dimQ P = 1. For sets P with 4 points, we also
have exact formulas for tP (n) when P has rational dimension 3 or 1 (at least for
n large enough). The only remaining case is when dimQ P = 2. In what follows,
we show formulas for two particular patterns and present some conjectures for the
general situation.

5.1 The Square and the L

First we present exact results for two important patterns. In particular the pattern L

below is equivalent, under Theorem 2, to the four-term arithmetic progression A4.
Thus, sA4(n) = tL(n).
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Fig. 4 Constructions of optimal sets X25 and Y25

Theorem 6 Let L = {(0,0), (1,0), (2,0), (0,1)} and � = {(0,0), (1,0), (0,1),

(1,1)}. Then for every n ∈ N, tL(n) = t�(n) = n − �2
√

n − 1�.

Proof For the constructive lower bounds, see Fig. 4(a) for the set L and Fig. 4(b) for
the set �. For both L and �, the respective optimal sets Xn and Yn consist of the
points with labels 1 to n. The labels are assigned by following the pattern shown in
the figure. It can be verified that tL(Xn) = t�(Yn) = n − �2

√
n − 1�. We omit the

details.
We now prove both upper bounds. The proof follows the ideas and notation of

Theorem 1. Let P ∈ {L,�} and suppose that X is an n-set with tP (X) = tP (n). As
in the proof of Theorem 1, we can assume that X ⊆ Z

2, all y-coordinates of X are
positive, and some are equal to one. We also use the notation dP (X) to denote the
number of deficit points of X with respect to P , Li to denote the points in X with
y-coordinate equal to i, and |Li | = li . Note that l1 ≥ 1.

We first consider P = L. Assume that l1 ≥ 2
√

n − 1. Every non-deficit point x ∈
Li is bijectively associated to x + (0,1) ∈ Li+1. Thus there are at least li − li+1
deficit points in Li and then dL(X) ≥ l1 ≥ 2

√
n − 1. Now assume that l1 < 2

√
n − 1.

If l1 = 1, then the point in l1 is clearly a deficit point, so dL(X) ≥ 1 + dL(X\L1) ≥
1 +dL(n− 1). By induction, 1 +dL(n− 1) ≥ 2

√
n − 1, which is at least 2

√
n− 1 for

n ≥ 2. If l1 ≥ 2, then the last two points in L1 are deficit points. In that case, dL(X) ≥
2 + dL(X\L1) ≥ 2 + dL(n − l1). By induction, 2 + dL(n − l1) ≥ 2 + 2

√
n − l1 −

1, which is greater than 2
√

n − 1 as long as l1 < 2
√

n − 1. In all cases, tL(n) =
n − dL(n) ≤ n − �2

√
n − 1�.

Let P = � and proceed by induction on n. Suppose that u is the largest number
for which lu ≥ 1. If lj = 0 for some 1 < j < u, then the result follows by induction
applied to L1 ∪ · · · ∪ Lj−1 and Lj+1 ∪ · · · ∪ Lu (the function 2

√
n − 1 is concave

down). Assume that lj ≥ 1 for all 1 ≤ j ≤ u. We have

d�(X) ≥
u−1
∑

i=1

max(1, li − li+1 + 1) + lu.

Indeed, every last point in Li is a deficit point with respect to �. Also, if i < u, there
are at most li+1 − 1 points x in Li+1 which are not deficit points with respect to
{(0,0), (1,0)}. Then there are at least li − (li+1 − 1) = li − li+1 + 1 points in Li
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which are not exactly below any of these points x, and thus they are deficit points
with respect to �. Finally, all points in Lu are clearly deficit points.

Since max(1, li − li+1 + 1) = (2 + li − li+1 +|li − li+1|)/2, using the conventions
l0 = lu+1 = 0, we have

d�(X) ≥ 1

2

u−1
∑

i=1

(

2 + li − li+1 + |li − li+1|
) + lu

= u − 1 + l1

2
+ lu

2
+ 1

2

u−1
∑

i=1

|li − li+1|

≥ u − 1 + 1

2

u
∑

i=0

|li − li+1|

≥ u − 1 + max
1≤i≤u

li (by the triangle inequality)

≥ u − 1 + 1

u

u
∑

i=1

li = u + n

u
− 1 ≥ 2

√
n − 1.

Thus, t�(n) = n − d�(n) ≤ n − �2
√

n − 1�. �

5.2 Conjectures for Arbitrary 4-Point Sets P

Now we discuss a plan and some conjectures to completely determine the func-
tion tP (n) when P is a four-point-set of affine rational dimension two. First note
that, under an affine transformation T , translates of P correspond bijectively to
translates of T (P ). Since P has rational dimension two, we can assume that P =
{(0,0), (1,0), (0,1), (x, y)}, where x, y ∈ Q. Moreover, by choosing appropriately
the point in P corresponding to (x, y), we can assume that (x, y) is not in the interior
or the boundary of the triangle (0,0), (1,0), (0,1). That is, we can assume that x < 0
or y < 0 or x + y ≥ 1.

Let z = (x, y) ∈ Q
2. We can uniquely write x = px/q and y = py/q , where

px,py, q are integers, q > 0, and gcd(px,py, q) = 1. Define F : Q
2 → N as

F(z) = F(x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

px + py if px,py ≥ 0,

max(px,−py + q) if py < 0 ≤ px,

max(py,−px + q) if px < 0 ≤ py,

−px − py + q if px,py < 0.

Let Ω = {(x, y) ∈ Q
2 : x < 0 or y < 0 or x + y ≥ 1}. For every z = (x, y) ∈ Ω , let

P(z) = {(0,0), (1,0), (0,1), (x, y)}. We conjecture that:

Conjecture 1 If z1, z2 ∈ Ω and F(z1) = F(z2), then tP (z1)(n) = tP (z2)(n) for every
n ∈ N.
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Fig. 5 Conjectured optimal constructions for the functions tP (zi )
(n), where n = 102

The previous section shows how this conjecture is true when F(z) = 2. Figure 5
shows four sets P(zi),1 ≤ i ≤ 4, for which F(zi) = 4 and the conjectured optimal
constructions for n = 102. In fact, every other z ∈ Ω with F(z) = 4 satisfies that P(z)

is affinely equivalent to one of the sets in Fig. 5. If Conjecture 1 is true in general,
then it would be enough to determine tP (z)(n) for z of the form z = (a,0) with a ∈ N.
By considering these particular sets, we further believe that the correct coefficient for
the n1/2 term is

√
2F(z) and that the rest of the error term is constant. More precisely:

Conjecture 2 For every z ∈ Ω ,

tP (z)(n) = n − √

2F(z)n1/2 + O(1).

For every set P(z) with z ∈ Ω , we can construct n-element sets Xn with
n − √

2F(z)n1/2 + O(1) translates of P(z). However we were able to prove a
matching upper bound only for sets of the form z = (a,0). For instance, we can
prove tP (3,0)(n) = n − �√6n − 15/4 − 3/2� for n ≥ 4 and, in general, tP (a,0)(n) ≤
n − �√2an − a2(a2 − 4)/12 − a/2� for a ≥ 2 and n ≥ (

a+1
3

)

. Already for a = 4 we
cannot match, for every n, the O(1) terms from our construction and from the pre-
vious upper bound. It is likely that an exact formula will depend on some kind of
binomial-type representation, much like Theorem 1.
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8. Elekes, G., Erdős, P.: Similar configurations and pseudogrids. In: Böröczky, K., et al. (eds.) Intuitive

Geometry (Szeged, 1991), Colloq. Math. Soc. János Bolyai, vol. 63, pp. 85–104 (1994)
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