
Discrete Comput Geom (2009) 42: 615–630
DOI 10.1007/s00454-008-9110-x

Fast Dimension Reduction Using Rademacher Series
on Dual BCH Codes

Nir Ailon · Edo Liberty

Received: 8 November 2007 / Revised: 9 June 2008 / Accepted: 4 September 2008 /
Published online: 26 September 2008
© Springer Science+Business Media, LLC 2008

Abstract The Fast Johnson–Lindenstrauss Transform (FJLT) was recently discov-
ered by Ailon and Chazelle as a novel technique for performing fast dimension re-
duction with small distortion from �d

2 to �k
2 in time O(max{d logd, k3}). For k in

[Ω(logd),O(d1/2)], this beats time O(dk) achieved by naive multiplication by ran-
dom dense matrices, an approach followed by several authors as a variant of the sem-
inal result by Johnson and Lindenstrauss (JL) from the mid 1980s. In this work we
show how to significantly improve the running time to O(d logk) for k = O(d1/2−δ),
for any arbitrary small fixed δ. This beats the better of FJLT and JL. Our analysis uses
a powerful measure concentration bound due to Talagrand applied to Rademacher se-
ries in Banach spaces (sums of vectors in Banach spaces with random signs). The set
of vectors used is a real embedding of dual BCH code vectors over GF(2). We also
discuss the number of random bits used and reduction to �1 space.

The connection between geometry and discrete coding theory discussed here is
interesting in its own right and may be useful in other algorithmic applications as
well.
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1 Introduction

Applying random matrices is by now a well-known technique for reducing dimen-
sionality of vectors in Euclidean space while preserving certain properties (most no-
tably distance information). Beginning with the classic work of Johnson and Lin-
denstrauss [1], who used projections onto random subspaces, other variants of the
technique using different distributions are known [2–5] and have been used in many
algorithms [6–12]. In all variants of this idea, a fixed unit length vector x ∈ Rd is
mapped onto Rk (k < d) via a random linear mapping Φ from a carefully chosen
distribution. A measure concentration principle is used to show that the distribution
of the norm estimator error |‖Φx‖2 − 1| in a small neighborhood of 0 is dominated
by a Gaussian of standard deviation O(k−1/2), uniformly for all x and independent
of d . The distribution of Φ need not even be rotationally invariant. When used in an
algorithm, k is often chosen as O(ε−2 logn) so that a union bound ensures that the
error is smaller than a fixed ε simultaneously for all n vectors in some fixed input
set. Noga Alon [13] proved that this choice of k is essentially optimal and cannot be
significantly reduced.

It makes sense to abstract the definition of a distribution of mappings that can be
used for dimension reduction in the above sense. We will say that such a mapping has
the Johnson–Lindenstrauss property (JLP), named after the authors of the first such
construction (we make an exact definition of this property in Sect. 2). In view of Ailon
and Chazelle’s FJLT result [2], it is natural to ask about the computational complexity
of applying a mapping drawn from a JLP distribution on a vector. The resources
considered here are time and randomness. Ailon et al. showed that reduction from d

dimensions to k dimensions can be performed in time O(max{d logd}, k3), beating
the naïve O(kd) time implementation of JL for k in ω(logd) and o(d1/2). Similar
bounds were found in [2] for reducing onto �1 (Manhattan) space, but with quadratic
(not cubic) dependence on k. From recent work by Matousek [5] it can be shown, by
replacing Gaussian distributions with ±1’s, that Ailon and Chazelle’s algorithm for
the Euclidean case requires O(max{d, k3}) random bits in the Euclidean case.

1.1 Our Results

This work contains several contributions. We summarize them for the Euclidean case
in Table 1 for convenience. The first (in Sect. 7) is a simple trick that can be used to
reduce the running time of FJLT [2] to O(max{d logk}, k3), hence making it better
than the naïve algorithm for small k (first row in the table). In typical applications,
the running time translates to O(d log logn), where n is the number of points we
simultaneously want to reduce (assuming n = 2O(d1/3)).

The main contribution (Sects. 5–6) is improving the case of “large k” (bottom row
in the Table 1). We use tools from the theory of probability and norm interpolation
in Banach spaces (Sect. 3) and the theory of error correcting codes (Sect. 4) to con-
struct a distribution on matrices satisfying JLP that can be applied in time O(d logd)

(note that, in this case, logd = O(log k)). Our construction takes advantage of ideas
from different classical theories. These ideas provide a new algorithmic application
of error correcting codes, an extremely useful tool in theoretical computer science
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Table 1 Schematic comparison
of asymptotic running time of
this work, Ailon and Chazelle’s
work [2] (FJLT) and a naïve
implementation of
Johnson–Lindenstrauss (JL),
or variants thereof

Fast - - - - - - - - - - - → Slow

k in o(logd) This work JL FJLT

k in ω(logd) This work FJLT JL

and o(poly(d))

k in Ω(poly(d)) This work JL

and o((d log(d)1/3) FJLT

k in ω((d logd)1/3) This work FJLT JL

and O(d1/2−δ)

with applications in both complexity and algorithms (a good overview can be found
in [14]; some other recent examples in [15, 16]).

A note on “large k”: As stated above, k is typically O(ε−2 logn), where ε is a
desired distortion bound, and n is the number of vectors we seek to reduce. Although
logn is typically small (logarithmic in input size), in various applications, especially
in scientific computation, ε−2 may be large. This case is therefore important to study.

It is illustrative to point out an apparent weakness in [2] that was a starting point
of our work. The main tool used there was to multiply the input vector x by a random
sign change matrix followed by a Fourier transform, resulting in a vector y. It is
claimed that ‖y‖∞ is small (in other words, the “information” is spread out evenly
among the coordinates). By a convexity argument the “worst case” y (assuming only
the �∞ bound) is a uniformly supported vector in which the absolute values of the
coordinates in its (small) support are all equal. Intuitively, such a vector is extremely
unlikely. In this work we consider other norms.

It is likely that the techniques we develop here can be used in conjunction with
very recent research on explicit embeddings of �2 in �1 [17–19] and research on fast
approximate linear algebraic scientific computation [11, 20–25].

2 Preliminaries

We use �d
p to denote the d-dimensional real space equipped with the norm ‖x‖ =

‖x‖p = (
∑d

i=1 |xi |p)1/p , where 1 ≤ p < ∞ and ‖x‖∞ = max{|xi |}. The dual norm
index q is defined by the solution to 1/q + 1/p = 1. We remind the reader that
‖x‖p = sup y∈�dq

‖y‖=1

xT y. For a real k×d matrix A, the matrix norm ‖A‖p1→p is defined

as the operator norm of A : �d
p1

→ �k
p or

‖A‖p1→p = sup
x∈�dp1‖x‖=1

‖Ax‖p = sup
y∈�kq
‖y‖=1

sup
x∈�dp1‖x‖=1

yT Ax.

In what follows we use d to denote the original dimension and k < d the target
(reduced) dimension. The input vector will be x = (x1, . . . , xd)T ∈ �d

2 . Since we only
consider linear reductions, we will assume without loss of generality that ‖x‖2 = 1.
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Definition 2.1 A distribution D(d, k) on k×d real matrices (k ≤ d) has the Johnson–
Lindenstrauss property (JLP) with respect to a norm index p, if for any unit vector
x ∈ �d

2 and 0 ≤ ε < 1/2,

Pr
A∼Dd,k

[∣
∣‖Ax‖p − 1

∣
∣ > ε

] ≤ c1e
−c2kε2

(2.1)

for some global c1, c2 > 0.

(A similar definition was given in [11].) In this work, we study the cases p = 1
(Manhattan JLP) and p = 2 (Euclidean JLP). We make a few technical remarks about
Definition 2.1:

• For most dimension reduction applications, k = Ω(ε−2), so the constant c1 can be
“swallowed” by c2, but we prefer to keep it here to avoid writing O(e−Ω(kε2)) and
for generality.

• The definition is robust with respect to bias of O(k−1/2). More precisely, if we
prove Pr[μ−ε ≤ ‖Ax‖p ≤ μ+ε] ≥ 1−c1e

−c2kε2
for some μ satisfying |μ−1| =

O(k−1/2), then this would imply (2.1), with possibly different constants. We will
use this observation in what follows.

Recall that a Walsh–Hadamard matrix Hd is a d × d orthogonal matrix with
Hd(i, j) = 2−d/2(−1)〈i,j〉 for all i, j ∈ [0, d − 1], where 〈i, j 〉 is the dot product
(over F2) of i, j viewed as (logd)-bit vectors. The matrix encodes the Fourier trans-
form over the binary hypercube. It is well known that x �→ Hdx ∈ �d

2 can be computed
in time O(d logd) for any x ∈ �d

2 and that the mapping is isomorphic.

Definition 2.2 A matrix A ∈ Rm×d is a code matrix if every row of A is equal to
some row of Hd multiplied by

√
d/m.

The normalization is chosen so that columns have Euclidean norm 1.

2.1 Statement of our Theorems

The main contribution is in Theorem 2.2 below.

Theorem 2.1 For any code matrix A of size k × d for k < d , the mapping x �→ Ax

can be computed in time O(d log k).

Clearly this theorem is interesting only for logk = o(logd), because otherwise the
Walsh–Hadamard transform followed by projection onto a subset of the coordinates
can do this in time O(d logd), by the definition of a code matrix. As a simple corol-
lary, the running time of the algorithms in [2] can be reduced to O(max{d log k, k3}),
because effectively what they do is multiply the input x (after a random sign change)
by a code matrix of size O(k3) × d and then manipulate the outcome in time O(k3).
This gives the left column of Table 1. We refer the reader to [2, 5] for details on
the original O(max{d logd, k3})-time algorithm, from which, together with Theo-
rem 2.1, the improvement is obvious.
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The proof of Theorem 2.1 is done by a careful pruning of the execution tree of the
original Walsh–Hadamard transform.

Theorem 2.2 Let δ > 0 be some arbitrarily small constant. For any d, k satisfying
k ≤ d1/2−δ , there exists an algorithm constructing a random matrix A of size k × d

satisfying JLP, such that the time to compute x �→ Ax for any x ∈ Rd is O(d logk).
The construction uses O(d) random bits and applies to both the Euclidean and the
Manhattan cases.

We will prove a slightly weaker running time of O(d logd) below and provide
a sketch for reducting it to O(d logk), where the full details of the improvement
are deferred to Sect. 8. This improvement is interesting for small k and provides a
unified solution for all k ≤ d1/2−δ , though the small k case can also be taken care
of using Theorem 2.1 above in conjunction with FJLT [2]. The main contribution of
Theorem 2.1, of course, is in getting rid of the term k3 in the running time of FJLT.

The matrix A from Theorem 2.2 will be constructed by composing a constant
number of fast transformations, each of which is a composition of a pair of matrices: a
code matrix and a random diagonal matrix. Each pair is responsible for controlling the
norm of the transformed input vector in a carefully chosen Banach space. The main
tool that will be used for analyzing the matrix pair output is the theory of Rademacher
random variables in Banach spaces.

3 Tools from Banach Spaces

The following is known as an interpolation theorem in the theory of Banach spaces.
For a proof, refer to [26].

Theorem 3.1 (Riesz–Thorin) Let A be an m × d real matrix, and assume that
‖A‖p1→r1 ≤ C1 and ‖A‖p2→r2 ≤ C2 for some norm indices p1, r1,p2, r2. Let λ

be a real number in the interval [0,1], and let p, r be such that 1/p = λ(1/p1) +
(1 − λ)(1/p2) and 1/r = λ(1/r1) + (1 − λ)(1/r2). Then ‖A‖p→r ≤ Cλ

1 C1−λ
2 .

Theorem 3.2 (Hausdorff–Young) For norm index 1 ≤ p ≤ 2,‖H‖p→q ≤ d−1/p+1/2,
where q is the dual norm index of p.

(This theorem is usually stated with respect to the Fourier operator for functions on
the real line or on the circle and is a simple application of Riesz–Thorin by noticing
that ‖H‖2→2 = 1 and ‖H‖1→∞ = d−1/2.)

Let M be a real m × d matrix, and let z ∈ Rd be a random vector with each zi

distributed uniformly and independently over {±1}. The random vector Mz ∈ �m
p is

known as a Rademacher random variable. A nice exposition of concentration bounds
for Rademacher variables is provided in Chap. 4.7 of [27] for more general Banach
spaces. For our purposes, it suffices to review the result for finite-dimensional �p

space. Consider the norm Z = ‖Mz‖p (we say that “Z is the norm of a Rademacher
random variable in �d

p corresponding to M”). We associate two numbers with Z,
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• the deviation σ , defined as ‖M‖2→p , and
• the median μ of Z.

Theorem 3.3 For any t ≥ 0, Pr[|Z − μ| > t] ≤ 4e−t2/(8σ 2).

The theorem is a simple consequence of a powerful theorem of Talagrand (Chap. 1
of [27]) on measure concentration of functions on {−1,+1}d extendable to convex
functions on �d

2 with bounded Lipschitz norm.

4 Tools from Error Correcting Codes

Let A be a code matrix, as defined above. The columns of A can be viewed as vectors
over F2 under the usual transformation ((+) → 0, (−) → 1). Clearly, the set of vec-
tors thus obtained are closed under addition and hence constitute a linear subspace
of F

m
2 . Conversely, any linear subspace V of F

m
2 of dimension ν can be encoded

as an m × 2ν code matrix (by choosing some ordered basis of V ). We will borrow
well-known constructions of subspaces from coding theory, hence the terminology.
Incidentally, note that Hd encodes the Hadamard code, equivalent to a dual BCH
code of designed distance 3.

Definition 4.1 A code matrix A of size m × d is a-wise independent if for all 1 ≤
i1 < i2 < · · · < ia ≤ m and (b1, b2, . . . , ba) ∈ {+1,−1}a , the number of columns A(j)

for which (A
(j)
i1

,A
(j)
i2

, . . . ,A
(j)
ia

) = m−1/2(b1, b2, . . . , ba) is exactly d/2a .

Lemma 4.1 There exists a 4-wise independent code matrix of size k × fBCH(k),
where fBCH(k) = Θ(k2).

The family of matrices is known as binary dual BCH codes of designed distance 5.
Details of the construction can be found in [28].

5 Reducing to Euclidean Space for k ≤ d1/2−δ

Assume that δ > 0 is some arbitrarily small constant. Let B be a k × d matrix
with Euclidean unit length columns, and D a random {±1} diagonal matrix. Let
Y = ‖BDx‖2. Our goal is to get a concentration bound of Y around 1. Notice that
E[Y 2] = 1. In order to use Theorem 3.3, we let M denote the k × d matrix with its
ith column M(i) being xiB

(i), where B(i) denotes the ith column of B . Clearly Y is
the norm of a Rademacher random variable in �k

2 corresponding to M . We estimate
the deviation σ and median μ, as defined in Sect. 3.

σ = ‖M‖2→2 = sup
y∈�k2‖y‖=1

∥
∥yT M

∥
∥

2 = sup

(
d∑

i=1

x2
i

(
yT B(i)

)2

)1/2
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≤ ‖x‖4 sup

(
d∑

i=1

(
yT B(i)

)4

)1/4

= ‖x‖4
∥
∥BT

∥
∥

2→4. (5.2)

(The inequality is Cauchy–Schwarz.) To estimate the median, μ, we compute

E
[
(Y − μ)2] =

∫ ∞

0
Pr

[
(Y − μ)2 > s

]
ds ≤

∫ ∞

0
4e−s/(8σ 2) ds = 32σ 2.

The inequality is an application of Theorem 3.3. Recall that E[Y 2] = 1. Also, E[Y ] =
E[√Y 2] ≤

√
E[Y 2] = 1 (by Jensen). Hence E[(Y −μ)2] = E[Y 2]−2μE[Y ]+μ2 ≥

1 − 2μ + μ2 = (1 − μ)2. Combining, |1 − μ| ≤ √
32σ . We conclude,

Corollary 5.1 For any t ≥ 0,

Pr
[|Y − 1| > t

] ≤ c3 exp
{−c4t

2/(‖x‖2
4

∥
∥BT

∥
∥2

2→4

)}

for some global c3, c4 > 0.

In order for the distribution of BD to satisfy JLP, we need to have σ = O(k−1/2).
This requires controlling both ‖BT ‖2→4 and ‖x‖4. We first show how to design a
matrix B that is both efficiently computable and has a small norm. The latter quantity
is adversarial and cannot be directly controlled, but we are allowed to manipulate x

by applying a (random) orthogonal matrix Φ without losing any information.

5.1 Bounding ‖BT ‖2→4 Using BCH Codes

Lemma 5.1 Assume that B is a k × d 4-wise independent code matrix. Then
‖BT ‖2→4 ≤ (3d)1/4k−1/2.

Proof For y ∈ �k
2,‖y‖ = 1,

∥
∥yT B

∥
∥4

4 = dEj∈[d]
[(

yT B(j)
)4]

= dk−2
k∑

i1,i2,i3,i4=1

Ebi1 ,bi2 ,bi3 ,bi4
[yi1yi2yi3yi4bi1bi2bi3bi4]

= dk−2(3‖y‖4
2 − 2‖y‖4

4

) ≤ 3dk−2, (5.3)

where bi1 through bik are independent random {+1,−1} variables. We now use the
BCH codes. Let Bk denote the k ×fBCH(k) matrix from Lemma 4.1 (we assume here
that k = 2a − 1 for some integer a; this is harmless because otherwise we can reduce
onto some k′ = 2a − 1 such that k/2 ≤ k′ ≤ k and pad the output with k − k′ zeros).
In order to construct a matrix B of size k × d for k ≤ d1/2−δ , we first make sure that
d is divisible by fBCH(k) (by at most multiplying d by a constant factor and padding
with zeros) and then define B to be d/fBCH(k) copies of Bk side by side. Clearly B

remains 4-wise independent. Note that B may no longer be a code matrix, but x �→
Bx is computable in time O(d logk) by performing d/fBCH(k) Walsh transforms on
blocks of size fBCH(k). �
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5.2 Controlling ‖x‖4 for k < d1/2−δ

We define a randomized orthogonal transformation Φ that is computable in O(d logd)

time and succeeds with probability 1 − O(e−k) for all k < d1/2−δ . Success means
that ‖Φx‖4 = O(d−1/4). (Note: Both big-Os hide factors depending on δ). Note that
this construction gives a running time of O(d logd). We discuss later how to do this
for arbitrarily small k with running time O(d logk).

The basic building block is the product HD′, where H = Hd is the Walsh–
Hadamard matrix, and D′ is a diagonal matrix with random i.i.d. uniform {±1} on
the diagonal. Note that this random transformation was the main ingredient in [2].
Let H(i) denote the ith column of H .

We are interested in the random variable X = ‖HD′x‖4. We define M as the d ×d

matrix with the ith column M(i) being xiH
(i), we let p = 4 (q = 4/3), and notice that

X is the norm of the Rademacher random variable in �d
4 corresponding to M (using

the notation of Sect. 3). We compute the deviation σ ,

σ = ‖M‖2→4 = ∥
∥MT

∥
∥

4/3→2 = sup
y∈�k4/3

‖y‖4/3=1

(∑

i

x2
i

(
yT H(i)

)2
)1/2

≤
(∑

x4
i

)1/4
sup

(∑

i

(
yT H(i)

)4
)1/4

= ‖x‖4
∥
∥HT

∥
∥ 4

3 →4. (5.4)

(Note that HT = H .) By the Hausdorff–Young theorem, ‖H‖ 4
3 →4 ≤ d−1/4. Hence,

σ ≤ ‖x‖4d
−1/4. We now get by Theorem 3.3 that for all t ≥ 0,

Pr
[∣
∣
∥
∥HD′x

∥
∥

4 − μ
∣
∣ > t

] ≤ 4e−t2/(8‖x‖2
4d−1/2), (5.5)

where μ is a median of X.

Claim 5.1 μ = O(d−1/4).

Proof To see the claim, notice that for each separate coordinate, E[(HD′x)4
i ] =

O(d−2) and then use linearity of expectation to get E[‖HD′x‖4
4] = O(d−1). By

Jensen’s inequality, E[‖HD′x‖b
4] ≤ E[‖HD′x‖4

4]b/4 = O(d−b/4) for b = 1,3. Now

E
[(∥

∥HD′x
∥
∥

4 − μ
)4] =

∫ ∞

0
Pr

[(∥
∥HD′x

∥
∥

4 − μ
)4

> s
]
ds

≤
∫ ∞

0
4e−s1/2/(8‖x‖2

4d
−1/2) ds

= O(d−1).

This implies by multiplying the LHS out that −γ1d
−3/4μ − γ2d

−1/4μ3 + μ4 ≤
γ3d

−1, where γi > 0 are global constants for i = 1,2,3. The statement of the claim
immediately follows. �
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Let c9 be such that μ4 ≤ c9d
−1/4. We weaken inequality (5.5) using the last claim to

obtain the following convenient form:

Pr
[∥
∥HD′x

∥
∥

4 > c9d
−1/4 + t

] ≤ 4e−t2/(8‖x‖2
4d

−1/2). (5.6)

In order to get a desired failure probability of O(e−k), set t = c8k
1/2‖x‖4d

−1/4.
For k < d1/2−δ , this gives t < c8d

−δ/2‖x‖4. In other words, with probability 1 −
O(e−k) we get

∥
∥HD′x

∥
∥

4 ≤ c9d
−1/4 + c8d

−δ/2‖x‖4.

Now compose this r times: Take independent random diagonal {±1} matrices D′ =
D(1),D(2), . . . ,D(r) and define Φ

(r)
d = HD(r)HD(r−1) · · ·HD(1). Using a union

bound on the conditional failure probabilities, we get that with probability at least
1 − O(re−k),

∥
∥Φ

(r)
d x

∥
∥

4 ≤ d−1/4c9c
r
8 + cr

8d
−δr/2‖x‖4. (5.7)

(We assumed c8 > 2.) Hence, under our assumption that δ is constant, recalling that
‖x‖4 ≤ ‖x‖2 = 1, we get by plugging into (5.7):

Lemma 5.2 (�4 reduction for k < d1/2−δ) With probability of success 1 − O(e−k),
∥
∥Φ(r)x

∥
∥

4 = O
(
d−1/4) (5.8)

for r = �1/2δ�.

(Note that the constant hiding in the bound (5.8) is exponential in 1/δ.)
Conditioned on the success event from Lemma 5.2, we can take Φ

(r)
d x as input

to the random transformation BD, and combining with Corollary 5.1 we conclude
that the random transformation A = BDΦ(r) has Euclidean JLP for k < d1/2−δ and
can be applied to a vector in time O(d logd). This proves the Euclidean case of
Theorem 2.2.

5.3 Reducing the Running Time to O(d logk)

We now explain how to reduce the running time to O(d logk), using the new tools
developed here. This provides a unified solution to the problem of designing effi-
cient Johnson–Lindenstrauss projections for all k up to d1/2−δ . Recall that in the
construction of B we placed d/fBCH(k) copies of the same code matrix Bk of size
k × fBCH(k) side by side. It turns out that we can apply this “decomposition” of
coordinates to Φ(r). Indeed, let Ij ⊆ [d] denote the j th block of β = fBCH(k)kδ con-
secutive coordinates (assume that β is an integer that divides d). For a vector y ∈ �d

p ,

let yIj
∈ �

β
p denote the projection of y onto the set of coordinates Ij . Now, instead of

using Φ(r) = Φ
(r)
d as above, we use a block-diagonal d × d matrix comprised of d/β

β × β blocks each drawn from the same distribution as Φ
(r)
β . Clearly the running

time of the block-diagonal matrix is O(d logk), by applying the Walsh transform
independently on each block (recall that β = fBCH(k)kδ = O(k2+δ)).
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In order to see why this still works, one needs to repeat the above proofs using the
family of norms ‖·‖(p1,p2) indexed by two norm indices p1,p2 and defined as

‖x‖(p1,p2) =
(

d/β∑

j=1

‖xIj
‖p2
p1

)1/p2

.

We defer the proofs to Sect. 8 below.

6 Reducing to Manhattan Space for k < d1/2−δ

We sketch this simpler case. As we did for the Euclidean case, we start by studying the
random variable W ∈ �k

1 defined as W = ‖k1/2BDx‖1 for B as described in Sect. 5
and D a random ±1-diagonal matrix. In order to characterize the concentration of
W (the norm of a Rademacher r.v. in �k

1), we compute the deviation σ and estimate
the median μ. As before, we set M to be the k × d matrix with the ith column being
k1/2B(i)xi .

σ = sup
y∈�k∞‖y‖=1

∥
∥yT M

∥
∥

2 = sup

(

k

d∑

i=1

x2
i

(
yT B(i)

)2

)1/2

≤ sup k1/2‖x‖4
∥
∥yT B(i)

∥
∥

4 = k1/2‖x‖4
∥
∥BT

∥
∥∞→4. (6.9)

Using the tools developed in the Euclidean case, we can reduce ‖x‖4 to O(d−1/4)

with probability 1 − O(e−k) using Φr(d), in time O(d logd) (in fact, O(d logk)

using the improvement from Sect. 8). Also we already know from Sect. 5.1 that
‖BT ‖2→4 = O(d1/4k−1/2) if B is comprised of k × fBCH(k) dual BCH codes
(of designed distance 5) matrices side by side (assume fBCH(k) divides d). Since
‖y‖∞ ≥ k−1/2‖y‖2 for any y ∈ �k , we conclude that ‖BT ‖∞→4 = O(d1/4). Com-
bining, we get σ = O(k1/2). We now estimate the median μ of W .

In order to calculate μ we first calculate E(W) = kE[|P |] where P is any sin-
gle coordinate of k1/2BDx. We follow (almost exactly) a proof by Matousek in [5],
where he uses a quantitative version of the Central Limit Theorem by König, Schütt,
and Tomczak [29].

Lemma 6.1 (König–Schütt–Tomczak) Let z1 . . . zd be independent symmetric ran-
dom variables with

∑d
i=1 E[z2

i ] = 1, let F(t) = Pr[∑d
i=1 zi < t], and let ϕ(t) =

1
2π

∫ t

−∞ e−x2/2dx. Then

∣
∣F(t) − ϕ(t)

∣
∣ ≤ C

1 + |t |3
d∑

i=1

E
[|zi |3

]

for all t ∈ R and some constant C.
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Clearly we can write P = ∑d
i=1 zi where zi = D′

ixi and each D′
i is a random ±1.

Note that
∑d

i=1 E[|zi |3] = ‖x‖3
3. Let β be the constant

∫ ∞
−∞ |t |dϕ(t) (the expectation

of the absolute value of a Gaussian).

∣
∣E

[|P |] − β
∣
∣ =

∣
∣
∣
∣

∫ ∞

−∞
|t |dF(t) −

∫ ∞

−∞
|t |dϕ(t)

∣
∣
∣
∣

≤
∫ ∞

−∞
∣
∣F(t) − ϕ(t)

∣
∣dt ≤ ‖x‖3

3

∫ ∞

−∞
C

1 + |t |3 dt.

We claim that ‖x‖3
3 = O(k−1). To see this, recall that ‖x‖2 = 1,‖x‖4 = O(d−1/4).

Equivalently, ‖xT ‖2→2 = 1 and ‖xT ‖4/3→2 = O(d−1/4). By applying Riesz–Thorin
we get that ‖x‖3 = ‖xT ‖3/2→2 = O(d−1/6), hence ‖x‖3

3 = O(d−1/2). Since k =
O(d1/2), the claim is proved.

By linearity of expectation we get E(W) = kβ(1 ± O(k−1)). We now bound the
distance of the median from the expected value:

∣
∣E(W) − μ

∣
∣ ≤ E

[|W − μ|]

=
∫ ∞

0
Pr

[|W − μ| > t
]
dt ≤

∫ ∞

0
4e−t2/(8σ 2)dt = O

(
k1/2)

(we used our estimate σ = O(k1/2) above). We conclude that μ = kβ(1+O(k−1/2)).
This clearly shows that (up to normalization) the random transformation BDΦ(r)

(where r = �1/δ�) has the JL property with respect to embedding into Manhattan
space. The running time is O(d logd).

7 Trimmed Walsh–Hadamard Transform

We prove Theorem 2.1. For simplicity, let H = Hd . It is well known that computing
the Walsh–Hadamard transform Hx requires O(d logd) operations. It turns out that
it is possible to compute PHx with O(d logk) operations, as long as the matrix P

contains at most k nonzeros. This will imply Theorem 2.1, because code matrices of
size k × d are a product of PHd , where P contains k rows with exactly one nonzero
in each row. To see this, we remind the reader that the Walsh–Hadamard matrix (up
to normalization) can be recursively described as

H1 =
(

1 1
1 −1

)

, Hq =
(

Hq/2 Hq/2
Hq/2 −Hq/2

)

.

We define x1 and x2 to be the first and second halves of x. Similarly, we define P1
and P2 as the left and right halves of P , respectively.

PHqx = (
P1 P2

)
(

Hq/2 Hq/2
Hq/2 −Hq/2

)(
x1
x2

)

= P1Hq/2(x1 + x2) + P2Hq/2(x1 − x2). (7.10)
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P1 and P2 contain k1 and k2 nonzeros, respectively, k1 + k2 = k, giving the
recurrence relation T (d, k) = T (d/2, k1) + T (d/2, k2) + d for the running time.
The base cases are T (d,0) = 0 and T (d,1) = d . We use induction to show that
T (d, k) ≤ 2d log(k + 1):

T (d, k) = T (d/2, k1) + T (d/2, k2) + d

≤ d log(2(k1 + 1)(k2 + 1))

≤ d log((k1 + k2 + 1)2) for k1 + k2 = k ≥ 1

≤ 2d log(k + 1).

The last sequence of inequalities, together with the base cases, clearly also gives an
algorithm and proves Theorem 2.1.

Since in [2] both Hadamard and Fourier transforms were considered, we also
shortly describe a simple trimmed Fourier transform. In order to compute k coef-
ficients from a d-dimensional Fourier transform on a vector x, we divide x into L

blocks of size d/L and begin with the first step of the Cooley Tukey algorithm which
performs d/L FFTs of size L between the blocks (and multiplies them by twiddle
factors). In the second step, instead of computing FFTs inside each block, each coef-
ficient is computed directly, by summation, inside its block. These two steps require
(d/L) · L log(L) and kd/L operations, respectively. By choosing k/ log(k) ≤ L ≤ k

we achieve a running time of O(d log(k)).

8 Reducing the Running Time to O(d logk) for Small k

Recall the construction in Sect. 5: δ > 0 is an arbitrarily small constant, we assume
that k ≤ d1/2−δ , that kδ is an integer, and that β = fBCH(k)kδ divides d (all these
requirements can be easily satisfied by slightly reducing δ and at most doubling d).
The matrix B is of size k × d and was defined as follows:

B = (
Bk Bk · · ·Bk

)
,

where Bk is the k × fBCH(k) code matrix from Lemma 4.1. Let B̂ denote kδ copies
of Bk , side by side. So B̂ is of size k × β , and B consists of d/β copies of B̂ . As
in Sect. 5, we start our construction by studying the distribution of the �2 estimator
Y = ‖BDx‖2, where D is our usual random ±1 diagonal matrix. Going back to (5.2)
(recall that M is the matrix whose ith column M(i) is xiB

(i)), we recompute the
deviation σ :

σ = ‖M‖2→2 = sup
y∈�k2‖y‖=1

∥
∥yT M

∥
∥

2

= sup

(
d∑

i=1

x2
i

(
yT B(i)

)2

)1/2

= sup

(
d/β∑

j=1

∑

i∈Ij

x2
i

(
yT B(i)

)2

)1/2

,
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where Ij is the j th block of β consecutive integers between 1 and d . Applying
Cauchy–Schwarz, we get

σ ≤ sup
y∈�k2‖y‖=1

(
d/β∑

j=1

‖xIj
‖2

4

∥
∥yT B̂

∥
∥2

4

)1/2

= (
sup

∥
∥yT B̂

∥
∥

4

)‖x‖(4,2) = ∥
∥B̂T

∥
∥

2→4‖x‖(4,2), (8.11)

where ‖·‖(p1,p2) is defined by

‖x‖(p1,p2) =
(

d/β∑

j=1

‖xIj
‖p2
p1

)1/p2

,

and xIj
∈ �

β
p1 is the projection of x onto the set of coordinates Ij . Our goal, as

in Sect. 5, is to get σ = O(k−1/2). By the properties of dual BCH code matrices
(Lemma 5.1), we readily have that ‖B̂T ‖2→4 = O((fBCH(k)kδ)1/4k−1/2), which is
O(kδ/4) by our construction. We now need to somehow “ensure” that ‖x‖(4,2) =
O(k−1/2−δ/4) in order to complete the construction.

As before, we cannot directly control x (and its norms), but we can multiply it
by random orthogonal matrices without losing �2 information. Let H ′ be a block
diagonal d × d matrix with d/β blocks of the Walsh–Hadamard matrix Hβ :

H ′ =

⎛

⎜
⎜
⎜
⎝

Hβ

Hβ

. . .

Hβ

⎞

⎟
⎟
⎟
⎠

.

Let D′ be a random diagonal d × d matrix over ±1. The random matrix H ′D′ is
orthogonal. We study the random variable X′ = ‖H ′D′x‖(4,2). Let M ′ be the matrix
with the ith column M ′(i) defined as xiH

′(i). We notice that X′ is the norm of the
Rademacher random variable in �d

(4,2) corresponding to M .

Remark The results on Rademacher random variables, presented in Sect. 3, apply
also to “nonstandard” norms such as ‖·‖(p1,p2). The dual of ‖·‖(p1,p2) is ‖·‖(q1,q2),
where q1, q2 are the usual dual norm indices of p1,p2, respectively. It is an exercise
to check that ‖x‖(p1,p2) = sup‖y‖(q1,q2)=1 xT y. We compute the deviation σ ′ and a

median μ′ of X′ (as we did in (5.4)):

σ ′ = ‖M‖2→(4,2) = ∥
∥MT

∥
∥

(4/3,2)→2

= sup
y∈�k

(4/3,2)
‖y‖=1

(∑

i

x2
i

(
yT H(i)

)2
)1/2

= sup

(
d/β∑

j=1

∑

i∈Ij

x2
i

(
yT H ′(i))2

)1/2
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≤ sup

(
d/β∑

j=1

‖xIj
‖2

4

∥
∥yT

Ij
Hβ

∥
∥2

4

)1/2

≤ sup

(
d/β∑

j=1

‖xIj
‖2

4‖yIj
‖2

4/3

∥
∥HT

β

∥
∥2

4/3→4

)1/2

= ‖Hβ‖4/3→4 sup

(
d/β∑

j=1

‖xIj
‖2

4‖yIj
‖2

4/3

)1/2

,

where the first inequality is Cauchy–Schwarz. By the inequality (
∑

j Aj )
1/2 ≤

∑
j A

1/2
j holding for all nonnegative A1,A2, . . . , we get

σ ′ ≤ ‖Hβ‖4/3→4 sup
y∈�k

(4/3,2)
‖y‖=1

d/β∑

j=1

‖xIj
‖4‖yIj

‖4/3

≤ ‖Hβ‖4/3→4‖x‖(4,2).

(The rightmost inequality is from the fact that
∑d/β

j=1 ‖yIj
‖2

4/3 = 1 and the defini-

tion of ‖x‖(4,2).) By Hausdorff–Young, ‖Hβ‖4/3→4 ≤ β−1/4 = O(k−1/2−δ/4), hence
σ ′ = O(k−1/2−δ/4‖x‖(4,2)). Any median μ′ of X′ is O(k−1/2−δ/4) (details omitted).
Applying Theorem 3.3, we get that for all t ≥ 0,

Pr
[
X′ > μ′ + t

] ≤ 4e−t2/(8σ ′2) ≤ ĉ1 exp
{−ĉ2t

2k1+δ/2/‖x‖2
(4,2)

}
,

for some global ĉ1, ĉ2 > 0. Setting t = Θ(‖x‖(4,2)k
−δ/4), we get that

Pr
[∥
∥H ′D′x

∥
∥

(4,2)
> μ′ + t

] = O
(
e−k

)
.

Similarly to the arguments leading to Lemma 5.2 and with possible readjustment
of the parameter δ, we get using a union bound:

Lemma 8.1 (�(4,2) reduction for k < d1/2−δ) Let H ′,D′ be as above, and let Φ ′ =
H ′D′. Define Φ ′(r) to be a composition of r i.i.d. matrices, each drawn from the same
distribution as Φ ′. Then with probability 1 − O(e−k),

∥
∥Φ ′(r)x

∥
∥

(4,2)
= O

(
k−1/2−δ/4)

for r = �1/2δ�.

Combining the above, the random transformation A = BDΦ ′(r) has the JL

Euclidean property for k < d1/2−δ and can be applied to a vector in time O(d logk),
as required. Indeed, multiplying by Φ ′ is done by doing a Walsh transform on d/β

blocks of size β each, resulting in time O(d log k). Clearly the number of random
bits used in choosing A is O(d).
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9 Future Work

• Lower bounds. A lower bound on the running time of applying a random matrix
with a JL property on a vector would be extremely interesting. Any nontrivial
(superlinear) bound for the case k = dΩ(1) will imply a lower bound on the time
to compute the Fourier transform, because the bottleneck of our constructions is a
Fourier transform.

• Going beyond k = d1/2−δ . As part of our work in progress, we are trying to push
the result to higher values of the target dimension k (the goal is a running time
of O(d logd)). We conjecture that this is possible for k = d1−δ and have partial
results in this direction.

Acknowledgements We thank Bernard Chazelle and Mark W. Tygert for helpful discussions or dimen-
sion reduction and Tali Kaufman for sharing her expertise in error correcting codes.
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