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Abstract In this paper we prove that if two self-similar tiling systems, with respec-
tive stretching factors λ1 and λ2, have a common factor which is a nonperiodic tiling
system, then λ1 and λ2 are multiplicatively dependent.

Keywords Tiling · Self-similar · Factor maps · Stretching factor · Cobham theorem

1 Introduction

Given a nonperiodic self-similar tiling T generated by some similarity S1 with
stretching factor λ1, it is rather natural to ask if we could generate T using another
similarity with a different stretching factor λ2. This is of course possible taking a
power of the similarity S1, where λ2 is in this case a power of λ1. Holton, Radin, and
Sadun show in [16] that the stretching factor of any other similarity which generates
T is equal to a rational power of λ1. More precisely, they prove that the stretching
factors of conjugate tiling systems which are the orbit closure under Euclidean mo-
tions of some self-similar tilings are multiplicatively dependent. In this paper we look
at tiling systems which are the orbit closure under translations of some self-similar
tilings, in order to give a necessary condition to have nonperiodic common factors.
The result we present in this paper is the following:
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Theorem 1 Let S1(T1) = T1 and S2(T2) = T2 be two self-similar tilings satisfying
the Finite Pattern Condition, where S1 and S2 are primitive substitutions. Let λ1 and
λ2 be the Perron eigenvalues of the substitution matrices associated to S1 and S2,
respectively. If there exist a nonperiodic tiling T and factor maps πi : ΩTi

→ ΩT for
i ∈ {1,2}, then λ1 and λ2 are multiplicatively dependent.

The problem we are interested in has been considered a long time ago by Cobham
in [5] and [6] for fixed points of substitutions of constant length. He showed that if
p,q > 1 are two multiplicatively independent integers, then a sequence x on a finite
alphabet is both p-substitutive and q-substitutive if and only if x is ultimately peri-
odic, where p-substitutive means that x is the image by a letter-to-letter morphism
of a fixed point of a substitution of constant length p. This theorem was the starting
point of a lot of work in many different directions such as: numeration systems for N,
substitutive sequences and subshifts, automata theory and logic (for more details, see
[1–4, 7–14, 17]). Later, Semenov [21] proved a “multidimensional” Cobham-type
theorem, that is to say, a Cobham theorem for recognizable subsets of N

d . This result
can be stated in terms of self-similar tilings, and in the case these tilings are repetitive,
our result is a generalization of Semenov Theorem.

This paper is organized as follows: in Sect. 2 we give some basic definitions rel-
evant for the study of tiling systems and substitution tiling systems. In Sect. 3 we
study the frequencies of the patches in self-similar tilings and in their factors. First
we prove that the frequencies of the patches in a self-similar tiling T are included in a
finite union of geometric progressions of rate λ, where λ is the stretching factor of T
(in [15] the authors remarked this fact for minimal substitution subshifts). Next, we
prove that the frequencies of the patches in a tiling T , which is a factor of two self-
similar tiling systems with stretching factors λ1 and λ2, respectively, are included in
the intersection of two finite unions of geometric progressions, one of rate λ1 and the
other of rate λ2. The proof of this result would be easier if the factor maps were given
by a kind of “sliding block code” (as it can be the case for subshifts), because in this
case the preimage of a patch would be a finite collection of patches. Nevertheless,
this is no longer the case for the tiling systems we consider here (examples of factor
maps, and even conjugacies, that are not given by a “sliding block codes” are given
in [18] and [19]), but we overcome this problem selecting carefully some patches in
the preimages we considered. Finally, in Sect. 4 we deduce the main theorem.

2 Definitions and Background

In this section we give the classical definitions concerning tilings. For more details,
we refer to [22]. A tiling of R

d is a countable collection T = {ti : i ≥ 0} of closed
subsets of R

d (which are known as tiles) whose union is the whole space and their
interiors are pairwise disjoint. We assume that the tiles are homeomorphic to closed
balls and that they belong, up to translations, to a finite collection of closed subsets of
R

d whose elements are called prototiles. We say that two tiles are equivalent if they
are equal up to translations. It is often useful to consider every prototile as a closed
set endowed with a label. In this case, two tiles are equivalent if, in addition, their
labels coincide.
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The translation of the tiling T by a vector v ∈ R
d is the tiling T + v obtained after

translating every tile of T by −v. The tiling T is said to be aperiodic (or nonperiodic)
if T + v = T implies v = 0.

The support of a tile ti , denoted by supp(ti), is the closed set that defines ti . For
every subset A of R

d , we define, as usual, T ∩A to be the set {ti ∩A : i ≥ 0}. A patch
P is a finite collection of tiles. The support of a patch P , denoted by supp(P ), is the
union of the supports of the tiles in P . The diameter of a patch P is the diameter of
its support, we call it diam(P ). We define P + v as we defined T + v.

The tiling T satisfies the finite pattern condition FPC (or equivalently, we say that
it is locally finite) if for any r > 0, there are up to translation, only finitely many
patches with diameter smaller than r . This condition is automatically satisfied in
the case of a tiling whose tiles are polyhedra that meet face-to-face. A tiling T is
repetitive if for any patch P in T , there exists r > 0 such that for every open ball
Br(v), the collection T ∩ Br(v) contains a patch P ′ equivalent to P (when it is clear
from the context, we will say that P “appears” in Br(v)). Nonperiodic repetitive
tilings that satisfy FPC are called perfect tilings.

2.1 Tiling Systems

Let A be a finite collection of prototiles. We denote by T (A) (full tiling space) the
space of all tilings of R

d whose tiles are equivalent to some element in A. We always
suppose that T (A) is nonempty. The group R

d acts on T (A) by translations:

(v, T ) → T + v for v ∈ R
d and T ∈ T (A).

Furthermore, this action is continuous with the topology induced by the following
distance: take T , T ′ in T (A) and define A the set of ε ∈ (0,1) such that there exist v

and v′ in Bε(0) with

(T + v) ∩ B1/ε(0) = (
T ′ + v′) ∩ B1/ε(0);

we set

d
(

T , T ′) =
{

infA if A �= ∅,

1 if A = ∅.

Roughly speaking, two tilings are close if they have the same pattern in a large neigh-
borhood of the origin, up to a small translation. A tiling system is a pair (Ω,R

d)

such that Ω is a translation invariant closed subset of some full tiling space. The orbit
closure of a tiling T in T (A) is the set ΩT = {T + v : v ∈ Rd}. When T satisfies the
FPC, ΩT is compact (see [20]). If T is repetitive, then all the orbits are dense in ΩT .
In this case the tiling system (ΩT ,R

d) is said to be minimal.
A factor map between two tiling systems (Ω1,R

d) and (Ω2,R
d) is a continuous

map π : Ω1 → Ω2 such that π(T + v) = π(T ) + v for all T ∈ Ω1 and v ∈ R
d .

In symbolic dynamics it is well known that topological factor maps between sub-
shifts are always given by sliding-block-codes. There are examples which show that
this result cannot be extended to tiling systems [18, 19]. The following lemma shows
that factor maps between tiling systems are not far to be sliding-block-codes. A sim-
ilar result can be found in [16].
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Lemma 2 Let T1 and T2 be two tilings. Suppose that T1 verifies the FPC and π :
ΩT1 → ΩT2 is a factor map. Then, there exists a constant s0 > 0 such that to every
ε > 0 it is possible to associate Rε > 0 satisfying the following: Let R ≥ Rε . If T and
T ′ in ΩT1 verify

T ∩ BR+s0(0) = T ′ ∩ BR+s0(0),

then
(
π(T ) + v

) ∩ BR(0) = π
(

T ′) ∩ BR(0)

for some v ∈ Bε(0).

Proof The tiling T2 also satisfies the FPC because ΩT2 is compact. Since the tilings
in ΩT2 have a finite number of tiles, up to translations, there exists δ′

0 > 0 such that
if y1 �= y2 ∈ R

d satisfy (T + y1) ∩ BR(0) = (T + y2) ∩ BR(0) for some T ∈ ΩT2

and some R > max{diam(p) : p prototile in T }, then ‖y1 − y2‖ ≥ δ′
0 (for the details,

see [22]).

Let 0 < δ0 <
δ′

0
2 . Since π is uniformly continuous, there exists s0 > 1 such that if

T and T ′ in ΩT1 verify T ∩ Bs0(0) = T ′ ∩ Bs0(0), then
(
π(T ) + v

) ∩ B 1
δ0

(0) = π
(

T ′) ∩ B 1
δ0

(0)

for some v ∈ Bδ0(0).
Let 0 < ε < δ0. By the uniform continuity of π there exists 0 < δ < 1

s0
such that if

T and T ′ in ΩT1 verify T ∩ B 1
δ
(0) = T ′ ∩ B 1

δ
(0), then

(
π(T ) + v

) ∩ B 1
ε
(0) = π

(
T ′) ∩ B 1

ε
(0) (2.1)

for some v ∈ Bε(0).
Now fix R ≥ Rε = 1

δ
− s0 and T and T ′ two tilings in ΩT1 verifying

T ∩ BR+s0(0) = T ′ ∩ BR+s0(0). (2.2)

Then, on one hand, the tilings T and T ′ satisfy (2.1), and, on the other hand, we
obtain that (T + a)∩Bs0(0) = (T ′ + a)∩Bs0(0) for every a in BR(0). By the choice
of s0 this implies that

(
π(T ) + a + ta

) ∩ B 1
δ0

(0) = (
π

(
T ′) + a

) ∩ B 1
δ0

(0) (2.3)

for some ta ∈ Bδ0(0).
Since δ0 > ε, from (2.1) we get

(
π(T ) + v

) ∩ B 1
δ0

(0) = π
(

T ′) ∩ B 1
δ0

(0). (2.4)

We will show that ta = v for every a in BR(0). This property, together with (2.3)
and (2.4), implies that

(
π(T ) + v

) ∩ BR(0) = π
(

T ′) ∩ BR(0).



626 Discrete Comput Geom (2008) 40: 622–640

For a = 0, from (2.3) and (2.4) we have that t0 = v or ‖v − t0‖ ≥ δ′
0. Since ‖t0 −v‖ ≤

δ0 + ε < 2δ0 < δ′
0, we conclude that t0 = v.

For a ∈ BR(0), consider s > 0 such that for every a′ ∈ Bs(a), the patch

P = ((
π

(
T ′) + a

) ∩ B 1
δ0

(0)
) ∩ ((

π
(

T ′) + a + (
a′ − a

)) ∩ B 1
δ0

(0)
)

contains a tile.
From (2.3) we get π(T ) + a + ta + (a − a′) ∩ supp(P ) = P . Replacing a by a′ in

(2.3), we obtain π(T )+ a + t ′a + (a′ − a)∩ supp(P ) = P . This implies that the norm
of ta − t ′a is equal to 0 or greater than δ′

0. Since ‖ta − t ′a‖ ≤ 2δ0 < δ′
0, we get ta = t ′a .

Thus we conclude that the function that associates ta to a is constant, which implies
that ta = t0 = v for every a in BR(0). �

2.2 Linearly Recurrent Tilings

A tiling T is linearly recurrent (or strongly repetitive, or linearly repetitive) if there
exists a constant L > 0 such that for every patch P in T , any ball of radius Ldiam(P )

contains a translate of P . Every tiling in the orbit closure of a linearly recurrent tiling
is linearly recurrent with the same constant. When T is linearly recurrent, we call
(ΩT ,R

d) a linearly recurrent tiling system.

Lemma 3 Let T1 and T2 be two tilings verifying the FPC. If π : ΩT1 → ΩT2 is a
factor map and T1 is linearly repetitive, then (ΩT2,R

d) is linearly recurrent.

Proof Let T ∈ ΩT1 . Consider ε > 0 and R > 0 the positive number of Lemma 2
associated to ε. Since T is linearly repetitive with some constant L, for any y ∈
R

d , there exists v ∈ BL(R+s0)(y) such that BR+s0(v) ⊆ BL(R+s0)(y) and (T + v) ∩
BR+s0(0) = T ∩ BR+s0(0). By Lemma 2 there exists t ∈ Bε(0) such that (π(T ) +
v + t) ∩ BR(0) = π(T ) ∩ BR(0). This implies that any ball of radius L(R + s0) + 2ε

in π(T ) contains a copy of π(T ) ∩ BR(0). Since Ls0 + 2ε is smaller than some
constant, it follows that π(T ) is linearly recurrent. �

2.3 Substitution Tiling Systems

Let M be a linear map on R
d . It is called expansive if there exists λ > 1 such that

‖Mv‖ ≥ λ‖v‖ for all v ∈ R
d .

The map M is a similarity if ‖Mv‖ = λ‖v‖ for all v ∈ R
d .

Let α be an eigenvalue of the expansive (resp. similar) linear map M , and let
v �= 0 be an eigenvector associated to α. We have ‖Mv‖ = |α|‖v‖, which implies
that |α| ≥ λ (resp. |α| = λ) and then |det(M)| ≥ λd (resp. |det(M)| = λd ). Thus, if
Θ is a Borel set in R

d , we obtain

vol(MΘ) = ∣∣det(M)
∣∣vol(Θ) ≥ λdvol(Θ) if M is expansive,

vol(MΘ) = ∣∣det(M)
∣∣vol(Θ) = λdvol(Θ) if M is a similarity.
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Let A be a finite collection of prototiles, and let M be an expansive linear map on R
d .

A substitution is a function S on the set of prototiles A that associates to each p in P

a patch S(p) such that

• the support of S(p) is M supp(p),
• for every q ∈ A, there exist np,q ≥ 0 and, for each 1 ≤ k ≤ np,q , vp,q,k ∈ R

d such
that

S(p) = {
q + vp,q,k : 1 ≤ k ≤ np,q, q ∈ A

}
.

The substitution matrix of S is the matrix A ∈ M A×A(Z+) which contains, in the
coordinate (p, q), the number of different tiles in S(p) which are equivalent to q .
That is, Ap,q = np,q for all p,q ∈ A.

The substitution S can be defined on T (A) in the following way: if t is a tile in
T ∈ T (A) such that t is equivalent to the prototile p ∈ A, we define

S(t) = S(p) + Mv,

where v ∈ R
d is such that supp(t) = supp(p) + v. Then, we define

S(T ) =
⋃

t∈T
S(t) ∈ T (A).

The substitution is primitive if A is primitive, that is, there exists k > 0 such that
Ak > 0. In this case, the Perron eigenvalue of A is |det(M)| [22].

In this paper, we always suppose that S is primitive.
The substitution tiling system associated to S is the tiling system (XS,R

d), where
XS is the space of all tilings T in T (A) such that for every patch P of T , there exist
a prototile p ∈ A and k > 0 satisfying P ⊆ Sk(p). The action of R

d on XS is the
translation. Because S is primitive, there always exist a tiling T0 ∈ T (A) and k0 > 0
such that Sk0(T0) = T0. It is classical (in the primitive case) that ΩT0 = XS = XSk

for every k > 0. So, without loss of generality we can suppose that S(T0) = T0. In
addition, we will always suppose that the fixed point of S satisfies the FPC. In this
case, XS is a compact metric space, and (XS,R

d) is minimal.
A tiling T in T (A) which satisfies the FPC is self-affine if it is the fixed point

of a substitution. The tiling T is said to be self-similar if it is the fixed point of a
substitution S which is defined by a similarity M with constant λ (for more details,
see [22]). We say that λ is the stretching factor of S or T .

Let T0 be a self-similar tiling which is the fixed point of a primitive substitution S

satisfying the FPC. The following two results are included in [23].

Lemma 4 T0 is linearly recurrent.

Lemma 5 There exists N > 0 such that if P is a patch in T0 whose support contains
a ball of radius R, then whenever P + v is a patch of T0 with v > 0, ‖v‖ > R

N
.

These two lemmata mean that the minimal distance between two equivalent
patches in a self-similar tiling is neither too large nor too small compared to their
sizes.
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3 Frequencies

Consider a tiling T of R
d . For a set F ⊆ R

d , we write

T [[F ]] = {
t ∈ T : t ∩ F �= ∅}

.

A T -corona is a patch T [[supp(t)]], where t is a tile in T . Remark that for some
ε ∈ R

d , we could have T [[F + ε]] = T [[F ]]. To avoid this situation we define, for
v ∈ R

d , T [F,v] = T [[F ]] − v. When F is a ball BR(v), we write T [BR(v)] instead
of T [BR(v), v].

In the sequel we suppose that T0 is a self-similar tiling which is the fixed point of
a primitive substitution S, with stretching factor λ, satisfying the FPC.

3.1 Van Hove Sequences

In order to define the notion of frequency of a patch, we need the concept of Van
Hove sequences.

Let P be a patch in T0, and let Θ ⊂ R
d . Denote by LP (Θ) the number of patches

included in T0 ∩ Θ which are equivalent to P [22].
A sequence (Θn)n≥0 of subsets of R

d is a Van Hove sequence if for any r > 0,

lim
n→∞

vol((∂Θn)
+r )

vol(Θn)
= 0,

where

Θ+r = {
x ∈ R

d : dist(x,Θ) ≤ r
}
,

and ∂Θ is the border of Θ .
In [22], it was shown that for any patch P in T0, there is a number freq(P ) > 0

such that for any Van Hove sequence (Θn)n≥0,

lim
n→∞

LP (Θn)

vol(Θn)
= freq(P ).

Suppose that P and Q are two patches in T0. In order to simplify the notation, we
will write LP (Q), vol(P ) and (∂P )+r instead of LP (supp(Q)), vol(supp(P )) and
(∂ supp(P ))+r respectively.

It is easy to show that (MnΘ)n≥0 is a Van Hove sequence when M : R
d → R

d is
an expansive linear map and Θ is a compact subset of R

d with nonempty interior and
such that vol(∂Θ) = 0. Consequently, to compute freq(P ) we will use the limit

freq(P ) = lim
k→∞

LP (Sk(p))

vol(Sk(p))

for any prototile p in A.
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3.2 Patch Frequencies of a Self-Similar Tiling

The next proposition extends a result of C. Holton and L. Zamboni [15] obtained
for minimal substitution subshifts. But before we will need the following technical
lemma:

Lemma 6 Suppose that T satisfies the FPC. Then there exists a constant η > 0 such
that for every y ∈ R

d , the ball Bη(y) is contained in the support of a corona in T .

Proof Let t be a tile in T . The number

ηt = dist
(
∂t, ∂T

[[
supp(t)

]])

is positive for every tile t . The FPC implies that there is a finite number of coronas
up translations. Hence we get

η = min{ηt : t ∈ T } > 0.

Notice that the set
{
x ∈ R

d : dist(x, t) ≤ η
}

is contained in the support of T [[supp(t)]] for every tile t in T . Thus if y is a point
in R

d belonging to the tile t ∈ T , then the ball Bη(y) is contained in the support of
T [[supp(t)]]. �

Proposition 7 There exists a finite set F ⊂ R such that for every patch P in T0

satisfying P = T0[BR(y)], for some R > 0 and y ∈ R
d ,

freq(P ) = f

λdk
,

where f ∈ F and k > 0 is such that

λk−1η ≤ diam(P ) < λkη

with η the constant of Lemma 6.

Proof Let A be the prototile set associated to T0. We define

l = max
{
diam(p) : p ∈ A

}
.

Let P be a patch in T0 such that

P = T0
[[
BR(y)

]]
for some R > 0 and y ∈ R

d .

This implies that

diam(P ) ≤ 2
(
R + l

)
. (3.1)
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Let k ≥ 0 be such that

λk−1η ≤ diam(P ) < λkη. (3.2)

By Lemma 6, there exists a corona B the support of which contains the ball
Bη(M

−ky). Because the support of Sk(B) contains the ball Bλkη(y), by (3.2) we
deduce that Sk(B) contains the patch P . From Lemma 5 we have

LP

(
Sk(B)

) ≤ vol(Sk(B))

vol(B R
N

(0))
= λkd

Rd

Nd

vol(B)

vol(B1(0))
. (3.3)

From (3.1) and (3.2) we obtain

1

2(R + l)
≤ 1

diam(P )
≤ 1

λk−1η
,

which implies that there exists C, independent of k, such that

λkd

Rd
≤

(
2λ

η − 2l

λk−1

)d

≤ C. (3.4)

From (3.3) and (3.4) we conclude that there exists a constant K , independent on P ,
k and B , such that

LP

(
Sk(B)

) ≤ K.

Let P ′ be any patch in T0, and let D be the set of all T0-coronas, up to translation.
We have

LP

(
Sk

(
P ′)) =

∑

B∈D

LB

(
P ′)N

(
P ′,P ,B

)
,

where N(P ′,P ,B) is some integer in {0, . . . ,LP (Sk(B))} ⊆ {0, . . . ,K}. Thus, for
p ∈ A and n > k,

LP (Sn(p))

vol(Sn(p))
= LP (Sk(Sn−k(p)))

vol(Sn(p))

=
∑

B∈D

LB(Sn−k(p))N(Sk−n(p),P,B)

vol(Sn(p))

=
∑

B∈D

LB(Sn−k(p))

vol(Sn−k(p))

vol(Sn−k(p))

vol(Sn(p))
N

(
Sk−n(p),P,B

)

= 1

λkd

∑

B∈D

LB(Sn−k(p))

vol(Sn−k(p))
N

(
Sk−n(p),P,B

)
.
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Because N(Sk−n(p),P,B) is in {1, . . . ,K} for every n > k, we can take a con-
vergent subsequence to obtain

freq(P ) = 1

λkd
lim

n→∞
∑

B∈D

LB(Sn−k(p))

vol(Sn−k(p))
N

(
Sk−n(p),P,B

)

= 1

λkd

∑

B∈D

freq(B)N(P,B),

where N(P,B) is some integer in {0, . . . ,K} for every B ∈ D. Because D is finite,
to conclude it suffices to take

F =
{∑

B∈D

freq(B)NB : NB ∈ {0, . . . ,K}
}
.

�

Remark 8 From [22] we know that (ΩT0 ,R
d) is uniquely ergodic. Hence, the fre-

quency of a patch P does not depend on the tiling. That is, freq(P ) is the same for
every T in ΩT0 .

3.3 Patch Frequency in the Factor

The next result extends Proposition 7 to tiling factors of self-similar tiling systems.
The main problem we have to overcome is that the factor map is not necessarily given
by a sliding block code. Hence the first part of the next proof consists in selecting
carefully the preimages of a given patch P by means of a finite induction procedure.
Then, we show that the frequency of the patch P is the sum of the frequencies of the
selected patches.

Proposition 9 Let T be a nonperiodic tiling. If there exists a factor map π : ΩT0 →
ΩT , then there exists a finite set F ⊆ R such that for every patch P in T satisfying
P = T [BR(y)], for some R > 0 and y ∈ R

d ,

freq(P ) = f

λdk
,

where f ∈ F and k > 0 is such that

ηλk−3 ≤ diam(P ) < ηλk−1

if R is large enough.

Proof Let T2 ∈ ΩT , and let T1 ∈ ΩT0 be such that π(T1) = T2. Let s0 > 0 be the
constant of Lemma 2.

The linear recurrence of T1 implies that the tiling T2 is also linearly recurrent. Let
L be the constant of linear recurrence of T1, and let M and N be the constants of
Lemma 5 associated to T1 and T2, respectively. We set

K = max
{
(8LN)d, (8LM)d

}
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and

ηi = max
{
diam(t) : t is a tile in Ti

}
for i ∈ {1,2}.

Let ε > 0. Let Rε > 0 be the positive number associated to ε as in Lemma 2. Notice
that Rε can be chosen large enough in order that

Rε ≥ max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 + η1 + η2 + ε,

4N(2K + 1)ε,

2Mε − s0,

2(η1 + ε) − (s0 + η2),

ηλ
�logλ

2η1
η(λ−1)

�
,

ηλ
�logλ

2(s0+η1+η2+2ε)

η(λ−1)
�+2

,

η/2.

(3.5)

Let R ≥ Rε , and let P = T2[BR(y)], y ∈ R
d .

Suppose that v1, . . . , vl are all the points in B2L(R+s0+ε+η1+η2)(0) such that

T2
[
BR(vi)

] = P.

If vi �= vj , we have ‖vi − vj‖ > R
N

. This implies that in a ball of radius R
2N

, there
is at most one point v such that T2[BR(v)] = P . Using (3.5), it follows that in
B2L(R+s0+ε+η1+η2)(0) there are at most

vol(B2L(R+s0+ε+η1+η2)(0))

vol(B R
2N

(0))
≤ (8LN)d ≤ K

points v such that T2[BR(v)] = P . This implies that for any patch P , we have l ≤ K .
For every 1 ≤ i ≤ l, we set

Pi = T1
[
BR+s0+η2(vi)

]
.

Now, for every 1 ≤ i ≤ l, we will define, by induction on i, ki different patches as
follows (see Fig. 1).

For i = 1, we take all the patches P ′ in T1 satisfying the following two conditions:

P ′ = T1
[
BR+s0+η1+η2+2ε(v)

]
for some v ∈ R

d, (3.6)

P1 = T1
[
BR+s0+η2(v)

]
. (3.7)

Because T1 satisfies the FPC, there exists a finite number k1 of different patches
satisfying the previous condition. We call these patches P1,1, . . . ,P1,k1 . Moreover, k1
is bounded by K . Indeed, if v and v′ are two different points in R

d such that

P1,j = T1
[
BR+s0+η1+η2+2ε(v)

]
,

P1,i = T1
[
BR+s0+η1+η2+2ε

(
v′)],
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Fig. 1 Situation during the
selection of the Pi,j when i ≥ 2

for some 1 ≤ i, j ≤ k1, then

P1 = T1
[
BR+s0+η2(v)

] = T1
[
BR+s0+η2

(
v′)].

By Lemma 5, this implies that

∥∥v − v′∥∥ >
R + s0 + η2

M
.

It follows that in a ball of radius R+s0+η2
2M

there is at most one point w which is the
center of some P1,j . Since T1 is linearly recurrent with constant L and for every
1 ≤ j ≤ k1,

diam(P1,j ) ≤ 2(R + s0 + η1 + η2 + 2ε) + 2η1,

all the patches P1,j appear in the ball B2L(R+s0+2η1+η2+2ε)(0) in T1. Using (3.5), this
implies

k1 ≤ vol(B2L(R+s0+2η1+η2+2ε)(0))

vol(BR+s0+η2
2M

(0))
≤ (8LM)d ≤ K.

For 1 < i ≤ l, we take all the patches P ′ in T1 satisfying the following three con-
ditions:

P ′ = T1
[
BR+s0+η1+η2+2ε(v)

]
for some v ∈ R

d, (3.8)

Pi = T1
[
BR+s0+η2(v)

]
, if (3.9)

T1
[
BR+s0+η2(v + t)

] = Pj for some t ∈ B2ε(0), then j ≥ i. (3.10)

As for the case i = 1, we remark there is a finite number ki of different patches
satisfying the previous conditions and that ki is smaller than K . We call these patches
Pi,1, . . . ,Pi,ki

.
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Remark 10 The linear recurrence of T1 and (3.5) imply that if v ∈ R
d satisfies

T1
[
BR+s0+η1+η2+2ε(v)

] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki , then T1[BR+s0+η2(v + t)] �= Pi for every t ∈
B2ε(0) \ {0}.

Remark 11 By Remark 10 and (3.10), if v ∈ R
d satisfies

T1
[
BR+s0+η1+η2+2ε(v)

] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki , then T1[BR+s0+η2(v + t)] �= Ps for every 1 ≤ s ≤ i

and t ∈ B2ε(0) \ {0}.

Remark 12 By the construction of the patches Pi,j , if v ∈ R
d satisfies

T1
[
BR+s0+η2(v)

] = Pi

for some 1 ≤ i ≤ l and j > i whenever T1[BR+s0+η2(v + t)] = Pj for some t ∈
B2ε(0) \ {0}, then

T1
[
BR+s0+η1+η2+2ε(v)

] = Pi,k

for some 1 ≤ k ≤ ki .

In the sequel we will show that

freq(P ) =
l∑

i=1

ki∑

j=1

freq(Pi,j ).

Lemma 13 Let v ∈ R
d be such that

T1
[
BR+s0+η1+η2+2ε(v)

] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki . Then there exists a point w(v) ∈ Bε(v) verifying
T2[BR(w(v))] = P Moreover, if v′ �= v, then w(v′) �= w(v) and

l∑

i=1

ki∑

j=1

freq(Pi,j ) ≤ freq(P ). (3.11)

Proof Consider v ∈ R
d such that

T1
[
BR+s0+η1+η2+2ε(v)

] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki . Since T1[BR+s0+η2(v)] = Pi , we have

(T1 + v) ∩ BR+s0+η2(0) = (T1 + vi) ∩ BR+s0+η2(0).
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Thus from Lemma 2 we obtain that there exists t ∈ Bε(0) verifying

(T2 + v + t) ∩ BR+η2(0) = (T2 + vi) ∩ BR+η2(0),

which implies that T2[BR(v + t)] = P . Now, if v′ ∈ R
d is another point such that

T1
[
BR+s0+η1+η2+2ε

(
v′)] = Pi′,j ′

for some 1 ≤ i′ ≤ l and 1 ≤ j ′ ≤ k′
i , in a similar way we get that there exists t ′ ∈

Bε(0) satisfying T2[BR(v′ + t ′)] = P . Suppose that v + t = v′ + t ′. This implies that
‖v − v′‖ < 2ε, i.e., v − v′ ∈ B2ε(0). But since

Pi,j = T1
[
BR+s0+η1+η2+2ε(v)

]
,

Pi = T1
[
BR+s0+η2(v)

]
,

Pi′ = T1
[
BR+s0+η2

(
v + (

v′ − v
))]

,

the condition (3.10) implies that i′ ≥ i. In the same way we obtain that i′ ≤ i, which
implies i = i′. Since 2ε <

R+s0
M

, we get that v′ − v = 0. Hence we deduce that it is
possible to associate to each v in R

d which satisfies

T1
[
BR+s0+η1+η2+2ε(v)

] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki , a point w(v) ∈ R
d verifying

T2
[
BR

(
w(v)

)] = P

and such that w(v) �= w(v′) if v �= v′. Thus we deduce that

l∑

i=1

ki∑

j=1

freq(Pi,j ) ≤ freq(P ).
�

Lemma 14 Let v ∈ R
d be such that T2[BR(v)] = P . Then there exists a point p(v) ∈

B(2l+1)ε(v) verifying

T1
[
BR+s0+η1+η2+2ε

(
p(v)

)] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki . Moreover, if v′ �= v, then p(v′) �= p(v) and

l∑

i=1

ki∑

j=1

freq(Pi,j ) ≥ freq(P ). (3.12)

Proof Let v ∈ R
d be such that

T2
[
BR(v)

] = P
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Fig. 2 Situation before Step 0

and consider

P ′ = T1
[
BR+s0+η2+ε(v)

]
.

Since L is the constant of linear recurrence of T1 and

diam
(
P ′) ≤ 2(R + s0 + η2 + ε) + 2η1,

there exists a translate of P ′ the support of which is included in the ball

B2L(R+s0+η1+η2+ε)(0).

In other words, there exists v′ ∈ B2L(R+s0+η1+η2+ε)(0) such that the support of the
patch T1[[BR+s0+η2+ε(v

′)]] is contained in the ball B2L(R+s0+η1+η2+ε)(0) and satis-
fies

P ′ = T1
[
BR+s0+η2+ε

(
v′)]

= T1
[
BR+s0+η2+ε(v)

]
.

This implies that

(T1 + v) ∩ BR+s0+η2(0) = (
T1 + v′) ∩ BR+s0+η2(0).

So, by Lemma 2 there exists t ∈ Bε(0) verifying

(
T2 + v′ + t

) ∩ BR+η2(0) = (T2 + v) ∩ BR+η2(0).
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Fig. 3 Situation when the
algorithm finished

It follows that T2[BR(v′ + t)] = P , and, since v′ + t is in BL(R+s0+η1+η2+ε)(0), we
deduce that v′ + t = vi for some 1 ≤ i ≤ l. Because T1[BR+s0+η2(v

′ + t)] = Pi is
included in T1[BR+s0+η2+ε(v

′)] = P ′, we obtain that

T1
[
BR+s0+η2(v + t)

] = Pi.

Now, we will show that in the ball B(2l+1)ε(v) there is a point p(v) such that

T1
[
BR+s0+η1+η2+2ε

(
p(v)

)] = Pm,j

for some 1 ≤ m ≤ l and 1 ≤ j ≤ km. For that, consider the following algorithm (see
Fig. 3):

Step 0: We put v0 = v + t and i0 = i.
Step 1: We have T1[BR+s0+η2(v0)] = Pi0 .

If T1[BR+s0+η2(v0 + s)] = Pj for some s ∈ B2ε(0) implies j ≥ i0, then from the
definition of the patches Pi,k we obtain that

T1
[
BR+s0+η1+η2+2ε(v0)

] = Pi0,m

for some m in {1, . . . , ki0}.
Step 2: If there exists s ∈ B2ε(0) such that T1[BR+s0+η2(v0 + s)] = Pj with j < i0,

then we put

i0 = min
{
j : ∃s ∈ B2ε(0) such that T1

[
BR+s0+η2(v0 + s)

] = Pj

}
.

If s ∈ B2ε(0) is such that T1[BR+s0+η2(v0 + s)] = Pi0 , then we put v0 = v0 + s.
With these new values of v0 and i0, we go to Step 1.
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This algorithm finishes in at most l steps. The result is a point p(v) = v0 the distance
of which to v is at most (2l + 1)ε and such that

T1
[
BR+s0+η1+η2+2ε(v0)

] = Pi0,m

for some m in {1, . . . , ki0}.
If w ∈ R

d is another point satisfying T2[BR(w)] = P , we have

R

N
≤ ‖v − w‖
≤ ∥

∥p(v) − v
∥
∥ + ∥

∥p(v) − p(w)
∥
∥ + ∥

∥p(w) − w
∥
∥

≤ 2(2l + 1)ε + ∥∥p(v) − p(w)
∥∥.

Thus we get

0 <
R

2N
<

R

N
− 2(2l + 1)ε ≤ ∥∥p(v) − p(w)

∥∥.

This implies that it is possible to associate to each v in R
d which satisfies

T2[BR(v)] = P a point p(v) ∈ R
d verifying

T1
[
BR+s0+η1+η2+2ε

(
p(v)

)] = Pi,j

for some 1 ≤ i ≤ l and 1 ≤ j ≤ ki and such that p(v) �= p(w) if v �= w. Hence we
deduce that

freq(P ) ≤
l∑

i=1

ki∑

j=1

freq(Pi,j ). �

From (3.11) and (3.12) we get

freq(P ) =
l∑

i=1

ki∑

j=1

freq(Pi,j ). (3.13)

As R > η/2, there exists k > 0 such that

ηλk−2 ≤ 2(R + s0 + η1 + η2 + 2ε) < ηλk−1. (3.14)

Since

2(R + s0 + η1 + η2 + 2ε) ≤ diam(Pi,j ) ≤ 2(R + s0 + η1 + η2 + 2ε) + 2η1

and R ≥ ηλ
�logλ

2η1
η(λ−1)

�, we have

ηλk−2 ≤ diam(Pi,j ) < ηλk.

Hence, by Proposition 7, we get

freq(Pi,j ) ∈
{

f

λdk
,

f

λd(k−1)
: f ∈ F

}
,
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where F is the finite set of Proposition 7. Thus we obtain

freq(P ) = f

λdk
,

where f is an element in

F ′ =
{

K∑

i=1

fi : fi ∈ F ∪ λdF, ∀1 ≤ i ≤ K

}

,

which is a finite subset of R
d .

Notice that

2R ≤ diam(P ) ≤ 2(R + η2).

Thus from (3.14) we have

ηλk−2 − 2(s0 + η1 + η2 + 2ε) ≤ diam(P ) < ηλk−1,

and by the choice of R in (3.5), we obtain

ηλk−3 ≤ diam(P ) < ηλk−1. �

4 Proof of Theorem 1

By Proposition 9, there exist two finite sets F1 and F2 such that for R > 0 and P =
T [BR(0)], there exist k1 and k2 such that

freq(P ) = f1

λ
k1
1

= f2

λ
k2
2

for some f1 ∈ F1 and f2 ∈ F2.
Because F1 and F2 are finite, we can find a ∈ F1, b ∈ F2, n2 > n1, m2 > m1 and

patches P1 and P2 in T such that

freq(P1) = a

λ
n1
1

= b

λ
m1
2

,

freq(P2) = a

λ
n2
1

= b

λ
m2
2

.

This implies that

λ
n2−n1
1 = λ

m2−m1
2 ,

which means that λ1 and λ2 are multiplicatively dependent.
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