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Abstract In 1989, Kalai stated three conjectures A, B, C of increasing strength con-
cerning face numbers of centrally symmetric convex polytopes. The weakest conjec-
ture, A, became known as the “3d -conjecture.” It is well known that the three conjec-
tures hold in dimensions d ≤ 3. We show that in dimension 4 only conjectures A and
B are valid, while conjecture C fails. Furthermore, we show that both conjectures B
and C fail in all dimensions d ≥ 5.

Keywords Centrally symmetric convex polytopes · f -vector inequalities · Flag
vectors · Kalai’s 3d -conjecture · Equivariant rigidity · Hanner polytopes · Hansen
polytopes · Central hypersimplices

1 Introduction

A convex d-polytope P is centrally symmetric, or cs for short, if P = −P . Concern-
ing face numbers, this implies that for 0 ≤ i ≤ d − 1, the number of i-faces fi(P ) is
even and, since P is full-dimensional, that f0(P ), fd−1(P ) ≥ 2d . Beyond this, only
very little is known for the general case. That is to say, it is not known how the ex-
tra (structural) information of a central symmetry would yield substantial additional
(numerical) constraints for the face numbers on the restricted class of polytopes.

Not uncommon to the f -vector business, the knowledge about face numbers is
concentrated on the class of centrally symmetric simplicial, or dually simple, poly-
topes. In 1982, Bárány and Lovász [3] proved a lower bound on the number of ver-
tices of simple cs polytopes with prescribed number of facets, using a generalization
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of the Borsuk–Ulam theorem. Moreover, they conjectured lower bounds for all face
numbers of this class of polytopes with respect to the number of facets. In 1987,
Stanley [25] proved a conjecture of Björner concerning the h-vectors of simplicial cs
polytopes that implies the one by Bárány and Lovász. The proof uses Stanley–Reisner
rings and toric varieties plus a pinch of representation theory. The result of Stanley
[25] for cs polytopes was reproved in a more geometric setting by Novik [18] by
using “symmetric flips” in McMullen’s weight algebra [16]. For general polytopes,
lower bounds on the toric h-vector were recently obtained by A’Campo-Neuen [2] by
using combinatorial intersection cohomology. Unfortunately, the toric h-vector con-
tains only rather weak information about the face numbers of general (cs) polytopes,
and thus the applicability of the result is limited (see Sect. 2.1).

In [14], Kalai stated three conjectures about the face numbers of general cs poly-
topes. Let P be a (cs) d-polytope with f -vector f (P ) = (f0, f1, . . . , fd−1). Define
the function s(P ) by

s(P ) := 1 +
d−1∑

i=0

fi(P ) = fP (1),

where fP (t) := fd−1(P ) + fd−2(P )t + · · · + f0(P )td−1 + td is the f -polynomial.
Thus, s(P ) measures the total number of nonempty faces of P . Here is Kalai’s first
conjecture from [14], the “3d -conjecture.”

Conjecture A Every centrally-symmetric d-polytope has at least 3d nonempty faces,
i.e., s(P ) ≥ 3d .

Is easy to see that the bound is attained for the d-dimensional cube Cd and for its
dual, the d-dimensional crosspolytope C

�
d . It takes a moment’s thought to see that

in dimensions d ≥ 4 these are not the only polytopes with 3d nonempty faces. An
important class that attains the bound is the class of Hanner polytopes [11]. These are
defined recursively: As a start, every cs 1-dimensional polytope is a Hanner polytope.
For dimensions d ≥ 2, a d-polytope H is a Hanner polytope if it is the direct sum or
the direct product of two (lower-dimensional) Hanner polytopes H ′ and H ′′.

The number of Hanner polytopes grows exponentially in the dimension d , with
a Catalan-type recursion. It is given by the number of two-terminal networks
with d edges, n(d) = 1,1,2,4,8,18,40,94,224,548,1356, . . . for d = 1,2, . . . , as
counted by Moon [17]; see also [23].

Conjecture B For every centrally-symmetric d-polytope P , there is a d-dimensional
Hanner polytope H such that fi(P ) ≥ fi(H) for all i = 0, . . . , d − 1.

For a d-polytope P and S = {i1, i2, . . . , ik} ⊆ [d] = {0,1, . . . , d − 1}, let fS(P ) ∈
Z

2[d]
be the number of chains of faces F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ P with dimFj = ij for

all j = 1, . . . , k. Identifying R
2[d]

with its dual space via the standard inner product,
we write α(P ) := ∑

S αSfS(P ) for (αS)S⊆[d] ∈ R
2[d]

. The set

Pd =
{
(αS)S⊆[d] ∈ R

2[d] : α(P ) =
∑

S

αSfS(P ) ≥ 0 for all d-polytopes P
}
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is the polar to the set of flag-vectors of d-polytopes, that is, the cone of all linear func-
tionals that are nonnegative on all flag-vectors of (not necessarily cs) d-polytopes.

Conjecture C For every centrally-symmetric d-polytope P , there is a d-dimensional
Hanner polytope H such that α(P ) ≥ α(H) for all α ∈ Pd .

It is easy to see that C ⇒ B ⇒ A: Define αi(P ) := fi(P ); then αi ∈ Pd , and the
validity of C on the functionals αi implies B; the remaining implication follows since
s(P ) is a nonnegative combination of the fi(P ).

In this paper, we investigate the validity of these three conjectures in various di-
mensions. Our main results are as follows.

Theorem 1.1 Conjectures A and B hold for centrally symmetric polytopes of dimen-
sion d ≤ 4.

Theorem 1.2 Conjecture C fails for dimension d = 4.

Theorem 1.3 For all d ≥ 5, both conjectures B and C fail.

The paper is organized as follows. In Sect. 2, we establish a lower bound on the
flag-vector functional gtor

2 on the class of cs 4-polytopes. Together with some combi-
natorial and geometric reasoning, this leads to a proof of Theorem 1.1. In Sect. 3, we
exhibit a flag vector functional and a centrally symmetric 4-polytope that disprove
conjecture C. (Indeed, there are infinitely many counter-examples!) In Sect. 4, we
consider centrally symmetric hypersimplices in odd dimensions; combined with ba-
sic properties of Hanner polytopes, this gives a proof of Theorem 1.3. We close with
two further interesting examples of centrally symmetric polytopes in Sect. 5. (We
note that there are only finitely many counter-examples to conjecture B for each d ;
altogether, we present three counter-examples for d = 4 in this paper.)

2 Conjectures A and B in Dimensions d ≤ 4

In this section, we prove Theorem 1.1, that is, conjectures A and B for polytopes
in dimensions d ≤ 4. The work of Stanley [25] implies A and B for simplicial and
thus also for simple polytopes. Furthermore, if f0(P ) = 2d , then P is linearly iso-
morphic to a crosspolytope. Therefore, we assume throughout this section that all cs
d-polytopes P are neither simple nor simplicial and that fd−1(P ) ≥ f0(P ) ≥ 2d +2.

The main work will be in dimension 4. The claims for dimensions one, two, and
three are vacuous, clear, and easy to prove in that order. In particular, the case d = 3
can be obtained from an easy f -vector calculation. But, to get in the right mood, let
us sketch a geometric argument. Let P be a cs 3-polytope. Since P is not simplicial,
P has a non-triangle facet. Let F be a facet of P with f0(F ) ≥ 4 vertices. Let F0 =
P ∩ H with H being the hyperplane parallel to the affine hulls of F and of −F that
contains the origin. Now, F0 is a cs 2-polytope and it is clear that every face G of P

that has a nontrivial intersection with H is neither a face of F nor of −F . We get

s(P ) ≥ s(F ) + s(F0) + s(−F) ≥ 3 · 32.
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This type of argument fails in dimensions d ≥ 4. Applying small (symmetric) per-
turbations to the vertices of a prism over an octahedron yields a cs 4-polytope with
the following two types of facets: prisms over a triangle and square pyramids. Every
such facet has less than 33 faces, which shows that less than a third of the alleged 81
faces are concentrated in any facet.

Let us come back to dimension 4. The proof of conjectures A and B splits into a
combinatorial part (f -vector yoga) and a geometric argument. We partition the class
of cs 4-polytopes into large and (few) small polytopes, where “large” means that

f0(P ) + f3(P ) ≥ 24. (1)

We will reconsider the argument of Kalai [13] that proves a lower bound theorem
for polytopes and, in combination with flag-vector identities, leads to a tight flag-
vector inequality for cs 4-polytopes. With this new tool, we prove that (1) implies
conjectures A and B for dimension 4.

We show that the small cs 4-polytopes, i.e., those not satisfying (1), are twisted
prisms, to be introduced in Sect. 2.3, over 3-polytopes. We then establish basic prop-
erties of twisted prisms that imply the validity of conjectures A and B for small cs
4-polytopes.

2.1 Rigidity with Symmetry and Flag-Vector Inequalities

For a general simplicial d-polytope P , the h-vector h(P ) is the ordered collection
of the coefficients of the polynomial hP (t) := fP (t − 1), the h-polynomial of P .
Clearly, hP (t) encodes the same information as the f -polynomial, but additionally
hP (t) is a unimodal palindromic polynomial with nonnegative integer coefficients
(see, e.g., [29, Sect. 8.3]). This gives more insight into the nature of face numbers of
simplicial polytopes and, in a compressed form, this numerical information is carried
by its g-vector g(P ) with gi(P ) = hi(P ) − hi−1(P ) for i = 1, . . . , � d

2 �. There are
various interpretations for the h- and g-numbers and, via the g-Theorem, they carry
a complete characterization of the f -vectors of simplicial d-polytopes.

For general d-polytopes, a much weaker invariant is given by the generalized or
toric h-vector htor(P ) introduced by Stanley [24]. In contrast to the ordinary h-vector,
the toric h-numbers htor

i (P ) are not determined by the f -vector: They are linear com-
binations of the face numbers and of other entries of the flag-vector of P . For exam-
ple,

gtor
2 = htor

2 − htor
1 = f1 + f02 − 3f2 − df0 +

(
d + 1

2

)
.

The corresponding toric h-polynomial shares the same properties as its simplicial
relative but, unfortunately, carries quite incomplete information about the f -vector.

For example, in the case of P being a quasi-simplicial polytope, i.e., if every
facet of P is simplicial, the toric h-vector depends only on the f -numbers fi(P ) for
0 ≤ i ≤ � d

2 � and, therefore, does not carry enough information to determine a lower
bound on s(P ) for d ≥ 5. However, the information gained in dimension 4 will be a
major step in the direction of a proof of Theorem 1.1. To be more precise, for the class
of centrally symmetric d-polytopes, there is a refinement of the flag-vector inequality
gtor

2 = htor
2 − htor

1 ≥ 0.
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Theorem 2.1 Let P be a centrally symmetric d-polytope. Then

gtor
2 (P ) = f1(P ) + f02(P ) − 3f2(P ) − df0(P ) +

(
d + 1

2

)
≥

(
d

2

)
− d.

With Euler’s equation and the Generalized Dehn–Sommerville equations [5], it is
routine to derive the following inequality for the class of cs 4-polytopes.

Corollary 2.2 If P is a centrally symmetric 4-polytope, then

f03(P ) ≥ 3f0(P ) + 3f3(P ) − 8. (2)

We will prove Theorem 2.1 using the theory of infinitesimally rigid frameworks.
For information about rigidity beyond our needs, we refer the reader to Roth [20]
for a very readable introduction and to Whiteley [28] and Kalai [14] for rigidity in
connection with polytopes.

Let d ≥ 1, and let G = (V ,E) be an abstract simple undirected graph. The edge
function associated to G and d is the map

� : (Rd)V → R
E,

(pv)v∈V �→ (‖pu − pv‖2)
uv∈E

,

which measures the (squared) lengths of the edges of G for any choice of coordi-
nates p = (pv)v∈V ∈ (Rd)V . The pair (G,p) is called a framework in R

d , and the
points of �p := �−1(�(p)) give the possible frameworks in R

d with constant edge
lengths �(p).

Let v = |V | ≥ d + 1, and let p be a generic embedding. Then the set �p ⊂ (Rd)V

is a smooth submanifold on which the group of Euclidean/rigid motions E(Rd) acts
smoothly and faithfully. Therefore the dimension of �p is dim�p ≥ (

d+1
2

)
, and in

case of equality, the framework (G,p) is infinitesimally rigid.
The rigidity matrix R = R(G,p) ∈ (Rd)E×V of (G,p) is the Jacobian matrix of �

evaluated at p. Invoking the Implicit Function Theorem, it is easy to see that (G,p)

is infinitesimally rigid if and only if rankR = dv − (
d+1

2

)
. A stress on the framework

(G,p) is an assignment ω = (ωe)e∈E ∈ R
E of weights ωe ∈ R to the edges e ∈ E

such that there is an equilibrium
∑

u:uv∈E ωuv(pv − pu) = 0 at every vertex v ∈ V .
We denote by S(G,p) = {ω ∈ R

E : ωR = 0} the kernel of R�, called the space of
stresses on (G,p).

Theorem 2.3 (Whiteley [28, Theorem 8.6 with Theorem 2.9]) Let P ⊂ R
d be a d-

polytope. Let G = G(P ) = (V ,E) be the graph obtained from a triangulation of the
2-skeleton of P without new vertices, and let p = p(P ) be the vertex coordinates.
Then the resulting framework (G,p) is infinitesimally rigid.

This theorem does not specify the triangulation of the 2-skeleton. An important
fact to note is that the graph G of any such triangulation has exactly e := |E| =
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f1(P ) + f02(P ) − 3f2(P ) edges: In addition to the f1(P ) edges of P , k − 3 edges
are needed for every 2-face with k vertices. Thus we get, with v := |V | = f0(P ):

gtor
2 (P ) = f1(P )+f02(P )−3f2(P )−df0(P )+

(
d + 1

2

)
= e−dv+

(
d + 1

2

)
. (3)

For the dimension of the space of stresses S(G,p), Theorem 2.3 yields

dimS(G,p) = e − rankR = e − dv +
(

d + 1

2

)
. (4)

Now let P be a centrally symmetric d-polytope, d ≥ 3. Let G = G(P ) = (V ,E)

be the graph in Theorem 2.3 obtained from a triangulation that respects the central
symmetry of the 2-skeleton, and let p = p(P ) be the vertex coordinates of P . The
antipodal map x �→ −x induces a free action of the group Z2 on the graph G. We
denote by V = V/Z2 and E = E/Z2 the respective quotients and, after choosing
representatives, we denote by V = V + � V − and E = E+ � E− the decompositions
of the set of vertices and edges according to the action. Since the action is free, we
have |V | = |V ±| = v

2 and |E| = |E±| = e
2 .

Concerning the rigidity matrix, it is easy to see that

R =
( V + V −

E+ R1 R2
E− −R2 −R1

)
∈ (Rd)V ×E

with labels above and to the left of the matrix. The embedding p = p(P ) respects the
central symmetry of G, and we can augment the edge function by a second compo-
nent that takes the symmetry information into account:

�sym : (Rd)V
+ × (Rd)V

− → R
E × (Rd)V ,

p = (pV + ,pV −) �→ (
�(p),pV + + pV −

)
.

Thus �sym additionally measures the degree of asymmetry of the embedding. By
the symmetry of P , �sym(p) = (�(p),0) for p = p(P ). The preimage of this point
under �sym is �

sym
p ⊂ �p, the set of all centrally symmetric embeddings with edge

lengths �(p). Any small (close to identity) rigid motion that fixes the origin takes
p ∈ �

sym
p to a distinct centrally symmetric realization p′ ∈ �

sym
p . Thus the action of

the subgroup O(Rd), the group of orthogonal transformations, on �
sym
p locally gives

a smooth embedding. It follows that dim�
sym
p ≥ dimO(Rd) = (

d
2

)
and thus

rankRsym ≤ dv −
(

d

2

)
, (5)

where we can compute the rank of Rsym, the Jacobian of �sym at p, as

rankRsym = rank

⎛

⎝
R1 R2

−R2 −R1
IV + IV −

⎞

⎠ = dv

2
+ rank(R1 − R2). (6)



Discrete Comput Geom (2009) 41: 183–198 189

Proof of Theorem 2.1 Consider the space of symmetric stresses, that is, the linear
subspace

Ssym(G,p) = {
ω = (ωE+ ,ωE−) ∈ S(G,p) : ωE+ = ωE−

}

∼= {
ω ∈ R

E : ω(R1 − R2) = 0
}
.

It satisfies Ssym(G,p) ⊆ S(G,p) and thus

dimSsym(G,p) ≤ dimS(G,p). (7)

From (5) and (6) it follows that

dimSsym(G,p) = e

2
− rank(R1 − R2) ≥ e

2
− dv

2
+

(
d

2

)
. (8)

Now we combine all the available data to obtain

gtor
2 (P ) = e − dv +

(
d + 1

2

)
by (3)

= 2(e − dv) + 2

(
d + 1

2

)
− (e − dv) − 2

(
d

2

)
+ 2

(
d

2

)
−

(
d + 1

2

)

≥ 2 dimS(G,p) − 2 dimSsym(G,p) +
(

d

2

)
− d by (4) and (8)

≥
(

d

2

)
− d by (7). �

Theorem 2.1 can also be deduced from the following result of A’Campo-
Neuen [2]; see also [1].

Theorem 2.4 [2, Theorem 2] Let P be a centrally symmetric d-polytope, and let
htor

P (t) = ∑d
i=0 htor

i (P )t i be its toric h-polynomial. Then the polynomial

htor
P (t) − htor

C
�
d

(t) = htor
P (t) − (1 + t)d ∈ Z[t]

is palindromic and unimodal with nonnegative even coefficients. In particular,

gtor
i (P ) = htor

i (P ) − htor
i−1(P ) ≥

(
d

i

)
−

(
d

i − 1

)
for all 1 ≤ i ≤

⌊
d

2

⌋
.

The proof of Theorem 2.4 relies on the (heavy) machinery of combinatorial in-
tersection cohomology for fans. Theorem 2.1 concerns the special case of the coeffi-
cient of the quadratic term. In light of McMullen’s weight algebra [16], it would be
interesting to know whether/how Theorem 2.4 can be deduced by considering (gen-
eralized) stresses. A connection between the combinatorial intersection cohomology
set-up for fans and rigidity was established by Braden [6, Sect. 2.9].
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2.2 Large Centrally Symmetric 4-Polytopes

In order to prove conjectures A and B for large polytopes, we need one more ingre-
dient.

Proposition 2.5 Let P be a 4-polytope. Then

f03(P ) ≤ 4f2(P ) − 4f3(P )

= 4f1(P ) − 4f0(P ). (9)

Equality holds if and only if P is center-boolean, i.e., if every facet is simple.

Proof The inequality was first proved by Bayer [4]. Every facet F of P is a 3-
polytope satisfying 3f0(F ) ≤ 2f1(F ). By summing up over all facets of P we get

3f03(P ) =
∑

F facet

3f0(F ) ≤
∑

F facet

2f1(F ) = 2f13(P ).

By one of the generalized Dehn–Sommerville equations [5] we have

f03 − f13 + f23 = 2f3,

which, together with f23 = 2f2, immediately implies the asserted inequality. Equality
holds if the above inequality for 3-polytopes holds with equality for all facets of P ,
which means that all facets are simple 3-polytopes. The equality in the assertion is
Euler’s equation. �

Combining inequalities (2) and (9), we obtain

f2 ≥ 1
4 (3f0 + 7f3) − 2 = f3 + 3

4 (f0 + f3) − 2,

f1 ≥ 1
4 (7f0 + 3f3) − 2 = f0 + 3

4 (f0 + f3) − 2.
(10)

In terms of f0 and f3, this gives

s(P ) ≥ 14
4 (f0 + f3) − 3 ≥ 81,

where the last inequality holds if P is large.
To prove conjecture B for large polytopes, we have to show that the f -vector

of every large polytope is component-wise larger than the f -vector of one of the
following four Hanner polytopes:

(f0, f1, f2, f3)

C4 (16,32,24, 8)

C
�
4 ( 8,24,32,16)

bipC3 (10,28,30,12)

prismC
�
3 (12,30,28,10)
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where bipP := P ⊕ [−1,1] denotes a bipyramid, and prismP refers to the prism
construction.

It suffices to treat the case f0 + f3 = 24. Indeed, for f0 + f3 ≥ 26 and f3 ≥ f0 ≥
10, we get from (10) that

f1 ≥ f0 + 18 ≥ 28,

f2 ≥ f3 + 18 ≥ 30,

and thus f (bipC3) is componentwise smaller.
We claim that the same bounds hold for f0 + f3 = 24. Otherwise, if f1 ≤ 26

or f2 ≤ 28, then by using (9) together with f0 ≥ 10 and f3 ≥ 12 we get in both
cases that f03 ≤ 64. In fact, we now get f03 = 64 from (2), which tells us that P is
center boolean. Granted that every facet of P is simple and has at most 6 vertices, the
possible facet types are the 3-simplex �3 and the triangular prism prism�2. Using
the assumption that P is not simplicial, there is a facet F ∼= prism�2. The three quad
faces of F give rise to three more prism facets, and, due to the number of vertices, no
two of them are antipodes. For the same reason, any two prism facets cannot intersect
in a triangle face. In total, we note that P has exactly eight prism facets and four
tetrahedra. Since every antipodal pair of prism facets give a partition of the vertices,
it follows that every vertex is contained in a simplex and exactly 4 prism facets.
Therefore, every vertex has degree ≥ 6, and thus 2f1 ≥ 6 · 12. By Euler’s equation,
the same holds for f2.

2.3 Twisted Prisms and the Small Polytopes

The class of small cs 4-polytopes consists of all cs 4-polytopes P with 12 ≥ f3(P ) ≥
f0(P ) = 10. Since P is not simplicial, P has a facet F that has 5 = d + 1 = f0(F )

vertices, and P = conv(F ∪−F). In particular, F is a 3-polytope with 3 + 2 vertices,
which does not leave much diversity in terms of combinatorial types. The facet F is
combinatorially equivalent to

• a pyramid over a quadrilateral, or
• a bipyramid over a triangle.

Definition 2.6 (Twisted prism) Let Q ⊂ R
d−1 be a (d − 1)-polytope. The centrally

symmetric d-polytope

P = tprismQ = conv
(
Q × {1} ∪ −Q × {−1}) ⊂ R

d

is called the twisted prism over the base Q.

The following basic properties of twisted prisms will be of good service.

Proposition 2.7 Let Q ⊂ R
d−1 be a (d −1)-polytope and tprismQ the twisted prism

over Q.

1. If T : R
d−1 → R

d−1 is a nonsingular affine transformation, then tprismQ and
tprism TQ are affinely isomorphic.
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2. If Q = pyrQ′ is a pyramid with base Q′, then tprismQ is combinatorially equiv-
alent to bip tprismQ′, a bipyramid over the twisted prism over Q′.

The second statement of Proposition 2.7 actually proves conjectures A and B for
half of the small cs 4-polytopes: Let P = tprismQ and Q a pyramid over a quadrilat-
eral. By the second statement P is combinatorially equivalent to bipP ′, where P ′ is
a cs 3-polytope. In terms of f -polynomials, it is easy to show that, for a bipyramid,
fbipQ(t) = (2 + t)fQ(t). Thus

s(P ) = fbipP ′(1) = 3fP ′(1) ≥ 34.

Since B is true in dimension 3, there is a 3-dimensional Hanner polytope H such
that fi(P

′) ≥ fi(H) for i = 0,1,2. From the above identity of f -polynomials it
follows that fi(bipP ′) ≥ fi(bipH) for 1 ≤ i ≤ 3, where bipH = I ⊕ H is a Hanner
polytope.

The next lemma shows that the above class already contains all small polytopes,
which finally settles A and B for dimension 4.

Lemma 2.8 Let d ≥ 4, and let P = tprismF ⊂ R
d be a cs d-polytope with F com-

binatorially equivalent to �i ⊕ �d−i−1 and 1 ≤ i ≤ d−1
2 . Then

fd−1(P ) ≥ 2
(
1 + (i + 1)(d − i)

) ≥ 2(2d − 1).

Proof The facet F in P has (i + 1)(d − i) ridges, and thus F and its neighbors
account for 1 + (i + 1)(d − i) facets. The result now follows by considering −F

as soon as we have checked that no facet G shares a ridge with F and with −F .
This, however, is impossible, since G would have to have two vertex disjoint (d −2)-
simplices as maximal faces and, therefore, at least f0(G) ≥ 2d − 2 vertices. Thus
2d + 2 = f0(P ) ≥ f0(G) + f0(−G) ≥ 4d − 4. �

Corollary 2.9 If P = tprismQ with Q ∼= bip�2, then P is large.

3 Conjecture C in Dimension 4

We will refute conjecture C strongly for dimension 4: We exhibit a flag-functional
α ∈ P4 and infinitely many cs 4-polytopes P such that α(P ) < α(H) for every 4-
dimensional Hanner polytope H .

Geometrically, this means that there is an oriented hyperplane in the vector space
R

2[4]
that has infinitely many flag vectors (fS(P ))S on its negative side, but all the

flag-vectors of Hanner polytopes on its positive side, while some parallel hyperplane
has the flag-vectors of all (not-necessarily cs) 4-polytopes on its positive side.

For this, consider the two functionals

�1(P ) = f02(P ) − 3f2(P ),

�2(P ) = f13(P ) − 3f1(P )

= f02(P ) − 3f1(P ).
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Let Fk(P ) be the number of 2-faces with exactly k vertices. Then f02(P ) = ∑
k≥3 k ·

Fk(P ). Thus �1(P ) = ∑
k≥4(k − 3) · Fk(P ), which is clearly nonnegative for every

4-polytope. In case of equality, the polytope is 2-simplicial. For the second func-
tional, note that �2(P ) = �1(P

�) ≥ 0 and that the bound is attained by the 2-simple
polytopes. Thus, the functional

α(P ) := 1
2 (�1 + �2) = f02 − 3

2 (f1 + f2)

is nonnegative for all 4-polytopes; it vanishes exactly for 2-simple 2-simplicial poly-
topes. (See [19] for examples of such polytopes.)

Consider the cs 4-polytope

P4 := [−1,+1]4 ∩ {
x ∈ R

4 : −2 ≤ x1 + · · · + x4 ≤ 2
}
,

which arises from the 4-cube C4 by chopping off the vertices ±1 by hyperplanes that
pass through the respective neighbors. It is straightforward to verify that the f -vector
of P4 is

f (P4) = (14,36,32,10)

with f02 = 3 · 20 + 4 · 12 = 108 and α(P4) = 6.
Theorem 1.2 now follows from inspecting the following table, which lists in its

first row the data for P4, and then (extended) data for the 4-dimensional Hanner
polytopes:

(f0, f1, f2, f3) f02 α

P4 (14,36,32,10) 108 6

C4 (16,32,24, 8) 96 12
C

�
4 ( 8,24,32,16) 96 12

bipC3 (10,28,30,12) 96 9
prismC

�
3 (12,30,28,10) 96 9

Indeed, there are infinitely many counter-examples, even with α = 0: For this, we
need to exhibit infinitely many cs 2-simple 2-simplicial 4-polytopes. These may be
obtained from the construction of 2-simple 2-simplicial 4-polytopes via “truncatable”
polytopes by Paffenholz and Ziegler [19, Definition 3.2, Proposition 3.5]. The first
example obtained from this is Schläfli’s 24-cell with

f (24-cell) = (24,96,96,24), f02 = 288, α = 0.

To see that there are infinitely many counter-examples to conjecture C in every
fixed dimension d ≥ 4, we note that if H is a d-dimensional Hanner polytope, then
H or H� has quadrilateral 2-faces. This implies that Hanner polytopes in dimensions
≥ 4 are never k-simple and �-simplicial for k, � ≥ 2. In [19, Theorem 3.8], Paffen-
holz and Ziegler construct infinitely many 2-simple (d − 2)-simplicial d-polytopes
by considering modified stacks of n crosspolytopes, that is, linearly glued crosspoly-
topes modified by adding in some simplices. A thorough inspection of their argument
reveals that for n odd, one obtains centrally symmetric 2-simple (d − 2)-simplicial
d-polytopes. See also Sanyal [21, Sect. 5.2].



194 Discrete Comput Geom (2009) 41: 183–198

4 The Central Hypersimplices �̃k = �(k,2k)

For natural numbers d > k > 0, the (k, d)-hypersimplex is the (d − 1)-dimensional
polytope

�(k,d) = conv
{
x ∈ {0,1}d : x1 + x2 + · · · + xd = k

} ⊂ R
d .

Hypersimplices were considered as (semi-regular) polytopes in [7, §11.8] (see also
[19, Sect. 3.3.2] and [10, Exercise 4.8.16]), as well as in connection with algebraic
geometry in [8, 9], and [26].

One rather simple observation is that �(k,d) and �(d − k, d) are affinely isomor-
phic under the map x �→ 1 − x. In particular, the hypersimplex �̃k := �(k,2k) is a
centrally symmetric (2k − 1)-polytope with f0(�̃k) = (2k

k

)
vertices.

In a different, full-dimensional realization, the central hypersimplex is given by

�̃k
∼= conv

{
x ∈ {+1,−1}2k−1 : −1 ≤ x1 + x2 + · · · + x2k−1 ≤ 1

}
.

From this realization it is easy to see that for k ≥ 2, the hypersimplex �̃k is a twisted
prism over �(k,2k − 1) with f2k−2(�̃k) = 4k = 2(2k − 1) + 2 facets: Since the
above realization lives in an odd-dimensional space, the sum of the coordinates for
any vertex is either +1 or −1. The points satisfying

∑
i xi = 1 form a face that is

affinely isomorphic to �(k,2k − 1). To verify the number of facets, observe that �̃k

is the intersection of the 2k-cube with a hyperplane that cuts all its 4k facets. (It is a
simple exercise to compute the complete f -vector of �(k,d).)

We will show that in odd dimensions d = 2k − 1 ≥ 5, a d-dimensional Hanner
polytope that has no more facets than �̃k has way too many vertices for conjecture B.
In even dimensions d ≥ 6, Theorem 1.3 follows then by taking a prism over �̃k . The
following proposition gathers the information needed about Hanner polytopes.

Proposition 4.1 Let H be a d-dimensional Hanner polytope. Then

(a) fd−1(H) ≥ 2d .
(b) If fd−1(H) = 2d , then H is a d-cube.
(c) If fd−1(H) = 2d + 2, then H = Cd−3 × C

�
3 .

Proof Since all three claims are certainly true for Hanner polytopes of dimension
d ≤ 3, let us assume that d ≥ 4. By definition, H is the direct sum or product of two
Hanner polytopes H ′ and H ′′ of dimensions i and d − i with 1 ≤ i ≤ d

2 .
If H = H ′ ⊕ H ′′, then, by induction on d , we get

fd−1(H) = fi−1(H
′) · fd−i−1(H

′′) ≥ 4i(d − i) ≥ 2d + 4.

Therefore, we can assume that H = H ′×H ′′ and fd−1(H)=fi−1(H
′)+fd−i−1(H

′′)
≥ 2d , which proves (a). The condition in (b) is satisfied if and only if it is satisfied
for each of the two factors. Therefore, by induction, both factors are cubes, and so is
their product.
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Similarly, the condition in (c) is satisfied if and only if it is satisfied for one
of the two factors. By using (a) we see that the remaining factor is a cube, which
proves (c). �

Proof of Theorem 1.3 Let d = 2k − 1 ≥ 5, and let H be a d-dimensional Hanner
polytope with fi(H) ≤ fi(�̃k) for all i = 0, . . . , d − 1. Since the hypersimplex �̃k

has 2d + 2 facets, it follows from Proposition 4.1 that H is either C2k−1 or C2k−4

× C
�
3 . In either case, the Hanner polytope satisfies f0(H) ≥ 3 · 22k−3 >

(2k
k

)
, where

the last inequality holds for k ≥ 3.
For even dimensions d = 2k, consider prism �̃k = I × �̃k , which has 2(2k − 1)+

4 = 2d + 2 facets. Again by Proposition 4.1, a Hanner polytope H with componen-
twise smaller f -vector is of the form I × H ′, and the result follows from the odd
case. �

5 Two More Examples

It is easy to see that there are only finitely many counter-examples to conjecture B
for any fixed dimension d . Indeed, any d-polytope with sufficiently many vertices
will automatically have an f -vector that is componentwise larger than that of the d-
dimensional crosspolytope. (This is in contrast to the situation for conjecture C, with
infinitely many counter-examples for each d ≥ 4, according to Sect. 3.)

For d = 5, we have up to now exhibited two counter-examples to conjecture B,
namely the central hypersimplex �̃3 = �(3,6) and its dual (�̃3)

�. In this section,
we present one more counter-example for d = 5 and also one for d = 6. These exhibit
some remarkable properties; in particular, they are self-dual. They are instances of
Hansen polytopes [12], for which we sketch the construction.

Let G = (V ,E) be a perfect graph on the vertex set V = {1, . . . , d − 1}, that is, a
simple undirected graph without induced odd cycles of length ≥ 5 (cf. Schrijver [22,
Chap. 65]). Let Ind(G) ⊆ 2V be the independence complex of G. So Ind(G) is the
simplicial complex on the vertices V defined by the relation that S ⊆ V is contained
in Ind(G) if and only if the vertex-induced subgraph G[S] has no edges. To every
independent set S ∈ Ind(G), associate the (characteristic) vector χ̃S ∈ {+1,−1}d−1

with (χ̃S)i = +1 if and only if i ∈ S. The collection of vectors is a subset of the
vertex set of the (d − 1)-cube. Let PInd(G) = conv{χ̃S : S ∈ Ind(G)} ⊂ [−1,+1]d−1

be the vertex-induced subpolytope. The Hansen polytope H(G) associated to G is the
twisted prism over PInd(G). In particular, H(G) is a centrally symmetric d-polytope
with f0(H(G)) = 2|Ind(G)| vertices. A graph G = (V ,E) is self-complementary if
G is isomorphic to its complementary graph G = (

V,
(
V
2

)\E)
.

Proposition 5.1 If G = (V ,E) is a self-complementary, perfect graph on d − 1 ver-
tices, then H(G) is a centrally symmetric, self-dual d-polytope.

Proof By [12, Theorem 4], the polytope H(G)� is isomorphic to H(G) ∼= H(G). �
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Example 5.2 Let G4 the path on four vertices v1, v2, v3, v4. This is a self-complemen-
tary perfect graph, so H(G4) is a 5-dimensional self-dual cs polytope. We compute
its f -vector and compare it to the f -vectors of the 5-dimensional hypersimplex �̃3

and of the eight 5-dimensional Hanner polytopes. This results in the following table
(the four Hanner polytopes not listed are the duals of the ones given here, with the
corresponding reversed f -vectors):

(f0, f1, f2, f3, f4) f0 + f4 s

H(G4) (16,64, 98,64,16) 32 259

�̃3 (20,90,120,60,12) 32 303

C
�
5 (10,40, 80,80,32) 42 243

bip bipC3 (12,48, 86,72,24) 36 243
bip prismC

�
3 (14,54, 88,66,20) 34 243

prismC
�
4 (16,56, 88,64,18) 34 243

Thus H(G4) refutes conjecture B in dimension 5 strongly: its value for f0 + f4 is
smaller than for any Hanner polytope. Furthermore, H(G4) has a smaller face num-
ber sum s than the hypersimplex, so in that sense it is even a better example to look
at in view of conjecture A.

Example 5.3 Let G5 be the path on five vertices v1, v2, v3, v4, v5 (in this order) with
the additional edge connecting the second vertex v2 to the fourth vertex v4 on the
path. This is a self-complementary perfect graph, so we obtain a 6-dimensional self-
dual cs polytope H(G5). Again its f -vector can be computed and compared to those
of the prism over the 5-dimensional hypersimplex, I × �̃3, which we had used for
Theorem 1.3 as well as the eighteen Hanner polytopes in dimension 6 (again we do
not list the duals explicitly):

(f0, f1, f2, f3, f4, f5) f0 + f5 s

H(G5) (24,116,232,232,116,24) 48 745

prism �̃3 (40,200,330,240, 84,14) 54 908

C
�
6 (12, 60,160,240,192,64) 76 729

bip bip bipC3 (14, 72,182,244,168,48) 62 729
bip bip prismC

�
3 (16, 82,196,242,152,40) 56 729

bip prismC
�
4 (18, 88,200,240,146,36) 54 729

bip bipC4 (20,100,216,232,128,32) 52 729
prismC

�
5 (20, 90,200,240,144,34) 54 729

bip prism bipC3 (22,106,220,230,122,28) 50 729
prism bip bipC3 (24,108,220,230,120,26) 50 729
C3 ⊕ C3 (16, 88,204,240,144,36) 52 729

Thus H(G5) is a self-dual cs polytope that also refutes conjecture B in dimension 6
strongly. Moreover, also looking at the pair (f1, f4) suffices to derive a contradiction
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to conjecture B. In these respects, H(G5) is the nicest and strongest counter-example
that we currently have for conjecture B in dimension 6.

Note that there are no self-complementary (perfect) graphs on 6 or on 7 vertices,
since

(6
2

) = 15 and
(7

2

) = 21 are odd. Thus, we cannot derive self-dual polytopes in
dimensions 7 or 8 from Hansen’s construction.

The Hansen polytopes derived from perfect graphs are subject to further research.
For example, H(G4) and H(G5) are interesting examples in view of the Mahler
conjecture, since they exhibit only a small deviation from the Mahler volume of the
d-cube, which is conjectured to be minimal (see Kuperberg [15] and Tao [27]).

The Hansen polytopes in turn are special cases of weak Hanner polytopes, as de-
fined by Hansen [12], which are twisted prisms over any of their facets. Greg Kuper-
berg has observed that all of these are equivalent to ±1-polytopes.

Acknowledgement We are grateful to Gil Kalai for his inspiring conjectures and for pointing out the
connection to symmetric stresses for Theorem 2.1.
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1985. North-Holland Math. Stud., vol. 144, pp. 199–226. North-Holland, Amsterdam (1987)
18. Novik, I.: The lower bound theorem for centrally symmetric simple polytopes. Mathematika 46, 231–

240 (1999)
19. Paffenholz, A., Ziegler, G.M.: The Et -construction for lattices, spheres and polytopes. Discrete Com-

put. Geom. 32, 601–624 (2004)
20. Roth, B.: Rigid and flexible frameworks. Am. Math. Mon. 88, 6–21 (1981)

http://arxiv.org/abs/math/0610904v3


198 Discrete Comput Geom (2009) 41: 183–198

21. Sanyal, R.: Constructions and obstructions for extremal polytopes. Ph.D. thesis, TU Berlin (2008)
22. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. B. Algorithms and Combi-

natorics, vol. 24. Springer, Berlin (2003). Matroids, trees, stable sets, Chaps. 39–69
23. Sloane, N.J.A.: Number of series-parallel networks with n unlabeled edges, multiple edges not al-

lowed. Sequence A058387, The On-Line Encyclopedia of Integer Sequences, http://www.research.
att.com/~njas/sequences/A058387

24. Stanley, R.: Generalized H -vectors, intersection cohomology of toric varieties, and related results. In:
Commutative Algebra and Combinatorics, Kyoto, 1985. Adv. Stud. Pure Math., vol. 11, pp. 187–213.
North-Holland, Amsterdam (1987)

25. Stanley, R.: On the number of faces of centrally-symmetric simplicial polytopes. Graphs Comb. 3,
55–66 (1987)

26. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. AMS, Provi-
dence (1996)

27. Tao, T.: Open question: the Mahler conjecture on convex bodies. Blog page started 8 March, 2007,
http://terrytao.wordpress.com/2007/03/08/open-problem-the-mahler-conjecture-on-convex-bodies/

28. Whiteley, W.: Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Am. Math. Soc. 285,
431–465 (1984)

29. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York
(1995)

http://www.research.att.com/~njas/sequences/A058387
http://www.research.att.com/~njas/sequences/A058387
http://terrytao.wordpress.com/2007/03/08/open-problem-the-mahler-conjecture-on-convex-bodies/

	On Kalai's Conjectures Concerning Centrally Symmetric Polytopes
	Abstract
	Introduction
	Conjectures A and B in Dimensions d <=4
	Rigidity with Symmetry and Flag-Vector Inequalities
	Large Centrally Symmetric 4-Polytopes
	Twisted Prisms and the Small Polytopes

	Conjecture C in Dimension 4
	The Central Hypersimplices Deltak=Delta(k,2k)
	Two More Examples
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


