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Abstract Given a class C of geometric objects and a point set P , a C-matching of P

is a set M = {C1, . . . ,Ck} ⊆ C of elements of C such that each Ci contains exactly
two elements of P and each element of P lies in at most one Ci . If all of the elements
of P belong to some Ci , M is called a perfect matching. If, in addition, all of the
elements of M are pairwise disjoint, we say that this matching M is strong. In this
paper we study the existence and characteristics of C-matchings for point sets in the
plane when C is the set of isothetic squares in the plane. A consequence of our results
is a proof that the Delaunay triangulations for the L∞ metric and the L1 metric always
admit a Hamiltonian path.
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Fig. 1 A point set P (center), a circle-matching of P (left), and a strong square-matching of P (right)

1 Introduction

Let C be a class of geometric objects, and let P be a point set with an even num-
ber, n, of elements p1, . . . , pn in general position. A C -matching of P is a set
M = {C1, . . . ,Ck} ⊆ C of elements of C such that each Ci contains exactly two ele-
ments of P and each element of P lies in at most one Ci . If all of the elements of P

belong to some Ci , M is called a perfect matching. If, in addition, all of the elements
of M are pairwise disjoint, we say that the matching M is strong.

Let GC (P ) be the graph whose vertices are the elements of P and whose edges
join a pair of points if there is an element of C containing the two points and no other
points from P . Then, a perfect matching in GC (P ) in the usual graph theory sense
corresponds to our definition of perfect C -matching.

If C is the set of line segments or the set of all isothetic rectangles, then we get a
segment-matching or a rectangle-matching, respectively. If C is the set of circles or
of isothetic squares in the plane, then M will be called a circle-matching or a square-
matching, respectively. An example is shown in Fig. 1. Notice that these four classes
of objects have in common the shrinkability property: if there is an object C′ in the
class that contains exactly two points p and q in P , then there is an object C′′ in the
class such that C′′ ⊂ C′, p and q lie on the boundary of C′′, and the relative interior
of C′′ is empty of points from P . In the case of rectangle-matchings, we can assume
that the points p and q are at opposite corners of C′′.

It is easy to see that P always admits a strong segment-matching, i.e., a non-
crossing matching in the complete geometric graph [10] induced by P . If no vertical
or horizontal line contains two points from P , then P necessarily admits a strong
rectangle-matching, which corresponds to a noncrossing matching in the rectangle-
of-influence graph of P , in which two points are adjacent if the rectangle having them
as opposite corners covers no third point from P [8, 9].

For the cases of circles and isothetic squares, however, the existence of matchings
is not immediate, and several interesting problems arise. In this paper we study the
existence of perfect and nonperfect, strong, and nonstrong square-matchings for pla-
nar point sets. In the concluding remarks we compare our results for squares with
those we obtained for circle-matchings [1].1

1A preliminary version of our results on circle-matchings and square-matchings appeared as an extended
abstract in the conference paper [1].
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It is worth mentioning that our results on square-matchings prove, as a side effect,
the fact that Delaunay triangulations for the L1 and L∞ metrics contain a Hamil-
tonian path, a question that to the best of our knowledge remained unsolved since it
was posed in the conference version of [5].

Since some of our results have quite long proofs and require several technical
lemmas, for the sake of clarity of exposition, we present all of the results in Sect. 2
and present the corresponding proofs in Sect. 3.

2 Results

In this section, we consider geometric matchings of planar point sets using axis-
aligned squares. Throughout this section, we assume that no two points of P lie on a
common vertical or horizontal line; at the end of Sect. 3, we give detailed comments
on how to handle degenerate cases.

Consider the geometric graph G(P ) in which the points P are the vertices of
G(P ), two of which are adjacent if there is an isothetic square containing them that
does not contain another element of P . In other words, G(P ) is the Delaunay graph of
P in the L∞ metric (or the L1 metric, if the reference is rotated 45 degrees). Under
certain nondegeneracy assumptions (no four points lie on the boundary of an axis-
aligned square whose interior contains no point of P ), G(P ) is a triangulation. We
show that G(P ) always contains a perfect matching; this answers in the affirmative a
question posed in the conference version of [5] (to our knowledge, this question has
not previously been answered). In fact, we prove that G(P ) contains a Hamiltonian
path; this is perhaps somewhat surprising, since it is not the case for the Euclidean
(L2) Delaunay graph. Studying Hamiltonicity in Delaunay graphs/triangulations was
the original motivation that lead Dillencourt first to find a counterexample [4, 6] and
then subsequently to prove that Euclidean Delaunay triangulations are always 1-tough
and contain perfect matchings [5]. He also proved later that deciding whether or not a
Euclidean Delaunay triangulation contains a Hamiltonian cycle is NP-complete [7].
In Sect. 3 we prove:

Lemma 1 G(P ) contains a Hamiltonian path. In particular, a Delaunay triangula-
tion of a point set in the L∞ metric or the L1 metric admits a Hamiltonian path.

By considering every other edge in a Hamiltonian path, we immediately obtain:

Theorem 1 Every planar point set P of even cardinality admits a perfect square-
matching.

However, a perfect strong square-matching is not always possible. An example
with 10 points is shown in Fig. 3. This example can be used to construct arbitrarily
large sets that do not admit perfect strong square-matchings:

Theorem 2 There are n-element point sets in the plane, for n arbitrarily large, such
that at most 10

11n of the n points can be strongly square-matched.
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We also provide a lower bound on the fraction of points that can always be strongly
square-matched:

Theorem 3 Every planar point set P of n points in general position has a strong
square-matching using at least 2�n

5 � points of P .

When the points to be matched are in convex position, one may have the intuition
that a perfect strong matching always exists. This is false for circle-matchings, as we
show in [1], but correct for squares, as established in the following result:

Theorem 4 Every planar point set P in convex position with an even number of
elements admits a perfect strong square-matching.

3 Proofs

3.1 Proof of Lemma 1

We now prove that any planar point set P of even cardinality admits a perfect square-
matching. In fact, we prove the stronger fact, Lemma 1, that the geometric graph
G(P ) contains a Hamiltonian path. We start with a result, which is part of folklore,
that the L∞ Delaunay graph in R

2 is planar; we include a proof for completeness:

Lemma 2 For any planar point set P , G(P ) is planar.

Proof Consider two edges, pipj and pkpl , of G(P ), and let Sij and Skl be the corre-
sponding isothetic “witness” squares, not containing other points of P . We claim that
two edges pipj and pkpl cannot cross. If Sij and Skl are disjoint, then clearly the
two edges do not cross. If Sij and Skl do intersect, then their boundaries cross at two
distinct points, a and b, except in degenerate situations. The line through ab separates
pipj from pkpl , since the points pi,pj must be on that portion of the boundary of
Sij that does not lie inside Skl , and similarly for pk,pl . �

Now, let C be a square that contains all of the elements of P in its interior, and
P ′ be the point set obtained by adding to P the vertices of C. Let G be the graph
obtained from G(P ′) by adding an extra point p∞ adjacent to the vertices of C. We
will show that G is 4-connected; before that, we prove a technical lemma.

Lemma 3 Let Q be a finite point set containing the origin O and a point p from the
first quadrant, such that all of the other points in Q lie in the interior of the rectangle
R with corners at O and p. Then, there is path in G(Q) from O to p such that every
two consecutive vertices can be covered by an isothetic square, empty of any other
point from Q.

Proof The proof is by induction on |Q|. If |Q| = 2, the result is obvious. If |Q| > 2,
we grow homothetically from O a square with bottom left corner at O , until a point
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q ∈ Q, different from O , is found for the first time. This square gives an edge in
G(Q) between O and q . Now we can apply induction to the points from Q covered
by the rectangle with q and p as opposite corners. �

Clearly, the above lemma applies to any of the four quadrants with respect to any
point of P that is taken to be the origin.

Lemma 4 G is 4-vertex-connected.

Proof We argue that the graph G′ resulting from the removal of any three vertices of
G is connected.

Suppose first that none of the removed vertices is p∞, and we will see that p∞ can
be reached from any vertex v ∈ G′. If v is a corner of C, then it is adjacent to p∞. If
v is not such a corner, consider the four quadrants it defines. In at least one of them,
no vertex from G has been removed, so we can apply Lemma 3 to this quadrant and
obtain a path in G′ from v to a surviving corner of C; from there we arrive at p∞.

If we remove from G the vertex p∞ together with two more points in P , then G′
contains the 4-cycle given by the corners of C. From any vertex v ∈ P in G′, we can
reach one of these corners (and therefore any of them), since in at least two of the
quadrants relative to v no vertex has been removed.

The cases in which p∞ and one or two corners of C are removed are handled
similarly. �

Since G is planar (Lemma 2), it follows from a classic result of Tutte [11] that G is
Hamiltonian. This almost proves our result, since the removal of p∞ from G results
in a graph that has a Hamiltonian path. Using this path, we can now obtain a perfect
matching in G(P ′). A small problem remains to find a matching in G(P ), since the
perfect matching in G(P ′) may match some elements of P to the corners of C.

To address this issue, we proceed in a way similar to that used in [3]. Consider the
three shaded squares and six points p1, . . . , p6 (represented by small circles) shown
in Fig. 2. Within each of the shaded squares, place a copy of P , and let P ′′ be the
point set containing the points of the three copies of P plus p1, . . . , p6. Consider
the graph G(P ′′) and add to it a vertex p∞ adjacent to p1,p2,p3,p4. The resulting
graph is planar and 4-connected, and by Tutte’s Theorem, also Hamiltonian. The
removal of p∞ gives a Hamiltonian path w in the resulting graph, with extremes in
the set {p1,p2,p3,p4}. Since this path has exactly ten edges incident to points in
p1, . . . , p6, then one of the three copies of P gets exactly two of these edges. Finally,
all points in this copy of P have to be traversed consecutively by the Hamiltonian
path. This is because no point in a copy of P can be adjacent to a point in another
copy of P .

3.2 Proof of Theorem 2

We show first a family of 10 points that admits no perfect strong square-matching.
Consider the set P10 of 10 points, illustrated in Fig. 3: p1 = (60,−2), p2 = (2,60),
q1 = (9,−21), q2 = (11,19), s1 = (−1,−18), and their symmetric points about the
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Fig. 2 The final step in the
proof of existence of
square-matchings

Fig. 3 Ten points that do not
admit a perfect strong
square-matching

origin p3, p4, q3, q4, and s2, respectively. Let R denote the isothetic (dotted) rectangle
with corners at the points (11,18) and (−11,−18).

Now, in any square matching of P10, the point p1 can be matched to q1 or to q2,
but to no other point (since the corresponding bounding square would contain some
other point of P10). A similar observation holds for p2, p3, and p4. Thus, in any
perfect strong matching of P10, each p-point must be matched to a q-point, forcing
s1 and s2 to be matched. Let S be the square matching s1 to s2. Since the vertical
distance between s1 and s2 is 36, then S has side at least 36. Since R has width 22,
then S must contain the right side of R or the left side of R. But the square matching
p1 (to q1 or q2) intersects the right side of R, and the square matching p3 (to q3 or q4)
intersects the left side of R, causing S to intersect one of these two squares.

We now use the preceding construction to obtain arbitrarily large sets that do not
admit perfect strong square-matchings, as claimed in Theorem 2.
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Fig. 4 Extending the ten-point
counterexample for strong
square-matchings. The small
squares represent copies of the
ten-point example; the other
points are
(2,2), (4,4), . . . , (2m,2m)

Let n = 11m, with m even. Consider the points with coordinates (i, i), i =
1, . . . ,2m. For odd i, proceed as follows: Take a very small neighborhood of the
point (i, i) and replace (i, i) with a copy of the ten-point configuration P10, scaled
down to fit within this ε-neighborhood. The remaining points (i, i) with even i re-
maind singletons. Let P be the point set containing all of these 10m + m points, and
let M be a strong square-matching of P . See Fig. 4.

Observe that the ten points close to the point (1,1) cannot be matched among
themselves. Thus, M matches at most 10 of these points. This leaves two points
pending. One of these points can be matched to point (2,2). The remaining point
cannot be matched to any point in P . In a similar way, one of the points in the small
neighborhood of (i, i) with odd i cannot be matched to any element of P . This leaves
at least m elements of P unmatched in M . Our result follows.

3.3 Proof of Theorem 3

We prove a result slightly stronger than Theorem 3, from which that theorem follows
immediately:

Lemma 5 Let S be a square that contains a point set P with n ≥ 2 elements. Then it
is always possible to find a strong square-matching of P with �n

5 � matched pairs of
points.

Proof The claim is obviously true for n = 2. Suppose, by induction, that it is true
for n − 1, and we now prove it for n, with n ≥ 3. Observe first that, if n = 5k + i,
i = 2,3,4,5, then �n

5 � = �n−1
5 �, and, by induction, we are done. Suppose then that

n = 5k + 1 for some k.
Partition S into four squares S1, S2, S3, S4 of equal size containing r1, r2, r3, r4

points, respectively. If all of the ri ’s are greater than 2 or equal to zero, we are done,
since for any integers such that r1 + r2 + r3 + r4 = n we have

⌈
r1

5

⌉
+ · · · +

⌈
r4

5

⌉
≥

⌈
n

5

⌉
.

Suppose then that some of the ri ’s are one. A case analysis follows.
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Fig. 5 Proof of Case 1 in
Lemma 5

Case 1: Three elements of the set {r1, r2, r3, r4} are equal to one (say, r2 = r3 =
r4 = 1); r1 = 5(k − 1) + 3.

Let S
′
1 be the smallest square that contains all of the elements of P in S1 except

one, say p1. Let p be the northwest corner of S
′
1. Suppose, without loss of generality,

that p1 lies below the horizontal line through the bottom edge of S
′
1. Then S

′
1 contains

5(k − 1) + 2 points, and, thus, by induction, we can find k disjoint squares in that
square containing exactly two elements of P .

It is easy to see that there is a square contained in S − S
′
1 that contains p1 and the

element of P in S3. This square contains a square that contains exactly two elements
of P . See Fig. 5.

Case 2: Two elements of {r1, r2, r3, r4} are equal to one.

Suppose that ri and rj are not one. Observe that ri + rj = 5k − 1 and that � ri
5 � +

� rj
5 � ≥ �n−1

5 � = k. If � ri
5 �+� rj

5 � > �n−1
5 � = k, we are done. Suppose then that � ri

5 �+
� rj

5 � = �n−1
5 � = k; this happens only if one of them, say ri , is equal to 5r , and the

other element, rj , is equal to 5s − 1 for some r, s ≥ 0.
Up to symmetry, two subcases arise: (i) r1 = 5r and r3 = 5s − 1, and (ii) r1 = 5r

and r4 = 5s − 1.
In case (i), let S

′
1 be the smallest square contained in S1 that contains all but three

of the elements, say p1, p2, and p3 of P in S1, such that p is a vertex of S
′
1.

If two of these elements, say p1 and p2, are below the horizontal line through
the lower horizontal edge of S

′
1, then there is a square S

′
3 contained in S − S

′
1 that

contains all of the elements of P in S3 and also contains p1 and p2; see Fig. 6(a).
Then, by induction, we can find in S

′
1 and S

′
3 � 5r−3

5 � = r and � 5s+1
5 � = s + 1 disjoint

squares. Thus, we have r + s + 1 = k + 1 disjoint squares contained in S each of
which contains exactly two elements of P .

If no two elements of p1, p2, and p3 lie below the horizontal line through the
lower horizontal edge of S

′
1, then there is a square contained in S1 ∪ S2 − S

′
1 that

contains two of these elements. See Fig. 6(b). Applying induction to the elements of
P in S

′
1, the elements of P in S3 and the square we just obtained proves our result.

Refer to Fig. 6(b).
If r = 0 and thus s > 0, choose S

′
3 such that it contains all but two points of P

in S3. If two points in S3 lie above the line containing the top edge of S
′
3 or to the

right of the line L containing the rightmost vertical edge of S
′
3, an analysis similar
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Fig. 6 Proof of Case 2 in Lemma 5

to the one above follows. Suppose then that there is exactly one point in S3 to the
right of L. Then S

′
3 contains 5s − 3 ≥ 2 points, and there is a square contained in S

containing the point of P in S4. See Fig. 6(c). By induction on the number of elements
in S

′
3, and using the last square we obtained, our result follows.

Case (ii) can be handled similarly.
Case 3: Only one of {r1, r2, r3, r4} is equal to one.

This case can be solved in a similar way to the previous cases, and we omit the details.
For example, the subcase in which r4 = 1 (so that r1, r2, and r3 are multiples of 5),
r1 �= 0, and r2 = 0 is solved similarly to case (i) above. �

3.4 Proof of Theorem 4

Construction of the Matching. Consider a set P of n points in the plane in con-
vex position (n even) and such that no two points lie on the same vertical or hori-
zontal line. Label the points of P from 1 to n according to their counterclockwise
order on the convex hull of P , starting with the lowest point. For ease of notation,
we sometimes refer to i, 1 ≤ i ≤ n, as an integer (when it represents the label of a
point in P ) and sometimes as a point in the plane (an element of P ); the meaning
will be clear from the context. For all i ∈ P, we denote by (i)x and (i)y the x- and
y-coordinates of the point i. Let S,E,N, and W be the south-, east-, north-, and
west-most point in P , respectively (Fig. 7); we use the preceding convention for their
coordinates and we even omit the brackets. It is possible that some of these points co-
incide. For convenience, in what follows, 1 and n + 1 denote the same point, namely
the point S. Assume, without loss of generality, that Sx < Nx . We define the re-
gions RSE = {(x, y) ∈ R

2 : x ≥ Sx, y ≤ Ey}, RNE = {(x, y) ∈ R
2 : x ≥ Nx,y ≥ Ey},

RNW = {(x, y) ∈ R
2 : x ≤ Nx,y ≥ Wy}, RSW = {(x, y) ∈ R

2 : x ≤ Sx, y ≤ Wy}.
For i and j consecutive points in the convex hull of P , let H(i, j) be the closed

half-plane determined by the line joining i and j that contains P . Let S(i, j) be a
square containing i and j having the least area and the least area of intersection with
H(i, j) (i.e., S(i, j) is a smallest-area square containing i and j and furthest away
from P ). See Fig. 7.

The length of the side of any square with least possible area containing i and j is
equal to l(i, j) = max{|(i)x − (j)x |, |(i)y − (j)y |}. Let

C1 = {
S(i, i + 1) : 1 ≤ i < n, i odd

}
.
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Fig. 7 The cardinal regions and
the squares S(i, i + 1)

Note that, if i, j ∈ R for some R ∈ {RSE,RNE,RNW ,RSW }, then S(i, j) ⊆ R.
Also, any two squares in C1 corresponding to points in the same region do not in-
tersect. Since Sx < Nx , the only two regions that may intersect are RSE and RNW .
Moreover, this can only happen if Wy < Ey . In other words, given that Sx < Nx , C1
is a strong square-matching of P if Ey < Wy .

Assume then that Sx < Nx and Wy < Ey and at least two squares in C1 intersect.
Let S(p1,p1 + 1) and S(q1 − 1, q1) be two squares in C1 that intersect, and assume
that such intersection is the first from left to right among elements of C1. Formally,

p1 = min
{
1 ≤ i < n : S(i, i + 1), S(j, j + 1) ∈ C1 intersect, for some i < j < n

}
,

q1 = max
{
p1 + 1 < j ≤ n : S(j − 1, j) ∈ C1 intersects S(p1,p1 + 1)

}
.

Now we look again at consecutive squares along the boundary of the convex hull,
until we find another intersection. Let

C2 = {
S(i, i + 1) : p1 < i < q1, i ≡ p1 + 1(mod 2)

}
.

In general, for t ≥ 2, if at least two squares in Ct intersect, define

pt = min
{
pt−1 < i < qt−1 − 1 : S(i, i + 1), S(j, j + 1) ∈ Ct

intersect for some i < j < qt−1 − 1
}
,

qt = max
{
pt + 1 < j < qt−1 : S(j − 1, j) ∈ Ct intersects S(pt ,pt + 1)

}
,

and

Ct+1 = {
S(i, i + 1) : pt < i < qt , i ≡ pt + 1(mod 2)

}
.

Let r be the first t such that no two squares in Ct intersect. Note that pt ∈ RSE and
qt ∈ RNW for all 1 ≤ t ≤ r .

Now we define a second kind of square. For i, j ∈ P , and from all smallest-area
squares containing i and j , let S′(i, j) be the right-most and upper-most square. For-
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Fig. 8 The matchings Mt

mally, the lower left vertex of S′(i, j) is (min{(i)x, (j)x},min{(i)y, (j)y}), and the
length of the side is l(i, j).

We can now define the perfect strong matching. Consider the sets of squares

M0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{S′(p1, q1)} ∪ {S(i, i + 1) : i odd, 1 ≤ i < p1 or q1 < i < n}
if S′(p1, q1) ∩ S(i, i + 1) = ∅ for i odd with 1 ≤ i < p1 or q1 < i < n,

{S(i, i + 1) : i even, 1 < i < p1 or q1 ≤ i ≤ n}
otherwise,

for 1 ≤ t ≤ r − 1,

Mt = {
S′(pt+1, qt+1)

}
∪{

S(i, i + 1) : i ≡ pt + 1(mod 2),pt < i < pt+1 or qt+1 < i < qt

}
,

and

Mr = Cr = {
S(i, i + 1) : i ≡ pr + 1(mod 2) and pr < i < qr

}
.

Define M = ⋃r
t=0 Mt . Observe that every point in P belongs to some square in M .

The following lemmas will be used later to prove that M is a strong perfect matching.

Technical Lemmas. Note that any line joining two points both in RSE or both in
RNW has positive slope. Then

(i)x < (j)x and (i)y < (j)y if i < j and i, j ∈ RSE, (1)

and

(i)x > (j)x and (i)y > (j)y if i < j and i, j ∈ RNW . (2)
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In particular, for all 1 ≤ t ≤ r, since pt ,pt + 1 ∈ RSE and qt , qt + 1 ∈ RNW , we
have

(pt )x < (pt + 1)x and (pt )y < (pt + 1)y (3)

and

(qt )x < (qt − 1)x and (qt )y < (qt − 1)y. (4)

It turns out that we can guarantee other similar order relationships among pt − 1,pt ,

pt + 1 and qt − 1, qt , qt + 1.

Lemma 6 For any 1 ≤ t ≤ r , we have that

(pt )x < (qt − 1)x and (pt )y < (qt − 1)y, (5)

(qt )x < (pt + 1)x and (qt )y < (pt + 1)y, (6)

and if t ≥ 2,

(qt + 1)x < (pt )x and (pt − 1)y < (qt )y. (7)

Proof Since qt −1, qt ∈ RNW , the square S(qt −1, qt ) is completely to the left of the
vertical line x = max{(qt −1)x, (qt )x} = (qt −1)x and S(pt ,pt +1) is completely to
the right of the vertical line x = min{(pt )x, (pt + 1)x} = (pt )x . Since S(pt ,pt + 1)

∩ S(qt − 1, qt ) �= ∅, we must have that

(pt )x < (qt − 1)x.

We also know that qt − 1 belongs to

H(pt ,pt + 1) = {
(x, y) : y ≥ m

(
x − (pt )x

) + (pt )y
}
,

where m = ((pt + 1)y − (pt )y)/((pt + 1)x − (pt )x) > 0. Thus,

(qt − 1)y ≥ m
(
(qt − 1)x − (pt )x

) + (pt )y > m
(
(pt )x − (pt )x

) + (pt )y = (pt )y .

This proves (5). The proof of (6) is similar. To prove the second inequality in (7),
assume by contradiction that (qt )y ≤ (pt − 1)y for some t ≥ 2. Then pt−1 is defined
and S ≤ pt−1 ≤ pt − 1, so both pt − 1 and pt are in RSE . Our assumption, together
with (1) and (5), gives

(qt )y ≤ (pt − 1)y < (pt )y < (qt − 1)y and

(pt − 1)x < (pt )x < (qt − 1)x.

Also, pt − 1 belongs to H(qt − 1, qt ) (see Fig. 9). Hence, pt − 1 belongs to the
right triangle in H(qt − 1, qt ) bounded by the segment qt (qt − 1) and the lines x =
(qt − 1)x and y = (qt )y . That is, the point pt − 1 is in the interior of S(qt − 1, qt ). If
pt−1 < pt − 1, then since pt−1 and pt have different parity, pt−1 < pt − 2 < pt <

qt − 1. Moreover, S(pt − 2,pt − 1) ∈ Ct intersects S(qt − 1, qt ), which contradicts
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the definition of pt . If, on the other hand, pt−1 = pt −1, then by (4), (2), our previous
observation, and (3) we have

(qt−1)x ≤ (qt−1 − 1)x ≤ (qt )x < (pt − 1)x = (pt−1)x < (pt−1 + 1)x,

which means that S(qt−1 − 1, qt−1) and S(pt−1,pt−1 + 1) are separated by the ver-
tical line x = (qt )x, i.e., S(qt−1 − 1, qt−1) ∩ S(pt−1,pt−1 + 1) = ∅, a contradiction.
The proof of the first inequality in (7) is similar. �

Lemma 7 For 1 ≤ t ≤ r , define

R+(t) = {
(x, y) : x > max

{
(pt )x, (qt )x

}
and y > max

{
(pt )y, (qt )y

}}
.

Then, for all i such that pt + 1 ≤ i ≤ qt − 1, we have that i ∈ R+(t).

Proof We know that S ≤ pt < pt + 1 ≤ E and N ≤ qt − 1 < qt ≤ W . So for all i

such that pt + 1 ≤ i ≤ qt − 1, we have that

i ∈ {
(x, y) : x ≥ min

{
(pt + 1)x, (qt − 1)x

}
and y ≥ min

{
(pt + 1)y, (qt − 1)y

}}
.

Indeed, if pt + 1 ≤ i ≤ E, then (i)x ≥ (pt + 1)x and (i)y ≥ (pt + 1)y by (1),
if E ≤ i ≤ N , then (i)x ≥ Nx ≥ (qt − 1)x and (i)y ≥ Ey ≥ (pt + 1)y, and if
N ≤ i ≤ qt − 1, then (i)x ≥ (qt − 1)x and (i)y ≥ (qt − 1)y by (2). Therefore it is
enough to show that both pt + 1 and qt − 1 belong to R+(t). But (3) and (6) imply
that (pt + 1)x > max{(pt )x, (qt )x} and (pt + 1)y > max{(pt )y, (qt )y}; and (4) and
(5) imply that (qt − 1)x > max{(pt )x, (qt )x} and (qt − 1)y > max{(pt )y, (qt )y}. So
{pt + 1, qt − 1} ⊆ R+(t). �

Lemma 8 If pt + 1 ≤ i < E, then S(i, i + 1) ⊆ R+(t) or S(i, i + 1) is completely to
the right of S′(pt , qt ), that is,

S(i, i + 1) ⊆ {
(x, y) : x ≥ min

{
(pt )x, (qt )x

} + l(pt , qt )
}
. (8)

If N ≤ i < qt − 1, then S(i, i + 1) ⊆ R+(t) or S(i, i + 1) is completely above
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Fig. 10 The region R+(t)

S′(pt , qt ), that is,

S(i, i + 1) ⊆ {
(x, y) : y ≥ min

{
(pt )y, (qt )y

} + l(pt , qt )
}
. (9)

Proof We denote by slope(i, j) the slope of the line passing through the points i

and j . Assume first that pt + 1 ≤ i < E. Then, by Lemma 7 we have that i and i + 1
are in R+(t). By the definition of S(i, i + 1), when i and i + 1 are in RSE , we have
that S(i, i + 1) ⊆ {(x, y) : x ≥ (i)x}. Hence, if | slope(pt , qt )| ≤ 1 (see Figs. 10(c)
and (d)), then (8) holds. Also, if slope(i, i + 1) ≥ 1, then S(i, i + 1) ⊆ R+(t).

Assume then that slope(i, i + 1) < 1 and |slope(pt , qt )| > 1 (Figs. 10(a) and (b)).
Since S ≤ pt < pt + 1 ≤ i < i + 1 ≤ E, then by convexity slope(pt ,pt + 1) <

slope(i, i + 1) < 1. Consider the points u and v given by the intersection of the lines
with slope −1 or 1 passing through pt and the horizontal line passing through pt + 1
(Fig. 11). Since qt ∈ H(pt ,pt + 1), |slope(pt , qt )| > 1, and (6) holds, we have that
qt belongs to the interior of the triangle uptv. Hence, min{(pt )x, (qt )x} + l(pt , qt ) ≤
(v)x ≤ (pt + 1)x ≤ (i)x , and (8) holds. The proof of (9) is similar. �

Lemma 9 For 1 ≤ t ≤ r , we have the following:

1. If 1 ≤ i ≤ pt − 1, then i ∈ R−
down(t) = {(x, y) : y < min{(pt )y, (qt )y}}.

2. If qt + 1 ≤ i ≤ W , then i ∈ R−
left(t) = {(x, y) : x < min{(pt )x, (qt )x}}.

3. If t ≥ 2 and W ≤ i ≤ n + 1, then i ∈ R−
down(t) ∩ R−

left(t).

(Here, n + 1 and 1 represent the same point.)

Proof Consider 1 ≤ i ≤ pt − 1. If such i exists, then S ≤ pt − 1 < pt < E and
so (pt − 1)y < (pt )y . This and (7) imply that (pt − 1)y < min{(pt )y, (qt )y}. So, if
1 ≤ i ≤ pt − 1, then (i)y ≤ (pt − 1)y < min{(pt )y, (qt )y}. Similarly, if N ≤ qt <

qt + 1 ≤ qt−1 ≤ W , then (qt + 1)x < (qt )x . Also by (7) (qt + 1)x < (pt )x . So, if
qt + 1 ≤ i ≤ W , then (i)x ≤ (qt + 1)x < min{(pt )x, (qt )x}. Finally, if t ≥ 2, then
pt−1 and qt−1 are defined. Note that since N ≤ qt < qt−1 ≤ W , Wy ≤ (qt )y by (2),
and Wy ≤ (qt−1)y < (pt−1 + 1)y < (pt )y by (6). So, if W ≤ i ≤ n, then (i)y ≤ Wy <

min{(pt )y, (qt )y}. Also, Sx < (pt )x and by (5), Sx ≤ (pt−1)x < (qt−1 − 1)x < (qt )x .
So, if W ≤ i ≤ n, then (i)x ≤ Sx < min{(pt )x, (qt )x}. �
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Fig. 11 Proof of Lemma 8

Proof that M is a Strong Square-Matching of P . The proof follows from the fol-
lowing three claims:

Claim 1 If 1 ≤ t < u ≤ r , then S′(pt , qt ) ∩ S′(pu, qu) = ∅.

Proof Assume that 1 ≤ t < u ≤ r . Then pt +1 ≤ pu < qu ≤ qt −1, and, by Lemma 7,
puqu ∈ R+(t). Thus, by the definition of S′(pu, qu) we have S′(pu, qu) ⊆ R+(t). On
the other hand, by the definition of R+(t) we have S′(pt , qt )∩R+(t) = ∅. Therefore
S′(pt , qt ) ∩ S′(pu, qu) = ∅ (see Fig. 10). �

Claim 2 If S(i, i + 1), S′(pt , qt ) ∈ M , then S(i, i + 1) ∩ S′(pt , qt ) = ∅.

Proof Assume that S(i, i + 1) ∈ M. If pt + 1 ≤ i < i + 1 ≤ E or N ≤ i < i + 1 ≤
qt −1, then the result follows from Lemma 8. If E ≤ i < i +1 ≤ N , then S(i, i +1) ⊆
RNE. Also, by Lemma 7, both N and E are in R+(t). Thus, RNE ⊆ R+(t). Since
R+(t) ∩ S′(pt , qt ) = ∅, the result holds.

If S′(p1, q1) ∈ M , then, by the definition of M0, S′(p1, q1) does not intersect
S(i, i + 1) for all 1 ≤ i < p1 or q1 < i < n. Assume then that t ≥ 2. Hence, by
Lemma 9, if 1 ≤ i < pt − 1, then i, i + 1 ∈ R−

down(t), and, since i, i + 1 ∈ RSE ,
S(i, i + 1) ⊆ R−

down(t). If qt − 1 ≤ i < W , then i, i + 1 ∈ R−
left(t), and, since i, i +

1 ∈ RNW , S(i, i + 1) ⊆ R−
left(t). Also, by Lemma 9, since t ≥ 2, S and W are in

R−
down(t) ∩ R−

left(t). Hence, if W ≤ i ≤ n + 1, then S(i, i + 1) ⊆ RSW ⊆ R−
down(t) ∩

R−
left(t). Finally, note that S′(pt , qt )∩ (R−

down(t)∪R−
left(t)) = ∅, and, thus, in all cases

the result holds. �

Claim 3 If S(i, i + 1) �= S(j, j + 1) are in M , then S(i, i + 1) ∩ S(j, j + 1) = ∅.

Proof The result is true if i, i + 1, j, j + 1 all belong to the same region R ∈
{RSE,RNE,RNW ,RSW }, or if i, i + 1 ∈ RSW or j, j + 1 ∈ RNE . Assume that
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S(i, i + 1) ∈ Mt and S(j, j + 1) ∈ Mu for some 0 ≤ t ≤ u ≤ r and one of the pairs
{i, i + 1} or {j, j + 1} is contained in RSE and the other in RNW .

If t < u, we show that S′(pu, qu) “separates” S(i, i + 1) and S(j, j + 1). In this
case, we have that either

pu < j < j + 1 ≤ E and qu < i < i + 1 ≤ W (10)

or

N ≤ j < j + 1 < qu and 1 ≤ i < i + 1 < pu. (11)

Then, by Lemma 7, j and j +1 are in R+(u). Moreover, if (10) holds, then Lemma 8
implies that

S(j, j + 1) ⊆ R+(u) ∪ {
(x, y) : x > min

{
(pu)x, (qu)x

}}
.

Also, by Lemma 9, S(i, i + 1) ⊆ R−
left(u). Since R+(u) ∪ {(x, y) : x > min{(pu)x,

(qu)x}} and R−
left(u) are disjoint, S(i, i +1)∩S(j, j +1) = ∅. Similarly, if (11) holds,

then, by Lemma 8,

S(j, j + 1) ⊆ R+(u) ∪ {
(x, y) : y > min

{
(pu)y, (qu)y

}}
.

Additionally, by Lemma 9, S(i, i + 1) ⊆ R−
down(u). Since R+(u) ∪ {(x, y) : y >

min{(pu)y, (qu)y}} and R−
down(u) are disjoint, S(i, i + 1) ∩ S(j, j + 1) = ∅.

Now if t = u �= 0, then the result is true by the definition of pt+1 and qt+1 if
t < r or by the definition of r if t = r . Finally, if t = u = 0, then we have two cases.
First, if S′(p1, q1) ∈ M , then S(i, i + 1), S(j, j + 1) ∈ C1 and therefore, by the def-
inition of p1 and q1, S(i, i + 1) ∩ S(j, j + 1) = ∅. Second, if S′(p1, q1) /∈ M , then i

and j are even and there is an odd k such that 1 ≤ k < p1 or q1 + 1 ≤ k < n and
S(k, k + 1) ∩ S′(p1, q1) �= ∅. By Lemma 9 (parts 1 and 2), if 1 ≤ k < p1 or
q1 + 1 ≤ k < W , then S(k, k + 1) ⊆ R−

down(1) ∪ R−
left(1) but R−

down(1) ∪ R−
left(1)

and S′(p1, q1) are disjoint, so S(k, k + 1) and S′(p1, q1) would also be disjoint.
Hence, W ≤ k < n and so S(k, k + 1) ⊆ RSW . Since S(k, k + 1) ∩ S′(p1, q1) �= ∅,
RSW ∩ S′(p1, q1) �= ∅. Thus,

Sx ≥ min
{
(p1)x, (q1)x

}
and Wy ≥ min

{
(p1)y, (q1)y

}
. (12)

If slope(p1, q1) > 0, then either (q1)x > (p1)x ≥ Sx or (p1)y > (q1)y ≥ Wy. There
are no two points of P in the same horizontal or vertical line; thus, p1 = S or q1 = W

by (12). In either case, S′(p1, q1) does not intersect the interior of the region RSW ,
contradicting S(k, k + 1) ∩ S′(p1, q1) �= ∅. Therefore, slope(p1, q1) < 0.

Consider the set P ′ = {i : 1 ≤ i ≤ p1 or q1 ≤ i ≤ n} ⊆ P . Note that the south-
, east-, north-, and west-most points of P ′ are S,p1, q1, and W respectively, and
by (12) we have (S)x > (q1)x and (W)y > (p1)y . This implies that the north-
east region of P ′ only contains the points p1 and q1. Moreover, only the north-
east and the southwest regions of P ′ intersect. This means that M0 = {S(l, l + 1) :
l ∈ P ′ and l even} is a perfect strong matching of P ′ and, therefore, S(i, i + 1) ∩
S(j, j + 1) = ∅. �
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Fig. 12 A point set P with repeated coordinates (left), the perturbed set P ′ , and the matchings for P ′
and P

3.5 A Remark on Degeneracies

We have assumed, for the preceding results, that the points P do not have a repeated
x- or y-coordinate. Without this assumption, it may be that a perfect matching, even
a weak one, does not exist, as shown in the example of Fig. 12 (left), where both a

and b can only be matched with c.
A natural approach would be to declare that two points can be matched with an

object that covers them when no third point is in the interior of the object. However,
for a set of points on a horizontal line, the matching graph for squares would then be
the complete graph, violating the proximity relationship that the Delaunay graph is
expected to have for the L∞ metric.

Another natural and more restrictive extension is as follows. Consider all vertical
and horizontal lines defined by the points of P , and let δ be the smallest distance
between any two of these lines that are distinct and parallel. Let ε be an infinites-
imal amount with respect to δ, e.g., ε = δ × n−10. From P , we define a perturbed
associated set P ′ as follows. Points (x1, y), (x2, y), . . . , (xk, y) on a horizontal line,
with x1 < x2 < · · · < xk , are transformed into points (x1, y), (x2, y + ε), . . . , (xk, y +
(k − 1)ε), and points (x, y1), (x, y2), . . . , (x, yk) on a vertical line, with y1 > y2

> · · · > yk , are transformed into (x, y1), (x, y2 + ε), . . . , ((x, yk) + (k − 1)ε). (This
is essentially the same perturbation produced by an infinitesimal clockwise rotation
of the coordinate axis.) Now the extended matching definition for P is simply what
results from applying the original definition to P ′, where no x- or y-coordinates are
repeated, and, thus, all of our preceding results apply.

With this definition, the matching graph for a set of points on a horizontal line is
a path, as is natural. Notice that points that would be matched in P with the origi-
nal definition are still matched with the extended definition via P ′, and that strong
square-matchings in P ′ give squares for P that have disjoint interiors, which is an
acceptable definition for strong matching in the extended scenario. An example of
matching for the extended definition is shown in Fig. 12. This can be easily refor-
mulated for the L1 metric, where repeated points of lines with slope ±1 must be
avoided.
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Fig. 13 The elements of a set S

are n − 1 points evenly
distributed on C and the center
of C. For n ≥ 74, this point set
does not admit any strong
perfect circle-matching

4 Conclusion

4.1 Square-Matchings versus Circle Matchings

Let us briefly compare the results on matching points using squares with the analo-
gous results using circles; the interested reader is referred to [1] for details.

When C is the set of all circles in the plane, the graph GC (P ) is the Euclidean (L2)
Delaunay triangulation DT(P ); hence, a point set admits a perfect circle-matching
if and only if the graph DT(P ) contains a perfect matching, which is always the
case, as proved by Dillencourt in 1990 [5]. Therefore, while we have had to prove
the existence of square-matchings from scratch, the fact that any point set of even
cardinality admits a perfect circle-matching is a direct consequence of Dillencourt’s
result. On the other hand, he also proved that for the L2 metric, DT(P ) does not
contain in general a Hamiltonian path [4], contrary to the situation for the L∞ and
the L1 metrics, as we have established here.

There are point sets that do not admit strong-circle matchings, as is also the case
for strong square-matchings. However, the example described in this paper requires
only 10 points, while the smallest example we found for circles requires 74 points
(Fig. 13). Similarly, we have shown that, given a point set P with n ≥ 2 elements, it
is always possible to find a strong square-matching of P with 2�n

5 � matched points,
while for circles, the best fraction we know is that there is a strong circle-matching
using at least 2�(n − 1)/8� points of P .

A final difference that is worth mentioning happens when P is a point set in con-
vex position with an even number of elements. While we have proved that in this
situation P always admits a perfect strong square-matching (Theorem 4), an exam-
ple disallowing strong circle-matching is shown in [1].

4.2 Open Problems

Since (weak) perfect matchings with circles and isothetic squares are always possible,
it is natural to ask which other classes of convex objects have the same property and
try to characterize them. On the other hand, we have also shown that perfect strong
matchings are not always possible using either circles or squares; hence, it would be
interesting to find some nontrivial class of objects that allows them.
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On the computational side, there are also decision and construction problems that
are very interesting; in particular, in the time since the conference presentation of our
results, Bereg et al. [2] were able to prove that deciding whether a point set P admits a
perfect strong square matching is NP-hard, while, given P and a specific combinator-
ial matching, deciding whether the matching is realizable as a strong square-matching
can be done in O(n log2 n) time. However, similar problems for circles remain open.
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