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Abstract There are d-dimensional zonotopes with n zones for which a 2-dimensional
central section has Ω(nd−1) vertices. For d = 3, this was known, with examples pro-
vided by the “Ukrainian easter eggs” by Eppstein et al. Our result is asymptotically
optimal for all fixed d ≥ 2.
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1 Introduction

Zonotopes, the Minkowski sums of finitely many line segments, may also be defined
as the images of cubes under affine maps, while their duals can be described as the
central sections of cross polytopes. So, asking for images of zonotopes under projec-
tions or for central sections of their duals does not give anything new: We get again
zonotopes resp. duals of zonotopes. The combinatorics of zonotopes and their duals
is well understood (see, e.g., [18, Lect. 7]): The face lattice of a dual zonotope may
be identified with that of a real hyperplane arrangement.

However, surprising effects arise as soon as one asks for sections of zonotopes
resp. projections of their duals. Such questions arise in a variety of contexts.
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Fig. 1 Eppstein’s Ukrainian easter egg and its dual. The 2D-cut, resp. shadow boundary, of size Ω(n2)

are marked

Fig. 2 Close-up view of an Ukrainian Easter egg

For example, the “Ukrainian Easter eggs” as displayed by Eppstein in his wonder-
ful “Geometry Junkyard” [8] are 3-dimensional zonotopes with n zones that have a 2-
dimensional section with Ω(n2) vertices; see also Fig. 1. For “typical” 3-dimensional
zonotopes with n zones, one expects only a linear number of vertices in any section,
so the Ukrainian Easter eggs are surprising objects. Moreover, such a zonotope has
at most 2

(
n
2

) = O(n2) faces, so any 2-dimensional section is a polygon with at most
O(n2) edges/vertices, which shows that for dimension d = 3, the quadratic behavior
is optimal.

Eppstein’s presentation of his model draws on work by Bern, Eppstein et al. [4],
where also complexity questions are asked. (Let us note that it takes a closer look
to interpret the picture given by Eppstein correctly: It is “clipped,” and a close-up
view shows that the vertical “chains of vertices” hide lines of diamonds; see Fig. 2.)
Sections of zonotopes appear also in other areas such as Support Vector Machines
and data depth; see [3, 7, 14]. (Thanks to Marshall Bern for these references.)

It is natural to ask for high-dimensional versions of the Easter eggs.
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Problem 1.1 What is the maximal number of vertices for a 2-dimensional central
section of a d-dimensional zonotope with n zones?

For d = 2, the answer is trivially 2n = Θ(n), while for d = 3, it is of order Θ(n2),
as seen above. We answer this question optimally for all fixed d ≥ 2.

Theorem 1.2 For every d ≥ 2, the maximal complexity (number of vertices) for a
central 2D-cut of a d-dimensional zonotope Z with n zones is Θ(nd−1).

The upper bound for this theorem is quite obvious: A d-dimensional zonotope with
n zones has at most 2

(
n

d−1

)
facets, thus any central 2D-section has at most 2

(
n

d−1

) =
O(nd−1) edges.

To obtain lower bound constructions, it is advisable to look at the dual version of
the problem.

Problem 1.3 Koltun [17, Problem 3] What is the maximal number of vertices for a
2-dimensional affine image (a “ 2D-shadow”) of a d-dimensional dual zonotope with
n zones?

Indeed, this question arose independently: It was posed by Vladlen Koltun based
on the investigation of his “arrangement method” for linear programming (see [13]),
which turned out to be equivalent to a Phase I procedure for the “usual” simplex
algorithm (Hazan and Megiddo [12]). Our construction in Sect. 3 shows that the
“shadow vertex” pivot rule is exponential in worst-case for the arrangement method.

Indeed, a quick approach to Problem 1.3 is to use known results about large pro-
jections of polytopes. Indeed, if Z is a d-zonotope with n zones, then the polar dual
Z∗ of the zonotope Z has the combinatorics of an arrangement of n hyperplanes
in Rd . The facets of Z∗ are (d − 1)-dimensional polytopes with at most n facets—
and indeed every (d − 1)-dimensional polytope with at most n facets arises this way.
It is known that such polytopes have exponentially large 2D-shadows, which in the
old days was bad news for the “shadow vertex” version of the simplex algorithm
[11, 15]. Lifted to the dual d-zonotope Z∗, this also becomes relevant for Koltun’s
arrangements method; in Sect. 3 we briefly present this,and derive the Ω(n(d−1)/2)

lower bound.
However, what we are really heading for is an optimal result, dual to Theorem 1.2.

It will be proved in Sect. 4, the main part of this paper.

Theorem 1.2∗ For every d ≥ 2, the maximal complexity (number of vertices) for a
2D-shadow of a d-dimensional zonotope Z∗ with n zones is Θ(nd−1).

2 Basics

Let A ∈ R
m×d be a matrix. We assume that A has full (column) rank d , that no row is

a multiple of another one, and none is a multiple of the first unit-vector (1,0, . . . ,0).
We refer to [5, Chap. 2] or [18, Lect. 7] for more detailed expositions of real hyper-
plane arrangements, the associated zonotopes, and their duals.
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2.1 Hyperplane Arrangements

The matrix A determines an essential linear hyperplane arrangement Â = ÂA in R
d ,

whose m hyperplanes are

Ĥj = {
x ∈ R

d : ajx = 0
}

for j = 1, . . . ,m

corresponding to the rows aj of A, and an affine hyperplane arrangement A = AA

in R
d−1, whose hyperplanes are

Hj = {
x ∈ R

d−1 : aj

(1
x

) = 0
}

for j = 1, . . . ,m.

Given A, we obtain A from Â by intersection with the hyperplane x0 = 1 in R
d , a

step known as dehomogenization; similarly, we obtain Â from A by homogenization.
The points x ∈ R

d and hence the faces of Â (and by intersection also the faces
of A) have a canonical encoding by sign vectors σ(x) ∈ {+1,0,−1}m, via the map
sA : x �→ (signa1x, . . . , signamx). In the following, we use the shorthand notation
{+,0,−} for the set of signs. The sign vector system sA(Rd) ⊆ {+,0,−}m generated
this way is the oriented matroid [5] of Â.

The sign vectors σ ∈ sA(Rd) ∩ {+,−}m in this system (i.e., without zeroes) cor-
respond to the regions (d-dimensional cells) of the arrangement Â. For a nonempty
low-dimensional cell F , the sign vectors of the regions containing F are precisely
those sign vectors in sA(Rd) which can be obtained from σ(F ) by replacing each “0”
by either “+” or “−”.

2.2 Zonotopes and Their Duals

The matrix A also yields the zonotope Z = ZA as

Z =
{

m∑

i=1

λiai : λi ∈ [−1,+1] for i = 1, . . . ,m

}

.

(In this set-up, Z lives in the vector space (Rd)∗ of row vectors, while the dual zono-
tope Z∗ considered below consists of column vectors.)

The dual zonotope Z∗ = Z∗
A may be described as

Z∗ =
{

x ∈ R
d :

m∑

i=1

|aix| ≤ 1

}

. (1)

The domains of linearity of the function fA : R
d → R, x �→ ∑m

i=1 |aix|, are the re-
gions of the hyperplane arrangement Â. Their intersections yield the faces of Â, and
these may be identified with the cones spanned by the proper faces of Z∗. Thus the
proper faces of Z∗ (and, by duality, the nonempty faces of Z) are identified with sign
vectors in {+,0,−}m: These are the same sign vectors as we got for the arrange-
ment Â.

Expanding the absolute values in (1) yields a system of 2m inequalities describ-
ing Z∗. However, a nonredundant facet description of Z∗ can be obtained from A
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and the combinatorics of Â by considering the inequalities σ(F )Ax ≤ 1 for all sign
vectors σ(F ) of maximal cells F of Â:

Z∗ = {
x ∈ R

d : σAx ≤ 1 for all σ ∈ sA
(
R

d
) ∩ {+,−}m}

.

2.3 Projections of Dual Zonotopes

Let P be a d-polytope, and let F ⊆ P be a nonempty face. We define the matrix of
normals NF as the matrix whose rows are the outer facet normals of all facets con-
taining F . If P = {x ∈ R

d : Nx ≤ b} is given by an inequality description, then NF

is the submatrix of N formed by the rows of N that correspond to inequalities that
are tight at F . In the case where P = Z∗ is a dual zonotope, we derive the following
description of NF that will be of great use later.

Lemma 2.1 Let Z∗ be a d-dimensional dual zonotope corresponding to the linear
arrangement Â given by the matrix A, and let F ⊂ Z∗ be a nonempty face. Then
the rows of NF are the linear combinations σA of the rows of A for all sign vectors
σ ∈ sA(Rd) obtained from σ(F ) by replacing each “0” by either “+” or “−”.

Let F ⊆ P be a nonempty face of a d-polytope P , and consider a projection
π : R

d → R
k . If the outer normal vectors to the facets of P that contain F , projected

to the kernel of π , positively span this kernel, then F is mapped to the face π(F) of
π(P ), which is equivalent to F , and π−1(π(F )) ∩ P = F . In this situation, we say
that F survives the projection.

Specialized to the projection πk : R
d → R

k to the first k coordinates and translated
to matrix representations, this amounts to the following; see Fig. 3.

Lemma 2.2 (See, e.g., [16, 19]) Let P be a d-polytope, F a nonempty face, and let
NF be its matrix of normals. If the rows of the matrix NF , truncated to the last d − k

components, positively span R
d−k , then F survives the orthogonal projection πk to

the first k coordinates.

This “projection lemma” gives a sufficient condition for a face to survive. In a
general position situation, when proper faces of π(P ) cannot be generated by higher-
dimensional faces of P , the condition of Lemma 2.2 is also necessary [16, Sect. 2.3].

Fig. 3 Survival of a face F in
the projection π1 to the first
coordinate
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3 Dual Zonotopes with Large 2D-Shadows

In this section we present an exponential (yet not optimal) lower bound for the max-
imal size of 2D-shadows of dual zonotopes. It is merely a combination of known
results about polytopes and their projections. For simplicity, we restrict to the case of
odd dimension d .

Theorem 3.1 Let d ≥ 3 be odd and n an even multiple of d−1
2 . Then there is a d-

dimensional dual zonotope Z∗ ⊂ R
d with n zones and a projection π : R

d → R
2

such that the image π(Z∗) has at least ( 2n
d−1 )

d−1
2 vertices.

Here is a rough sketch of the construction.

(1) According to Amenta and Ziegler [2, Theorem 5.2] there are (d − 1)-polytopes
with n facets and exponentially many vertices such that the projection
π2 : R

d−1 → R
2 to the first two coordinates preserves all the vertices and thus

yields a “large” polygon.
(2) We construct a d-dimensional dual zonotope Z∗ with n zones that has such a

(d − 1)-polytope as a facet F .
(3) The extension of π2 to the projection

π3 : R × R
d−1 → R

3, (x0, x) �→ (
x0,π2(x)

)
,

maps Z∗ to a centrally symmetric 3-polytope P with a large polygon as a facet.
P has a projection to R

2 that preserves many vertices.

In the following, we give a few details to enhance this sketch.

Some details for (1): Here is the exact result by Amenta and Ziegler, which sums
up previous constructions by Goldfarb [11] and Murty [15].

Theorem 3.2 (Amenta and Ziegler [2]) Let d be odd and n an even multiple of d−1
2 .

Then there is a (d − 1)-polytope F ⊂ R
d−1 with n facets and ( 2n

d−1 )
d−1

2 vertices such

that the projection π2 : R
d−1 → R

2 to the first two coordinates preserves all vertices
of F . The polytope F is combinatorially equivalent to a ( d−1

2 )-fold product of ( 2n
d−1 )-

gons.

Explicit matrix descriptions of deformed products of n-gons with “large” 4-
dimensional projections are given in [16, 19]. These can easily be adapted (indeed,
simplified) to yield explicit coordinates for the polytopes of Theorem 3.2.

Some details for (2): We have to construct a dual zonotope Z∗ with F as a facet.

Lemma 3.3 Given a (d − 1)-polytope F with n facets, there is a d-dimensional dual
zonotope Z∗ with n zones that has a facet affinely equivalent to F .



Discrete Comput Geom (2009) 42: 527–541 533

Proof Let {x ∈ R
d−1 : Ax ≤ b} be an inequality description of F , and let (−bi,Ai)

denote the ith row of the matrix (−b,A) ∈ R
n×d .

The n hyperplanes Hi = {x ∈ R
d : (−bi,Ai)x = 0} yield a linear arrangement of n

hyperplanes in R
d , which may also be viewed as a fan (polyhedral complex of cones).

According to [18, Cor. 7.18], the fan is polytopal, and the dual Z∗ of the zonotope Z

generated by the vectors (−bi,Ai) spans the fan.
The resulting dual zonotope Z∗ has a facet that is projectively equivalent to F ;

however, the construction does not yet yield a facet that is affinely equivalent to F . In
order to get this, we construct Z∗ such that the hyperplane spanned by F is x0 = 1.
This is equivalent to constructing Z such that the vertex vF corresponding to F is e0.
Therefore we have to normalize the inequality description of F such that

n∑

i=1

(−bi,Ai) = (1,0, . . . ,0).

The row vectors of A positively span R
d−1 and are linearly dependent, hence there

is a linear combination of the row vectors of A with coefficients λi > 0, i = 1, . . . , n,
which sums to 0. Thus if we multiply the ith facet-defining inequality for F , corre-
sponding to the row vector (−bi,Ai), by

−λi∑n
j=1 λj bj

,

then we obtain the desired normalization of A and b. �

Some details for (3): The following simple lemma provides the last part of our
proof; it is illustrated in Fig. 4.

Lemma 3.4 Let P be a centrally symmetric 3-dimensional polytope, and let G ⊂ P

be a k-gon facet. Then there exists a projection πG : R
3 → R

2 such that πG(P ) is a
polygon with at least k vertices.

Fig. 4 Shadow boundary of a centrally symmetric 3-polytope, on the right displayed as its Schlegel dia-
gram
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Proof Since P is centrally symmetric, there exists a copy G′ of G as a facet of P

opposite and parallel to G. Consider a projection π parallel to G (and to G′) but
otherwise generic, and let nG be the normal vector of the plane defining G. If we per-
turb π by adding ±εnG, ε > 0, to the projection direction of π , parts of ∂G and ∂G′
appear on the shadow boundary. Since P is centrally symmetric, the parts of ∂G

and ∂G′ appearing on the shadow boundary are the same. Therefore perturbing π

either by +εnG or by −εnG yields a projection πG such that πG(P ) is a polygon
with at least k vertices. �

4 Dual Zonotopes with 2D-Shadows of Size Ω
(
nd−1)

In this section we prove our main result, Theorem 1.2∗, in the following version.

Theorem 4.1 For any d ≥ 2, there is a d-dimensional dual zonotope Z∗ on n(d − 1)

zones which has a 2D-shadow with Ω(nd−1) vertices.

We define a dual zonotope Z∗ and examine its crucial properties. These are then
summarized in Theorem 4.4, which in particular implies Theorem 4.1. Figure 5 dis-
plays a 3-dimensional example, and Fig. 8 a 4-dimensional example of our construc-
tion.

4.1 Geometric Intuition

Before starting with the formalism for the proof, which will be rather algebraic,
here is a geometric intuition for an inductive construction of Z∗ = Z∗

d ⊂ R
d , a d-

dimensional zonotope on n(d − 1) zones with a 2D-shadow of size Ω(nd−1) when

Fig. 5 A dual 3-zonotope with quadratic 2D-shadow, on the left with the corresponding linear arrange-
ment and on the right with its 2D-shadow
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Fig. 6 Constructing the arrangement A′
3 from A2 (left) and A3 from A′

3 (right)

projected to the first two coordinates. For d = 2, any centrally-symmetric 2n-gon
(i.e., a 2-dimensional zonotope with n zones) provides such a dual zonotope Z∗

2 . The
corresponding affine hyperplane arrangement A2 ⊂ R

1 consists of n distinct points.
We derive a hyperplane arrangement A′

3 ⊂ R
2 from A2 by first considering

A2 × R and then “tilting” the hyperplanes in A2 × R. The hyperplanes in A2 × R

are ordered with respect to their intersections with the x1-axis. The hyperplanes
in A2 × R are tilted alternatingly in x2-direction as in Fig. 6 (left): Each black ver-
tex of A2 corresponds to a north-east line and each white vertex becomes a north-
west line of the arrangement A′

3. For each vertex in the 2D-shadow of Z∗
2 , we ob-

tain an edge in the 2D-shadow of the dual 3-zonotope Z∗
3
′ corresponding to A′

3.
Now A3 ⊂ R

2 is constructed from A′
3 by adding a set of n parallel hyperplanes to A′

3,
all of them close to the x1-axis, and each intersecting each edge of the 2D-shadow
of Z∗

3
′; see Fig. 6 (right).

For general d , let Hd ⊂ Ad be the subarrangement of the n parallel hyperplanes
added to A′

d in order to obtain Ad . Then A′
d ⊂ R

d−1 is constructed from Ad−1 × R

by tilting the hyperplanes Hd−1 ×R, this time with respect to their intersections with
the xd−2-axis. The corresponding d-dimensional dual zonotope Z∗

d
′ has Ω(nd−2)

edges in its 2D-shadow and each of these Ω(nd−2) edges is subdivided n times by
the hyperplanes in Hd when constructing Ad , respectively Z∗

d . See Fig. 7 for an
illustration of the arrangement A′

4.

4.2 The Algebraic Construction

For k ≥ 1, n = 4k + 1, and d ≥ 2, we define

b = (k − i)0≤i≤2k =
⎛

⎜
⎝

k
...

−k

⎞

⎟
⎠ ∈ R

2k+1 and
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Fig. 7 The affine arrangement A4 consists of three families of planes: The first family A′
3 × R forms a

coarse vertical grid; the second family (derived from H3 × R by tilting) forms a finer grid running from
left to right; the last family H4 contains the parallel horizontal planes

b′ =
(

i − k + 1

2

)

0≤i≤2k−1
=

⎛

⎜
⎝

−k + 1
2

...

k − 1
2

⎞

⎟
⎠ ∈ R

2k.

Let 0,1 ∈ R
	 denote vectors with all entries equal to 0, respectively 1, of suitable

size. For convenience, we index the columns of matrices from 0 to d − 1 and the
coordinates accordingly by x0, . . . , xd−1. Let εi > 0, and for 1 ≤ i ≤ d − 1, let Ai ∈
R

n×d be the matrix with εi

(b
b′
)

as its 0th column vector,
( 1
−1

)
as its ith column vector,

(1
1

)
as its (i + 1)st column vector, and zeroes otherwise. In the case i = d − 1, there

is no (i + 1)st column of Ad and the final
(1
1

)
-column is omitted:

Ai =
(

0 1 · · · i−1 i i+1 i+2 · · · d−1

εib 0 · · · 0 1 1 0 · · · 0
εib′ 0 · · · 0 −1 1 0 · · · 0

)
∈ R

(4k+1)×d .

The linear arrangement Â given by the ((d − 1)n × d)-matrix A whose horizon-
tal blocks are the (scaled) matrices δ1A1, . . . , δd−1Ad−1 for δi > 0 defines a dual
zonotope by the construction of Sect. 2.2. Since the parameters δi do not change
the arrangement Â, any choice of the δi yields the same combinatorial type of dual
zonotope, but possibly different realizations. The choice of the εi however may (and
will for sufficiently large values) change the combinatorics of Â and hence the com-
binatorics of the corresponding dual zonotope. For the purpose of constructing Z∗,
we set α = 1

n+1 and εi = δi = αi−1. This choice for εi ensures that the “interesting”
part of the next family of hyperplanes nicely fits into the previous family. Compare
Fig. 6 (right): The interesting zig-zag part of family Ai is contained by the interval
εi[−k − 1

4 , k + 1
4 ] in the xi -direction and by εi[− 1

4 , 1
4 ] in the xi+1-direction; since

εi+1 = 1
n+1εi , we obtain εi+1(k + 1

4 ) < εi
1
4 , and the zig-zags nicely fit into each
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other. For these parameters, we obtain

A =

⎛

⎜⎜⎜
⎝

A1
αA2

...

αd−2Ad−1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

b 1 1
b′ −1 1

α2b α1 α1
α2b′ −α1 α1

...
. . .

α2(d−2)b αd−21
α2(d−2)b′ −αd−21

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

. (2)

This matrix has size (d − 1)(4k + 1) × d = n(d − 1) × d . The dual zono-
tope Z∗ = Z∗

A has (d − 1)n zones and is d-dimensional since A has rank d . Ac-
cording to Sect. 2.1, any point x ∈ R

d is labeled in Â by a sign vector σ(x) =
(σ1, σ1

′;σ2, σ2
′; . . . ;σd−1, σd−1

′) with σi ∈ {+,0,−}2k+1 and σi
′ ∈ {+,0,−}2k . The

following Lemma 4.2 selects nd−1 vertices of A.

Lemma 4.2 Let Hj1 , Hj2 , . . . , Hjd−1 be hyperplanes in A, where each Hji
is

given by some row aji
of Ai , which is indexed by ji ∈ {1, . . . , n}. Then the d − 1

hyperplanes Hj1 , Hj2 , . . . , Hjd−1 intersect in a vertex of A with sign vector
(σ1, σ1

′;σ2, σ2
′; . . . ;σd−1, σd−1

′) ∈ {+,0,−}n(d−1) with 0 at position ji of the form

(σi, σi
′) =

{
(+· · · + 0 − · · ·−,−· · · − +· · ·+) with sum 0 or

(+· · · + −· · ·−,−· · · − 0 + · · ·+) with sum 0
(3)

for each i = 1,2, . . . , d − 1. Conversely, each of these sign vectors corresponds to
a vertex v of the arrangement. In particular, v is a generic vertex, i.e., v lies on
exactly d − 1 hyperplanes.

Proof The intersection v = Hj1 ∩Hj2 ∩· · ·∩Hjd−1 is indeed a vertex since the matrix

minor (aji ,	)i,	=1,...,d−1 has full rank. We solve the system A′(1
v

) = 0 to obtain v,
where A′ = (aji

)i=1,...,d−1. As we will see, the entire sign vector of the vertex v is
determined by its “0” entries whose positions are given by the ji . Hence every sign
vector agreeing with (3) determines a set of hyperplanes Hji

and thus a vertex v of
the arrangement.

To compute the position of v with respect to the other hyperplanes, we take a closer
look at a block Ai of the matrix that describes our arrangement. For an arbitrary point
x ∈ R

d with x0 = 1, we obtain

Aix =
(

αi−1b 1 1
αi−1b′ −1 1

)⎛

⎝
1
xi

xi+1

⎞

⎠ .

This is equivalent to the 2-dimensional(!) arrangement shown in Fig. 6 on the left.
We will show that if x lies on one of the hyperplanes and if |xi+1| < 1

4αi−1, then x

satisfies the required sign pattern (3).
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We start with an even simpler observation: If x′ lies on one of the hyperplanes
and has x′

i+1 = 0 (so in effect we are looking at a 1-dimensional affine hyperplane
arrangement), then there are:

� 2k “positive” row vectors aj of Ai with ajx
′ > 0,

� 2k “negative” row vectors aj of Ai with ajx
′ < 0, and

� one “zero” row vector corresponding to the hyperplane x′ lies on.

The order of the rows of Ai is such that the signs match the sign pattern of (σi, σi
′)

in (3). Since the values in αi−1b and αi−1b′ differ by at least 1
2αi−1 we have in fact

ajx
′ ≥ 1

2αi−1 for “positive” row vectors and ajx
′ ≤ − 1

2αi−1 for the “negative” row
vectors of Ai . Hence we have

∣∣ajx
′∣∣ ≥ 1

2αi−1.

If we now consider a point x with |xi+1| < 1
4αi−1 on the same hyperplane as x′, then

|xi
′ − xi | = |xi+1| < 1

4αi−1. For the row vectors aj with ajx
′ 
= 0, we obtain:

|ajx| ≥ ∣∣ajx
′∣∣ − ∣∣aj (x − x′)

∣∣ ≥ 1
2αi−1 − (∣∣xi − xi

′∣∣ + ∣∣xi+1 − xi+1
′∣∣)

>
1

2
αi−1 − 1

4
αi−1 − 1

4
αi−1 = 0.

Hence the sign pattern of x is the same as the sign pattern of x′.
We conclude the proof by showing that the required upper bound |vi+1| < 1

4αi−1

holds for the coordinates of the selected vertex v. For all i′ = 1,2, . . . , d − 2, the
inequality aji′

(1
v

) = 0 directly yields the bound |vi′ | ≤ kαi′−1 + |vi′+1|. Further

ajd−1

(1
v

) = 0 implies |vd−1| ≤ kαd−2 and thus recursively

|vi+1| ≤ kαi + |vi+2| ≤ kαi + kαi+1 + |vi+3|

≤ · · · ≤ kαi + kαi+1 + · · · + |vd−1| ≤ k

d−2∑

l=i

αl < kαi

∞∑

l=0

αl

= kαi

1 − α
= k

4k + 1
αi−1 <

1

4
αi−1. �

The selected vertices of Lemma 4.2 correspond to certain vertices of the dual
zonotope Z∗ associated to the arrangement A. Rather than proving that these vertices
of Z∗ survive the projection to the last two coordinates, we consider the edges corre-
sponding to the sign vectors obtained from (3) by replacing the “0” in (σd−1, σ

′
d−1)

by either a “+” or a “−”, and their negatives, which correspond to the antipodal
edges.

Lemma 4.3 Let S be the set of sign vectors ±(σ1, σ1
′; σ2, σ2

′; . . . ;σd−1, σd−1
′) of

the form

(σi, σi
′) =

{
(+· · · + 0 − · · ·−,−· · · − +· · ·+) with sum 0 or

(+· · · + −· · ·−,−· · · − 0 + · · ·+) with sum 0
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for 1 ≤ i ≤ d − 2 and

(σd−1, σd−1
′) = (+· · · + −· · ·−,−· · · − +· · ·+) with sum ±1.

Then the sign vectors in S correspond to 2nd−2(n + 1) edges of Z∗, all of which
survive the projection to the first two coordinates.

Proof The sign vectors of S indeed correspond to edges of Z∗ since they are obtained
from sign vectors of nondegenerate(!) vertices by substituting one “0” by a “+” or
a “−”.

Further there are 2nd−2(n + 1) edges of the specified type: Firstly, there are n

choices where to place the “0” in (σi, σi
′) for each i = 1, . . . , d − 2, which accounts

for the factor nd−2. Let p be the number of “+”-signs in σd−1. Thus there are 2k + 2
choices for p, and for each choice of p, there are two choices for σd−1

′, except
for p = 0 and p = 2k +1 with just one choice for σd−1

′. This amounts to 2(2k +2)−
2 = n + 1 choices for (σd−1, σd−1

′). The factor of 2 is due to the central symmetry.
Let e be an edge with sign vector σ(e) ∈ S. In order to apply Lemma 2.2 we

need to determine the normals to the facets containing e. So, let F be a facet
containing e. The sign vector σ(F ) is obtained from σ(e) by replacing each “0”
in σ(e) by either “+” or “−”; see Lemma 2.1. For brevity, we encode F by a vec-
tor τ(F ) ∈ {+,−}d−2 corresponding to the choices for “+” or “−” made. Conversely,
there is a facet Fτ containing e for each vector τ ∈ {+,−}d−2, since e is nondegen-
erate.

The supporting hyperplane for F is a(F )x = 1 with a(F ) = σ(F )A being a
linear combination of the rows of A. We compute the ith component of a(F ) for
i = 2,3, . . . , d − 1:

a(F )i = (
σ(F )A

)
i
= (

(σi−1, σ
′
i−1)Ai−1

)
i
+ (

(σi, σ
′
i )Ai

)
i

= αi−2(σi−1, σ
′
i−1)

(
1
1

)
+ αi−1(σi, σ

′
i )

(
1

−1

)

Since we replace the zero of (σi−1, σ
′
i−1) by τ(F )i−1 in order to obtain σ(F )

from σ(e), we have (σi−1, σ
′
i−1)

(1
1

) = τ(F )i−1. Since
∣∣(σi, σ

′
i )

( 1
−1

)∣∣ is at most n,

it follows that

� a(F )i ≥ αi−2 − nαi−1 = αi−1 > 0 holds for τ(F )i−1 = +, and
� a(F )i ≤ −αi−2 + nαi−1 = −αi−1 < 0 holds for τ(F )i−1 = −.

In other words, we have for i = 2,3, . . . , d − 1:

signa(F )i = τ(F )i . (4)

It remains to show that the last d − 2 coordinates of the 2d−2 normals of the
facets containing e, that is, the facets Fτ for all τ ∈ {+,−}d−2, span R

d−2. But (4)
implies that each of the orthants of R

d−2 contains one of the (truncated) normal
vectors (a(Fτ )i)i=2,...,d−1. Hence the (truncated) normals of all facets containing e

positively span R
d−2, and e survives the projection to the first two coordinates by

Lemma 2.2. �
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Fig. 8 Two different projections of a dual 4-zonotope with cubic 2D-shadow. On the left the projection
to the first two and last coordinate (clipped in vertical direction) and on the right the projection to the first
three coordinates

This completes the construction and analysis of Z∗. Scrutinizing the sign vectors
of the edges specified in Lemma 4.3, one can further show that these edges actually
form a closed polygon in Z∗. Thus this closed polygon is the shadow boundary of Z∗
(under projection to the first two coordinates), and its projection is a 2nd−2(n + 1)-
gon. This yields the precise size of the projection of Z∗. The reader is invited to
localize the edges corresponding to the closed polygon from Lemma 4.3 and the
vertices from Lemma 4.2 in Figs. 6 and 7.

The following Theorem 4.4 summarizes the construction of Z∗ and its properties.
Our main result as stated in Theorem 4.1 follows. Figure 5 displays a 3-dimensional
example, and Fig. 8 a 4-dimensional example.

Theorem 4.4 Let k and d ≥ 2 be positive integers, and let n = 4k + 1. The dual d-
zonotope Z∗ = Z∗

A corresponding to the matrix A from (2) has (d − 1)n zones, and
its projection to the first two coordinates has (at least) 2nd−1 + 2nd−2 vertices.

Remark 4.5 As observed by Amenta and Ziegler [1, Sect. 5.2], any result about the
complexity lower bound for projections to the plane (2D-shadows) also yields lower
bounds for the projection to dimension k, a question which interpolates between the
upper bound problems for polytopes/zonotopes (k = d − 1) and the complexity of
parametric linear programming (k = 2), the task to compute the LP optima for all
linear combinations of two objective functions (see [6, pp. 162–166]).

In this vein, from Theorem 4.1 and the fact that, in a dual of a cubical zonotope,
every vertex lies in exactly fk(Cd−1) = (

d−1
k

)
2k different k-faces (for k < d) and that

every such polytope contains at most nd−1 faces of dimension k, one derives that, in
the worst case, Θ(nd−1) faces of dimension k −1 survive in a kD-shadow of the dual
of a d-zonotope with n zones.
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