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Abstract Let S(R) be an o-minimal structure over R, T C Rk1+k+t 3 closed defin-
able set, and

T Rk1+k2+€ N RkH—kz’ P :Rkﬁ-kz-l—ﬁ N RZ’ 3 :Rkl-l-kz N sz
the projection maps as depicted below:

s
RE1+k2+ — 1y pkitks

[

R¢ R*2

For any collection A = {Ay, ..., A} of subsets of Rkit+k2 and 7 € R*2, let A,
denote the collection of subsets of R

{A1,17 D) An,z}a

where A;; = A; Ny ! (z), 1 <i < n. We prove that there exists a constant
C = C(T) > 0 such that for any family A = {Ay, ..., A,} of definable sets, where
each A; =m (T Nm, 1(y,-)), for some y; € R¢, the number of distinct stable homo-
topy types amongst the arrangements Az, z € R*2 is bounded by C - n*1TDk2 while
the number of distinct homotopy types is bounded by C - n®*1¥3%2_ This general-
izes to the o-minimal setting, bounds of the same type proved in Basu and Vorobjov
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(J. Lond. Math. Soc. (2) 76(3):757-776, 2007) for semi-algebraic and semi-Pfaffian
families. One technical tool used in the proof of the above results is a pair of topolog-
ical comparison theorems reminiscent of Helly’s theorem in convexity theory. These
theorems might be of independent interest in the quantitative study of arrangements.
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Arrangements

1 Introduction

The study of arrangements is a very important subject in discrete and computational
geometry, where one studies arrangements of n subsets of R¥ (often referred to as
objects of the arrangements) for fixed k and large values of n (see [1] for a survey of
the known results from this area). The precise nature of the objects in an arrangement
will be discussed in more detail later. Common examples consist of arrangements of
hyperplanes, balls or simplices in R¥. More generally one considers arrangements of
objects of “bounded description complexity”. This means that each set in the arrange-
ment is defined by a first-order formula in the language of ordered fields involving at
most a constant number of polynomials whose degrees are also bounded by a constant
(see [12]).

This paper considers parameterized families of arrangements. The question we
are interested in most is the number of “topologically” distinct arrangements that can
occur in such a family [a precise definition of the topological type of an arrangement
is given later (see Definition 1.6)]. Parameterized arrangements occur quite frequently
in practice. For instance, take any arrangement .4 in R¥1+%2 and let 77 : R\1+Hhe — RK2
be the projection on the last k» coordinates. Then for each z € R¥2, the intersection
of the arrangement A with the fiber 7~!(z), is an arrangement A, in R*! and the
family of the arrangements {A;},_pk, is an example of a parameterized family of
arrangements. Even though the number of arrangements in the family {Az}, p, is
infinite, it follows from Hardt’s triviality theorem generalized to o-minimal structures
(see Theorem 4.2) that the number of “topological types” occurring among them is
finite and can be effectively bounded in terms of the n, k1, k> up to multiplication by
a constant that depends only on the particular family from which the objects of the
arrangements are drawn. If by topological type we mean homeomorphism type, then
the best-known upper bound on the number of types occurring is doubly exponential
in k1, ko. However, if we consider the weaker notion of homotopy type, then we
obtain a singly exponential bound. We conjecture that a singly exponential bound
also holds for homeomorphism types as well.

We now make precise the class of arrangements that we consider and also the
notion of topological type of an arrangement.

1.1 Combinatorial Complexity in O-minimal Geometry

In order to put the study of the combinatorial complexity of arrangements in a more
natural mathematical context, as well as to elucidate the proofs of the main results
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in the area, a new framework was introduced in [2] which is a significant general-
ization of the settings mentioned earlier. We recall here the basic definitions of this
framework from [2], referring the reader to the same paper for further details and
examples.

We first recall an important model theoretic notion—that of o-minimality—which
plays a crucial role in this generalization.

1.1.1 O-minimal Structures

O-minimal structures were invented and first studied by Pillay and Steinhorn in the
pioneering papers [13, 14] motivated by prior work of van den Dries [19]. Later the
theory was further developed through contributions of other researchers, most notably
van den Dries, Wilkie, Rolin, and Speissegger among others [15, 21-23, 26, 27]. We
particularly recommend the book by van den Dries [20] and the notes by Coste [6]
for an easy introduction to the topic as well as the proofs of the basic results that we
use in this paper.

Definition 1.1 (O-minimal structure) An o-minimal structure over a real closed field
R is a sequence S(R) = (S;)nen, Where each S, is a collection of subsets of R”
(called the definable sets in the structure) satisfying the following axioms (following
the exposition in [6]).

(1) All algebraic subsets of R” are in S,,.

(2) The class Sy, is closed under complementation and finite unions and intersections.

(3) fAeS, and Be S, then A x B € Spy4p-

(4) If 7 : R**! — R" is the projection map on the first n coordinates and A € S, 1,
then 7w (A) € S,,.

(5) The elements of S are finite unions of points and intervals. (Note that these are
precisely the subsets of R which are definable by a first-order formula in the
language of the reals with one free variable.)

The class of semi-algebraic sets is one obvious example of such a structure, but
in fact there are much richer classes of sets which have been proved to be o-minimal
(see [6, 20]).

1.1.2 Admissible Sets

We now recall from [2] the definition of the class of sets that will play the role of sets
with bounded description complexity mentioned above.

Definition 1.2 (Admissible sets) Let S(R) be an o-minimal structure over R and
let T C RF*? be a fixed definable set. Let 7y : R¥M — RK (respectively, 75 :
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R¥*¢ — R) be the projections onto the first k (respectively, last £) coordinates.

T C Rk+€
RK R¢
We will call a subset S of R¥ to be a (T, my, mo)-set if
S=Ty =7r1(712_1(y) N T)

for some y € RY.

If T is some fixed definable set, we call a family of (T, m, m2)-sets to be a
(T, 1, mp)-family. We will also refer to a finite (7', 7y, mp)-family as an arrange-
ment of (T, my, 7o)-sets.

1.2 Stable Homotopy Equivalence

For any finite CW-complex X we denote by SX the suspension of X and for n > 0,
we denote by S" X the n-fold iterated suspension SoSo---0oS X.
—_—

n times
Note that if i : X < Y is an inclusion map, then there is an obvious induced

inclusion map S"i : " X < S"Y between the n-fold iterated suspensions of X and Y.
Recall from [18] that for two finite CW-complexes X and Y, an element of

(XY} =1‘g}1[six, S'Y] (1.1)
1
is called an S-map (or map in the suspension category). An S-map f € {X;Y} is

represented by the homotopy class of a map f : S¥ X — SNY for some N > 0.

Definition 1.3 (Stable homotopy equivalence) An S-map f € {X;Y} is an S-
equivalence (also called a stable homotopy equivalence) if it admits an inverse
f~! e {Y; X}. In this case we say that X and Y are stable homotopy equivalent.

If f €{X;Y}isan S-map, then f induces a homomorphism
Js ' Hi(X, Z) — Hy (Y, Z)

between the homology groups of X and Y.
The following theorem characterizes stable homotopy equivalence in terms of ho-
mology.

Theorem 1.4 [8, pp. 604] Let X and Y be two finite CW-complexes. Then X and Y

are stable homotopy equivalent if and only if there exists an S-map f € {X; Y} which
induces isomorphisms f, : Ho(X,Z) — Hy (Y, Z).
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1.3 Diagrams and Co-limits

The arrangements that we consider are all finitely triangulable. In other words, the
union of objects of an arrangement is homeomorphic to a finite simplicial complex,
and each individual object in the arrangement will correspond to a subcomplex of
this simplicial complex. It will be more convenient to work in the category of finite
regular cell complexes, instead of just simplicial complexes.

Let A={Ay,...,A,}, where each A; is a subcomplex of a finite regular cell
complex. We will denote by [n] the set {1,...,n} and for I C [rn] we will denote
by A’ (respectively, .A;) the regular cell complexes Uier Ai (respectively, ();c; Ai).
Notice that if J C I C [n], then

Al c A
A[ C.AJ.

We will call the collection of sets {|.Aj|};c[n] together with the inclusion maps
iry: Al = |Ayl|,J CI,the diagram of A. Notice that (even though we do not use
this fact), |.A1"!] is the co-limit of the diagram of A. For I C [n] we will denote by
AlI] the subarrangement {A; | i € I}.

1.4 Diagram-Preserving Maps

Now let A={Ay,..., A}, B={By,..., By} where each A;, B; is a subcomplex of
a finite regular cell complex for 1 <i, j <n.

Definition 1.5 (Diagram-preserving maps) We call a map f : |A"] — |B"]] to
be diagram preserving if f(|Ar|) C |B;| for every I C [n]. (Notice that the above
property is equivalent to f(|A;|) C |B;| for every i € [n] but the previous prop-
erty will be more convenient for us later when we extend the definition of diagram-
preserving maps to homotopy co-limits (see Definition 3.3).) We say that two maps
f. g : |AM| — |B")| are diagram homotopic if there exists a homotopy 4 : | A"| x
[0, 1] — |B"|, such that i (-, 0) = f, h(-, 1) = g and h(-, t) is diagram preserving for
eachr €0, 1].

More generally, we call a map f : SV | A" — SV |B"| to be diagram preserving
if £F(SN|A;]) c SV|B;| for every I C [n]. We say that two maps f, g : SV|AM| —
SN B are diagram homotopic if there exists a homotopy & : SV | A"]| x [0, 1] —
SN|B"| such that i(-,0) = f, h(-, 1) = g and h(-, 1) is diagram preserving for each
t €0, 1].

We say that f : | A"l| — |B["] is a diagram-preserving homeomorphism if there
exists a diagram-preserving inverse map g : [B""| — |.AI"]| such that the induced
maps g o f : | A" — | A" and f o g : |B"| — |B"| are Id| 4| and 1d g, re-
spectively.

We say that f : |A"| — |B"])] is a diagram-preserving homotopy equivalence
if there exists a diagram-preserving inverse map g : |B""| — | A" such that the in-
duced maps go f : | A" — | A" | and fog:|B"| — |BM™| are diagram homotopic
to Id| Al and Id| Bl respectively.
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We say that an S-map f € {|A™|; |B"|} is a diagram-preserving stable homotopy
equivalence if it is represented by a diagram-preserving map

f:SV]AM] - sN|pln|
such that there exists a diagram-preserving inverse map

g:SV B — sV| A
for which the induced maps

)

go f:SN]|AlM] — sN| 4l

and
fog: SN|B|"]| — SN|B["]|

are diagram homotopic to Idgn| 411 and Idgw zin1|, respectively.

Translating these topological definitions into the language of arrangements, we
say that:

Definition 1.6 (Topological type of an arrangement) Two arrangements A, 53 are
homeomorphic (respectively, homotopy equivalent, stable homotopy equivalent) if
there exists a diagram-preserving homeomorphism (respectively, homotopy equiva-
lence, stable homotopy equivalence) between them.

Remark 1.7 Note that, since two definable sets might be stable homotopy equivalent,
without being homotopy equivalent (see [17, pp. 462]), and also homotopy equivalent
without being homeomorphic, the notions of homeomorphism type, homotopy type
and stable homotopy type are each strictly weaker than the previous one.

The main results of this paper can now be stated.
1.5 Main Results

Let S(R) be an o-minimal structure over R, 7' c Rfitk2+¢ 3 closed and bounded
definable set, and let 7y : Rbthkett s Rhitha (regpectively, mp : Rbitht+t s RE
w3 : R\iTk2 5 RK2) denote the projections onto the first k1 + ko (respectively, the
last £, the last k) coordinates. For any collection A = {Ay, ..., A,} of (T, 7y, m2)-
sets, and z € R*2 we will denote by A, the collection of sets, {A1 z, ..., An 2z}, Where
Aiz=A;Nn; (@), 1<i<n.

A fundamental theorem in o-minimal geometry is Hardt’s trivialization theorem
(Theorem 4.2 here) which says that there exists a definable partition of R into a
finite number of definable sets {7;};c; such that for each i € I, all fibers A, with
z € T; are definably homeomorphic. A very natural question is to ask for an upper
bound on the size of this partition (which will also give an upper bound on the number
of homeomorphism types among the arrangements A, z € R¥?).
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Hardt’s theorem is a corollary of the existence of cylindrical cell decomposi-
tions of definable sets proved in [11] (see also [6, 20]). When A is a (T, 7y, m32)-
family for some fixed definable set T C RF1tkett with 7y : Rhithatt _ Rki+k
o s Rttt 5 RE 7y Rhitka 5 RR2 the usual projections, and #.4 = n, the
quantitative definable cylindrical cell decomposition theorem in [2] gives a doubly
exponential (in k1k2) upper bound on the cardinality of / and hence on the number
of homeomorphism types among the arrangements .4,, z € R¥2. A tighter (say singly
exponential) bound on the number of homeomorphism types of the fibers would be
very interesting but is unknown at present. Note that we cannot hope for a bound
that is better than singly exponential because the lower bounds on the number of
topological types proved in [4] also applies in our situation.

In this paper we give tighter (singly exponential) upper bounds on the number
of homotopy types occurring among the fibers A, z € R*2. We prove the following
theorems. The first theorem gives a bound on the number of stable homotopy types of
the arrangements A,, z € R*2, while the second theorem gives a slightly worse bound
for homotopy types.

Theorem 1.8 There exists a constant C = C(T) > 0 such that for any collection
A={Ay,..., Ay} of (T, 1, mp)-sets the number of distinct stable homotopy types
amongst the arrangements A,, z € R® is bounded by

C _n(k1+l)k2.

If we replace stable homotopy type by homotopy type, we obtain a slightly weaker
bound.

Theorem 1.9 There exists a constant C = C(T) > 0 such that for any collection A =
{A1,..., Ap} of (T, 1, mp)-sets the number of distinct homotopy types occurring
among the arrangements A,z € R¥? is bounded by

C . pkit3kz

2 Background

In this section we describe some prior work in the area of bounding the number of
homotopy types of fibers of a definable map and their connections with the results
presented in this paper.

We begin with a definition.

Definition 2.1 (A-sets) Let A = {A},..., A,}, such that each A; C R¥ is a
(T, my, mp)-set. For I C {1,...,n}, welet A(I) denote the set

ﬂ AN ﬂ (RF\ A) (2.1
ielC[n) jeln\I
and we will call such a set to be a basic A-set. We will denote by C(A) the set of
nonempty connected components of all basic A-sets.
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We will call definable subsets S C R¥ defined by a Boolean formula whose atoms
are of the form, x € A;, 1 <i <n, an A-set. An A-set is thus a union of basic .A-sets.
If T is closed, and the Boolean formula defining S has no negations, then S is closed
by definition (since each A; is closed) and we call such a set an .A-closed set.

Moreover, if V is any closed definable subset of R, and S is an A-set (respec-
tively, A-closed set), then we will call SNV to be an (A, V)-set (respectively,
(A, V)-closed set).

2.1 Bounds on the Betti Numbers of Admissible Sets
The problem of bounding the Betti numbers of .A-sets is investigated in [2], where
several results known in the semi-algebraic and semi-Pfaffian case are extended to

this general setting. In particular, we will need the following theorem proved there.

Theorem 2.2 [2] Let S(R) be an o-minimal structure over R and let T C R¥t pe
a closed definable set. Then, there exists a constant C = C(T) > 0 depending only

on T such that for any arrangement A= {Ay, ..., Ay} of (T, w1, mp)-sets of R¥ the
following holds.
Foreveryi,0<i <k,
Z bi(D) <C -n*. (2.2)
DeC(A)

Remark 2.3 The main intuition behind the bound in Theorem 2.2 (as well as similar
results in the semi-algebraic and semi-Pfaffian settings) is that the homotopy type (or
at least the Betti numbers) of a definable set in R¥ defined in terms of n sets belonging
to some fixed definable family, depend only on the interaction of these sets at most
k + 1 at a time. This is reminiscent of Helly’s theorem in convexity theory (see [7])
but in a homotopical setting. This observation is also used to give an efficient algo-
rithm for computing the Betti numbers of arrangements (see [3, Sect. 8]). However,
the proof of Theorem 2.2 in [2] (as well as the proofs of similar results in the semi-
algebraic [5] and semi-Pfaffian settings [10]) depends on an argument involving the
Mayer—Vietoris sequence for homology, and does not require more detailed informa-
tion about homotopy types. In Sect. 3, we make the above intuition mathematically
precise.

We prove two theorems (Theorems 3.6 and 3.7) and these auxiliary results are
the keys to proving the main results of this paper (Theorems 1.8 and 1.9). Moreover,
these auxiliary results could also be of independent interest in the quantitative study
of arrangements.

2.2 Homotopy Types of the Fibers of a Semi-algebraic Map

Theorem 2.2 gives tight bounds on the topological complexity of an .4-set in terms
of the cardinality of .4, assuming that the sets in A belong to some fixed definable
family. A problem closely related to the problem we consider in this paper is to bound
the number of topological types of the fibers of a projection restricted to an arbitrary

A-set.
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More precisely, let S € R¥1%2 be a set definable in an o-minimal structure over
the reals (see [20]) and let 7 : Rkitk2 _, Rk2 denote the projection map on the last
coordinates. We consider the fibers, S, = 7! (z) N S for different z in R*2, Hardt’s
trivialization theorem, (Theorem 4.2) shows that there exists a definable partition
of R*2 into a finite number of definable sets {Ti}ier such that for each i € I and
any point z; € T;, 7~ '(T;) N S is definably homeomorphic to Sz; x T; by a fiber-
preserving homeomorphism. In particular, for each i € I, all fibers S, with z € T; are
definably homeomorphic.

In case S is an A-set, with A a (T, 7y, mp)-family for some fixed definable set
T C Rk1+k2+l, with 7 Rk1+k2+( — Rk1+k2, T Rk1+k2+€ — Rl, T Rk1+k2 —
R¥2, the usual projections, and #.4 = n, the quantitative definable cylindrical cell de-
composition theorem in [2] gives a doubly exponential (in k1k>) upper bound on the
cardinality of / and hence on the number of homeomorphism types of the fibers of
the map m3|s. A tighter (say singly exponential) bound on the number of homeomor-
phism types of the fibers would be very interesting but is unknown at present.

Recently, the problem of obtaining a tight bound on the number of topological
types of the fibers of a definable map for semi-algebraic and semi-Pfaffian sets was
considered in [4], and it was shown that the number of distinct homotopy types of the
fibers of such a map can be bounded (in terms of the format of the formula defining
the set) by a function singly exponential in k1k3. In particular, the combinatorial part
of the bound is also singly exponential. A more precise statement in the case of semi-
algebraic sets is the following theorem which appears in [4].

Theorem 2.4 [4] Let P C R[Xy, ..., Xk, Y1,..., Yk, ], with deg(P) < d for each
P € P and cardinality #P = n. Then, for any fixed P-semi-algebraic set S the num-
ber of different homotopy types of fibers w1 (y) N S for various y € (S) is bounded
by

(2k1 nkzd)O(klkz).

Remark 2.5 The proof of Theorem 2.4, however, has the drawback that it relies on
techniques involving perturbations of the original polynomials in order to put them in
general position, as well as on Thom’s Isotopy Theorem, and as such does not extend
easily to the o-minimal setting. The main results of this paper (see Theorems 1.8
and 1.9) extend the combinatorial part of Theorem 2.4 to the more general o-minimal
category.

Remark 2.6 Even though the formulation of Theorem 2.4 seems a little different
from the main theorems of this paper (Theorems 1.8 and 1.9), they are in fact closely
related. In fact, as a consequence of Theorem 1.9 we obtain bounds on the number
of homotopy types of the fibers of S for any fixed .A-set S, analogous to the one in
Theorem 2.4.

More precisely we have:

Theorem 2.7 Ler S(R) be an o-minimal structure over R, and T C Rkithtt 4

closed and bounded definable set, and m| : Rkithett 5 Rhitky - q) - Riitkatt
RY, and w3 : R\tke — RK2 the projection maps. Then, there exists a constant
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C = C(T) > 0, such that for any collection A = {Aq, ..., Ay} of (T, w1, mp)-sets,
for any fixed A-set S the number of distinct homotopy types of fibers my 'ons for
various z € 73(S) is bounded by

C . pkitdka

A similar result with a bound of C - n*1+D¥2 holds for stable homotopy types as
well.

3 A Topological Comparison Theorem

As noted previously, the main underlying idea behind our proof of Theorem 1.8 is
that the homotopy type of an .A-set in R depends only on the interaction of sets in
A at most (k + 1) at a time. In this section we make this idea precise.

We show that in case A = {A,..., A,}, with each A; a definable, closed and
bounded subset of R¥, the homotopy type of any A-closed set is determined by a
certain subcomplex of the homotopy co-limit of the diagram of A. The crucial fact
here is that this subcomplex depends only on the intersections of the sets in .4 at most
k+1 at a time.

In order to avoid technical difficulties, we restrict ourselves to the category of
finite, regular cell complexes (see [25] for the definition of a regular cell complex).
The setting of finite, regular cell complexes suffices for us, since it is well known that
closed and bounded definable sets in any o-minimal structure are finitely triangulable
and, hence, are homeomorphic to regular cell complexes.

3.1 Topological Preliminaries

Let A={Ay,..., A,}, where each A; is a subcomplex of a finite regular cell com-
plex. We now define the homotopy co-limit of the diagram of A.

3.1.1 Homotopy Co-limits

Let A[,) denote the standard simplex of dimension n — 1 with vertices in [r] (and by
| A[n] the corresponding closed geometric simplex). For I C [n], we denote by A;
the (#/ — 1)-dimensional face of Ap,) corresponding to /.

The homotopy co-limit, hocolim(.A), is a CW-complex defined as follows.

Definition 3.1 (Homotopy co-limit)

hocolim(A4) = ]_[ A x Ap/ ~,

I1C[n]

where the equivalence relation ~ is defined as follows.

For I C J C[n],lets; j:|Af| = |A| denote the inclusion map of the face |A;|
in|Ay|,and leti; j:|Aj| — |As| denote the inclusion map of |A;| in |Af].

Given (s,x) € |[Af| x | A;| and (t,y) € |[Ay| x | Ay| with I C J, then (s, x) ~ (t,y)
if and only if t =157 ;(s) and x =i j(y).
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Note that there exist two natural maps

fa : [hocolim(A)| — [AM],
g4 : |hocolim(A)| — |Apy|

defined by
fa(s,x)=s, 3.1

and

gA(s, X) =X, (3.2)

where (s,x) € |A;| x ¢, cisacell in A"l and I. = {i € [n] | c € A;}.
Notice that we have

[hocolim(A)| = ] 141 x |41 c | 14] x A

1C[n] IC[n]

Definition 3.2 (Truncated homotopy co-limits) For any m,0 <m < n, we will de-
note by hocolim,, (A) the subcomplex of hocolim(A) defined by

hocolimy, (A) = g4 (skm (An))). (3.3)

Definition 3.3 (Diagram-preserving maps between homotopy co-limits) Replacing
in Definition 1.5, | A"| and |B[™|, by |hocolim(A)| and |hocolim(B)|, respectively,
as well as | A;| and |B;| by f;l (JA;]) and fgl (|Br]), respectively, we get definitions
of diagram-preserving homotopy equivalences and stable homotopy equivalences be-
tween |hocolim(A)| and |hocolim(B)|, and more generally for any m > 0, between
|hocolim,, (A)| and |hocolim,, (B)|.

Definition 3.4 We say that A ~,, B if there exists a diagram-preserving homotopy
equivalence
¢ : |hocolimy, (A)| — |hocolim, (B)|.
We say that A ~,, B, if there exists a diagram-preserving stable homotopy equiv-

alence ¢ € {hocolim,, (A); hocolim,, (B)}, represented by

’

é:SN |hocolimm (A)| — SN |h0colimm (B)

for some N > 0.

Remark 3.5 Note that in the above definition the map ¢ need not be induced by
a diagram-preserving map ¢ : A"l — Bl (respectively, ¢ : SV |hocolim,, (A)| —
sV |hocolim,, (13)|). Indeed if it was the case then the proofs of Theorems 3.6 and 3.7
below would be simplified considerably.

The two following theorems which are proved in Sect. 3.2 are the crucial topolog-
ical ingredients in the proofs of our main results.
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Theorem 3.6 Let A = {Ay,...,A,},B ={B1,...,B,} be two families of sub-
complexes of a finite regular cell complex, such that:

(1) H;(JAM|, Z), H; (1B, Z) =0, for all i > k, and
2) A~ B.

Then, A and B are stable homotopy equivalent.

Theorem 3.7 Let A ={Ay,...,A,}, B={By,..., By} be two families of subcom-
plexes of a finite regular cell complex, such that:

(1) dim(A;),dim(B;) <k, for 1 <i <n, and
(2) A=p42 B.

Then, A and B are homotopy equivalent.

We now state two corollaries of Theorems 3.6 and 3.7 which might be of interest.

Given a Boolean formula 6(T1, ..., T,,) containing no negations and a family of
subcomplexes A = {Aj1, ..., A} of a finite regular cell complex, we will denote by
Ap the subcomplex defined by the formula, 6 4, which is obtained from 6 by replacing
in 6 the atom 7; by A; for each i € [n], and replacing each A (respectively, V) by N
(respectively, U).

Corollary 3.8 Let A={A1,..., A}, B={By,..., By} be two families of subcom-
plexes of a finite regular cell complex, satisfying the same conditions as in Theo-
rem 3.6. Let O(Ty, ..., T,) be a Boolean formula without negations. Then, | Ag| and
|By| are stable homotopy equivalent.

Corollary 3.9 Let A ={Ay,...,A,;},B={Bi,..., By} be two families of sub-
complexes of a finite regular cell complex, satisfying the same conditions as in Theo-
rem 3.7. Let 6(Ty, ..., T,) be a Boolean formula without negations. Then, | Ag| and
|Bg | are homotopy equivalent.

3.2 Proofs of Theorems 3.6 and 3.7

Let A and B as in Theorem 3.6.
We need a preliminary lemma.

Lemma 3.10 | A" is diagram-preserving homotopy equivalent to |hocolim(A)|.
Proof Consider the map
fa : |hocolim(A)| — |A["]|
defined in (3.1).
Clearly, if x € c, f;l(c) = |A}.| x c. Now applying Smale’s version of the

Vietoris—Begle Theorem [16] we obtain that f 4 is a homotopy equivalence. Clearly,
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fa is diagram preserving. Moreover, (see, for instance, the proof of Theorem 6
in [16]) there exists an cellular inverse map

ha:|A™| - |hocolim(A)|
such that f4 o h 4 is diagram preserving, and is a homotopy inverse of f 4. 0

We can now prove Theorems 3.6 and 3.7.

Proof of Theorem 3.6 Let h 4 : |A"| — |hocolim(A)| be a diagram-preserving
homotopy equivalence known to exist by Lemma 3.10. Since 4 4 is cellular, and
dim |.A[”]| <k, its image is contained in hocolimg (A) since by definition (see (3.3))

sk (hocolim(A)) C hocolimy (A).

We will denote by 1 4 3 : S¥|hocolimy (A)| — SY [hocolimy (B)| a map represent-
ing a diagram-preserving stable homotopy equivalence known to exist by hypothesis
(which we assume to be cellular).

Let iy : SV [hocolimg (B)| < S"|hocolim(B)| denote the inclusion map. The
map ig x induces isomorphisms

(B« H; (hocolimk (B), Z) — H; (hocolim(B), Z)

forO0<j<k—1.
Consequently, the map f o ig ; induces isomorphisms

(fB oip.)s: Hj(hocolimy (B), Z) — H; (B, Z)

forO0<j<k—1.
Composing the maps, SN 4, h a5, Bk SV f5 we obtain that the map,

SV o iBrohapo S SN’.A[”]| — SN|B[H]|
induces isomorphisms

(SNfB oirohABk oSNh_A)* :H.,'(|A["J

. Z) — Hj (|B[”J

.Z)

forall j > 0.

Moreover, the map SV fz o i Bkohapo SNh 4 is diagram preserving since each
constituent of the composition is diagram preserving. It now follows from Theo-
rem 1.4 that the S-map represented by

’

¢)=SNfBoiB’kohABoSNhA:S”A[n]‘ —>SN|B["]

is a diagram-preserving stable homotopy equivalence. g

Before proving Theorem 3.7 we first need to recall a few basic facts from homo-
topy theory.
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Definition 3.11 (k-equivalence) A map f : X — Y between two regular cell com-
plex is called a k-equivalence if the induced homomorphism

feimi(X) = mi(Y)

is an isomorphism for all 0 <i < k, and an epimorphism for i = k, and we say that
X is k-equivalent to Y. (Note that k-equivalence is not an equivalence relation).

We also need the following well-known fact from algebraic topology.

Proposition 3.12 Let X, Y be finite regular cell complexes with
dim(X) <k, dim(Y) <k,

and f : X — Y a k-equivalence. Then, f is a homotopy equivalence between X
and Y.

Proof See [24, pp. 69]. |

Proof of Theorem 3.7 The proof is along the same lines as that of the proof of Theo-
rem 3.6. Let /14 : | A"| — [hocolim(A)| be a diagram-preserving homotopy equiv-
alence known to exist by Lemma 3.10. By the same argument as before, its image is
contained in [hocolimg1(A)|.

We will denote by k4 p : |hocolimys(A)| — |hocolimg2(B)| a diagram-
preserving homotopy equivalence known to exist by hypothesis.

Letig y4o : [hocolimg42(B)| — |hocolim(3)| denote the inclusion map. The map
i3 k+2 induces isomorphisms

(B k42)% 1 TTj (hocolimk+2(B)) — 7 (hocolim(B))
for 0 < j <k + 1. This is a consequence of the exactness of the homotopy sequence

of the pair (hocolim(B), hocolim_7 (1)) (see [17]).
Consequently, the map fj o ip  induces isomorphisms

(fB oipi)s : 7j(hocolimy 2 (B)) — m; (B™)

forO0<j<k+1.
Composing the maps, .4, h A5, iB.k+2, /3 We obtain that the map

fBoiBrohagoha: \A[”]| — |B[”]|
induces isomorphisms
(fBoigkohaBrohA)s: 7| (A["]) — 7 (B["])
forO0<j<k+1.
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Moreover, the map f5 oig o hap oh 4 is diagram preserving since each con-
stituent of the composition is diagram preserving. It now follows from Proposi-
tion 3.12 that the map

¢=fpoiprohagoha:|A"|— |BM]
is a diagram-preserving homotopy equivalence. g

Proof of Corollary 3.8 First note that since the formula 6 does not contain nega-
tions, writing @ as a disjunction of conjunctions, there exists ¥ C 2" such that
Ao =jex Ar (respectively, By = ;5 Br). Let A’ = {A; | I € X'} (respectively,
B ={B; | I € X}). It follows from the hypothesis that

A~ B
Now apply Theorem 3.6. g

Proof of Corollary 3.9 The proof is similar to that of Corollary 3.8 using Theorem 3.7
in place of Theorem 3.6 and is omitted. g

4 Proofs of the Main Theorems
4.1 Summary of the Main Ideas

We first summarize the main ideas underlying the proof of Theorem 1.8. The proof
of Theorem 1.9 is similar and differs only in technical details. Let A ={Ay, ..., A,}
be a (T, 71, m2)- arrangement in RK1+K2 Using Proposition 4.7, we obtain a defin-
able partition, {Cy}yes (say) of R*2, into connected locally closed definable sets
Co C RR2, with the property that as z varies over Cy, we get for each I C [n]
with #I < k; + 1 isomorphic (and continuously varying) triangulations of the sub-
arrangement A[/]. Moreover, these triangulations are downward compatible in the
sense that the restriction to A[J] of the triangulation of A[]], refines that of A[J]
for each J C I (cf. Proposition 4.7). These facts allow us to prove that for any
21, 22 € Cy the truncated homotopy co-limits [hocolimg, (A;,)| and |hocolimy, (A;,)|
are homotopy equivalent by a diagram-preserving homotopy equivalence. More pre-
cisely, we first prove that the thickened homotopy co-limits |hocolim,'("l (Az,, 8] and

|hocolim,j'1 (A;,, )| are homeomorphic, and then use Proposition 4.8 to deduce that
[hocolimy, (A;,)| and |[hocolimy, (A;,)| are homotopy equivalent. Theorem 3.6 then
implies that A;, is stable homotopy equivalent to A, by a diagram-preserving stable
homotopy equivalence. It remains to bound the number of elements in the partition
{Cy)aer. We use Theorem 2.2 to obtain a bound of C - n*11tDk2 on this number,
where C is a constant which depends only on T'.

In order to prove Theorem 1.8 we recall a few results from o-minimal geometry.

We first note an elementary property of families of admissible sets (see [2] for a
proof).
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Observation 4.1 Suppose that Ty, ..., T, C R¥* are definable sets, ; : R¥t —
R¥ and 75 : RFH — RE the two projections. Then, there exists a definable sub-
set T/ C Rk+t+m depending only on T1,..., T,, such that for any collection of
(T;, 1, mp) families A;, 1 <i < m, the union |J/_, A; is a (T', 7y, my)-family,
where 7] : REFmHE 5 RE and ) : RFFEFM — RS are the projections onto the
first k, and the last £ + m coordinates, respectively.

4.2 Hardt’s Triviality for Definable Sets

One important technical tool will be the following o-minimal version of Hardt’s triv-
iality theorem.

Let X C R¥ x RY and A C R¥ be definable subsets of R* x R and RY, respec-
tively, and let 7 : X — R denote the projection map on the last £ coordinates.

We say that X is definably trivial over A if there exists a definable set F' and a
definable homeomorphism

h:FxA— XNn YA,

such that the following diagram commutes.

h
FxA——=Xxnx"1(A)

A

In the diagram above my : F X A — A is the projection onto the second factor. We
call h a definable trivialization of X over A.

If Y is a definable subset of X, we say that the trivialization & is compatible with
Y if there is a definable subset G of F such that 7(G x A) =Y Nz~ !(A). Clearly,
the restriction of 4 to G x A is a trivialization of Y over A.

Theorem 4.2 (Hardt’s theorem for definable families) Ler X C R¥ x R¢ be a defin-
able set and let Yy, ..., Y, be definable subsets of X. Then, there exists a finite parti-
tion of RY into definable sets C1, . .., Cy such that X is definably trivial over each C;,
and moreover the trivializations over each C; are compatible with Y1, ..., Yy,.

Remark 4.3 We first remark that it is straightforward to derive from the proof of

Theorem 4.2 that the definable sets C, ..., Cy can be chosen to be locally closed,
and can be expressed as C| = R¢ \B1,Co=B1\B3,...,Cny = By_1\ By for closed
definable sets By, ..., By. Clearly, the closed definable sets By, ..., By, determine

the sets C; of the partition.

Remark 4.4 Note also that it follows from Theorem 4.2, that there are only a finite
number of topological types among the fibers of any definable map f : X — Y be-
tween definable sets X and Y. This remark will be used a number of times later in the

paper.
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Since in what follows we will need to consider many different projections, we
adopt the following convention.

Notation 4.5 Given m and p, p < m, we will denote by
77 R > RP

(respectively, ,,” : R™ — R™~P) the projection onto the first p (respectively, the
last m — p) coordinates.

4.3 Definable Triangulations

A triangulation of a closed and bounded definable set S is a simplicial complex A
together with a definable homeomorphism from |A| to S. Given such a triangulation
we will often identify the simplices in A with their images in S under the given
homeomorphism.

We call a triangulation A1 : |[Aj| — S of a definable set S, to be a refinement of
a triangulation & : |Ay| — S if for every simplex o1 € Aq, there exists a simplex
07 € Ay such that iy (Joq|) C ha(Jon)).

Let S| C S, be two closed and bounded definable subsets of R¥. We say that a
definable triangulation % : |A| — S of S», respects S if for every simplex o € A,
h(o) N S| = h(o) or @. In this case, h=1(S)) is identified with a subcomplex of A
and h|h*1(s.) : h_l(Sl) — 81 is a definable triangulation of S;. We will refer to this
subcomplex by Alg,.

We introduce the following notational conventions in order to simplify arguments
used later in the paper.

Notation 4.6 1f T  R\1+*2+¢ be any definable subset of R¥1+%2+¢ for each m > 0,
and (2,0, ...,¥m) € RRFHDE we will denote by Tyy,...y, C R the defin-
able set Uofifm{x eRM | (x,2) € Ty,}. For {jo, ..., jw} C [m], we will denote by
oL RmDE 5 ROVHDL the projection map on the appropriate blocks of
coordinates.

It is well known that compact definable sets are triangulable; moreover, the usual
proof of this fact (see for instance [6]) can be easily extended to produce a defin-
able triangulation in a parameterized way. We will actually need a family of such
triangulations satisfying certain compatibility conditions that were mentioned earlier.
The following proposition states the existence of such families. We omit the proof
of the proposition since it is a technical but straightforward extension of the proof of
existence of triangulations for definable sets.

Proposition 4.7 (Existence of m-adaptive triangulations) Let T C RKtk+t pe
closed and bounded definable subset of RX11*2+C and let m > 0. For each 0 < p < m,
there exists:

(1) A definable partition {Cp o }ae1, of R+ 0+DE into locally closed sets, deter-
mined by a sequence of definable closed sets, {Bp’a}aelp (see Remark 4.3).
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(2) Foreach a € Iy, a definable continuous map,

hpo:|Dpal X Cpo— U T.90,.19p"
(Z.¥0,-:¥p)€Cp.a

where A, o is a simplicial complex, and such that for each (z,yo,...,yp) €
Cp.a, the restriction of hp o to |Ap o| X (Z,¥0, ...,Yp) is a definable triangula-
tion

hpolApal X (2,¥0,...,¥p) = Tz,yo,...,yp

of the definable set Ty y, . ... y, respecting the subsets, Ty, ..., Ty,-

(3) For each subset {jo, ..., jy} C Ipl, (Idxy, Tp jo...., jp,)(pra) C Cp g for some
B € Iy, and for each (z,yo,...,¥p) € Cpq, the definable triangulation of
T.y Joses¥i induced by the triangulation

P

hpolApal X (2,¥0,...,¥p) = Tz,yu,...,yp
is a refinement of the definable triangulation,
hy g:lAy gl x(z, yjo,...,yjp,) — Tz!y/'ov---!yf,,/‘

(We will call the family {hp q}o<p<maci, an m-adaptive family of triangulations

of T.)
We will also need the following technical result.

Proposition 4.8 Let C; C R*,t > 0 be a definable family of closed and bounded
sets, and let C C R¥T! be the definable set Uzzo C; x {t}. If for every 0 <t < t,

C; CCy,and Cy= ”kikl (C NR¥ x {0}), then there exists to > 0 such that Cy has
the same homotopy type as C; for every t with 0 <t < ty.

Proof The proof given in [5] (see Lemma 16.17) for the semi-algebraic case can be
easily adapted to the o-minimal setting using Hardt’s triviality for definable families
instead of for semi-algebraic ones. |

We now introduce another notational convention.

Notation 4.9 Let F(x) be a predicate defined over Ry and y € R,. The notation
V(0 < x < y) F(x) stands for the statement

Jze€(0,y) VxeR, (ifx <z, thenF(x)),

and can be read “for all positive x sufficiently smaller than y, F(x) is true”.
More generally,
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Fig. 1 The complex Af,

Notation 4.10 For & = (g9, ...,&,) and a predicate F(¢) over R’} we say “for all
sufficiently small &, F(¢) is true” if

VO<egg<k< V0 <e1 Keg) V0 < g, €en_1)F ().
4.4 Infinitesimal Thickenings of the Faces of a Simplex

We will need the following construction.

Lete = (eg,...,8&n) € Rf’:“l, with 0 <¢g, <--- < ¢gg < 1. Later we will require &
to be sufficiently small (see Notation 4.10).

For a face Ay € Ay,), we denote by C;(g) the subset of |A ;| defined by

Cy()={xe€|Ay| | dist(x,|As]) > ess_s forall I C J}.

Note that,
1Al = | C1@.

1C[n]

Also, observe that for sufficiently small € > 0, the various C(€)’s are all homeo-
morphic to closed balls, and moreover all nonempty intersections between them also
have the same property. Thus, the cells C;(g)’s together with the nonempty inter-
sections between them form a regular cell complex, C(Ay,], €), whose underlying
topological space is | A, (see Figs. 1 and 2).

Definition 4.11 We will denote by C(sk,, (A[,]), &) the subcomplex of C(Afy, €)

consisting of the cells C; (€)’s together with the nonempty intersections between them
where |I| <m + 1.
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Fig. 2 The corresponding Cr(E)NCy(e)

complex C(Af,]) with Cile)
1CJCK=In] \

IcJCcK=[n]

We now use thickened simplices defined above to define a thickened version of
the homotopy co-limit of an arrangement .A.

4.5 Thickened Homotopy Co-limits

Given an m-adaptive family of triangulations of 7 (cf. Proposition 4.7),
{hpato<p<maecr, and z € Rk2, we define a cell complex, hocolim}! (A, &) (best
thought of as an infinitesimally thickened version of hocolim,, (A, £)), whose asso-
ciated topological space is homotopy equivalent to [hocolim,, (A;)].

Definition 4.12 (The cell complex hocolimjn' (Ag, £)) LetC,, denote the cell complex
C(skin (Any), €) defined previously (cf. Definition 4.11).

Let C be a cell of C,. Then, C C |A;| for a unique simplex A; with
I ={io,...,Iw} C[n], m <m, and (following notation introduced before in De-
finition 4.11)

C=CL@EN-NCy, @),

withly ChC---CI,Cland p<m’.
We denote by KC(C, €) the cell complex consisting of the cells

C X hm’,oz(|o'|’z’ yio’ e yim’)

with @ € Iy, (z, Yips - -- vyim/) € Cot,m” [eaS Am’,ou and hm’,a(|0|,Z,yl'o, . .-,y[',,,,) C
Az 1. We denote

hocolim}}; (A, &) = | ] K(C). 4.1
ceCy,

The compatibility properties (properties (2) and (3) in Proposition 4.7) of the

m-adaptive family of triangulations of 7, {h,q}o<p<m.aer,, ensure that
hocolim}f; (A, ) defined above is a regular cell complex. Notice that, since the map
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fa defined in (3.1) extends to |h0c01im:f1 (Ayz, £)|, the notion of diagram-preserving
maps extend to |hocolim2 (A, &)| as well.
We now prove:

Lemma 4.13 Ler z € Rt and m > 0. Then, for all sufficiently small & > 0,
|hocolim$ (Ayz, )| is homotopy equivalent to |hocolim,, (Az)| by a diagram-preser-
ving homotopy equivalence.

Proof Let N = |hocolim;! (A, )|. First replace &,, by a variable  in the definition
of N to obtain a closed and bounded definable set, N;", and observe that N;" C N
forall0 <z <t « 1.

Now apply Proposition 4.8 to obtain that N is homotopy equivalent to N'. Now,

replace &,—1 by t in the definition of Ny’ to obtain N,'"_l, and applying Proposi-
tion 4.8 obtain that N’ is homotopy equivalent to Né”fl. Continuing in this way we

finally obtain that, N is homotopy equivalent to N0 = |hocolim,, (A)|. Moreover,
the diagram-preserving property is clearly preserved at each step of the proof. O

Proof of Theorem 1.8 Recall that for m > 0, and (z, yo, ..., yn) € RRTHDE we
denote by T, y,.....y,, the definable set

m
U Toy; C RE.

i=1

.....

Now apply Proposition 4.7 to the set T with m = kj to obtain an kj-adaptive
family of triangulations {h ) o }1<p<k;.aci,-

We now fix {y1,...,y,} CR" and let A={Ay, ..., A,} with A; = Ty, c Rhitke,
For each z € R*2, we will denote by A; = {A1z,...,Anz} Where A;, = {x €
R¥1 | (x,2z) € A;}.

Fora e Iy,and 1 <iy < --- < iy <n, we will denote by Bkl,a,io,...,ikl C R*2 the
definable closed set

Bkl,ot,i(),...,ikl = {Z € sz | (Za Yo, ..., Ykl) € Bkl,a}‘
Let

B= U {Bkl,a,io,.--,ikl |1 <ip<iy<-- <ig <nj,
ozelkl

and let C € C(B). Theorem 1.8 will follow from the following two lemmas.
Lemma 4.14 Forany z,,12; € C, Ay, is stable homotopy equivalent to Ay, .

Proof Clearly, by Theorem 3.6 it suffices to prove that [hocolimg, (A, )| is diagram-
preserving homotopy equivalent to [hocolimy, (Az,)|.

The compatibility properties of the triangulations ensure that the complex
|hocolim,:r1 (Ag,8)| is  isomorphic to |hocolimf:l (Az,€) and  hence
|hocolimy’ (Ay, , )| is homeomorphic to [hocolimy (Aq, , )]
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Using Lemma 4.13 we get a diagram-preserving homotopy equivalence
¢ : [hocolimy, (Az, )| — |hocolimy, (Ay,)|.

It now follows from Theorem 3.6 that the arrangements A, and A, are stable
homotopy equivalent. g

Lemma 4.15 There exists a constant C(T) such that the cardinality of C(B) is
bounded by C - n%1+Dkz,

Proof Notice that each By, o, o € Ii, is a definable subset of Rk2+(1+DE depending
only on T'. Also, the cardinality of the index set I, is determined by T'.
Hence the set BB consists of C(T') - (kl’_lH) definable sets each one of them is a

<ky >k
(Bty.os Ty 4106 Tty +10¢)

for some o € Iy,. Here C(T') > 0 is a constant that depends only on 7. Using Ob-

servation 4.1, we have that B is a (B, n{, né)—set for some B determined only by 7.
Now apply Theorem 2.2. |

The theorem now follows from Lemmas 4.14 and 4.15 proved earlier. U

Proof of Theorem 1.9 The proof is similar to that of Theorem 1.8 given above, ex-
cept we use Theorem 3.7 instead of Theorem 3.6, and this accounts for the slight
worsening of the exponent in the bound. d

Proof of Theorem 2.7 Using a construction due to Gabrielov and Vorobjov [9] (see
also [2]) it is possible to replace any given .A-set by a closed bounded .A’-set (where
A’ is a new family of definable closely related to A with #.4" = 2k(#A4)), such that
the new set has the same homotopy type as the original one. Using this construction
one can directly deduce Theorem 2.7 from Theorem 1.9. We omit the details. 0
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