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Abstract We study the facial structure and Carathéodory number of the convex hull
of an orbit of the group of rotations in R

3 acting on the space of pairs of anisotropic
symmetric 3 × 3 tensors. This is motivated by the problem of determining the struc-
ture of some proteins in an aqueous solution.
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1 Introduction

The most aesthetically appealing polytopes arise as convex hulls of orbits of finite
groups acting on a vector space. These include the platonic and Archimedean solids
and their higher-dimensional generalizations, such as the regular polytopes [7]. In
contrast, the analogous objects for compact Lie groups have not attracted much

Work of Sottile supported by NSF CAREER grant DMS-0538734 and Peter Gritzmann of
Technische Universität München.

M. Longinetti
Dipartimento ingegneria agraria e forestale, Università degli Studi di Firenze, Piazzale delle Cascine,
15, 50144 Firenze, Italia
e-mail: longinetti@diaf.unfi.it
url: wwwnt.unifi.it/diaf/nuovosito/withframes/docenti/longinetti/sitolonginetti/index.htm

L. Sgheri
IAC–CNR Sede di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italia
e-mail: luca@fi.iac.cnr.it
url: www.fi.iac.cnr.it/iaga/luca.html

F. Sottile (�)
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
e-mail: sottile@math.tamu.edu
url: www.math.tamu.edu/~sottile

mailto:longinetti@diaf.unfi.it
http://wwwnt.unifi.it/diaf/nuovosito/withframes/docenti/longinetti/sitolonginetti/index.htm
mailto:luca@fi.iac.cnr.it
http://www.fi.iac.cnr.it/iaga/luca.html
mailto:sottile@math.tamu.edu
http://www.math.tamu.edu/~sottile


Discrete Comput Geom (2010) 43: 54–77 55

study. We investigate convex hulls of orbits of the group SO(3) in a particular
10-dimensional representation. Our motivation comes from an algorithm to under-
stand the fold of some proteins.

Certain proteins, such as calmodulin [2], consist of two rigid domains connected
via a region that is flexible in an aqueous solution (i.e. under physiological condi-
tions), and the problem is to determine the relative position and orientation of these
two domains. Calmodulin, as do many other proteins, incorporates metal ions into
its structure. When a paramagnetic ion is substituted, it interacts with the magnetic
field of dipoles within the protein via its magnetic susceptibility tensor χ . Part of
this interaction, the residual dipolar coupling, may be inferred from nuclear magnetic
resonance data and depends solely upon the relative orientation of the two domains.
When the relative orientation of the two domains is not constant, we infer the mean
magnetic susceptibility tensor χ from these data.

We model this relative orientation by a probability measure p on the group SO(3)

of rotations of R
3. Then χ is the average with respect to p of rotations of χ . Re-

covering p from χ is an ill-posed inverse problem. Nevertheless, χ contains useful
information about p. Gardner, Longinetti, and Sgheri [10] gave an algorithm to de-
termine the maximum probability of a given relative orientation of the two domains.
Since χ lies in the convex hull V of the orbit of χ under the group of rotations of R

3,
it admits a representation χ = ∑

j pjRj .χ , where the sum is finite,
∑

j pj = 1 with

pj ≥ 0, Rj is a rotation in R
3, and Rj .χ is the action of Rj on the tensor χ . The min-

imal number of summands needed to represent any point χ in V is the Carathéodory
number of V .

It is often possible to substitute a different metal ion into the protein with a differ-
ent susceptibility tensor χ ′. Repeating the measurements gives a second mean tensor
χ ′ which is the average of rotations of χ ′ with respect to the measure p. Combin-
ing this with χ gives more information about p. Longinetti, Luchinat, Parigi, and
Sgheri [13] adapted the algorithm of [10] when there are two or more metal ions
and showed how this can be used to better understand the structure of calmodulin.
Their algorithm uses some knowledge of the convex hull V 1,2 of the orbit of the pair
(χ,χ ′) under the group of rotations.

We study the Carathéodory number and facets of V 1,2. When χ and χ ′ are linearly
independent, V 1,2 has dimension 10. We call a subgroup of SO(3) which stabilizes a
line in R

3 a coaxial group, and a face of V 1,2 which is stabilized by a such a subgroup
a coaxial face. Our main result is the following.

Theorem 6.6 Faces of V 1,2 have dimension at most 6. The coaxial faces of V 1,2

form a three-dimensional family whose union is a nine-dimensional subset of the
boundary of V 1,2 if and only if χ and χ ′ have distinct eigenvectors. In that case,
almost all coaxial faces have dimension 6, have Carathéodory number 4, and are
facets of V 1,2.

Our main result implies that the Carathéodory number of V 1,2 is at most 8. This
is an advance over [10], where it was bounded between 4 and 10 inclusive.

We are unable to show that the boundary of V 1,2 is the union of coaxial faces
when χ and χ ′ have distinct eigenvectors, but conjecture that this is the case. As a
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consequence of our main result, we also conjecture that the Carathéodory number of
V 1,2 is at most 5.

Given any number N of tensors (χ1, . . . , χN) we may define the convex hull
V 1,...,N . In Sect. 4.2 we prove that dimV 1,...,N is five times the dimension of the
span of (χ1, . . . , χN). In the text, we will omit the superscripts from our notation for
the convex hull.

Magnetic susceptibility tensors are 3 × 3 symmetric trace zero matrices and form
a five-dimensional irreducible representation of the group SO(3) of rotations in R

3.
More generally, one could study the convex hulls of orbits of compact groups. We
were surprised to find that very little is known about such convex bodies, particularly
their Carathéodory numbers and facets. We hope that our work will stimulate a more
thorough study of convex hulls of orbits of compact groups.

In Sect. 2, we describe the motivation for this work from protein structure. In
Sect. 3 we discuss group actions and in Sect. 4 convex hulls of orbits. In Sect. 5 we
complete the analysis of [10] in the case of one metal ion. In Sect. 6 we analyze the
case of two metal ions and deduce Theorem 6.6.

2 Application to Protein Structure

Proteins are large biological molecules synthesized by living organisms. The genome
of an organism contains the chemical formulae for its proteins. Currently, hundreds
of organisms (including man) have had their genomes mapped, and such chemical
formulae are readily available. An important step toward inferring the biological
function of a protein from its chemical formula is to determine its three-dimensional
structure, or its fold.

About one third of all proteins incorporate metal ions into their structures. The
fold of these proteins may be inferred from nuclear magnetic resonance, which can
measure the interactions between paramagnetic metal ions and dipoles within the
protein. The main quantities that can be measured are the pseudo contact shifts (PCS)
[1] and the residual dipolar coupling (RDC) [17]. In this paper we deal only with the
RDC.

The residual dipolar coupling between a paramagnetic ion and a dipole formed by
atoms a and b within the protein depends upon the vector displacement r from the
atom a to the atom b and the magnetic susceptibility tensor χ of the metal ion, which
is a 3 × 3 symmetric matrix. The RDC interaction has the following vector formula

δ := C

‖r‖5
rT χr − C

3‖r‖3
Trace(χ). (2.1)

Here, C is a constant and ‖r‖ is the length of the vector r . This depends only upon
the relative orientation of the dipole and metal ion, and so the RDC data may be used
to infer this relative orientation.

Writing χ = χ0 + 1
3 Trace(χ)I3, where I3 is the 3 × 3 identity matrix and χ0 is the

trace-free or anisotropic part of χ , this formula becomes

δ = C

‖r‖5
rT χ0r.
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Fig. 1 Two orientations of calmodulin

We assume henceforth that χ = χ0 is anisotropic.
The fold of the protein is usually unique, in the sense that small variations of the

shape are allowed. There are proteins, however, that exhibit large variations of shape
under particular conditions. A widely studied example is calmodulin, which has two
rigid domains, called the N-terminal and C-terminal domains, connected by a short
flexible linker. The N- and C-terminal domains are assumed to be rigid bodies with
known structures. Figure 1, obtained with Molmol [11], shows calmodulin in two
different orientations.

The binding site of the metal ion in calmodulin belongs to the N-terminal domain.
The measured RDC of pairs of atoms belonging to the N-terminal domain can be used
to obtain a good estimate of χ . The measured RDC of pairs of atoms belonging to the
C-terminal domain can be used to study the relative orientation of the two domains.

Let us model the relative orientation of the N- and C-terminal domains with a
rotation R. Then there is an unknown probability measure p on the set SO(3) of
rotations such that the mean RDC δ of the pair of atoms a, b in the C-terminal domain
is given by

δ = C

‖r‖5

∫

SO(3)

(Rr)T χ(Rr)dp(R) = C

‖r‖5
rT χr, (2.2)

where the mean magnetic susceptibility tensor χ is

χ =
∫

SO(3)

RT χR dp(R). (2.3)

This tensor χ can be estimated from the RDC of several dipole pairs in the C-terminal
domain. The experimental measures show that in terms of difference of eigenvalues,
χ is between 5 and 20 times smaller than χ [3]. This indicates that p is not a point
mass, that is, the C-terminal domain moves with respect to the N-terminal domain.

The availability of N distinct mean susceptibility tensors χk with respect to dif-
ferent metal ions k = 1, . . . ,N increases the information about p for N up to 5; see,
for instance, [14] and [13, Theorem 3.2]. However, even the exact knowledge of five
mean tensors χk (i.e., 25 real numbers) does not allow the exact reconstruction of the
probability measure p.
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An approach to extract information from the mean tensors is to define pmax(R) as
the maximal fraction of time that the C-terminal can stay in a particular orientation
R, yet still produce the measured mean tensors. Orientations with a large pmax agree
with what are thought to be the most-favored orientations of the C-terminal [13].

The calculation of pmax can be performed geometrically if only RDC is consid-
ered [13]. In the combined PCS+RDC case more information is added [4], how-
ever, the calculation of pmax can only be performed numerically. For the convergence
and efficiency of the algorithm, the minimal number of orientations needed to recon-
struct any admissible set of mean tensors χk should be used. Experience suggests that
adding the PCS data does not increase the actual number of orientations needed [4],
so the Carathéodory number for the RDC case may be used as a basis for the numer-
ical minimization.

3 Group Actions and Anisotropic Tensors

We first recall some basics about representations of compact groups, then consider
the action of the group SO(3) of rotations in R

3 on the five-dimensional space of
anisotropic 3 × 3 symmetric tensors, and finally investigate the coaxial subgroups of
SO(3).

3.1 Representations of Compact Groups

This material may be found in the book by Bröcker and tom Dieck [5, Chap. II]. Let
G be a compact group, such as SO(3). A representation of G is a finite-dimensional
vector space W on which G acts by linear transformations. That is, we have a group
homomorphism ρ : G → GL(W), where GL(W) is the group of invertible linear
transformations on W . For g ∈ G and w ∈ W , write g.w for ρ(g)(w).

A representation W of G is irreducible if its only G-invariant subspaces are {0}
and W . Every representation of G decomposes as the direct sum of irreducible repre-
sentations which is unique in the following way. Given a representation W of G and
a positive integer l, let Wl be the l-fold direct sum of W ,

Wl = W ⊕ W ⊕ · · · ⊕ W︸ ︷︷ ︸
l

.

Elements g of G act diagonally on elements w = (w1, . . . ,wl) of Wl , g.w =
(g.w1, . . . , g.wl). Suppose that W1,W2, . . . is the list of irreducible representations
of G. If U is a representation of G, then there exist unique integers l1, l2, . . . such
that

U � W
l1
1 ⊕ W

l2
2 ⊕ W

l3
3 ⊕ · · · ,

as representations of G. If Ui is the subrepresentation of U mapped to the summand
W

li
i under this isomorphism, then Ui does not depend on any choices and is called

the isotypical component of U corresponding to Wi . If li > 0, then we say that U

contains Wi . Furthermore, if U ′ ⊂ U is a subrepresentation, then the ith isotypical
component of U ′ is U ′ ∩Ui , which is also the image of U ′ under the projection to Ui .
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Haar measure is a G-invariant measure μ on G with 1 = ∫
G

dμ(g). Given a linear
function L : W → R, where W is a representation of G, we may average L over orbits
of G to get a new linear function L′, defined by

L′(x) :=
∫

G

L(g.x) dμ(g).

Since L′ is constant on orbits of G, it is G-invariant. This association L �→ L′ is
called the Reynolds operator. It is an important tool for analyzing G-representations.

Another key tool is Schur’s lemma. A linear map ϕ : W → U between represen-
tations of G is a G-map if for all w ∈ W and g ∈ G, we have g.ϕ(w) = ϕ(g.w).
Let HomG(W,U) be the space of G-maps. A division algebra is a finite-dimensional
associative algebra in which every nonzero element is invertible.

Schur’s Lemma If W �� U are irreducible representations of G, then HomG(W,U)

= 0 and HomG(W,W) is a division algebra that contains R.

Proof Let ϕ : W → U be a G-map. Then the kernel of ϕ is a subrepresentation of W

and so it is either 0 or W , and the image of ϕ, which is a subrepresentation of U , is
either 0 or U . Examining the possibilities leads to the conclusions. �

There are exactly three division algebras which contain R: The real numbers R, the
complex numbers C, and the quaternions H. An irreducible representation W of G

has real, complex, or quaternionic type, depending on EndG(W) := HomG(W,W).

Example 3.1 Consider the group SO(2) of rotations of R
2,

SO(2) =
{

Rθ :=
(

cos θ − sin θ

sin θ cos θ

)

| θ ∈ [0,2π)

}

.

EndSO(2)(R
2) consists of those 2 × 2 matrices M such that MRθ = RθM , and so

EndSO(2)(R
2) = R

(
1 0
0 1

)

+ R

(−1 0
0 1

)

.

This is isomorphic to C (we send
( −1 0

0 1

)
to

√−1), so this representation of SO(2)

has complex type. It is the defining representation U1 of SO(2). If we identify R
2

with C and SO(2) with the circle group S1 := {eiθ | 0 ≤ θ < 2π}, then the action is
scalar multiplication by elements of S1. For any positive integer k > 0, let Uk be the
representation of S1 on C (identified with R

2) where z ∈ S1 acts as multiplication
by zk . These all have complex type.

Example 3.2 The orthogonal group O(2) contains SO(2) as well as the cosets of
reflections

SO(2) ·
(

0 −1
1 0

)

=
{

Rθ ·
(−1 0

0 1

)

| θ ∈ [0,2π)

}

.
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The defining representation U1 of O(2) on R
2 has real type, as

(−1 0
0 1

)

·
(

0 −1
1 0

)

=
(

0 1
1 0

)

�=
(

0 −1
−1 0

)

=
(

0 −1
1 0

)

·
(−1 0

0 1

)

,

and so EndO(2)(R
2) = R · ( 1 0

0 1

) � R.
In the trivial representation U0 = R of O(2), elements act as multiplication by 1.

For a positive integer k, define the map ϕk : O(2) → O(2) ⊂ GL(2,R) by ϕk(Rθ ) =
Rkθ and ϕk

( −1 0
0 1

) = ( −1 0
0 1

)
. This defines the representation Uk of O(2), which has

real type. Restricting to SO(2) gives its representation Uk of complex type.

3.2 Rotations of Anisotropic Tensors

Let e1 = (1,0,0)T , e2 = (0,1,0)T , and e3 = (0,0,1)T be the standard basis of R
3.

The special orthogonal group SO(3) is the group of rotations in R
3. It consists of

3 × 3 real orthogonal matrices with determinant 1,

SO(3) := {
R ∈ R

3×3 | RRT = 1 and detR = 1
}
.

Let R ∈ SO(3), and let TRSO(3) be the tangent space to SO(3) at the matrix R. Let
I be the identity matrix, then TI SO(3) is the space so3 of skew symmetric 3 × 3
matrices, which is the Lie algebra of SO(3). That is,

TI SO(3) = I + so3.

Elements R ∈ SO(3) act on 3 × 3 symmetric matrices (tensors) χ by conjugation,
R.χ := RχRT .1 This preserves the trace of χ , and so SO(3) acts on the space W of
anisotropic (trace-zero) tensors, a five-dimensional irreducible real representation.
We introduce some useful coordinates for W . A point (v,w,x, y, z) ∈ R

5 corre-
sponds to

χ(v,w,x, y, z) :=
⎛

⎝
v 0 0
0 − v

2 0
0 0 − v

2

⎞

⎠ +
⎛

⎝
0 w x

w 0 0
x 0 0

⎞

⎠ +
⎛

⎝
0 0 0
0 y z

0 z −y

⎞

⎠ . (3.3)

Observe that e1 is an eigenvector for χ(v,w,x, y, z) if and only if w = x = 0, e2

is an eigenvector if and only if w = z = 0, and e3 is an eigenvector if and only if
x = z = 0.

3.3 Coaxial Subgroups

The coaxial subgroup Qe is the set of rotations fixing a line in R
3 with direction e. It

is isomorphic to the orthogonal group O(2). Its identity component Q+
e is isomorphic

1This left action (if R,S ∈ SO(3), then R(S.χ) = RS.χ ) is equivalent to the implied action in (2.3).
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to SO(2) and consists of rotations about the axis e, while the other component Q−
e

consists of reflections in axes orthogonal to e. For example, let

Re1,θ :=
⎛

⎝
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞

⎠ and Re3,π :=
⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ . (3.4)

If we fix f perpendicular to e and let θ run over all angles, then Re,θ and Re,θRf,π

give all elements of Qe .
We consider the action of a coaxial subgroup Qe on W . For this, suppose that

e = e1 and let Re1,θ act on χ(v,w,x, y, z). This gives the tensor χ(v′,w′, x′, y′, z′),
where

v′ = v,
(

w′
x′

)

=
(

cos θ − sin θ

sin θ cos θ

)(
w

x

)

= Rθ

(
w

x

)

, and

(
y′
z′

)

=
(

cos 2θ − sin 2θ

sin 2θ cos 2θ

)(
y

z

)

= R2θ

(
y

z

)

.

Thus Re1,θ acts trivially on the coordinate v, by rotation through the angle θ on the
vector (w,x)T , and by rotation through 2θ on the vector (y, z)T . Note that Re3,π

sends χ(v,w,x, y, z) to χ(v,w,−x, y,−z). Thus, if we restrict the action of SO(3)

on W to Qe1 � O(2), then it decomposes as a sum of irreducible representations

W = U0 ⊕ U1 ⊕ U2. (3.5)

This decomposition corresponds to the coordinates (3.3). Projection to the trivial sub-
module U0 = R is, up to a scalar multiple, the unique Qe-invariant linear function
L : W → R.

4 Convex Hulls of Orbits

Let O be an orbit of a compact group G in a representation W of G. The convex hull
V of O is all points of W which are convex combinations of elements of O,

λ1v1 + λ2v2 + · · · + λnvn,

where v1, . . . , vn ∈ O, and the nonnegative numbers λi have sum 1. The set V is a
compact convex set, hence a convex body.

4.1 Faces and Carathéodory Number of V

A face F of V is the subset of its boundary where some linear function L achieves
its maximum on V ,

F := {
v ∈ V | L(v) ≥ L(u) for all u ∈ V

}
.
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We say that L supports F and also that the hyperplane L(x) = L(F) supports F .
(Here, L(F) is a constant.) The tangent spaces to O of its points lying in F are
contained in any hyperplane supporting F . Such a tangent space Tv O at the point v is

v + g.v,

where the action of the Lie algebra g is the derivative of the action of G. The face
F is proper if F �= V . When V is full-dimensional so that dimV = dimW , this is
equivalent to L �= 0. A facet is a maximal face and a vertex is a minimal face. Vertices
are not a convex combination of other points of V .

Lemma 4.1 The vertices of V are exactly the points of O.

Proof The vertices of V are a subset of O := G.x. Let g.x ∈ O and suppose that it is
a convex combination of vertices,

g.x = λ1g1.x + λ2g2.x + · · · + λngn.x.

Multiplying by g1g
−1 expresses the vertex g1.x as a convex combination of points

of O. Thus n = 1 and g.x = g1.x is a vertex. �

When V has dimension d , Carathéodory’s Theorem [6] (see, e.g., [16, Theo-
rem 1.1.4]) implies that any point x of V is a convex combination of at most d+1
vertices. The Carathéodory number of V is the minimum number n such that any
point x ∈ V is a convex combination of at most n vertices. For example, a ball in
R

d has Carathéodory number 2, while a d-simplex has Carathéodory number d + 1.
Fenchel [9] (see, e.g., [15, Theorem 1.4]), showed that the Carathéodory number is
at most d when the set of vertices is connected. More useful for us is a recursive
bound, which is immediate from the observation that any point of V is the convex
combination of any vertex and some boundary point.

Lemma 4.2 The Carathéodory number of a convex body V is at most one more than
the maximal Carathéodory number of its facets.

Suppose that S is a closed (hence compact) subgroup of G that stabilizes a face F

of V , that is s.F = F for all s ∈ S.

Lemma 4.3 When F is proper, there is a nonzero S-invariant linear function on W ,
and W contains the trivial representation of S.

Proof Let L : W → R be any linear function supporting F with L(F) = 	. Let L′ be
the image of L under the Reynolds operator for S. For u ∈ F , we have L′(u) = 	, as
F is S-stable and L′(u) is the average of L over the orbit of S through u.

Suppose that w ∈ V \ F . Then L(w) < L(u) = 	 and L(s.w) is bounded away
from 	 as S.w is compact and disjoint from F . In particular, this implies that
L′(w) < L′(u), which shows that the S-invariant linear function L′ supports F and
that L′ �= 0. Such an S-invariant linear function must factor through the trivial iso-
typical component of W as a representation of S. This completes the proof. �
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4.2 The Dimension of V

If w = (w1, . . . ,wl) ∈ Wl , then we write d(w) for the dimension of the linear span
of the components w1, . . . ,wl of w in W .

Lemma 4.4 Suppose that W is an irreducible representation of a group G having
real type. If w ∈ Wl , then the linear span U of the orbit G.w in Wl is isomorphic to
Wd(w).

Proof Write k := d(w). We may assume that w1, . . . ,wk form a basis for the lin-
ear span of w1, . . . ,wl . Let A = (αij ) ∈ Matl×k(R) be the matrix which writes the
components of w in terms of this basis, wi = ∑k

j=1 αi,jwj for i = 1, . . . , l. For
each i = 1, . . . , l, let ϕi : U → W be the projection to the ith coordinate. Since
ϕi(g.w) = g.wi , we have

ϕi =
k∑

j=1

αi,jϕj for i = 1, . . . , l. (4.5)

This matrix A defines a G-map A : Wk → Wl by

A : (w1, . . . ,wk) �−→
(∑

j

α1,jwj ,
∑

j

α2,jwj , . . . ,
∑

j

αl,jwj

)

. (4.6)

Composing the map ψ := (ϕ1, . . . , ϕk) : U → Wk with A : Wk → Wl gives the iden-
tity map on U : By (4.5), for w ∈ U , we have

w = (
ϕ1(w),ϕ2(w), . . . , ϕl(w)

)
.

We show that the map (4.6) is injective and thus ψ is an isomorphism. A linear map
L : W → R induces maps Lk : Wk → R

k and Ll : Wl → R
l , which commute with

A. If 0 �= w ∈ Wk , then there is some linear map L : W → R with Lk(w) �= 0. Since
A has full rank k, A(Lk(w)) �= 0. But this implies that A(w) �= 0, as A(Lk(w)) =
Ll(A(w)). �

Lemma 4.7 Suppose that W = W
l1
1 ⊕ · · · ⊕ W

lm
m is the decomposition of a rep-

resentation W of G into isotypical pieces, each of which has real type. Let w =
(w1, . . . ,wm) ∈ W , where wi is the component of w in W

li
i . Then the dimension of

the convex hull V of the orbit G.w is

∑

Wi �=R

d(wi) · dimWi.

If W does not contain the trivial representation, then 0 lies in V .

Proof If W contains the trivial representation, assume that it is W1. Since
g.(w −w1) = g.w −w1, we see that the orbits G.w and G.(w −w1) are isomorphic,
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and the same is true for their convex hulls. Thus it is no loss to suppose that w1 = 0,
which is equivalent to assuming that W does not contain the trivial representation.

The linear span U of the orbit G.w is the direct sum of its projections to the
isotypical components W

li
i of W . Each projection is the linear span of G.wi , which

by Lemma 4.4 is isomorphic to W
d(wi)
i . Thus U has dimension

∑
i d(wi)dimWi . We

may replace W by this linear span, and therefore assume that the orbit G.w spans W .
The convex hull of G.w lacks full dimension only if it lies in some hyperplane H

not containing the origin. Suppose that this is not the case and let B be the convex hull
of G.w and the origin. Then V is a proper G-stable face of B and so by Lemma 4.3
W contains the trivial representation, which is a contradiction.

If 0 �∈ V , then there is some linear function L which is bounded above 0 on V . But
then the image L′ of L under the Reynolds operator is nonzero on V . This implies
that L′ �= 0, and so W contains the trivial representation, a contradiction. �

Example 4.8 Lemmas 4.4 and 4.7 do not hold if the representation W has complex
type. For example, let G = SO(2) and W = Ul

k with k, l ≥ 1. Identifying W with C
l

and SO(2) with the circle group S1, elements z ∈ S1 act on C
l as scalar multiplication

by zk . Thus the linear span SO(2).w for w ∈ Ul
k is a complex line, and therefore has

real dimension 2, and not 4 as Lemma 4.4 predicts for general w ∈ W when l, k ≥ 1.
In particular, if W = U1 ⊕ U2

2 , and w ∈ W is general, then the linear span of G.w

has complex dimension 2 and thus real dimension 4.

5 One Metal Ion

Let W be the space of symmetric 3 × 3 anisotropic tensors, a five-dimensional irre-
ducible representation of SO(3) of real type. For each unit vector e ∈ R

3, there is a
linear function

Le : W � χ �−→ 〈e,χe〉 = eT χe ∈ R. (5.1)

If e is an eigenvector of χ , then Le(χ) is its eigenvalue. In general, Le(χ) lies be-
tween the maximum and minimum eigenvalues of χ . Note that Le is Qe-invariant. By
the decomposition (3.5) of W into irreducible Qe representations, any Qe-invariant
linear function is a scalar multiple of Le.

As a matrix, a tensor in W has real eigenvalues and its eigenvectors form an ortho-
normal basis for R

3. Fix a nonzero anisotropic tensor χ ∈ W with maximum eigen-
value M > 0 and minimum eigenvalue m < 0. The intermediate eigenvalue of χ is
−M − m, and we have −M

2 ≥ m ≥ −2M . The orbit O of χ under SO(3) consists of
the anisotropic tensors with maximal eigenvalue M and minimal eigenvalue m. It is
a manifold whose dimension we determine.

Proposition 5.2 The orbit Oχ is three-dimensional unless χ has an eigenvalue of
multiplicity 2, in which case it is two-dimensional.

Proof The dimension of O is equal to the dimension of any of its tangent spaces.
Since

O = {
RχRT | R ∈ SO(3)

}
,
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the tangent space Tξ O at a point ξ ∈ O is the affine space

ξ + {
rξ + ξrT | r ∈ so3

}
. (5.3)

Indeed, consider the action in ξ of an element I + r of the tangent space TI SO(3) =
I + so3:

(I + r)ξ(I + r)T = ξ + rξ + ξrT + rξrT .

Discarding the term which is quadratic in so3 gives (5.3).
It suffices to determine the tangent space to O at the point χ . We may suppose

that χ is diagonal, and let r be a general element of so3,

χ =
⎛

⎝
M 0 0
0 −M − m 0
0 0 m

⎞

⎠ and r =
⎛

⎝
0 −a −b

a 0 −c

b c 0

⎞

⎠ ,

where a, b, c ∈ R. Let α := M + m
2 , β := M −m, and γ := −m− M

2 . Then β > 0 and
α,γ ≥ 0 with α = 0 only when the eigenvalue m has multiplicity 2 and γ = 0 only
when the eigenvalue M has multiplicity 2. We see that Tχ O is the affine subspace
of W

ξ +
⎛

⎝
0 2aα bβ

2aα 0 2cγ

bβ 2cγ 0

⎞

⎠ , (5.4)

where a, b, c ∈ R. This is three-dimensional unless either α = 0 or γ = 0. �

Let V be the convex hull of the orbit O of χ ∈ W . By Lemma 4.4, this is a five-
dimensional convex body.

Lemma 5.5 If χ ∈ V and e ∈ R
3 is a unit vector, then we have

m ≤ Le(χ) ≤ M. (5.6)

In fact, V is the set of symmetric anisotropic tensors satisfying (5.6) [10, Theo-
rem 3.3].

Proof Le(χ) lies between the maximum and minimum eigenvalues of χ . Thus the
inequality (5.6) holds for χ in the orbit of χ . Since a general element of V is a convex
combination of tensors in the orbit of χ , we deduce (5.6). �

A coaxial face of V is a face that is stabilized by some coaxial subgroup Qe.
By Lemma 4.3, a coaxial face stabilized by Qe is supported by a nontrivial Qe-
invariant linear function. As we noted earlier, this linear function is necessarily a
scalar multiple of Le. By the inequality (5.6), there are two possibilities for such
a coaxial face,

FM
e := {

χ ∈ V | Le(χ) = M
}
, and

Fm
e := {

χ ∈ V | Le(χ) = m
}
.

(5.7)
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The coaxial face FM
e consists of tensors χ ∈ V having e as an eigenvector with eigen-

value M and tensors in Fm
e have e as an eigenvector with eigenvalue m.

We now describe the facets of V and determine its Carathéodory number. As in
the proof of Proposition 5.2, set α := M + m

2 ≥ 0 and γ := −m − M
2 ≥ 0.

Lemma 5.8 The boundary of V is the union of coaxial faces (5.7) where e ranges
over all unit vectors in R

3. A nonempty intersection of two coaxial faces lies in the
orbit of SO(3). Each face FM

e is a circle of radius γ and each face Fm
e is a circle of

radius α. When χ has a repeated eigenvalue so that either α or γ vanishes, then the
corresponding coaxial face degenerates to a point.

A consequence of Lemma 5.8 is that the coaxial faces are maximal faces, and are
therefore facets.

Proof By Theorem 3.3 of [10], V is the set of anisotropic tensors whose eigenvalues
lie in the interval [m,M], and so its boundary consists of tensors χ either having max-
imal eigenvalue M or having minimal eigenvalue m. This shows that the boundary of
V consists of coaxial faces, which are thus the facets of V .

We show that the intersection of two coaxial faces lies in the orbit of χ . Suppose
that χ lies on two different coaxial faces. If these are FM

e and Fm
f , then e and f are

eigenvectors of χ with eigenvalues M and m, respectively. The third eigenvalue of χ

is −M − m, and so χ lies in the orbit of χ . If the two faces have the form FM
e and

FM
f with e and f linearly independent, then the eigenvalue M of χ has multiplicity

2 and its third (smallest) eigenvalue is −2M . Since χ ∈ V , this smallest eigenvalue
is bounded below by m; as m ≥ −2M , we see that m = −2M and so again χ lies in
the orbit of χ . The argument is similar if the two faces are Fm

e and Fm
f .

The coaxial face FM
e of V consists of tensors χ ∈ V having e as an eigenvector

with eigenvalue M . Since each point of the boundary of FM
e lies in some other coaxial

face, this boundary lies in the orbit of χ and is necessary an orbit of Qe . We need
only consider the case when χ ∈ FM

e so that this boundary is Qe.χ . Suppose that
e = e1 and χ = χ(M,0,0, γ,0), in the coordinates (3.3). Here, γ = −M

2 − m ≥ 0.
As in Sect. 3.3, elements of Qe act on χ by rotation of the vector (γ,0) formed by
the last two coordinates, and thus FM

e1
is a circle of radius γ , which degenerates to a

point if γ = 0.
We omit the similar arguments for Fm

e . �

Theorem 5.9 If zero is not an eigenvalue of χ , then V has Carathéodory number 3,
and when zero is an eigenvalue, V has Carathéodory number 2.

When zero is not an eigenvalue of χ , this is the main result about V from [10].

Proof First, suppose that zero is not an eigenvalue of χ . Every facet has Carathéodory
number 2, as it is a circle. So by Lemma 4.2, V has Carathéodory number either 2
or 3. By Lemma 4.7, 0 lies in V . If V has Carathéodory number 2, then there exist
λ ∈ [0,1] and R,S ∈ SO(3) with 0 = λR.χ + (1 − λ)S.χ . Multiplying by R−1, this
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Fig. 2 Eigenvalues and invariants of tensors in V

becomes 0 = λχ + (1 − λ)R.χ , for a different rotation R ∈ SO(3), and so

−λχ = (1 − λ)R.χ. (5.10)

Suppose that χ is diagonal. Then (5.10) implies that R.χ is also diagonal.
If M �= −m so that 0 is not an eigenvalue of χ , then one of the diagonal matrices

−λχ and (1 − λ)R.χ has two positive entries and the other has two negative entries,
which is a contradiction. Thus if 0 is not an eigenvalue of χ , then V has Carathéodory
number 3.

Now we assume that 0 is an eigenvalue of χ . We will show that the image of the
map [0,1]×SO(3)×SO(3) → V which takes (λ,R,S) to λR.χ + (1−λ)S.χ meets
each SO(3)-orbit in V and is therefore surjective. They key point is that two tensors
are in the same orbit if and only if they have the same characteristic polynomial.

The characteristic polynomial of a trace-zero matrix χ with eigenvalues s, t,

−s − t is

x3 − x
(
st + t2 + s2) + (

s2t + st2).

The constant term is −det(χ), while the coefficient −α of x is the sum of the pairwise
products of eigenvalues, which is an invariant of the matrix.

Scaling χ , we may assume that its eigenvalues are 1,0, and −1, so that V consists
of tensors χ ∈ W with eigenvalues s, t,−s − t lying in the interval [−1,1]. The set
of such pairs (s, t) are the points of the hexagon of Fig. 2. The three lines through
the origin t = s, t = −s/2, and t = 2s divide the hexagon into six quadrilaterals and
permutations of the eigenvalues permute these quadrilaterals. We leave it to the reader
to check that (s, t) �→ (α,det) is a one-to-one mapping of each quadrilateral onto the
region shown in Fig. 2, which is

X := {
(α,det) ∈ R

2 | 27det2 ≤ 4α3 and α ≤ 1 − |det |}, (5.11)

and is bounded by the curves det = 1 − α, det = α − 1, and 27 det2 = 4α3.
Consider matrices of the form χ(λ, θ, τ ) := λR(θ).χ + (1 − λ)S(τ).χ , where

R(θ) :=
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦ and S(τ) :=
⎡

⎣
cos τ 0 sin τ

0 1 0
− sin τ 0 cos τ

⎤

⎦ .
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Fig. 3 Subsets of faces of the cube

The invariants (α,det) of χ(λ, θ, τ ) are

(
1 − λ(1 − λ)

(
4 sin2 τ + sin2 θ − 2 sin2 τ sin2 θ

)
, λ(1 − λ) sin2 θ

(
1 − 2λ sin2 τ

))
.

If we let u = sin2 θ and v = sin2 τ , then the set of invariants of χ(λ, θ, τ ) for all
(λ, θ, τ ) are the image of the unit cube [0,1]3 under the map

f : (λ,u, v) �−→ (
1 − λ(1 − λ)(4v + u − 2uv),λ(1 − λ)u(1 − 2λv)

)
.

We show that the image of f includes that part of X (5.11) where det ≥ 0. This
will complete the proof, as replacing χ by −χ = S(π

2 ).χ ∈ V in our definition of f

changes the sign of the determinant and does not change the invariant α.
Figure 3 shows subsets of the faces v = 1 and u = 1 of the cube which include the

segments λ = 1/3 and have boundaries the indicated curves. The map f is one-to-
one on the interior of each region, and the images cover that part of X with det ≥ 0,

meeting only along the curve det =
√

4
27 (α − 1

4 )(α − 1)2 for 1
3 ≤ α ≤ 1, as shown in

Fig. 4. The line 3 det = (α− 1
9 ), which is tangent to the boundary curve 27 det2 = 4α3

at the point ( 1
3 , 2

27 ), is the image of the lines λ = 1
3 in Fig. 3. This completes the

proof. �

Finally, we identify the hyperplanes supporting facets of V . By Lemma 5.8, the
faces FM

e and Fm
e are two-dimensional, unless χ has an eigenvalue with multiplicity

2, and in that case exactly one face is degenerate.

Proposition 5.12 The facets FM
e and Fm

e have a unique supporting linear function,
unless they are degenerate.

Proof It suffices to determine the hyperplanes supporting faces which contain χ .
Any hyperplane supporting the vertex χ contains the tangent space Tχ O at χ to
the orbit O through χ . Choose coordinates so that χ = χ(M,0,0, γ,0) is diagonal
(γ = −M

2 − m) so that χ ∈ FM
e1

∩ Fm
e3

. Recall that Tχ O (5.4) is the affine 3-plane
in W

χ(M,∗,∗, γ,∗),



Discrete Comput Geom (2010) 43: 54–77 69

Fig. 4 Image of subsets
of Fig. 3

where ∗ represents an arbitrary real number. If (x1, . . . , x5) are the coordinates (3.3),
then hyperplanes containing Tχ O have equation

∑
i cixi = c, where

c2 = c3 = c5 = 0, and c1M + c4γ = c. (5.13)

If γ �= 0, then FM
e1

is nondegenerate and contains the additional point

Re1,
π
2

= χ(M,0,0,0, γ ) =
⎛

⎝
M 0 0
0 −M

2 γ

0 γ −M
2

⎞

⎠ ,

which imposes the further condition c1M = c on a support hyperplane to FM
e1

. Thus
c1 = c/M and c4 = 0. Setting c = M so that c1 = 1, we see that the support hyper-
plane to FM

e1
is defined by x1 = M , which is Le1(χ) = M .

If ν = M + m
2 �= 0, then Fm

e3
is nondegenerate and it contains the point

⎛

⎝
−m

2 ν 0
ν −m

2 0
0 0 m

⎞

⎠ = χ

(

−m

2
, ν,0,−3m

4
,0

)

,

and so a support hyperplane to Fm
e3

must satisfy (5.13) and also −c1
m
2 − c4

3m
4 = d .

Subtracting these equations and dividing by ν, we see that c1 = 2c4, and so

x1 + 2x4 = −2m,

is the support hyperplane to Fm
e3

. Note that x1 + 2x4 is −2Le3(χ). �

6 Two Metals

Let χ1, χ2 ∈ W be linearly independent anisotropic tensors and set χ := (χ1, χ2) ∈
W 2. By Lemma 4.7, the convex hull V of the orbit O := SO(3).χ is a 2 · 5 = 10-
dimensional convex body containing the origin. Its boundary is 9-dimensional.

We study the facial structure of V ⊂ W 2. One tool will be a family of SO(3)-
equivariant maps πα : W 2 → W . We first determine the dimension of the orbit, show
that the maximum dimension of a facet is 6, and then define coaxial faces. Our main
result is that coaxial faces are facets if χ1 and χ2 have distinct eigenvectors. In that
case, almost all coaxial faces have dimension 6 and Carathéodory number 4. We are



70 Discrete Comput Geom (2010) 43: 54–77

unable to rule out the existence of other facets, but we conjecture that there are no
other facets.

Let Span(χ) ⊂ W be the two-dimensional subspace of W spanned by χ1 and χ2.
The structure of V depends only on Span(χ). Indeed, if χ ′

1, χ
′
2 ∈ Span(χ) are linearly

independent, then there is a 2 × 2 invertible matrix A = (aij ) such that

χ ′
1 = a11χ1 + a12χ2, χ ′

2 = a21χ1 + a22χ2.

This induces an SO(3)-isomorphism W 2 ∼−→ W 2:

W 2 � (w1,w2) �−→ (a11w1 + a12w2, a21w1 + a22w2) ∈ W 2

which sends V to the convex hull of the orbit of (χ ′
1, χ

′
2). This is nothing more than

a change of coordinates on W 2.
Any nonzero vector α = (α1, α2) ∈ R

2 gives an SO(3)-map

πα : W 2 −→ W (6.1)

defined by πα(w1,w2) := α1w1 + α2w2. Write wα for πα(w). In particular, χα :=
πα(χ) ∈ Span(χ). Set Vα ⊂ W to be the convex hull of the orbit Oα := SO(3).χα .
Since πα(SO(3).χ) = SO(3).χα , we have πα(Oχ ) = Oα and Vα = πα(V ). We com-
pute the dimension of the orbit Oχ .

Theorem 6.2 dim Oχ = 3.

Proof We will show that dim Oα = 3 for some α ∈ R
2. As πα(Oχ ) = Oα , this im-

plies dim Oχ ≥ 3. Since dim SO(3) = 3, we have dim Oχ ≤ 3 and so dim Oχ = 3.
By Proposition 5.2, the dimension of Oα is 3 if and only if χα has distinct eigen-

values. If either χ1 or χ2, say χ1, has distinct eigenvalues, then dim O(1,0) = 3 and we
are done. Suppose the contrary, that neither χ1 nor χ2 has distinct eigenvalues. That
is, for each i = 1,2, χi has a two-dimensional eigenspace with eigenvalue αi . Since
0 cannot be a repeated eigenvalue, neither α1 nor α2 is zero. These eigenspaces must
meet, so χ1 and χ2 share an eigenvector, which is an eigenvector for the nonzero ten-
sor χα := α2χ1−α1χ2 ∈ Span(χ) with eigenvalue 0. But then χα has distinct eigen-
values and so dim Oα = 3. �

Lemma 6.3 The maximum dimension of a proper face of V is 6.

Proof Let F be a proper face of V and let S ⊂ SO(3) its stabilizer subgroup,

S = {
g ∈ SO(3) | g.F ⊂ F

}
.

This is a closed, proper subgroup, and thus either has dimension 1 (in which case it is
a coaxial subgroup Qe or a rotation subgroup Q+

e ), or it is finite and has dimension
zero.

Let F ◦ be the relative interior of F , those points of F which do not lie in any other
face of V of the same or smaller dimension. If g.F ◦ ∩ F ◦ �= ∅, then g.F = F , and so
g ∈ S.
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Let ∂V be the boundary of V and consider the map f : SO(3) × F ◦ → ∂V de-
fined by

f : (g, v) �−→ g.v.

This map is not 1-1: Suppose that g.v = h.w, for g,h ∈ SO(3) and v,w ∈ F ◦. Then
h−1g.v = w and so h−1g.F ◦ ∩ F ◦ �= ∅, which implies that s := h−1g ∈ S. Then
s.v = w.

This calculation shows that the fibers of f have the form

{(
gs−1, sv

) | s ∈ S
}
, for g ∈ SO(3) and v ∈ F ◦.

Thus we have the dimension calculation

dim ∂V ≥ dim SO(3) + dimF ◦ − dimS.

Since dim ∂V = 9 and dim SO(3) = 3, this gives

6 + dimS ≥ dimF. (6.4)

If S is finite, then dimF ≤ 6. If S has dimension 1 so that it is either Qe or Q+
e for

some e, then F could have dimension up to 7. By (3.5), W 2 = R
2 ⊕ U2

1 ⊕ U2
2 as a

representation of S. If S = Qe , then Lemma 4.7 implies that F has even dimension,
and if S = Q+

e , then Example 4.8 implies that F has dimension 0, 2, or 4, which
completes the proof. �

6.1 Coaxial Faces

A coaxial face of V is a face that is stabilized by some coaxial subgroup, Qe. By
Lemma 4.3, such a face is supported by a Qe-invariant linear function, which must
factor through the projection to the trivial isotypical component of W 2, by Schur’s
Lemma. Since this component is R

2 (3.5), L is the pullback of a linear map

R
2 � (M1,M2) �−→ α1M1 + α2M2 ∈ R.

Up to a scalar, this is the composition of the Qe-invariant linear function Le (5.1) on
W with πα , which is the map Le,α defined by

Le,α(w) := Le(wα) = 〈e,wαe〉.
Suppose now that e is a unit vector. For each nonzero α ∈ R

2, define

Mα := maximum eigenvalue of χα, and

mα := minimum eigenvalue of χα.

If χ ∈ V , then χα ∈ Vα , and so by Lemma 5.5 we have

Mα ≥ Le,α(χ) ≥ mα, (6.5)
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with equality only when e is an eigenvector of χα having eigenvalue Mα or mα . Thus
coaxial faces are the faces of V defined by equality in (6.5).

For e ∈ R
3 a unit vector and 0 �= α ∈ R

2, define the coaxial face

Fe,α := {
χ ∈ V | Le,α(χ) = Mα

}
.

If χ ∈ Fe,α , then e is an eigenvector of χα with eigenvector Mα . As in Sect. 5, each
coaxial face Fe,α is the convex hull of an orbit Qe.χ

′, for some χ ′ ∈ O.

Theorem 6.6 Faces of V have dimension at most 6. The coaxial faces of V form a
three-dimensional family whose union is a nine-dimensional subset of the boundary
of V if and only if χ1 and χ2 have distinct eigenvectors. When this happens, almost
all coaxial faces have dimension 6, have Carathéodory number 4, and are facets of V .

If the boundary of V is the union of the coaxial faces, then Lemma 4.2 implies
that the Carathéodory number of V is at most 5, and we conjecture this is the case.
If there are faces of dimension 6 that are not coaxial, then Carathéodory’s Theorem
implies that their Carathéodory number is at most 7. Then Lemma 4.2 implies the
following corollary of Theorem 6.6.

Corollary 6.7 The Carathéodory number of V is at most 8.

By “almost all” in the statement of Theorem 6.6, we mean in the algebraic sense:
Except for those α ∈ R

2 lying in finitely many half-rays in R
2, Fe,α has dimension 6

when χ1 and χ2 have distinct eigenvectors. The proof of Theorem 6.6 is done in the
series of lemmas below.

Remark 6.8 The condition that the magnetic susceptibility tensors χ1 and χ2 have
distinct eigenvectors has already been considered in protein folding. It implies that
RDC measurements from the two ions are sufficient to remove the symmetry property
of the RDC [12].

Since M−α = −mα , there is no need for two types of coaxial faces as in Sect. 5.
Since if r > 0, then Mrα = rMα and Le = L−e, we have

Fe,α = F−e,α = Fe,rα

if r > 0. Thus we may assume that α lies on the unit circle S1 in R
2. We also only

need to consider the unit vector e up to multiplication by ±1, that is, as a point in the
real projective plane, RP

2, which is a two-dimensional manifold.

Lemma 6.9 The coaxial faces Fe,α form a three-dimensional family parameterized
by RP

2 × S1. For each α ∈ S1, any two coaxial faces Fe,α and Fe′,α are isomorphic.

Since the boundary of V is nine-dimensional and it has a three-dimensional family
of coaxial faces, we see again that the maximum dimension of a coaxial face is 6.



Discrete Comput Geom (2010) 43: 54–77 73

Proof Suppose that e ∈ R
3 is an eigenvector for χα with maximal eigenvalue Mα .

Then χ ∈ Fe,α and Fe,α is the convex hull of the orbit Qe.χ . If R ∈ SO(3), then

R.Qe.χ = RQeR
T .R.χ = QRe.(R.χ).

But (R.χ)α is an anisotropic tensor having eigenvector Re with eigenvalue Mα .
Therefore FRe,α is the convex hull of QRe.(R.χ) = R.Qe.χ , and thus equals
R.Fe,α . �

We now determine the dimension of the coaxial faces. By Lemma 6.9, we need
only study one coaxial face Fe,α for each α ∈ S1. We compute the dimension of the
affine span of an orbit Qe.χ , where e is an eigenvector of χα . This is the dimension
of a coaxial face when the eigenvalue associated to e is a maximal eigenvalue of χα .
Since this dimension is the rank of a matrix, those entries are algebraic functions of
α. Thus, for all but finitely many α, this rank will be constant and it will be smaller
for α in that finite set.

Let α ∈ S1 and suppose that χα,χ ′ ∈ Span(χ) are linearly independent, and let e

be a unit eigenvector of χα . The decomposition (3.5) of W into Qe-isotypical com-
ponents induces a decomposition of the tensors χα and χ ′ into their components in
R ⊕ U1 ⊕ U2,

χα = Mα ⊕ 0 ⊕ yα and χ ′ = M ′ ⊕ x′ ⊕ y′.

The U1-component of χα is 0, because e is an eigenvalue of χα . Let d1 ∈ {0,1} be
the dimension of the linear span of x′ in U1 and d2 ∈ {0,1,2} be the dimension of the
linear span of yα, y′ in U2. By Lemma 4.7, the dimension of the convex hull of Qe.χ

is d1 · dimU1 + d2 · dimU2, which implies the following lemma.

Lemma 6.10 The coaxial face Fe,α has dimension 2(d1 + d2).

Thus again a coaxial face has dimension at most 6.

Lemma 6.11 If χ1 and χ2 have a common eigenvector, then coaxial faces have di-
mension 2 or 4.

Proof Fix α ∈ S1 and let f be a common eigenvector of χ1 and χ2. Then it is an
eigenvector of any χα . Let χ ′ be another tensor in Span(χ) which is not proportional
to χα . Suppose that e = e1 is an eigenvector of χα , that f ∈ {e1, e2, e3}, and write χα

and χ ′ in the coordinates (3.3),

χα = (Mα,0,0, y, z) and χ ′ = (M ′,w′, x′, y′, z′).

Note that (w′, x′) ∈ U1 and (y, z), (y′, z′) ∈ U2.
If f = e1, then (w′, x′) = (0,0), and so d1 = 0. If f = e2 or e3, then z = z′ = 0

and so d2 = 1. In either case, d1 + d2 < 3 and so the coaxial face Fe,α has dimension
2 or 4. �
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Lemma 6.12 If χ1 and χ2 do not have a common eigenvector, then there is a coaxial
face with dimension 6.

Proof Suppose that e = e1 and e1, e2, e3 is an ordered basis of eigenvectors of χ1
with the eigenvalue of e maximal. Write χ1 and χ2 in the coordinates (3.3),

χ1 = χ(M1,0,0, γ,0), χ2 = χ(M2,w,x, y, z).

The dimension of the coaxial face Fe1,(1,0) is 6 if and only if (w,x) �= (0,0) and
(γ,0), (y, z) ∈ U2 are linearly independent. Suppose that dimF < 6. We cannot have
(w,x) = (0,0) for then e1 is a common eigenvector of χ1 and χ2, a contradiction.
Thus the vectors (γ,0), (y, z) are dependent.

If γ = 0, then χ1 has a repeated smallest eigenvalue with eigenspace spanned
by e2 and e3. Changing the last two coordinates, we may assume that z = 0. We
cannot also have either w = 0 or x = 0 for then χ1 and χ2 have either e2 or e3 as a
common eigenvector. If y = 0, then −xe2 + we3 is a common eigenvector, so y �= 0
and Fe1,(1,0) has dimension 4. In the coordinates (3.3) with respect to the ordered
basis e3, e2, e1, −χ1 and χ2 are

−χ1 = χ

(
M1

2
,0,0,3

M1

4
,0

)

and χ2 = χ

(

−M2

2
− y,0, x,−3

M2

4
+ y

2
,w

)

.

Since w,x �= 0, the affine span of Qe3 .χ has dimension 6. Since M1
2 is the maximal

eigenvalue of −χ1 with eigenvector e3, this shows that Fe3,(−1,0) has dimension 6.
The third possibility is that z = 0. But then the same arguments as in the previous

paragraph show that coaxial face Fe3,(−1,0) has dimension 6. �

6.2 Structure and Carathéodory Number of a Coaxial Facet

Suppose that F is a coaxial face of dimension 6. We may assume that F is the convex
hull of the orbit Qe.χ and that F spans the representation U1 ⊕ U2

2 . This Qe-orbit is
the union of two orbits of its identity component Q+

e (� SO(2)). Call them O+ and
O−. By Example 4.8, each orbit spans a subrepresentation of U1 ⊕U2

2 isomorphic to
U1 ⊕ U2. Set

F± := convex hull of O± and W± := linear span of O± � U1 ⊕ U2.

Proposition 6.13 The faces F± each have dimension 4 and Carathéodory number
3. Points on their boundary are the convex hull of one or two vertices, while points in
their relative interiors are the convex hull of three vertices.

Proof As in Example 4.8, we identify Q+
e � SO(2) with the circle group S1 and

U1,U2 with C. Then z ∈ S1 acts on U1 as scalar multiplication by z and on U2 as
scalar multiplication by z2 and F± has dimension 4.

Let (u, v)T ∈ C
2 � U1 ⊕ U2 be the point corresponding to χ . Then

O+ = {(
eiθu, e2iθ v

) | 0 ≤ θ < 2π
}
,



Discrete Comput Geom (2010) 43: 54–77 75

and its convex hull is
{(

n∑

j=1

λje
iθj u,

n∑

j=1

λje
2iθj v

)∣
∣
∣
∣

∑

j

λj = 1,0 ≤ θ1, . . . , θn < 2π

}

.

But this is B.(u, v)T , where B is the set of 2 × 2 diagonal matrices whose entries are

(
n∑

j=1

λj e
iθj ,

n∑

j=1

λj e
2iθj

)

where
∑

j

λj = 1 and 0 ≤ θ1, . . . , θn < 2π. (6.14)

Thus F+ (and also F−) is isomorphic to B .
Curto and Fialkow [8] characterized the points of B . Let (a, b) be a point of

B (6.14) and p the corresponding measure on S1,

p(eiθ ) =
{

λj if θ = θj ,

0 otherwise.

Set γij := ∫
S1 zizj dp(z) for 0 ≤ i, j with i + j ≤ 2 and form the moment matrix

M :=
⎛

⎝
γ00 γ01 γ10
γ10 γ11 γ20
γ01 γ02 γ11

⎞

⎠ =
⎛

⎝
1 a a

a 1 b

a b 1

⎞

⎠ .

Proposition 6.15 (Curto and Fialkow [8]) The points (a, b) ∈ B are exactly the
points (a, b) ∈ C

2 such that M is positive semidefinite. The rank of M is the min-
imum number of summands needed to represent the point (a, b) (6.14).

In particular, this implies that each body F± has Carathéodory number 3.
By Proposition 6.15,

B = {
(a, b) ∈ C

2 | 1 − |a|2 ≥ 0,1 − |b|2 ≥ 0,1 + a2b + a2b − 2|a|2 − |b|2 ≥ 0
}
.

If 1 − |a|2 = 0, then a ∈ S1 and so n = 1 in (6.14). If 1 − |b|2 = 0, then b ∈ S1 and
either n = 1 in (6.14) or n = 2 with |θ1 − θ2| = π . Thus if M has rank 3, then |a| < 1
and |b| < 1, and so (a, b) lies in the interior of B as the inequalities are strict. This
implies that points on the boundary of B are the convex hull of one or two vertices
and this completes the proof of Proposition 6.13. �

Now we complete the proof of Theorem 6.6, showing that the coaxial facet F has
Carathéodory number 4. The coaxial facet F is the convex hull of F+ and F−. Let
v ∈ F . We suppose that v �∈ F+ ∪ F−, for otherwise v is the convex combination of
at most three vertices. Then there exist v± ∈ F± and λ ∈ (0,1) such that

v = λv+ + (1 − λ)v−.
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If both v+ and v− lie on the boundary of their respective subfaces, then each is a
convex combination of at most 2 vertices, and v is a convex combination of at most
4 vertices.

Suppose instead that v+ lies in the relative interior of F+. The linear span of v and
W− has dimension 5 in the six-dimensional space U1 ⊕U2

2 and therefore it meets W+
in a three-dimensional affine subspace U+. Similarly the span of v and W+ meets
W− in a three-dimensional subspace U−. Observe that both U+ and U− contain the
two-dimensional linear subspace W+ ∩W− = U1 so that their span has dimension 4.

Consider the cone over U− ∩ F− with vertex v. Removing v, this has two com-
ponents. One meets F−. Let C be the component that does not meet F−, and let
C+ := C ∩ U+. This is a convex set which contains v+ and thus meets the relative
interior of B+ := U+ ∩ F+. Points v′ ∈ C+ ∩ B+ are exactly those points of F+ for
which there exists a point v′′ ∈ F− such that v is a convex combination of v′ and v′′.
There are two possibilities.

(1) The boundary of C+ meets the boundary of B+.
(2) Either the boundary of C+ is a subset of B+ or vice-versa.

In the first case, let v′ be a point common to the two boundaries. Then v′ lies on
the boundary of B+ and v′′ lies on the boundary of B−. But these are subsets of the
boundaries of F±, and so v is the convex combination of at most four vertices.

In the second case, suppose that the boundary of B+ is a subset of C+. Since B+
is the intersection F+ with a hyperplane, its boundary must contain a vertex of F+,
as the set of vertices of F+ is a connected one-dimensional set whose convex hull is
F+. Suppose that v′ ∈ B+ is a vertex of F+. Since v′′ ∈ F− is a convex combination
of three vertices of F−, we see that v is a convex combination of 1 + 3 = 4 vertices.
If the boundary of C+ is a subset of B+, then we may choose the point v′ in the
boundary of C+ so that the corresponding point v′′ is a vertex of F−. Again, v is the
convex combination of 3 + 1 = 4 vertices.
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