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Abstract We give a new algorithm for enumerating all possible embeddings of a
metric space (i.e., the distances between every pair within a set of n points) into
R? Cartesian space preserving their lo, (or I1) metric distances. Its expected time
is O(n%log® n) (i.e., within a poly-log of the size of the input) beating the previous
O(n?) algorithm. In contrast, we prove that detecting lgo embeddings is NP-complete.
The problem is also NP-complete within / % or lgo with the added constraint that the
locations of two of the points are given or alternatively that the two dimensions are
curved into a three-dimensional sphere. We also refute a compaction theorem by
giving a metric space that cannot be embedded in lgo; however, it can be embedded
if any single point is removed.

Keywords Embedding - Algorithm - NP-complete - Metric space - /-infinity norm -
Mobius - ¢, (k)

1 Introduction

An n-point metric space consists of the distances d(P, P’) between every pair of
points P and P’ within a set of n points x. We say that it can be isometrically em-
bedded into llq‘ (the Cartesian space R* endowed with the l4-distance) if there exists

a distance-preserving mapping ¢ : x — R, i.e.
1/q

k
VP, P ex, d(P,P)=|pP)—eP)|=()_|Py;— Pl
i=1
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Finding such an embedding, if possible, is not difficult for 1 < g < oo because the
location in R¥ of a point is completely determined by knowing its l,4 distance to
k + 1 linearly independent locations. The same is not true for g = 1 with ||¢(P) —
P(Q)l = Yi—; |Py, — Qx| or for g = oo with [l¢(P) —9(Q) || = maxt_, | Py, — Q1.
because with these metrics, there may be an infinite number of locations with the
same distances to any given finite set of points.

Malitz and Malitz [10] gave a O(n?) algorithm for embedding an arbitrary n-point
metric space into /7 or into /2. Alternative algorithms and information on this can be
found in [2, 4, 7, 8]. Our first result is a new polynomial time algorithm which does
the same with expected O(n?log?n) time (i.e., within a poly-log of the size of the
input). Moreover this algorithm can enumerate all such embeddings.

Avis and Deza [1] showed that deciding if a finite metric space embeds into lll‘
embeddings for arbitrary k is NP-complete. It is conjectured that embedding into / {‘
can be done in n€® time and hence polynomial for a fixed k. In contrast, we prove
that detecting lgo embeddings is NP-complete. The problem is also NP-complete for
112 or lgo with the added constraint that the locations of two of the points are given or,
alternatively, that the two dimensions are curved into a three-dimensional sphere.

For a more combinatorial version of the problem, define ¢4 (k) to be the smallest
integer, if it exists, such that a metric space embeds into l]q‘ if and only if all subspaces
with at most ¢, (k) points embed. Note that this automatically gives a O(n® ®)y time
algorithm for detecting l’(; embeddings simply by checking all (Cq'zk)) subsets of the
points of cardinality c, (k). Merger [6, 12] proved a compactness theorem stating
that co(k) = k + 3. A similar theorem is likely also true for 1 < g < oo. Malitz and
Malitz [10] proved that for l% and l<2>o only 11 points are needed. In [10, 13], they
proved that the number of points for l{‘ is at least 2k + 2, which they conjectured is
tight. Though [3] confirmed that c{(2) = 6, [3, 5] disproved this conjecture by show-
ing that ¢1(3) > 10, and c; (k) > k2. This paper focuses on the I, metric. Besides
Coo0(2) = 6, little was known. It is asked as problem 3.13 from the list “Open prob-
lems on embeddings of finite metric spaces” edited by J. Matousek [11]. Our proving
that detecting lgo embeddings is NP-complete proves that, unless P = NP, there is
no poly-time algorithm for this and hence c(3) cannot be a constant. This paper
goes on by showing that, for any n > 24, a metric space cannot be embedded in lgo;
however, it can be embedded if any single point is removed, effectively showing that
Coo(3) is unbounded.

The model for the algorithm is as follows. Because the input consists of On?)
real values for the distances between the n-points and because an embedding consists
of real-valued coordinates for the points, the machine must be able to manipulate real
numbers and perform simple arithmetic operations on them in constant time. Bandelt
and Chepoi [4] outlined how to derive all embeddings in /1-space from a single one.
The embeddings to be “enumerated” fall into at most O(n) different classes. Within
one class of embeddings the points fall into components, each of which is embedded
in a fixed way relative to itself, but which can be transposed and flipped relative to
the other components. There being an infinite number of these transpositions and
an exponential number of these ways of flipping, we clearly do not have time to
enumerate each, but we are able to describe the range of motion in O(n) space so
that all O(n) of these classes can be outputted in the required O(n> log2 n) time. We
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will give the embedding algorithm for lgo and not for / f, because of the well-known
translation between these two spaces.

2 Algorithm for Embedding into lf or lgo
The main goal of this section is to prove the following result.

Theorem 1 Given an n-point metric space (x, d), one can enumerate all its possible
isometric embeddings into lgo or lf in a total of O(n*log? n) time.

Proof of Theorem 1 Let U and V be a diametral pair of (x,d) and let y=d(U, V).
Modulo translation and change in dimensions, we can assume without loss of gener-
ality that the points U and V are embedded at locations ¢ (U) = (0,0) and ¢(V) =
(x,7), for some unknown value x € [0, y]. Since ||¢(U) — (V)| = max(x,y) =7,
we say that this distance d(U, V) is manifested in the Y dimension. Given any point
P € x different from U and V, we will look for the location ¢(P) = (P, Py) at
which to embed it. Set up =d (U, P) and vp =d(P, V) (or simply u and v when P
is understood). Define S to be the set of all points Q of x which are between U and
V,ie.suchthatd(U,V)=d(U, Q) +d(Q,V)=ug + vg. A key issue is how the
difference vp — u p compares to x. To help us determine this, define the set of values
A={lvp—up|| P &S8}. Sort these values and let xg = 0, x; be the ith distinct value
in A, and x,41 = oo. Separately, for each i, the algorithm will enumerate all possible
embeddings of the points into lgo in which the unknown value X is equal to x; and
then those for which X is strictly within the interval (x;, x;11). From here on, let us
restrict our attention to X being in one such interval. Note that this restriction allows
us to compare X to |[vp — u p| for each point P. In fact, the next step of the algorithm
is to classify each point P according to this comparison. Section 2.1 uses this classifi-
cation to narrow where each point can be embedded to one of two regions and then to
narrow each point down to only one of these two regions. Section 2.2 then manages
either to fix the X-dimension of every point or to fix the ¥ dimension of every point.
From here, it partitions the points into components, each of which is embedded in a
fixed way relative to itself, but which can be transposed and flipped relative to the
other components. Finally, Sect. 2.3 describes how in a total of O(n?log?n) time,
the above tasks can be repeated for each of the O(n) different intervals to which X is
restricted. (]

2.1 Classifying the Points

Consider some i € [0,n] and either fix the unknown value X to equal x; or to
be strictly within the interval (x;, x;4+1). Classify each point P into the six cat-
egories as shown in the first column of the following table. Whether P € S is
easy to determine. For the remaining points, note that |[v — u|, which is short for
lvp —up| =|d(P,V) —d(P,U)|, is in the set A. Because we have fixed how X
compares to the values in A, we can determine whether or not v — u > x. If so,
classify P € A. Proceed in a similarly fashion for the remaining classifications. De-
pending on the classification of P, the table goes on to define two regions of loca-
tions R'(P) and R?(P) within which the point must be embedded. For example,
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Fig. 1 The space lgo is partitioned into the areas according to how points are embedded into them. For
example, if point P is classified as .4, P must be embedded either at the location Rl(P) =(—u,y—v)or
location R2(P) = (u,y — v). These locations fall within the regions labeled L/A and L/j‘l respectively

if point P is classified as S, then R'(P) = (?, u). This states that P must be em-
bedded at (Py, Py) where P, = u and the X-coordinate Py is not determined. Fig-
ure la goes on to specify that P must be embedded in the region of locations la-
beled L:S' As such, it specifies the range of values that P, can have to be within
the dotted line labeled (?,u) in the figure. Similarly, if point P is classified as
A, P must be embedded either at the location R!(P) = (—u, y — v) or location
R?*(P) = (u,y — v). These locations fall within the regions L'y and L" in Fig. la.

S={Plut+v=7) Rl(P)=<?,u>=<?,§—v>

A={P¢S|v—u=>x)} R(P)—( u,5—v) R%2(P)= (u,5 —v)
B={P¢S|v—u=5%} R(P)—< u,)=(E-v,2 RXP)=(u ?—v>
C={P&S||v—u|<x} R(P):(x—v,u) RZ(P)_( y—)
B={P&S|u—v=7) RUP)=(F—v,u) R2(P) = (u, > T+v,7
A={P&S|u—v>x} RYP)=(F—v,u) R2(P)—(x+vu>

Alternatively, these ideas can be expressed using the well-known notion of a gated
set. A subset S of a metric space is called gated if every point P outside S contains
a (necessarily unique) point P’ € S (the gate for P in S) such that for every point
SeS,d(P,S)=d(P,P)+d(P,S). The set S with corners U and V is a gated
set of lgo. See Fig. 1b. Our classification of the points P corresponds to which edge
or corner of S the gate P’ of P is on. We do this classification based on the value
vp — up. Alternatively, we could consider the values ap =d(U, P') = %[d(U, P)+
dlU,V)—d(P,V)]= %[up +y—vpland Bp =d(V, P") = %[d(V, P)+dU,V)—
d(P,U)]= %[vp +73 —up]. If the position of P is unknown, from the knowledge of
up, and v, we infer that there exist only two possible locations of the gate P’ of P.
As well, if the location of this gate is known and is not a corner of S, then we can
precisely deduce the location of P. In addition, we can also tell whether or not the
gates of two points P and W belong to the same (open) side of S. This can be used
to place P once W has been placed.
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Fig.2 For each classification of points P, it is shown how the square around U and that around V intersect
at two regions

Lemma 1 If X is restricted as stated, then point P must be embedded either within
the defined region R'(P) or R*(P). For a fixed i, this classification can be done
easily in time O(n).

Proof of Lemma I Consider some point P. It must be embedded within the rectangle
—(y—%) < P, <yand 0 < P, <Y otherwise the distance from P to either U or V
would be greater than y, contradicting the choice of U and V. See Fig. la.

The input states that the distance between P and point U is d(U, P), which we
are denoting u. Since ¢(U) = (0, 0), we obtain u = ||¢(P) — @(U)|| = max(| Py —
0l, Py — 0). This places P within the half square of radius # around U, namely
(Px, Py) € {{(~u, ?),(?,u), (u,7)}. Note that these three options correspond to the
point being embedded left, above, or right of the two 45° lines emanating up from
location ¢(U). We have been also been told that the distance from P to V is v,
which places it within the half square of radius v around V, namely either (Py, P,) €
{(x—v,7, (2, y—v), (x+v, ?)}, which correspond to being embedded left, below, or
right of the two 45° lines emanating down from locations ¢(V'). P must be embedded
in the intersection of these two half squares. See Fig. 2.

If u + v =7, then these two half squares intersect only along their edge above U
and below V as shown in Fig. 2: S. We argue in this case that the distances u p and vp
are both manifested in the y-dimension and hence its embedding in the y-dimension
is Py =u =7y —v. If P, were bigger than this, then the distance from P to U would

@ Springer



752 Discrete Comput Geom (2008) 39: 747-765

be bigger than u and if it were smaller, then the distance from P to V would be bigger
than v.

If u + v <7, then the two rectangles around U and V do not intersect and by the
triangle inequality no embedding is possible.

When u + v > ¥, how the two squares intersect depends on the ordering of the
sides of the squares. Let LU = —u, RU =u, LV =X — v and RV =X + v denote
the X-coordinate of the right and left sides of the squares around U and V.

If Pe A thenv—u>x>0,gving LV=X—-v<-u=LU <RU=u<x<
—X+ v <X+ v=RV. See Fig. 2: A. Therefore, the intersection is either on the
left or the right sides of U’s square and on the bottom of V’s. In the first case, P is
embedded at (P, Py) = (—u, y — v), which is denoted by R! (P). In the second, at
(u, 5 — v), denoted R%(P).

If PeB,thenv—u=7%,givingLV=x—v=—-u=LU<RU=u=-x+v<
X 4+ v = RV. See Fig. 2: B. Therefore, the intersection is either left of both U and
V or right of U and bottom of V. In the first case, P is embedded at (Py, Py) =
(—u,?) = (X — v, ?), denoted R!(P). The second case is the same as before.

IfPeC,thenv—u<x,giving LU=—-u<x—v=LVandRU=u<x+v=
RV . We have X <7, by the fact that d(U, V) =y and not x and we have y < u + v,
by P ¢S. Hence, LV =X —v <y —v <u= RU. See Fig. 2: C. Therefore, the
intersection is either top of U and right of V or left of U and bottom of V. In the first
case, P is embedded at (x — v, u), denoted R 1(P). The second case is the same as
before.

The other cases are the same except for the roles of U and V switched. (]

We have narrowed the embedding of each point down to one of two specified
regions. We will now describe how for each point in .4, 13, and C, we will narrow this
down to one region. (Z, E, and C are done in a symmetric way.) If there are no such
points, then there is nothing to do in this task. Otherwise, let W be one of these points
P that maximizes vp—up =d (P, V)—d(P, U). This point W is either embedded at
R'(W) or R*(W). The algorithm will branch twice trying each of these possibilities.

To make it concrete, let j, k € {1,2}. Suppose we are trying to embed W in
R/ (W). Consider some point P in 4, B3, and C and let us try to embed it within
R¥(P). Also, if our current case allows X to vary within some interval (x;, x;41),
then for the moment fix its value. Even with these restrictions, there may be a lot of
possibilities as to the locations ¢(W) and ¢ (P) for W and P. Denote the set of possi-
ble distances between these embeddings to be DIK(PY ={llo(W)—@(P)|| | o(W) €
R/ (W) and o(P) € Rk(P)}. Clearly, such an embedding of W and P is impossible
if the required distance d(W, P) is not in this set. Lemma 2 proves that the sets of
distances D/-!1(P) is disjoint from the set DJ-2(P). Hence, d(W, P) cannot be in
both of them, giving that the location of P has been narrowed down to at most one
region. If in this process P is narrowed down to neither region, then the algorithm
reports that there are no embeddings consistent with these choices made so far. Then
the next embeddings of W or interval for X is tried. Now return to the fact that X may
vary within the interval (x;, x;+1). Lemma 2 will go on to prove that which of RY(P)
or RZ(P) the above method chooses does not depend on the value of X within this
range.
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Fig. 3 The bold line in (a) gives the set of points Q whose distances to C is equal to its distance to C”'.
(b) Demonstrates how this region lies within completely in the region S

Lemma2 For j € {1,2}and P € AUBUC, the sets of possible distances | R} (W) —
RY(P)| is disjoint from the set |RI (W) — R%2(P)|. More over, the choice of R'(P)
or R2(P) does not depend on the value of X within (x;,x;11). The case with P €
AUBUC is symmetric.

Proof of Lemma 2 We distinguish four cases.

Case 1: W and P are both in AU B and W is embedded in R'(W). Let ¢'(P) €
R (P), ¢*>(P) € R%(P), and (W) € R'(W). It is sufficient to prove that [|@(W) —
¢! (P)ll < llo(W) —¢'(P)||. Because P € AUB, ¢! (P) = (= Py, P{) and ¢*(P) =
(+ Py, Py”) with P, =u(P) >0 (orelse P=U),0 < Py’, < P;,and0 < Py” < Py (be-
cause u(P) is manifested in the X -dimension). Similarly, because W € AU B, itis lo-
cated at p(W) = (=W, Wy) with 0 < W, < W,. Therefore, |W, — P}’,l <W,+ P; <
Wy + P, = |(—=Wy) — (Py)|. The only way to have equality here is if W, = W,,
P; = P, and either W, or Py’ is zero, in which case either W or P is equal to U,
which we assume is not the case. Hence, |W, — P)’,I < |(—=Wy) — (Py)|. Similarly,
|Wy — PJ| < |(=Wx) = (Py)]. We also have that [(—=Wy) — (= Py)| < [(=Wx) — (Py)l.
Therefore, (W) — @' (P)|| = max(|(=Wx) — (=PI, Wy — PJ|) < [(=W,) —
(Po)| = max(|(—=Wx) — (Po)l, [Wy — P{]) = lp(W) — @*(P)]|. If the value of X
changes within (x;, x;41), then the points do not change categories and the locations
considered do not move. (Note that if a point is in B, the X is fixed to some x;.)

Case 2: W and P are both in AU B and W is embedded in R*(W). This case is
similar to the last except for flipping around the X-axis.

Case 3: W e AUBUC and P € C. For P €C, the regions ¢' = R1(P) = (X — v, u)
and ¢*> = R*(P) = (u,y — v) consist of a single point (fix the value of X for the
moment). Let Q be the set of the locations Q that are at equal distance from locations
¢! and ¢?. The method proves that these locations are all contained in the region ¢ 39
i.e. above or on U’s upper 45° lines and below or V’s lower 45° lines. See Fig. 3b.
Because W € AU B UC, all the locations in R' (W) are to the left of <p39. Hence the

distance from R'(P) to R'(W) is different than the distance from R2(P) to R'(W).
@ Springer
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Similarly, all the locations in R*(W) are to the right of go‘ls and hence the distance
from R!(P) to RZ(W) is different than the distance from R%(P) to RZ(W). Again,
if the value of X changes within (x;, x; 1), then the points do not change categories
and the fact that R1(W) and RZ(W) are on opposite sides of Q does not change.

We will leave it up to the reader to see that the equal distance loci set Q = {Q €
R? | o' — Q| = |l¢* — Q||} consists, as is shown in Fig. 3a, of the line segment from
Q' to Q”, the 45° line down and to the left of Q’, and the 45° line up and to the right
of Q”.

To verify the picture, we first prove that the distance between locations ¢! and ¢?
is manifested as shown in the X-dimension. ¢! is left of @2, because go} =xX—-v<
Y—v<@+v)—v=u=¢2; ¢! isabove 92, because p} =u =W +v) —v>3 -
V= gog; and the X-distance is larger, because Ax =u — (X —v) > u — (y —v) = Ay.

We compute d = ||¢? — ¢'||/2 = (u — (X — v))/2. Q', which is the point right of
d and down d from ¢!, is (¢! +d, ¢! —d) = (& — v +u)/2,(F — v +u)/2), and
Q”, which is the point left of d and up d from ¢, is (p7 —d, ¢} +d) = (X — X —
v+u)/2,y — (X — v+ u)/2). Note that Q' is on U’s upper right 45° line and Q"
is on V’s lower left 45° line. It follows that the locations Q that are equally distant
from locations ¢! and ¢? are all contained in the region S, i.e. above or on U’s upper
45° lines and below or on V’s lower 45° lines, and hence W is not equal distant from
them.

Case 4: W € C and P € AU B. This case is impossible. Because W is one of the
points that maximizes vp — u p, if W is not in A or I5 then these classes are empty.
O

Every point is now completely narrowed down to one region R'(P) or R*(P).
The points in 8" and B" are not fixed in the ¥ dimension, those in S are not fixed in
the X-dimension, and many are not fixed in the X-dimension because the value of X
within (x;, x;4+1) is unknown. The next step is to either fix the X-dimension of every
point or fix the Y dimension of every point. There are two cases.

In the first case (see Fig. 4a), there are no points B € B'U B Hence, every point is
fix in the Y dimension. The algorithm at this point, completely relaxes the restriction
on x. We are now in the situation that every point is fix in the ¥ dimension, but their
X-coordinate P, is unknown.

In the second case (see Fig. 4b), there is a point B € B' U B". If B € BB/, then
X is known to be equal to vg — up (in fact, we started this attempt at embedding
by narrowing x down to this single value x;). Moreover, the distance from such a
B to any point P € S is determined in the X-dimension. See Fig. 1la to see that
the X-distance between B and P is more than the Y distance. We do not know the
Y coordinate of B, but we do know its X-coordinate, B,. From this we know that
Py = B, +d(B, P). This fixes the location of all the points in S. The same thing can
be done if there is a point in B’. Either way, every point is fixed in the X-dimension,
but those in B’ U B” are free in the ¥ dimension.

In the next section, we will be focusing on the Fig. 4a case, but the other case is
similar.
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a) b)

oy o(U)

Fig. 4 Two examples of embeddings. In (a), the components move within the X -dimension and in (b) the
components move within the ¥

2.2 Embedding with All but One Dimension Fixed

Suppose we are given a metric space (i.e., the distances between every pair of points)
and we are given a partial embedding. The coordinates for one of the dimensions,
say X, may be unknown, yet the coordinates in the other dimensions are fixed. The
question for this section is whether or not this metric space can be embedded in a
way consistent with the partial embedding. We will show that there is potentially an
exponential number of ways in which components of points might flip and potentially
an infinite number of ways for these components to translate within X-coordinate.
Clearly these are not all enumerated, but this section will described how they are all
characterized. In order to be more applicable, we will initially consider the possibility
of more than two dimensions.

Consider the graph on the points of the metric space with an edge {P, O} if
d(P, Q) > |P — Qlly, where d(P, Q) is the distance required by the input and
P — Qlly = max(| Py — Qyl, ...) is the distance determined by the dimensions fixed
so far. Such distances d (P, Q) must be manifested in the X-dimension. Partition this
graph into connected components. (In Theorem 3 there is a single component forming
a single path.)

Lemma 3 Let ® be one of the connected components. Modulo translating and flip-
ping ® as a unit along the X -dimension, the locations of all the points in the com-
ponent are fixed. For each point P € ®, the algorithm returns dy (®, P), which is the
relative X -location of P with respect to some designated spot within this rigid ®.
Then if someone else provides ®,, which we use to denote the actual embedded
X-coordinate of the designated spot, and flip(®) € {1, —1}, which we use to de-
note whether or not ® is flipped, then the actual X-coordinate of point P will be
Py =@y + flip(®) - dx (P, P).

Proof of Lemma 3 Consider this either to be a proof by induction on the number
of nodes in the component or an algorithm with recursion. There are a few cases.
For a single point P, the designated spot will clearly be this point itself, giving
dy(®, P)=0.

If the component consists of a single edge {P, O}, then because the distance
d(P, Q) must be manifested in the X-dimension, Q, is must be either to P, +
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Fig. 5 (a) and (b) Fixing points within a component. (¢) The relative placements of the components @,
@5, and ®3. The edges with the components are shown. (d) The metric space corresponding to the Subset
Sum problem

d(P,Q)or P, —d(P, Q). Setting d (P, Q) =d(P, Q) gives Py = D, + flip(P) - 0,
0y = O +lip(®)-d(P, ), and | Q; — Px| = [flip(®) - (d(P, Q) — 0)| =d(P, Q)
as required.

Now consider a component of any size. Let R be a leaf of some spanning tree, let
Q be one of its neighbors, and P be one of Q’s neighbors. By induction/recursion,
the component with R removed is rigid. If there is an edge { P, R} (see Fig. 5a), then
the two constraints Ry = P, =d(P, R) and R, = O, =d(Q, R) fix the embedding
of R within the component. (Note P, and Q. must be different or else the distance
between them can’t be manifested in the X-dimension.)

If there is not an edge {P, R} (see Fig. 5b), then we claim that R, must be fixed
on the same side of Q, that P, is. This gives d,(®, R) = d\ (P, Q) + d(Q, R) if
di(®, P) > d (P, Q) and d,. (P, R) =d; (P, Q) —d(Q, R) if dy (P, P) < d, (P, Q).
The proof that this works supposes by way of contradiction that Py is set to Q, —
d(P, Q) and Ry is set to Oy, +d(Q, R). This gives an embedded distance from P
to R of atleast d(P, Q) +d(Q, R). Because {P, Q} and {Q, R} are both edges, this
sum is strictly more than || P — Q|5 + [|Q — R||5. By the triangle inequality, this is
atleast || P — R||5. Because { P, R} is not an edge, this is at least d(P, R). Having the
embedded distance from P to R be more than d(P, R) is illegal. U

Each component has now been fixed as a unit. For the remainder of this section we
will again consider only two dimensions. The next step is to bound each component ®
by the smallest rectangle rotated at 45° that contains all the points. See Fig. 5c. Even
though they may not be actual points in the metric space, let bottom(®) and rop(P)
denote the bottom and top corners of this bounding rectangle. For convenience, shift
the designated spot within & from that of the first point considered to this bottom
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corner. This is done by shifting each X-location dy (®, P) within the component. Let
us now see how two components can fit together.

Lemma 4 Suppose there are only two dimensions. For every pair of components ®
and ®’, one is strictly above the other giving an ordering ®1, ..., ®; of the compo-
nents along the Y dimension.

Proof of Lemma 4 Consider three points for which Py < Oy < Ry. If neither {P, O}
nor {Q, R} is an edge, then {P, R} is also not an edge. This is because Ry, — Py, =
(Ry—0y)+(Qy— Py) > |Ry — Qx| +|Qx — Px| = | Ry — Px|. The counter-positive
is that if {P, R} is an edge, then at least one of {P, Q} and {Q, R} is also an edge.
Hence, a component not containing point Q either is strictly above Q or strictly below
it. O

Let us now examine the restrictions on the X -coordinates imposed on one compo-
nent by another.

Lemma 5 Suppose that ®' is embedded strictly above ®. Considering only the dis-
tances between them, ® and @ are free to shift left and right and to flip in the
X-dimension within the constraint that the rectangle containing ®' is embedded
above and between the two lines extending upward at 45° from the top two sides
of the rectangle containing .

Proof of Lemma 5 Consider the point Q € ® defining the top right edge of the rec-
tangle containing ®. Consider any point P € ®’. In order for the distance d(P, Q) to
be manifested in the Y dimension, P must be embedded above and between Q’s two
upper 45° lines. Hence, P must be above and to the right of the line extending the top
right edge of the rectangle. Similarly, it must be above and to the left of the extension
of the top left edge. Any other point Q' in ® will impose less strict restrictions on the
location of P. If every point P € @' is embedded above and between these two 45°
lines, then so is the smallest 45°rectangle containing &’. (]

Given a line of components, one only need consider the restrictions imposed by
consecutive components, because these restrictions are the strongest.

We are now ready to specify the range of possible embeddings for these compo-
nents. See Fig. 4a. (The case of Fig. 4b is similar.) For i = 1,..., I, we will em-
bed the component ®;. The algorithm started by embedding the point U at location
¢ (U) = (0,0). This fixes the location of the bottom most component ®;. ®;, how-
ever, can flip in the X-dimension by choosing flip(®;) € {1, —1}.

As a loop invariant, suppose that we have already embedded the components
®y,...,P;_1. Fori’ <i, the X-coordinate of the bottom corner of bounding rectan-
gle for component @/ is fixed to bottom(®;/), and flip(P;/) € {1, —1} fixes whether
or not ®;/ is flipped. We continue by letting Ax;_1 = dx (bottom(®;_1), top(P;i_1)),
which Lemma 3 gave to be the X-distance between the bottom and top corners of
the bounding rectangle for ®;_;. See Fig. 5c. This fixes the X-coordinate of the top
corner of ®;_; to be top(d;_1)x = bottom(®;_1), + flip(P;—1) - Ax;—1. We go on
to compute Ay; 1 = |bottom(®;), — top(P;—1)y|, which is the known y-distance
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between the top corner of the bounding rectangle for ®;_; and the bottom cor-
ner of that for ®;. Again see Fig. 5c. These two corners cannot deviate by more
than this amount in the X-dimension. This bounds bottom(®;), to be within the
range [top(D;i_1)x — Ayi—_1, top(P;_1)x + Ayi_1]. We also have freedom to choose
fip(®;) € {1, -1}

This process continues one component at a time until at the top the point V is
embedded. We started this process by stating that V is to be embedded at (V) =
(x,y), for some unknown value X € (x;, x;+1). However, at the beginning of this
section we relaxed this restriction on X.

This completes this embedding. What remains is to check that all the distances are
correct. Independent of how the values bottom(®;), and flip(®;) € {1, —1} are cho-
sen within the above-stated constraints, we have fixed the distances [|¢(P) — ¢(Q)||
between the embedded locations of each pair of points. If we have not already found
an inconsistency, then it would now be good to check for every pair of points that
this embedded distance is in fact the required distance d(P, Q) given by the metric
space. Only after checking this to we accept this embedding.

We started by restricting X to be within one of the ranges (x;, x;+1) (or equal to
one x;) and restricting to one of the two embeddings of W (and symmetrically of W).
After outputting the range of embeddings consistent with these choices, we go on to
the next choices.

2.3 The Running Time with Different Values of X

The above algorithm is challenged because it does not know the value of V, = X.
However, the main time that we need this information is to compare it to vp — u p for
each point P. The number of such values A = {|jvp —up| | P €S} is at most O(n).
Hence, the above algorithm needs to be repeated for only O(n) ranges (x;, x;+1) (or
equal to x;). (The value of X being unknown within the range (x;, x;+1) added a few
more complications, but we believe these were all handled.)

Consider the total running time. For one interval, placing each point into two and
then one region takes only O(n) time, but to find the components and to check each
of the (;) distances requires O(n?) time. This would lead to an O(n?) time algorithm.

This can be improved to a O(n?log? n) time algorithm as follows. Suppose that
we have just completed the algorithm above assuming that X is within one of the
intervals and in memory is a data structure describing the situation. When shifting x°
to the next interval only some of the points will change categories. Across all such
shifts a given point P will change categories only twice, namely from X being bigger
than |[vp —u p| to it being equal to it, to it being smaller than it. When a point changes
which category it is in, its location might change. Also in the graph used for fixing
the last dimension, all the edges adjacent to this node may change. Nothing else will
change.

Hezinger and King [9] provided a fully dynamic randomized algorithm for main-
taining connected components. The total expected time for p edge insertion or dele-
tion updates on an n node graph is only O(plog®n). In our application, the total
number of edge updates is p = O(n?) giving that the total time devoted to maintain-
ing the connected components is only O(n?log? n) as required.
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The distance between a pair of points need only be rechecked when one of the
points changes location. This will occur only O(1) times per pair for a total of On?)
time. (Actually, when the points W and W move in this way, the complete data struc-
ture needs to be changed, however, this occurs only a constant number of times.)

Open problem: Because the edge updates occurs in such an ordered way, is it
possible to remove the O(log? n) factor? Is there a faster way to narrow down the
value of X and the placement of W and w2 Finally, is it really possible to have O(n)
completely different embeddings because of these different initial choices?

3 An NP-Completeness Theorem

Theorem 1 proves that a metric space can be embedded into lgo in time O(n%log” n).
This section will prove that this algorithm is not as flexible to minor changes as we
would like.

Theorem 2 Embedding a metric space into l’go is NP-complete given any one of the
following.

1. The number of dimensions is k > 3.

2. On the k =2 dimensions of the surface of a sphere.

3. In lgo with the added constraint that point U is embedded at (0, 0) and point V is
embedded at (0,d(U,V)),i.e.x =0.

We prove these in reverse order.

Proof of Theorem 2 point 3 The reduction is to Subset Sum. The input to this problem
is a set of positive integers {Axy, ..., Ax,}. The question is whether there exists a
subset S whose sum is equal to the sum of the complement set, i.e., X =) ;g Ax; —
ZigZS Ax; =0.

Given an input {Axy,..., Ax,} to Subset Sum, we construct a metric space as
follows. Separately for each value Ax;, consider a rectangle ®; rotated at 45° such
that the difference between the X-coordinate of the lower and upper corners is Ax;
and the difference between the Y-coordinate of the lower and upper corners is more
than Ax;. See Fig. 5d. Embed in ®; enough points to form a connected component
bounded by this rectangle. Place the point U at (0, 0) as required. Place IT; so that
its lower corner is on U. Stack the rectangles in order on top of each other so that
the upper corner for IT; is the lower corner for IT; ;. (In the notation of Sect. 2.2,
Ay; = 0.) Finally, place the point V' at the upper corner for IT,,. The distance between
any two points in the metric space is given by this embedding. This embedding,
however, will not meet the constraints because V is embedded at () _; Ax;,d(U, V))
instead of at (0, d(U, V)).

Recall the embedding algorithm from Theorem 1. A quick check will show that
the points U and V are the pair that are farthest apart and that all points are con-
tained within the set S = {P | d(U, P) +d(P,V) =d(U, V) =7y}. This fixes the
Y-coordinate of each point. Because the set {|[vp —up| | P ¢ S} is empty, the only
interval (Ax;, Ax;y1) within which X needs to be restricted is (0, 00). Lemma 5 then
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states that the only degrees of freedom in embedding this metric space is that each
component is free flip in the X-coordinate, with the corners of consecutive compo-
nents touching. Hence, there is a one-to-one mapping between the possible embed-
dings of the metric space and subsets S C [1..n], where S indicates which rectangles
are embedded with their upper corner to the right of their lower corner. Moreover, V
is embedded at (3, g Axi — 3,4 Ax;, d(U, V)). In conclusion, the metric space
can be embedded with V at (0, d(U, V)) if and only if there is a subset of the Subset
Sum values {Axi, ..., Ax,} for which } ;¢ Ax; — Zigs Ax; =0. O

Proof of Theorem 2.2 The only change in the proof required is that the Y -dimension
cycles around the sphere so that U and V are in fact the same point embedded at
(0,0) =(0,d(U, V)). U

Proof Sketch of Theorem 2.1 The proof technique is the same here as well. The only
difference is that the circle from U back to V =U travels through two of the three
dimensions while the ridged components continue to flip in the X-dimension. U

The complete proof of Theorem 2.1 will be a combination of the proof for Theo-
rem 2.3 and that for Theorem 3. Hence, we will delay it until the end of Sect. 4.

4 Three-Dimensional Mobius

Theorem 3 For every n > 24, there exists a metric space on n points that cannot be
embedded in | go, however, every proper subspace can be embedded in lgo.

A similar thing could be proved for dimensions larger than three. Note that this
gives coo(3) = n — 1.

Proof of Theorem 3 We will refer to the metric space in question as the Mobius
metric space because of its relation to a Mobius strip. This Mobius strip has length
traveling around a square within the first two dimensions, U and V, and width across
the third dimension, X. However, along the path around the square, the strip twists,
connecting the top edge to the bottom and the bottom to the top. This Mobius strip
cannot be embedded into I3, since the local information does not allow the strip to
flip over. On the other hand, if the M6bius strip were cut (by removing points from
the metric space), then the strip could be untwisted and embedded into lgo.

We would like the removal of only a single point in the metric space to allow
the metric space to be embeddable. Hence, the metric space will have only a single
point across the width of the strip whose coordinate in the X-dimension is either 1
or —1. Suppose one travels around the square considering the sign of this coordi-
nate. The local distances between consecutive points are able to dictate whether these
are the same or the opposite. We will dictate that all consecutive points around the
square must have the opposite sign, except at one place around the square, where the
consecutive points have same sign. The argument is now a question of parity. It is
impossible to have a string from {—1, 1} of even length in which consecutive entries
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<0,n>
L]
N
a) b)
L] L]
<-n,0>® <0,0> ®<n,0>
L]

L]
<0,—n>

Fig. 6 (a) In two of the dimensions the points of the Mobius metric space form a square. (b) Along each
edge of the square the points zig-zag between X-coordinates 1 and —1. The edges between the nodes
are those used in Lemma 3 for fixing the last dimension. We first prove that the nodes within the long
rectangles in both (a) and (b) are fixed to form connected components. Then we show that all the points
form a single connected cycle. (¢) Shows how the metric space from Theorem 2.3 is later inserted into this
metric space in order to prove Theorem 2.1

have opposite signs and the first and the last entries have the same sign. This con-
tradiction ensures that the metric space is not embeddable. On the other hand, if we
delete any of the entries from these string requirements, then such a string does exist.

A formal definition of the metric space is as follows (see Fig. 6). The 4n points are
named {(—n+u,u) |0<u<n}U{u,n—u) |0<u<n}U{n—u,—u)|0<u<
n} U {{—u, —n +u) | 0 <u < n}. Consecutive points along the square will have dis-
tance 2 between them, which is the distance, for example, between locations (u, v, 1)
and (u + 1,v + 1, —1), namely max(|(u + 1) — (w)|, |(v + 1) — )|, [(—=1) — ()])
=max(1, 1,2) = 2. The exception is that the distance between the consecutive points
(—n + 1, —1) and (—n, 0) is instead 1, which is the distance, for example, between
locations (—n + 1, —1, 1) and (—n, 0, 1), namely max(|(—n + 1) — (—n)[, [(—1) —
O], |(1) — (1)]) max(1, 1, 0) = 1. The distance between nonconsecutive points (u, v)
and (¢, v’) will be defined to be the distance between the locations {(u, v, 1) and
(u’,v', —1), which is max(|u’ — u|, |[v' — v|,2) = max(Ju’ — u|, |[v" — v|). Lemma 7
proves that this metric space cannot be embedded in lgo, while Lemma 6 proves that
any proper subspace can be.

Lemma 6 Any proper subspace formed from the Mobius metric space by deleting at
least one of its underlying points can be embedded in lgo.

Proof of Lemma 6 Let (u,v) be the point that is deleted from the Mbius metric
space. Each point (u, v) is embedded at location (u, v, x(,v)) With x(, ) € {1, 1}.
Let x(_,,0) = 1. Alternate the signs as you go clockwise around the square until you
get to the missing point. The pair of entries of distance two across the gap are given
opposite signs. After the gap, continue alternating the signs until we are back to
(—=n 4+ 1, —1). Note the first and the last points will have the same sign for X as
required. This embedding respects all the distances. ]

@ Springer



762 Discrete Comput Geom (2008) 39: 747-765

Lemma 7 The Mobius metric space defined above cannot be embedded in lgo.

The following classical betweenness relation and lemma will help. We say that the
point B lies between point A and C if d(A, B) +d(B,C) =d(A, C). For example,
all the points in the classification S of Theorem 1 lie between U and V. In ld, these
points would have to be co-linear. However, this is not the case in lcz,o.

Lemma 8 Consider a metric space and the set of points that lie between a point A to
a point C. For every embedding of the metric space, modulo translations, renaming
of the dimensions, and negations of the dimensions, the coordinates along one of the
dimensions are fixed by the distances between the points. More specifically, if the
coordinate for A along this dimension is Ay, then for the coordinate for any other
point B is B, = Ay +d(A, B).

Recall that this was done for the points in S as well.

Proof of Lemma 8 Without loss of generality, C, = Ay + |C — Al. If By > A, +
|B — Al, then [¢(B) — ¢(A)| = max(|By — Ax|, [By — Aal, |B; — Az]) = By — Ay >
|B — A|, which is a contradiction. Similarly, if By < Ay +|B — A|=C, —|C — B|,
then |¢(C) — @(B)| =max(|Cx — Bx|, |Cy — Byl, |C; — B;|) = Cx — By > |C — B|.
Therefore, B, = A, + |B — A]. [l

Using Lemma 8, we can say a lot about how the Mobius metric space must be
embedded.

Lemma 9 [f the Mobius metric space can be embedded into lgo, then without loss of
generality for each point except for the eight points adjacent to the corners, (u, v) is
embedded at location (u, v, X v)), for some value x, v).

Proof of Lemma 9 A quick check will show that all the points except for the four
points that are immediately adjacent to the corners A = (—n,0) and C = (n, 0) lie
between these corners. Therefore, by Lemma 8, without loss of generality for these
points, {(u, v) is embedded at location (u, v, v), X(u,v)), for some values v, ,y and
X(u,v). Going the other direction, the distance between the corners A’ = (0, —n) and
C’ = (0, n) cant be manifested in the same dimension. Hence, applying Lemma 8
again gives us that for each point except for the eight points adjacent to the corners,
(u, v) is embedded at location (u, v, X)), for some value x, ). O

Lemma 10 Points at even distance along the same side of the square, excluding the
corners and the two points that are adjacent to them, are embedded at locations with
the same X -coordinate.

Proof of Lemma 10 The U and V coordinates of the points in question have been
fixed. For these points, this leaves only one dimension, X, undetermined. Lemma 3
describes how to partition these points into connected components, each of whose
embedding is fixed. In this graph, consecutive points, which have distance 2 between
them but only distance 1 in the (U, V) dimensions, have edges between them. It
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follows that each of the four sides of the square, excluding the corners and the two
points that are adjacent to them form components. See Fig. 6a and b. The lemma
follows. O

Lemma 9 failed to consider the eight points adjacent to the corners. We are now
ready to consider these.

Lemma 11 For the eight points adjacent to the corners, (u, v) is embedded at loca-
tion {u, v, X(u,v)), for some value x, ).

Proof of Lemma 11 By symmetry of the argument, consider the point denoted A =
(1,n — 1). From the proof of Lemma 9, we know that it is embedded at location
(1, Ay, Ay) for some values A, and A,. Our goal is to prove that A, =n — 1. See
Fig. 6a. If n is even, consider the sequence of points A, B = (2,n—2),C = (n—2, 2),
D=(n—-2-2)and E = (2,—n + 2). If n is odd, instead let C = (n — 3, 3) and
D=(n—-3,-3). |Ax — By| <d(A,B) =2 and |Cy — D,| <d(C, D) <6 by the
given distances. |By — Cy| = |D, — E;| =0, by Lemma 10. Hence, |A, — E,| <
|Axy — Bx| + |Bx — Cx| +|Cx — Dy| + |Dy — Ex| <2+ 0+ 6+ 0=8. We also have
that |A, — E,| = |1 — 2| = 1. It follows that the given distance d(A, E) =2n — 3
is manifested in the second dimension, i.e., |A, — Ey| =|Ay — (—n +2)| =2n — 3.
Clearly, A, is not smaller than —n, concluding that A, =n — 1. O

Now that the U and V coordinates have been fixed for all of the points in the metric
space, we are ready to apply Lemma 3 again. Because consecutive points (except for
the one pair that has distance 1 between them) have an edge between them in the
component graph, the entire square becomes one component. Hence, without loss of
generality, all X-coordinates are x, ) € {—1, 1} and consecutive points with distance
2 must have opposite signs, while the one pair of consecutive points with distances
0 must have the same sign. As said initially, this is impossible. This concludes the
proof of Theorem 3. O

We are now ready to complete the remaining proof from Sect. 3 that embedding a
metric space into lgo is NP-complete.

Proof of Theorem 2.1 Given an instance {Axq,..., Ax,} to Subset Sum, we con-
struct a metric space as follows. See Fig. 6¢c. Start by building the Mobius metric
space from Theorem 3. To create the twist in this M&bius strip, the distance between
the consecutive points (—n + 1, —1) and (—n, 0) was defined to be 1 instead of the
usual 2. We remove this twist by changing the distance to be 2. Then let U’ denote
the point (3, —n + 3), let V' denote (5, —n + 5), and remove the point (4, —n + 4)
between them. Just as was done for Theorem 3, we can prove that without loss of gen-
erality each point (i, v) is embedded at location (u, v, x v)), where x(, ) € {—1, 1}
and consecutive points have opposite signs. The only difference is that because the
point (4, —n + 4) has been removed, the points U’ and V' are in the same connected
component only by following the path the long way around the square.

The statement of Theorem 2.3 requires the added constraint that point U is em-
bedded at (0, 0) and point V embedded at (0, d(U, V)). Instead, we have that point
U’ is embedded at (3, —n + 3, 1) and point V embedded at (5, —n + 5, 1)).
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Given the instance {Ax1, ..., Ax,} to Subset Sum, construct the metric space as
done in the proof of Theorem 2.3. Scale all the distances down so that d(U, V) = 2.
To combine these two metric spaces it is only necessary to give the distances between
each point in the first and each in the second. Imagine rotating the second metric
space by 45° and inserting it in the first equating point U with U’ and V with V’.
This requires having the Y axis of the first metric space be rotated to go along the
45° line between points U’ and V'. Once this is done define the distances between
the new pairs of points to be their distances determined by u and v axis.

Just as was done in the proofs of Lemmas 911, we can prove that if this combined
metric space can be embedded into / go, then without loss of generality the # and v co-
ordinates of each point has been fixed leaving only one dimension, X, undetermined.
Lemma 3 describes how to partition these points into connected components, each of
whose embedding is fixed. As is true in Theorem 3, there will be one component go-
ing the long way around the square from U’ to V. As is true in Theorem 2.3 there will
be one component for each Ax; value. Though Lemma 5 was actually proved for only
two dimensions, with added conceptual difficulty it could be extended to three dimen-
sions. However, this is not really necessary because our string of components do lie
in two dimensions, one being the line from U’ to V' and one being the X-dimension.
Hence, we will freely use Lemma 5 to prove that the only degrees of freedom in em-
bedding this metric space is that each component is free to flip in the X-coordinate,
with the corners of consecutive components touching. As was true with Theorem 2.3,
there is a one-to-one mapping between the possible embeddings of the metric space
and subsets S C [1..n], where S indicates which rectangles are embedded so that the
X-coordinate from one corner to the other is increasing or decreasing by Ax;. Be-
cause U, = V| = 1, the metric space can be embedded if and only if there is a subset
of the Subset Sum values {Axy, ..., Ax,} for which } ;¢ Axi — ;46 Ax; =0.

If the number of dimensions & is more three, then the same proof holds after adding
a point far in the positive direction and one far in the negative direction for each of
the extra dimensions. The distances to these points can be used to fix the coordinates
in all but three of the dimensions to zero. ]

Acknowledgements Being completely new to this field, I thank Steven Watson for introducing these
ideas to me and for his extensive help. I also thank Victor Chepoi for all the work that he put into this

paper.

References

1. Avis, D., Deza, M.: The cut cone, L{-embedability, complexity and multicommodity flows. Networks
21, 595-617 (1991)

2. Badoiu, M.: Approximation algorithm for embedding metrics into a two-dimensional space. In:
SODA’03. Society for Industrial and Applied Mathematics, Philadelphia (2003)

3. Bandelt, H.-J., Chepoi, V.: Embedding metric spaces in the rectilinear plane: a six—point criterion.
Discrete Comput. Geom. 15, 107-117 (1996)

4. Bandelt, H.-J., Chepoi, V.: Embedding into the rectilinear grid. Networks 32, 127-132 (1998)

5. Bandelt, H.-J., Chepoi, V., Laurent, M.: Embedding into rectilinear spaces. Discrete Comput. Geom.
19, 595-604 (1998)

6. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford
(1953)

7. Christopher, G.E., Trick, M.A.: Faster decomposition of totally decomposable metrics with applica-
tions. Carnegie Mellon University (1996)

@ Springer



Discrete Comput Geom (2008) 39: 747-765 765

11.
12.
13.

Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)

Henzinger, M., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per oper-
ation (STOC’95). J. Assoc. Comput. Mach. 46(4), 502-516 (1999)

Malitz, S., Malitz, J.: A bounded compactness theorem for Ll—embeddings of metric spaces in the
plane. Discrete Comput. Geom. 8, 373-385 (1992)

Matousek, J.: Open problems on embeddings of finite metric spaces. Personal web page

Menger, K.: Untersuchungen uber allgemeine Metrik. Math. Ann. 100, 75-163 (1928)

Schmerl, J.: Private communication with S. Malitz and J. Malitz (1990)

@ Springer



	Embedding into l2 Is Easy, Embedding into l3 Is NP-Complete
	Abstract
	Introduction
	Algorithm for Embedding into l21 or l2
	Classifying the Points
	Embedding with All but One Dimension Fixed
	The Running Time with Different Values of x

	An NP-Completeness Theorem
	Three-Dimensional Möbius
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


