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Abstract The parallel X-ray of a convex set K ⊂ R
n in a direction u is the func-

tion that associates to each line l, parallel to u, the length of K ∩ l. The problem of
finding a set of directions such that the corresponding X-rays distinguish any two
convex bodies has been widely studied in geometric tomography. In this paper we are
interested in the restriction of this problem to convex cones, and we are motivated by
some applications of this case to the covariogram problem. We prove that the deter-
mination of a cone by parallel X-rays is equivalent to the determination of its sections
from a different type of tomographic data (namely, point X-rays of a suitable order).
We prove some new results for the corresponding problem which imply, for instance,
that convex polyhedral cones in R

3 are determined by parallel X-rays in certain sets
of two or three directions. The obtained results are optimal.

Keywords Geometric tomography · X-ray tomography · Convex cones ·
Covariogram · Chord function

1 Introduction

Geometric tomography deals with the retrieval of information about a geometric ob-
ject using data from some of its projections or sections. It is a geometric relative
of computerized tomography, which reconstructs an image from X-rays of a human
patient. The book [10] gives a fascinating, updated and very complete account of
geometric tomography.

A well-studied problem in this area concerns the determination of a convex set
from the knowledge of some of its X-rays. Let K ⊂ R

n be a convex body, let u ∈ Sn−1
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and let u⊥ denote the (n − 1)-dimensional subspace orthogonal to u. The (parallel)
X-ray of K in direction u is defined, for each x ∈ u⊥, as

XuK(x) = λ1
(
K ∩ (x + lu)

)
,

where x + lu denotes the line through x parallel to u, and λ1 denotes one-dimensional
Lebesgue measure. Knowing XuK is equivalent to knowing the length of each chord
of K parallel to u. The parallel X-ray corresponds to the X-ray transform of the
characteristic function 1K of K used in computerized tomography; see [16].

While the previous definition corresponds to X-rays taken from infinity, it is nat-
ural and of interest to also consider X-rays emanating from finite points. This cor-
responds to the “fan-beam” X-rays of great importance in medicine; in fact, CAT
scanners use this type of X-ray. Let p ∈ R

n and i ∈ R. We define the (point) X-ray
of order i of K at p by

Xi,pK(u) =
∫ ∞

−∞
1K(p + tu) |t |i−1 dt,

for u ∈ Sn−1 for which the integral exists. The X-ray of order 1 at p gives the lengths
of all the intersections of the body with lines through p. Some results of this paper
concern the following problem.

Problem 1.1 Find a set of points such that the X-rays of order i at these points
distinguish between any two different convex bodies.

The initial motivation of this paper comes from the covariogram problem. The
covariogram gK of a convex body K ⊂ R

n is the function, defined for x ∈ R
n, by

gK(x) = λn

(
K ∩ (K + x)

)
,

where λn stands for the n-dimensional Lebesgue measure. The covariogram prob-
lem asks whether gK determines K , among all convex bodies, up to translations and
reflections in a point. This problem was posed in 1986 by G. Matheron, who con-
jectured a positive answer for n = 2. The conjecture has been recently confirmed by
Averkov and Bianchi [1]. However, the covariogram problem, in the general setting,
has a negative answer. Bianchi [2] proved this by finding polyhedral counterexamples
in R

n for every n ≥ 4. Regarding the case n = 3, Bianchi [3] proved that a convex
three-dimensional polytope is determined by its covariogram. It is the proof of this
result which first motivated the study subject of this paper.

To explain this point, let A and B be closed convex polyhedral cones in R
3, with

apex the origin o and A∩B = {o}. The cross covariogram of A and B is the function,
defined for x ∈ R

3, by

gA,B(x) = λ3
(
A ∩ (B + x)

)
.

The following question was first posed by Mani-Levitska [15] and arises naturally
in the study of the covariogram problem for three-dimensional convex polytopes:
Does the cross covariogram of A and B determine the pair (A,B), among all pairs
of convex cones, up to certain ambiguities which are inherent in the problem? The
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paper [3] gives a partial positive answer to the previous problem, whose proof relies
on the fact that a suitable second-order mixed derivative of gA,B equals the parallel
X-ray of the cones in some direction. This leads to the following problem.

Problem 1.2 Find a set of directions such that the parallel X-rays in these directions
distinguish between any two different convex cones.

Gardner and McMullen [12] (see [10, Corollary 2.2.1]) proved that there are sets
of four directions, contained in the same two-dimensional subspace, such that every
convex body in R

n is determined, among all convex bodies, by its parallel X-rays in
these directions, and the number four is optimal. Moreover, convex bodies in R

3 are
not determined by parallel X-rays in any set of four noncoplanar directions (see [10,
Theorem 2.2.3]). Volčič [17] (see [10, Theorems 5.3.7 and 5.3.8]) proved that X-rays
of order 1 at three noncollinear points distinguish between all different planar convex
bodies not containing the points, while X-rays of order 1 at any four points, with no
three collinear, distinguish between all different planar convex bodies. We refer to
[10] for complete bibliographical information on these problems.

The following result states that Problem 1.2 is equivalent to Problem 1.1, with
i = −1, for a section of the cones. In this paper, unless explicitly stated otherwise, a
cone has apex o.

Theorem 1.3 Let A and A′ be closed convex cones contained in {(x1, . . . , xn) ∈ R
n :

xn ≥ 0}, with n ≥ 2. Let u ∈ Sn−1 ∩ {xn 	= 0}, with ±u /∈ A, let K = A ∩ {xn = 1},
K ′ = A′ ∩ {xn = 1} and p = lu ∩ {xn = 1}.

If XuA = XuA
′, then X−1,pK = X−1,pK ′.

Conversely, if X−1,pK = X−1,pK ′ and K and K ′ are in the same open halfspace
bounded by an (n − 1)-dimensional subspace containing p, then XuA = XuA

′.

Observe that if ±u ∈ A, the X-ray XuA is infinite and gives no information
about A. In view of this result we are interested in Problem 1.1 for X-rays of order
−1 at points outside the two convex bodies. A polyhedral set is the intersection of
finitely many closed halfspaces. We call it nondegenerate if its interior is nonempty.

Theorem 1.4 Let K ⊂ R
n be a nondegenerate polyhedral set, let K ′ ⊂ R

n be a
closed convex set, and let p1, p2 be distinct points of R

n \ K such that the line l

through p1 and p2 meets K . Suppose that one of the following conditions holds:

(i) the sets K and K ′ meet the same component of l \ {p1,p2};
(ii) the line l supports K .

If K and K ′ have equal X-rays of order −1 at pj , j = 1,2, then K = K ′.

Theorem 1.5 A nondegenerate convex polygon K is determined, in the class of pla-
nar convex bodies, by its X-rays of order −1 at any set of three noncollinear points
not contained in K .

We wish to stress that very little is known about Problem 1.1 when i ≤ 0, and some
evidence suggests that the answer may be somewhat different from that correspond-
ing to the case i > 0 (see Remark 4.1 for a discussion of this point). The previous
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theorems imply the following theorems for cones. In each of them, the determination
holds in the class of all closed convex sets.

Theorem 1.6 A nondegenerate convex polyhedral cone A ⊂ R
n, n ≥ 2, is determined

by its parallel X-rays in two directions u1 and u2, if ±uj /∈ A, j = 1,2, u1 	= ±u2,
and the two-dimensional subspace which contains u1 and u2 intersects A \ {o}.

Theorem 1.7 A nondegenerate convex polyhedral cone A ⊂ R
3 is determined by its

parallel X-rays in any set of three directions uj , j = 1,2,3, which are not contained
in the same two-dimensional subspace and satisfy ±uj /∈ A, j = 1,2,3.

The last four theorems are optimal in the sense explained in Remark 4.4. Moreover
the next result implies that Theorems 1.4 and 1.6, without the assumption that the
convex set K or cone A are polyhedral, are false (see Remark 4.2 for more comments
on this point).

Theorem 1.8 There exist planar convex bodies K and K ′ with equal X-rays of order
−1 at distinct points p1 and p2, and such that p1, p2 /∈ K ∪ K ′ and K ∩ [p1,p2] =
K ′ ∩ [p1,p2] is a nondegenerate segment. The line through p1 and p2 supports both
K and K ′.

Theorems 1.5 and 1.7 can be extended, respectively, to convex bodies and general
convex cones under some extra assumptions (see Theorems 4.3 and 5.1). Section 6
contains a result regarding the determination of convex bodies in R

n from parallel
X-rays in sets of noncoplanar directions.

We conclude by mentioning two recent results. Some stability estimates regard-
ing Problem 1.1, with i = −1, have been obtained in [4], while an algorithm for
reconstructing a planar convex body from possibly noisy measurements of either its
parallel X-rays or its point X-rays has been presented in [11].

2 Preliminaries

As usual, Sn−1 denotes the unit sphere in R
n, centred at the origin o. If u ∈ Sn−1, u⊥

denotes the (n − 1)-dimensional subspace orthogonal to u, while lu denotes the line
through the origin parallel to u. For x, y ∈ R

n, we write [x, y] for the line segment
with endpoints x and y.

If B ⊂ R
n we denote by intB , clB , ∂B and convB the interior, closure,

boundary and convex hull of B , respectively. The positive hull of B is posB =
{μx : x ∈ B, μ ≥ 0}. The symmetric difference of two sets B and B ′ is B�B ′ =
(B \ B ′) ∪ (B ′ \ B). The symbol λi , where i ∈ {1, . . . , n}, denotes i-dimensional
Lebesgue measure.

A convex body K is a compact convex set with nonempty interior. The symbol
relintK indicates the relative interior of K . A convex polyhedral cone is a cone (with
apex o) which is the intersection of finitely many closed halfspaces. If q is a vertex of
a polygon P , the support cone of P at q is cone(P, q) = {μ(y − q) : y ∈ P,μ ≥ 0}.
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The next results will be used repeatedly in the proofs. If K and K ′ are planar
closed convex sets, p ∈ R

2 \ K , and X−1,pK = X−1,pK ′, then K and K ′ have equal
supporting lines issuing from p, since the corresponding parallel lines from the origin
bound the support of X−1,pK . It is also well known that if φ is an affine transforma-
tion in R

n, u ∈ Sn−1 and K , K ′ are convex sets in R
n, then XuK = XuK

′ if and only
if XφuφK = XφuφK ′. The following property of the X-rays of order −1 is crucial.

Lemma 2.1 [10, Theorem 6.2.8] Let l ⊂ R
2 be a line, p ∈ R

2 and let K and K ′ be
planar convex sets not meeting l. Let φ be a nonsingular projective transformation
taking l to the line at infinity. If p ∈ l, then X−1,pK = X−1,pK ′ if and only if φK

and φK ′ have equal parallel X-rays in the direction corresponding to φp. If p /∈ l,
then X−1,pK = X−1,pK ′ if and only if X−1,φpφK = X−1,φpφK ′.

3 Proof of Theorem 1.3

Assume first that n = 2. If intA = ∅, then the result is trivial, since XuA, XuA
′,

X−1,pK and X−1,pK ′ are identically 0.
Assume intA 	= ∅ and XuA = XuA

′. Up to a linear transformation which maps
{x : x2 ≥ 0} into itself, we may suppose that u = p = (0,1) and that A ⊂ {x : x1 > 0}.
(Note that since u /∈ A, either A ⊂ {x : x1 > 0} or A ⊂ {x : x1 < 0}.) The identity
XuA = XuA

′ and the assumption A, A′ ⊂ {x : x2 ≥ 0} imply that p /∈ A′ and A′ ⊂
{x : x1 > 0} too. Let 0 ≤ m1 < m2, 0 ≤ m′

1 ≤ m′
2 be such that

A = {
(x1, x2) : x2 ≥ 0, m1x1 ≤ x2 ≤ m2x1

}
,

A′ = {
(x1, x2) : x2 ≥ 0, m′

1x1 ≤ x2 ≤ m′
2x1

}
.

Then, if w = ±(1,0),

K ∩ (p + lw) =
{
(x1,1) : 1

m2
≤ x1 ≤ 1

m1

}
,

and

K ∩ (p + lw) =
{
(x1,1) : 1

m′
2

≤ x1 ≤ 1

m′
1

}
,

where, for i = 1,2, 1/mi is substituted by +∞ when mi = 0. The identity XuA =
XuA

′ implies

m2 − m1 = m′
2 − m′

1.

The value of the X-ray of order −1 of K at p in the direction w is m2 − m1, that of
K ′ is m′

2 − m′
1 and, by the above identity, they coincide.

To prove the converse implication assume, as before, that u = p = (0,1). By as-
sumption, either A, A′ ⊂ {x : x1 > 0} or A, A′ ⊂ {x : x1 < 0}. In each case the identity
XuA = XuA

′ can be proved as before, expressing all X-rays in terms of m1 and m2.
When n > 2 the proof follows by the result for n = 2 applied to every two-

dimensional subspace containing u. �
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The following lemma shows that in order to determine any polyhedral set, or con-
vex cone, among convex sets, it is enough to deal with the class of polyhedral sets, or
convex cones, respectively.

Lemma 3.1 Let K , K ′ ⊂ R
n be closed convex sets, u1, u2 ∈ Sn−1, u1 	= ±u2, and

p ∈ R
n \ K .

If K is a nondegenerate polyhedral set and either Xu1K and Xu1K
′ are finite and

coincide or else X−1,pK = X−1,pK ′, then K ′ is a polyhedral set.
If K is a convex cone with nonempty interior and, for j = 1,2, Xuj

K and Xuj
K ′

are finite and coincide, then K ′ is a convex cone.

Proof Let us start with the case of parallel X-rays. If K ′ is described as

K ′ = {
q + tu1 : q ∈ H, t ∈ R, f (q) ≤ t ≤ g(q)

}
,

with H ⊂ u⊥
1 a convex set, f a convex function, g a concave one, both defined on H ,

then Xu1K
′ = g − f . If K is a polyhedral set, then Xu1K and g − f are piecewise

linear. This may happen only if both f and g are piecewise linear, that is, only if K ′
is a polyhedral set. Similarly, if K is a cone, then Xu1K and g − f are homogeneous
of degree 1, and H is a cone with apex o. This may happen only if both f − c and
g − c are homogeneous of degree 1, for some c ∈ R, that is, only if K ′ is a cone
with apex on lu1 . The information regarding u2 implies that o is the apex of K ′, since
lu1 ∩ lu2 = {o}.

In the case of X-rays of order −1, let L be a hyperplane that contains p and
does not meet K . The set L also does not meet K ′, since X−1,pK = X−1,pK ′. By
exchanging K ′ with its reflection in p, if necessary, we may suppose that K and K ′
are contained in the same halfspace bounded by L. Let us embed R

n in R
n+1 in such

a way that R
n = {(x1, . . . , xn+1) ∈ R

n+1 : xn+1 = 1}. The cones pos(K) and pos(K ′)
in R

n+1 have the same parallel X-rays in the direction of pos(p), by Theorem 1.3.
Since pos(K) is a polyhedral set, the result for parallel X-rays implies that pos(K ′)
(and, consequently, K ′) is also a polyhedral set. �

4 X-Rays of Order −1 of Polyhedral Sets

Proof of Theorem 1.4 Observe that neither p1 nor p2 belong to K ′, because the
X-rays of order −1 of K ′ at p1 and p2 are finite, since p1, p2 /∈ K . Moreover,
Lemma 3.1 implies that K ′ is a polyhedral set, because K is a polyhedral set.

Assume n = 2 and (1.4). Choose a Cartesian coordinate system such that p1 =
(0,0), p2 = (1,0) and, for brevity, let {y > 0} = {(x, y) : y > 0}. We first prove that
K ∩ {y > 0} and K ′ ∩ {y > 0} have the same X-rays of order −1 at p1 and p2.
Let li , for i = 1,2, be a line through pi which does not intersect K . Clearly li does
not intersect K ′, because otherwise K and K ′ have different X-rays of order −1
at pi in the direction of li or in a direction close to that of li . Both K and K ′ are
contained in the same component C of R

2 \ (l1 ∪ l2). Let u ∈ S1 and j ∈ {1,2}. The
set (lu + pj ) ∩ C either does not intersect {y > 0} or else is contained in {y > 0}. In
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the first case X−1,pj
(K ∩ {y > 0})(u) = X−1,pj

(K ′ ∩ {y > 0})(u) = 0, while in the
second case X−1,pj

(K ∩{y > 0})(u) = X−1,pj
K(u) = X−1,pj

K ′(u) = X−1,pj
(K ′ ∩

{y > 0})(u). The claim is proved.
To prove that K ∩ {y > 0} = K ′ ∩ {y > 0} we apply the projective transformation

φ defined by

φ(x, y) =
(

1 − x

y
,
x

y

)
, (4.1)

which takes p1 and p2 to points on the line at infinity, precisely p1 to the direction
u1 = (1,0) and p2 to the direction u2 = (0,1). If we set H = φ(K ∩ {y > 0}) and
H ′ = φ(K ′ ∩ {y > 0}), H and H ′ are unbounded convex polygonal regions contained
in {x +y ≥ 0}. Observe that if αx +βy +γ = 0 is the equation of a line l′ containing
an unbounded edge of H or of H ′, then (β − α)x + γy + α = 0 is the equation of a
line containing a segment of ∂K or of ∂K ′, with this segment intersecting the x-axis.
Since p1 and p2 do not belong to K or to K ′, we have α 	= 0 and β 	= 0. Thus, the
slope of l′ is finite and different from 0. Let y = m1x + q1 and y = m2x + q2 be
the equations of the lines which contain the two unbounded edges of H , for suitable
m1, m2, q1 and q2 which satisfy m1 ≤ m2 and, when m1 = m2, q1 < q2. Let y =
m′

1x + q ′
1 and y = m′

2x + q ′
2 be the equations of the lines which contain the two

unbounded edges of H ′, for suitable m′
1, m′

2, q ′
1 and q ′

2 which satisfy m′
1 ≤ m′

2 and,
when m′

1 = m′
2, q ′

1 < q ′
2.

Let r be a line through p2 different from the x-axis. Lemma 2.1, applied to the
segments r ∩ K ∩ {y > 0} and r ∩ K ′ ∩ {y > 0}, implies that H and H ′ intersect the
line φr , parallel to u2, in segments of equal length. Due to the arbitrariness of r , this
is equivalent to

Xu2H(x) = Xu2H
′(x) ∀x ∈ R. (4.2)

Similar arguments prove Xu1H = Xu1H
′.

The set of c ∈ R with the property that {x = c} intersects all the unbounded edges
of H and H ′, is an unbounded interval I . The identity (4.2), for x ∈ I , implies

(m2 − m1)x + q2 − q1 = (m′
2 − m′

1)x + q ′
2 − q ′

1.

A similar expression holds for the X-ray in direction u1: for all y in an unbounded
interval

(
1

m2
− 1

m1

)
y − q2

m2
+ q1

m1
=

(
1

m′
2

− 1

m′
1

)
y − q ′

2

m′
2

+ q ′
1

m′
1
.

Assume that m1 	= m2. The two last identities imply m1 = m′
1, m2 = m′

2, q1 = q ′
1

and q2 = q ′
2. As a consequence the lines y = m1x + q1 and y = m′

1x + q ′
1 coincide,

the same happens for the other two lines and “H and H ′ coincide at infinity”. If
H 	= H ′, then ∂H ∩ ∂H ′ has two unbounded components. Let z1 ∈ R

2 and z2 ∈ R
2,

with z1 	= z2, denote the endpoints of these components. Identity (4.2) implies that z1
and z2 have the same x-coordinate, because otherwise (4.2) would be false for some
values of x in the interval whose endpoints are the x-coordinates of z1 and z2. The
points z1 and z2 also have the same y-coordinate and therefore coincide, which gives
a contradiction.
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When m1 = m2, the previous equations imply q2 − q1 = q ′
2 − q ′

1 and m′
1 =

m′
2 = m1. If q1 = q ′

1, the proof is concluded as before. Otherwise, if say q1 < q ′
1, let

us choose (x0, y0) in such a way that y0 ∈ [m1x0 + min(q2, q
′
1),m1x0 + max(q2, q

′
1)]

and both lines {x = x0} and {y = y0} intersect all the unbounded edges of H and H ′.
Assume m1 > 0. Then (H \ H ′) ∩ {x ≤ x0} and (H ′ \ H) ∩ {x ≤ x0} have the same
finite area, as it is proved integrating both sides of (4.2) for x ∈ [−∞, x0]. Similarly,
the areas of (H \ H ′) ∩ {y ≤ y0} and (H \ H ′) ∩ {y ≤ y0} coincide. We get a contra-
diction from the strict inclusions

(H ′ \ H) ∩ {y ≤ y0} ⊂ (H ′ \ H) ∩ {x ≤ x0} ,

and

(H \ H ′) ∩ {x ≤ x0} ⊂ (H \ H ′) ∩ {y ≤ y0} ,

which are a consequence of our choice of (x0, y0). A similar argument applies when
m1 < 0.

The identity K ∩ {y < 0} = K ′ ∩ {y < 0} can be proved similarly.
Let us now consider case (ii). The line l supports K ′ too, for otherwise K and

K ′ could not have the same supporting lines through p1. The proof of this case is
similar to that of the previous one. However, it is not necessary to prove X−1,pj

(K ∩
{y > 0}) = X−1,pj

(K ′ ∩ {y > 0}), for j = 1,2, since in this case it is obvious.
When n > 2, let L be any two-dimensional plane that contains p1 and p2. The

sets K ∩ L and K ′ ∩ L have the same X-rays of order −1 at p1 and p2. Therefore
if one of these sets has nonempty relative interior, then the same is true for the other
one. Moreover, the result for n = 2 implies that K ∩L = K ′ ∩L, whenever these sets
have nonempty relative interiors. This implies that intK = intK ′, and concludes the
proof. �

Remark 4.1 Falconer [5, 6] and Gardner [7, 8] proved results analogous to Theo-
rem 1.4 for general convex bodies and X-rays of order i > 0. (These results are ex-
pressed, when i 	= 1, in terms of i-chord functions at a point p and not in terms of
X-rays of order i at p; see [10] for the definition. However, when i > 0, and also
when i ≤ 0 and p does not belong to the body, these two notions coincide.) Gardner
also wrote, in [8], that the uniqueness results of Volčič [17] on three or four sources—
mentioned in the introduction—can be generalized to any positive i.

For X-rays of order i ≤ 0, a result corresponding to Theorem 1.4 is known only
under the extra assumption

∫

K�K ′
|y|i−2 dx dy < ∞, (4.3)

where K , K ′ and l are as in Theorem 1.4 and l is chosen as the x-axis of a Cartesian
coordinate system; see [10, Theorem 6.2.2]. Since the weight function |y|i−2 is un-
bounded near l, (4.3) requires that K and K ′ are “very close” near l. Theorems 1.8
and 1.4 prove that, as a matter of fact, this assumption cannot be removed for general
convex bodies, while it can be removed for polyhedral sets.



Discrete Comput Geom (2009) 41: 61–76 69

Fig. 1 Two unbounded convex
sets with equal (parallel) X-rays
in directions (1,0) and (0,1).
They give rise, via a projective
transformation, to the convex
bodies K and K ′ of
Theorem 1.8

Another difference between the cases i > 0 and i = −1 is that while convex
polygons are determined by X-rays of order i > 0 at any two points (see [9] or
[10, Theorem 6.2.7]), this is false for X-rays of order −1, as the examples described
in Remark 4.4 show. Theorem 1.5 is the best possible for convex polygons when
i = −1. We mention also Lam and Solmon [13], who studied the algorithmic recon-
struction of convex polygons from their X-ray of order 1 at a single point.

Proof of Theorem 1.8 We construct distinct closed convex unbounded sets H and H ′
with equal parallel X-rays in directions (1,0) and (0,1); see Fig. 1. If φ denotes the
projective transformation defined in (4.1), and H and H ′ are contained in {(x, y) :
x + y > 0}, then K = φ−1H and K ′ = φ−1H ′ are convex bodies with equal X-rays
of order −1 at the points (1,0) and (0,0). Let

α1 = 10

3
, αi = 10

3
−

i−2∑

j=0

4−j , for each i > 1.

The sequence (αi) is decreasing and converges to 2. Let

o1 = (0,1), oi =
(

i−2∑

j=0

α1 · · ·αj ,

i−1∑

j=0

α1 · · ·αj

)

, for each i > 1,

where we use the agreement that α1 · · ·αj = 1, when j = 0. Let ψ denote the re-
flection with respect to the line {(x, y) : x = y}, and L = conv({oi,ψoi : i ≥ 1}).
Then [oi, oi+1] ⊂ ∂L, for each i ≥ 1 (because αi is the slope of [oi, oi+1] and (αi) is
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decreasing to 2); see Fig. 1. For h > 0 and i ≥ 1, let

hi = h

α1 · · ·αi−1
, μ1 = 1 − h

2
, and μi+1 = μi + h

α2
1 · · ·α2

i−1αi

.

Consider the points

qo = (μ1,μ1) and qi = (1 − μi)oi + μioi+1 + hi(0,1).

If h is sufficiently small, then μi ∈ (1/3,2/3) for each i. We define H = conv(L,q0,

q2i ,ψq2i : i ≥ 1) and H ′ = conv(L,q2i+1,ψq2i+1 : i ≥ 0).
To prove that L = H ∩ H ′ or, equivalently, that oi ∈ ∂H ∩ ∂H ′ for each i, it

suffices to check that the slope of [qi, oi+1] is larger than that of [oi+1, oi+2], and that
the slope of [oi, oi+1] is larger than that of [oi+1, qi+1]. These inequalities amount to

αi − αi+1 ≥ h

α2
1 · · ·α2

i−1

max

(
1

1 − μi

,
1

μiα
2
i

)
,

which is satisfied, since αi − αi+1 = 41−i , αi > 2, μi ∈ (1/3,2/3) and we may as-
sume h < 1/3.

To prove that X(1,0)H = X(1,0)H
′, it suffices to prove that

X(1,0) conv(o1, q0,ψo1) = X(1,0) conv(ψo1,ψq1,ψo2), (4.4)

and, for each i ≥ 1,

X(1,0) conv(oi, qi, oi+1) = X(1,0) conv(ψoi+1,ψqi+1,ψoi+2). (4.5)

To prove (4.5), since the involved sets are triangles, it suffices to prove that oj

and ψoj+1 have the same y-coordinate, for each j = i, i + 1, that the same is true
for qi and ψqi+1 and to prove that the line qi + l(1,0) intersects the two triangles in
segments of equal length. The y-coordinates of oj and ψoj+1 coincide by defini-
tion. The y-coordinates of qi and ψqi+1 are, respectively,

∑i−1
j=0 α1 · · ·αj + μiα1 · · ·

αi + hi and
∑i−1

j=0 α1 · · ·αj + μi+1α1 · · ·αi and, again, they coincide by definition of
hi and μi . Finally

λ1
(
(qi + l(1,0)) ∩ conv(oi, qi, oi+1)

) = hi

αi

,

and

λ1
(
(qi + l(1,0)) ∩ conv(ψoi+1,ψqi+1,ψoi+2)

) = hi+1,

and the right-hand sides of these equalities coincide by definition of hi . The identity
(4.4) can be proved similarly. This concludes the proof of X(1,0)H = X(1,0)H

′. The
symmetry of H and H ′ with respect to {(x, y) : x = y} implies X(0,1)H = X(0,1)H

′.
Since H and H ′ are contained in {(x, y) : x + y > 0} and αi converges to 2,

then K and K ′ are supported by the x-axis and K ∩ {y = 0} = K ′ ∩ {y = 0} =
[(1/3,0), (2/3,0)]. �
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Remark 4.2 The unique determination, in the context of Theorem 1.4, depends on the
behavior of K near l, and it is sensitive even to small perturbations. For instance the
proof of the theorem can be repeated, almost without changes, if we assume that K

is polyhedral near l, i.e. if there exists a neighborhood U of l such that K ∩ U is the
intersection of U with a polyhedral set. Moreover we believe that Theorem 1.4 holds,
for arbitrary convex bodies, if l supports K at a single point. On the other hand, it
does not hold if we assume that l supports K and intersects it in a segment (as shown
by Theorem 1.8).

Theorem 4.3 Let p1, p2 and p3 be noncollinear points in the plane. A planar convex
body K is determined by its X-rays of order −1 at pj , j = 1,2,3, if K does not
intersect any line which contains two of the points p1, p2 and p3.

Proof Let K ′ 	= K be a convex body with X−1,pj
K = X−1,pj

K ′, j = 1,2,3. Neither
p1 nor p2 nor p3 belong to K ′, because the X-rays of order −1 of K ′ at p1, p2 and p3
are finite. Moreover K ′ does not intersect any line which contains two of the points
p1, p2 and p3, for otherwise K and K ′ could not have the same supporting lines
through the corresponding two points.

Up to affine transformations, we may assume that p1 = (0,0), p2 = (1,0) and
p3 = (1/2,1). Let φ be defined as in (4.1). The sets H = φK and H ′ = φK ′ are
convex bodies which have equal parallel X-rays in the directions u1 = (1,0) and u2 =
(0,1), and equal X-rays of order −1 at q = (1/2,1/2), by Lemma 2.1. Moreover H

and H ′ do not intersect the lines {x = 1/2} and {y = 1/2}. They are contained in
the same component of R

2 \ ({x = 1/2} ∪ {y = 1/2}), for otherwise the supports
of their parallel X-rays could not coincide. For simplicity we assume that H , H ′ ⊂
{x > 1/2, y > 1/2}, since in the other cases the proof is similar.

We introduce some notation according to [10, Sects. 1.2 and 5.3]. Assume
H 	= H ′. Since Xu1H = Xu1H

′, the centroids of H and H ′ are aligned in the di-
rection u1, by [10, Lemma 1.2.3]. Since Xu2H = Xu2H

′, these centroids coincide.
The latter implies intH ∩ intH ′ 	= ∅. Suppose that C is a component of int(H \ H ′)
and let j ∈ {1,2}. Let ujC be the set of all z ∈ int(H ′ \ H) such that the line z + luj

meets C. It is known that ujC is a component of int(H ′ \H) and it has the same area
as C. Moreover Xuj

C = Xuj
ujC and the centroids of C and ujC are aligned in the

direction uj . With similar ideas one associates to C a component qC of int(H ′ \ H),
with the property that X−1,qC = X−1,qqC.

Let C be a component of int(H�H ′) of maximal area and let

C = {
ujm . . . uj1C : m ∈ N, jk ∈ {1,2}}

be the system of components associated to C. Reference [10, Lemma 1.2.8] proved
that the centroids of the components in the system C form the vertices of a convex
polygon P . Let z = (xz, yz) be a vertex of P with the property that (−1,−1) is an
outer normal vector to P in z. Since H , H ′ ⊂ {x > 1/2, y > 1/2}, we have xz > 1/2
and yz > 1/2. Each vertex of P is a centroid of a component in C , by definition.
Assume, for instance, that the component D in C whose centroid is z is contained in
H \ H ′. We claim that D is nearer to q than qD. Let ujz be the centroid of ujD, for
j = 1,2. Since P ⊂ {x + y ≥ xz + yz} and uj z is a vertex of P , the x-coordinate of
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u1z is larger than xz and the y-coordinate of u2z is larger than yz. Therefore the line l

through q and z meets relint[u1z,u2z] in a point, which we denote by p. Moreover q ,
z and p are in this order on l. The point p ∈ H ′, because u1z, u2z ∈ H ′, and therefore
each point of l ∩ (H ′ \ H) is farther from q than z.

We use this information to prove that the area of qD is larger than that of D. This
contradicts the maximality of the area of C, because λ2(C) = λ2(D) < λ2(qD), and
concludes the proof. In a polar coordinate system centred at q , let

D = {
(r, θ) : 0 < r1(θ) ≤ r ≤ s1(θ), α ≤ θ ≤ β

}
,

and

qD = {
(r, θ) : 0 < r2(θ) ≤ r ≤ s2(θ), α ≤ θ ≤ β

}
,

for suitable 0 < α < β < π/2, rj (θ) and sj (θ). Then

λ2(D) =
∫ β

α

∫ s1(θ)

r1(θ)

r dr dθ =
∫ β

α

∫ 1/r1(θ)

1/s1(θ)

t−3 dt dθ,

where we have used the substitution r = 1/t . A similar expression holds for λ2(qD).
What has been proved above implies that s1(θ) ≤ s2(θ), for each θ . The equality of
the X-rays of order −1 at q implies that 1/r1(θ) − 1/s1(θ) = 1/r2(θ) − 1/s2(θ), for
each θ . Since t−3 is decreasing and 1/s2 ≤ 1/s1, λ2(D) < λ2(qD). �

Proof Proof of Theorem 1.5 If no line through two of the points meets K , then the
result follows from Theorem 4.3. Suppose that the line l through two of the points,
p1 and p2, say, meets K . If K ′ 	= K is a bounded convex polygon such that
X−1,pj

K = X−1,pj
K ′, j = 1,2, then l also meets K ′, for otherwise K and K ′ could

not have the same supporting lines through p1 and p2. By Theorem 1.4, the polygons
K and K ′ must be separated by p1 or p2. It is now impossible for K and K ′ to have
common supporting lines through pj , j = 1,2,3, and this contradiction proves the
theorem. �

Remark 4.4 Given any set of three points on a line l there are two different triangles
T and T ′ with equal X-rays of order −1 at each of the points; see [10, Theorem 6.2.9
and Fig. 6.2]. Both T and T ′ are contained in one of the open halfplanes bounded
by l. Moreover, there exist different triangles S and S′ with equal X-rays of order −1
at two points p1 and p2, outside the triangles, and such that the line through p1 and
p2 meets intS and intS′; see [10, Theorem 6.2.10 and Fig. 6.3]. One of the triangles
intersects [p1,p2], while the other does not.

These examples imply that Theorem 1.4 is false if l does not meet K , or if K and
K ′ meet different components of l \ {p1,p2}; they imply that Theorem 1.5 is false if
the three points are collinear. These examples also prove—via the connection among
parallel X-rays of cones and point X-rays of order −1 of their sections expressed
in Theorem 1.3—that Theorem 1.6 is false if the two-subspace which contains u1
and u2 does not intersect A \ {o}, and that Theorem 1.7 is false, if u1, u2 and u3 are
contained in the same 2-subspace.
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Theorem 4.5 Let K and K ′ be nondegenerate convex polygons with equal X-rays
of order −1 at p1,p2, . . . , ps ∈ R

2 \ K . If

conv(K,p1, . . . , ps) = conv(K ′,p1, . . . , ps), (4.6)

then K = K ′.

Proof Assume K 	= K ′ and let P = conv(K,p1, . . . , ps). Without loss of generality,
let p1, . . . , pm, for some 1 ≤ m ≤ s, be the points of {p1, . . . , ps} which are vertices
of P .

We may assume m ≤ 2, because otherwise the result follows by Theorem 1.5.
We may also assume that the vertices p1 and pm are consecutive, since otherwise
[p1,pm] meets K . In this case, the segment [p1,pm] meets K ′ too, by the equality
of the X rays at p1 and pm and (4.6), so that by Theorem 1.4 K = K ′.

Let p1, . . . , pm,qm+1 . . . , qd denote the vertices of P , in counterclockwise order.
Each qi is a vertex of K and K ′, by (4.6), and d > m, because m ≤ 2.

Assume m = 1. Let l be any line through p1, with l ∩ (P \ {p1}) 	= ∅. Let K ∩ l =
[x1, x2], with p1, x1 and x2 in this order on l; let K ′ ∩ l = [x′

1, x
′
2], with p1, x′

1 and
x′

2 in this order on l. One endpoint of l ∩ P belongs to ∪d−1
j=2[qj , qj+1], and since

∪d−1
j=2[qj , qj+1] is contained in ∂K ∩ ∂K ′, x2 and x′

2 coincide with this endpoint. The
equality of the X-rays of order −1 at p1 implies that x1 = x′

1 too. The arbitrariness
of l implies that K = K ′.

Now assume m = 2. Let C be the component of ∂K ∩ ∂K ′ which contains q3. We
prove that C = ∂K = ∂K ′. First assume that

C = {q3} . (4.7)

Observe that in this case d = 3. Moreover K and K ′ meet [p2, q3] only in q3, because
if, for instance, K ∩ [p2, q3] strictly contains {q3}, the same is true for K ′, by the
equality of the X-rays of order −1 at p2, and (4.7) is violated. Similar arguments
prove that K ∩ [p1, q3] = K ′ ∩ [p1, q3] = {q3}.

Let l be any line through p2 that meets the two edges of K adjacent to q3 and the
two edges of K ′ adjacent to q3, and which does not contain q3. Let u be the direc-
tion of l, let T = cone(K,q3) and T ′ = cone(K ′, q3). The identity X−1,p2K(u) =
X−1,p2K

′(u) clearly implies X−1,p2(q3 + T )(u) = X−1,p2(q3 + T ′)(u), and this im-
plies, by elementary computations, that the entire X-rays of order −1 of the cones
q3 + T and q3 + T ′ at p2 coincide. Similar arguments prove that the X-rays of order
−1 of these cones at p1 coincide too. Since both q3 + T and q3 + T ′ meet [p1,p2],
Theorem 1.4 applies and proves that T = T ′. In particular the edges of K and K ′
adjacent to q3 coincide, contradicting (4.7).

Now drop (4.7) and assume that C is strictly contained in ∂K . Let x1, x2, with
x1 	= x2, be the endpoints of C. The equality of the X-rays of order −1 at p1 implies
that p1, x1 and x2 are collinear. Similarly, p2, x1 and x2 are collinear. Therefore both
K and K ′ intersect [p1,p2]. Theorem 1.4 applies and proves that K = K ′. �
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5 Parallel X-Rays of Convex Cones

Proof of Theorem 1.6 Let A′ 	= A be a convex cone with Xuj
A = Xuj

A′, j = 1,2.
Let Li be an (n − 1)-dimensional subspace which contains ui and intersects A only
in o. (The existence of Li follows from the assumption ±ui /∈ A and standard sep-
aration theorems.) Let L+

i be the halfspace bounded by Li which contains A. Then
u2 /∈ L1 and u1 /∈ L2, because A \ {o} intersects the two-dimensional subspace con-
taining u1 and u2, by assumption. Therefore we may choose a Cartesian coordi-
nate system with origin at o and such that L+

1 ∩ L+
2 ⊂ {(x1, . . . , xn) : xn ≥ 0} and

u1, u2 /∈ {xn = 0}.
Let pj = luj

∩ {xn = 1}, j = 1,2, and let l be the line through p1 and p2. The
support of Xui

A is contained in L+
i , and therefore A′ ⊂ L+

i , for i = 1,2. Since A

and A′ are contained in L+
1 ∩ L+

2 , they intersect the same component of l \ {p1,p2}.
Theorems 1.3 and 1.4 imply that A ∩ {xn = 1} = A′ ∩ {xn = 1}, that is, A = A′. �

Proof of Theorem 1.7 Let A′ 	= A be a convex cone with Xuj
A = Xuj

A′, j = 1,2,3.
Let Lij be the two-dimensional subspace which contains ui and uj , for i, j = 1,2,3,
i 	= j . If one of the Lij intersects A \ {o}, the result follows from Theorem 1.6.
Otherwise, let L+

ij be the halfspace bounded by Lij which contains A.

The support of Xui
A is contained in L+

ij , and therefore A′ ⊂ L+
ij , for each i and j .

Choose a Cartesian coordinate system with origin at o and such that the intersection
⋂

i,j=1,2,3, i 	=j

L+
ij

is contained in {(x1, x2, x3) ∈ R
3 : x3 ≥ 0} and meets {x3 = 0} only in o. This choice

implies that A∩{x3 = 1} and A′ ∩ {x3 = 1} are bounded. Theorems 1.3 and 1.5 imply
that A ∩ {x3 = 1} = A′ ∩ {x3 = 1}, that is, A = A′. �

Theorem 5.1 Let u1, u2 and u3 ∈ S2 be directions not contained in the same two-
dimensional subspace. A closed convex cone A ⊂ R

3 with nonempty interior is de-
termined, in the class of all closed convex sets, by its parallel X-rays in direc-
tion uj , j = 1,2,3, if ±uj /∈ A, j = 1,2,3, and A \ {o} does not intersect any two-
dimensional subspace containing two of the directions u1, u2 and u3.

Theorem 5.1 can be proved as Theorem 1.7, substituting Theorem 1.5 with Theo-
rem 4.3 in the proof.

6 Parallel X-Rays of Convex Bodies

It is of interest to study the determination of convex sets from parallel X-rays, when
the directions are not contained in the same two-dimensional subspace, as explained
in [10, Sect. 2.2] (see also Problems 2.1 and 2.2 in [10]). Very little is known about
this problem. The next result shows that if a convex body K ⊂ R

n has a vertex q then
the X-rays of K in certain sets of n directions suffice to determine K within the class
of convex bodies containing q .
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Theorem 6.1 Let K ⊂ R
n be a convex body and q ∈ ∂K . Assume that there exist

uj ∈ Sn−1, j = 1, . . . , n, such that K ⊂ q + conv(pos(u1), . . . ,pos(un)). The set K

is determined by its X-rays in direction uj , j = 1, . . . , n, in the class of convex bodies
which contain q .

Proof Up to an affine transformation, we may assume that q = o and uj is par-
allel to the xj -axis and points in the positive direction, j = 1, . . . , n. Therefore
K ⊂ {(x1, . . . , xn) ∈ R

n : xj ≥ 0, j = 1, . . . , n}. Let K ′ 	= K be a convex body, which
contains o and with Xuj

K = Xuj
K ′, j = 1, . . . , n. Then K ′ ⊂ {xj ≥ 0, j = 1, . . . , n},

because Xuj
K and Xuj

K ′ have the same support.
Let C be the system of components associated—with respect to the directions uj ,

j = 1, . . . , n—to a fixed component of intK�K ′. (We use the terminology intro-
duced in [10] and described in the proof of Theorem 4.3.) Let C be a component
in C , whose centroid z minimizes x1 + · · · + xn, among all the centroids of compo-
nents in C . This minimum point exists, for C is finite.

Let y ∈ C and j ∈ {1, . . . , n}. We may assume, up to exchanging the roles of
K and K ′, that C ⊂ int(K \ K ′), and we prove that the ray y + pos(uj ) contains
a point, say yj , of K ′. If l is any line parallel to uj meeting C, then l also meets
ujC ⊂ int(K ′ \ K). If y′ ∈ l ∩ int(K ′ \ K) and y′′ ∈ l ∩ int(K \ K ′), then either the
xj -coordinate of y′ is larger than that of y′′ or it is smaller, and which of the two
alternatives occurs does not depend on the choice of l, y′ and y′′. The xj -coordinate
of the centroid of ujC is larger than the xj -coordinate of z, for otherwise z would
not be a minimum point. Therefore the xj -coordinate of y′ is larger that of y′′. When
l = y + luj

this property implies the claim.
The point y belongs to the simplex conv(o, y1, . . . , yn), and this simplex is con-

tained in K ′, because so are all its vertices. Therefore y ∈ K ′. This contradicts the
choice of y ∈ C ⊂ int(K \ K ′). �

A similar result has been proved, with different methods, by G. Michelacci [14]
for n = 2 and for X-rays taken from finite points.

Acknowledgements We are indebted to M. Longinetti and C. Peri for a careful reading of the first draft
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