
Discrete Comput Geom (2008) 39: 174–190
DOI 10.1007/s00454-008-9050-5

Generating All Vertices of a Polyhedron Is Hard

Leonid Khachiyan · Endre Boros · Konrad Borys ·
Khaled Elbassioni · Vladimir Gurvich

Received: 21 July 2005 / Revised: 8 June 2006
© Springer Science+Business Media, LLC 2008

Abstract We show that generating all negative cycles of a weighted graph is a hard
enumeration problem, in both the directed and undirected cases. More precisely,
given a family of negative (directed) cycles, it is an NP-complete problem to de-
cide whether this family can be extended or there are no other negative (directed)
cycles in the graph, implying that (directed) negative cycles cannot be generated in
polynomial output time, unless P = NP. As a corollary, we solve in the negative
two well-known generating problems from linear programming: (i) Given an infea-
sible system of linear inequalities, generating all minimal infeasible subsystems is
hard. Yet, for generating maximal feasible subsystems the complexity remains open.
(ii) Given a feasible system of linear inequalities, generating all vertices of the corre-
sponding polyhedron is hard. Yet, in the case of bounded polyhedra the complexity

Communicated by Günter M. Ziegler.

This research was partially supported by the National Science Foundation (Grant IIS-0118635),
and by DIMACS, the National Science Foundation’s Center for Discrete Mathematics and
Theoretical Computer Science. An extended abstract of this paper appears in the Proceedings of
the ACM–SIAM Symposium on Discrete Algorithms, Miami, Florida, January 22–24, 2006.

Our friend and colleague, Leo Khachiyan, passed away with tragic suddenness while we were
preparing this manuscript.

E. Boros (�) · K. Borys · V. Gurvich
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA
e-mail: boros@rutcor.rutgers.edu

K. Borys
e-mail: kborys@rutcor.rutgers.edu

V. Gurvich
e-mail: gurvich@rutcor.rutgers.edu

K. Elbassioni
Department 1, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
e-mail: elbassio@mpi-sb.mpg

Discrete Comput Geom (2008) 39: 174–190 175

remains open. Equiva lently, the complexity of generating vertices and extreme rays
of polyhedra remains open.

1 Introduction and Main Results

Let G = (V ,E) be a directed graph (digraph) and let w: E → R be a real-valued
weight function defined on its arcs. We call such a pair a weighted digraph and
denote it by (G,w). For every subset of arcs F ⊆ E its weight is defined as the
total weight of all its arcs, w(F) = ∑

e∈F w(e). We call a simple directed cycle a
circuit. A circuit is called negative if its weight is negative. Finally, we denote by
C− = C−(G,w) the family of negative circuits of (G,w), i.e., C− = {C ⊆ E | C is a
circuit with w(C) < 0}.

First we consider the problem of generating exhaustively all negative circuits of
a given weighted directed graph (G,w), in other words the problem of enumerating
the family C−(G,w). Since the number of negative circuits may be exponential in the
size of the input description, i.e., the size of G and w, the efficiency of such enumer-
ation algorithms is measured customarily in both the input and output sizes (see, e.g.,
[28, 32, 43]). More precisely, such an enumeration problem is said to be solvable in
polynomial total time if the output can be generated in time polynomial in the input
and output sizes. It is easy to see that for self-reducible (see, e.g., [29]) problems a
family C is enumerable in polynomial total time if and only if for each subfamily
X ⊆ C, the problem of deciding X �= C; if yes, finding C ∈ C\X , is solvable in time
polynomial in size(G,w) and |X |. On the other hand, when this decision problem is
NP-hard, the enumeration problem is called NP-hard, too (see [32]). Thus, NP-hard
enumeration problems are unlikely to have total polynomial time enumeration algo-
rithms, unless P = NP.

Our main result claims that enumerating negative circuits of a weighted directed
graph is a hard enumeration problem.

Theorem 1 Given a weighted digraph G = (V ,E), w: E → R, and a family
X ⊆ C− of its negative circuits, it is an NP-complete problem to decide whether
X �= C−, even if w takes only two different values.

We add that the analogous hardness result can be shown for undirected graphs,
as well. In this case we also call a simple cycle a circuit and we denote by C− =
C−(G,w) the family of all negative circuits of an undirected graph G = (V ,E).

Theorem 2 Given a weighted undirected graph G = (V ,E), w: E → R, and a fam-
ily X ⊆ C−(G,w) of its negative circuits, it is an NP-complete problem to decide
whether X �= C−, even if w takes only two different values.

We remark that all circuits of a directed or undirected graph can be enumerated
efficiently, e.g., by a simple backtracking algorithm [37].

Note that if w takes the same value for all edges (arcs), then negative circuits
either do not exist or all circuits are negative. Thus, the enumeration problems for
both directed and undirected graphs can be solved efficiently, as we noted earlier.
Furthermore, when w takes only two different values, those can be assumed to be

176 Discrete Comput Geom (2008) 39: 174–190

integers, and hence by edge (arc) splitting the input can be transformed to one in
which all edges (arcs) have weight ±1. Though this transformation may increase the
size of the input in a nonpolynomial way, in the case of the specific constructions we
provide in the proofs of the above two theorems, it is a polynomial transformation,
implying that generating all negative circuits is NP-hard even if all edges (arcs) have
weights ±1.

We derive several consequences of the above results, including the hardness of
generating all vertices of a (possibly unbounded) polyhedron, generating all minimal
infeasible subsystems of a system of linear inequalities, etc. We prove Theorems 1
and 2 in Sects. 2 and 3, respectively.

1.1 Negative Circuits and Minimal Infeasible Subsystems

We first note that deciding the existence and finding a negative circuit in a weighted
directed graph are polynomially solvable tasks. Gallai [25] proved that (G,w) has
no negative circuit if and only if by a potential transformation all edge weights can
be changed to nonnegative values. Furthermore, a negative circuit can be found in
O(|V |3) time, if the graph has negative circuits [23, 44]. We use Gallai’s approach to
reformulate the problem and derive some interesting consequences.

To a weighted digraph (G,w), where G = (V ,E) and w: E → R, we associate a
polyhedron P(E,w) defined by

P(E,w) = {
x ∈ R

V
∣
∣ xv − xu ≤ w(u,v) for all arcs (u, v) ∈ E

}
. (1)

Note that every vector x ∈ P(E,w) is a potential in the sense Gallai [25] defined
it, proving that G is negative circuit free. Namely, defining w′(u, v) = w(u,v) +
xu − xv for all arcs (u, v) ∈ E we get another weighting of the arcs of G, such that
w′(C) = w(C) for all directed circuits C ⊆ E, and for which w′(u, v) ≥ 0 for all arcs
(u, v) ∈ E, according to the definition of P(E,w). This latter shows that G is indeed
negative cycle free.

Thus applying Gallai’s result to subgraphs of G we obtain that P(E′,w) = ∅ for
some E′ ⊆ E if and only if the subgraph G′ = (V ,E′) contains a negative cycle with
respect to the weight function w. Therefore, the minimal infeasible subsystems of
the system of linear inequalities (1) correspond in a one-to-one way to the negative
circuits of (G,w). Hence, Theorem 1 implies the following result.

Corollary 1 Enumerating all minimal infeasible subsystems of a system of linear
inequalities is an NP-hard enumeration problem, even if we restrict the input to linear
systems involving at most two variables in each inequality.

The problems of finding minimal infeasible subsystems of a system of linear
inequalities, sometimes called Irreducible Inconsistent Subsystems (IIS) or Helly
systems, and its natural dual of finding maximal feasible subsystems received am-
ple attention in the literature, see, e.g., [5, 35, 38]. The optimization versions of
these problems, i.e., finding a maximum cardinality feasible subsystem, and find-
ing a minimum cardinality infeasible subsystem are known to be NP-hard, see, e.g.,
[14, 27, 35].

Discrete Comput Geom (2008) 39: 174–190 177

1.2 Minimal Infeasible Subsystems and Vertex Enumeration

Recall that the infeasibility of a system of linear inequalities is well characterized
by the Farkas Lemma: either the system Ax ≥ b has a solution, or there exists a
nonnegative vector y ≥ 0 such that yT A = 0 and yT b > 0, but not both (see [21]).
Using this claim, Gleeson and Ryan [26] associated to a system of linear inequali-
ties Ax ≥ b, A ∈ R

m×n and b ∈ R
m, a so-called alternative polyhedron defined as

Q = {y ∈ R
m+ | yT A = 0, yT b = 1}, and observed that minimal infeasible subsys-

tems of Ax ≥ b are in a one-to-one correspondence with vertices of Q. Indeed, for
every vector y ∈ Q we consider the subsystem of Ax ≥ b corresponding to the sup-
port set S(y) = {i | yi �= 0}. By the Farkas Lemma, we have that these corresponding
subsystems are indeed infeasible. Conversely, if S is the index set of an infeasible
subsystem of Ax ≥ b, then again by Farkas’s lemma we have a vector y ∈ Q for
which S(y) ⊆ S. Thus, minimal infeasible subsystems correspond to vectors y ∈ Q

with minimal support sets, and hence those are indeed vertices of Q.
This observation, coupled with Corollary 1, implies the hardness of enumerating

the vertices of polyhedra.

Corollary 2 Enumerating all vertices of a rational polyhedron, given as the inter-
section of finitely many closed half-spaces, is an NP-hard enumeration problem.

Proof We consider an infeasible system of rational linear inequalities Ax ≥ b, and
its alternative polyhedron Q. We can write Q equivalently as Q = {y ∈ R

m | y ≥
0, AT y ≥ 0, − AT y ≥ 0, bT y ≥ 1, − bT y ≥ −1}, i.e., as the intersection of m +
2n + 2 closed half-spaces. Thus, by the above observation, enumerating the vertices
of this rational polyhedron would also enumerate all minimal infeasible subsystems
of Ax ≥ b, which is an NP-hard enumeration problem according to Corollary 1. �

Vertex enumeration is a fundamental problem in computational geometry and
polyhedral combinatorics (see, e.g., [19] for a list of applications), and has many
equivalent formulations. Most notably for bounded polyhedra, vertex enumeration is
equivalent with facet generation, i.e., enumerating the facets of a polytope given by
an explicit list of its vertices (see, e.g., the so-called polytope–polyhedron problem
in [31]).

We add that in this paper we consider polyhedra which have vertices. This con-
dition is easy to check in polynomial time and does not restrict generality. We em-
phasize that whenever the system of equations AT y = 0, bT y = 0 has a nontrivial
solution for which y ≥ 0, then Q in Corollary 2 is an unbounded polyhedron. Thus,
our reduction through Theorem 1 yields in general unbounded polyhedra, and hence
does not imply the hardness of vertex generation for bounded polyhedra, which re-
mains an open problem. Furthermore, and equivalently, the complexity of enumer-
ating together vertices and extreme rays of polyhedra is also an open problem (any
unbounded polyhedron P can be projectively transformed into a bounded polyhe-
dron, by adding one “far face,” whose vertices correspond to the extreme rays of P ,
see, e.g., [35]).

Numerous algorithmic ideas have been introduced in the literature (either for ver-
tex or for facet enumeration, see e.g., [1, 3, 4, 6, 9, 10, 12, 15, 16, 18, 19, 33, 34,
36, 41, 42]). Efficient algorithms (typically linear in the number of vertices) were

178 Discrete Comput Geom (2008) 39: 174–190

proposed for several special cases, including simple polyhedra, i.e., in which every
vertex is incident with exactly n facets [3], simplicial polyhedra, which are the dual of
simple polyhedra [9], network polytopes [36], polytopes with zero–one vertices [10],
and polyhedra in which every facet defining inequality involves at most two nonzero
coefficients [1]. Furthermore, for fixed dimension both vertices and rays of a polyhe-
dron can be enumerated efficiently [13]. However, no method proved to be efficient
(yet) for the general case. In fact, several publications [2, 11, 24] analyzed the pro-
posed general-purpose methods for vertex/facet enumeration, and showed that all of
the known algorithms may require in the worst case superpolynomial time in the out-
put size. Along the same lines, Corollary 2 shows that vertex enumeration is indeed
a hard enumeration problem for unbounded polyhedra (unless of course P = NP).

In analyzing the reasons why backtracking methods are not efficient for vertex
enumeration, in general, Fukuda et al. [24] noted that such methods require re-
peatedly solving decision problems, which turn out to be NP-hard. In particular,
they showed that for a given rational polyhedron P and an open rational half-space
H = {x ∈ R

n | αT x > β}, it is NP-hard to decide if P has a vertex in H . We note
that the same decision problem for bounded polyhedra is much easier, since it can be
decided by maximizing αT x over P , which is a linear programming problem, known
to be polynomially solvable, see Khachiyan [30]. We can show, as a next corollary of
Theorem 1, that the enumerative version of this decision problem is hard for bounded
polyhedra.

To arrive at this claim, we recall that the vertices of the circulation polytope

P(G) =

⎧
⎪⎨

⎪⎩
y ∈ R

E

∣
∣
∣
∣
∣
∣
∣

∑
v: (u,v)∈E yuv − ∑

w: (w,u)∈E ywu = 0, ∀u ∈ V,
∑

(u,v)∈E yuv = 1,

0 ≤ yuv, ∀(u, v) ∈ E

⎫
⎪⎬

⎪⎭

of a directed graph G = (V ,E) correspond to circuits of G, namely for every vertex
y of P(G) its support set S(y) = {(u, v) ∈ E | yuv �= 0} is a circuit in G.

We remark that P(G) frequently occurs in the optimization literature under var-
ious names, e.g., as the trans-shipment or flow polyhedron, or simply as the set of
feasible circulations, or feasible solutions to a trans-shipment problem, etc. (see, e.g.,
Chaps. 11–13 in [40]). The vertices and facial structure of P(G) are well studied and
understood. In particular, the vertices of P(G) can be generated in linear (output)
time by cycle enumeration [37].

Associating further to a rational weight function w: E → R an open rational half-
space defined by

H =
{

y ∈ R
E

∣
∣
∣
∣

∑

(u,v)∈E

w(u, v)yuv < 0

}

,

we get that the support sets of vertices of P(G) belonging to H are exactly the nega-
tive circuits of the weighted directed graph (G,w). Thus, Theorem 1 readily implies
the following claim.

Corollary 3 Given a rational polyhedron P and an open rational half-space H , it is
NP-hard to enumerate all vertices of P which belong to H , even if P is bounded.

Discrete Comput Geom (2008) 39: 174–190 179

Many applications (see, e.g., [19]) call for the enumeration of all those basic fea-
sible solutions to a linear programming problem (i.e., vertices of the corresponding
polyhedron), the corresponding objective function value of which is above a given
threshold. Corollary 3 indicates that unfortunately such enumeration problems are
difficult in general, unless P = NP.

A further consequence of Theorem 1 is that enumerating all vertices of a bounded
polyhedron P which do not belong to a given face of P is also hard, in general.

Corollary 4 Given a bounded polyhedron P and a proper face F of it, it is NP-hard
to enumerate the vertices of P which do not belong to F .

Proof Let H̄ = {y ∈ R
E |∑(u,v)∈E w(u, v)yuv ≤ 0}. Note that P ′ = P(G) ∩ H̄ is a

bounded polyhedron, for which H̄ is facet defining. Denoting this facet by F , the
vertices of P ′ outside F correspond in a one-to-one way to the negative circuits of
the weighted graph (G,w) to which we associated H and P(G). Thus, the claim
follows from Theorem 1. �

By Corollary 2 unless P = NP there exists no algorithm that outputs in incre-
mental (or total) polynomial time, the vertices and then the extreme directions of a
polyhedron, in that order. In contrast we have the following statement.

Proposition 1 If there exists an algorithm which enumerates all vertices of a
bounded polyhedron in incremental polynomial time, then we can enumerate all ex-
treme rays and then all vertices (in this order) of a polyhedron in incremental poly-
nomial time.

Proof Let P = {x ∈ R
n: aT

i x ≤ bi, i = 1, . . . ,m} be an unbounded polyhedron and
let V and R denote the set of vertices and the set of extreme rays of P , respectively.
As before, we can assume that V contains at least one vertex v. Let a = ∑

i: aT
i v=bi

ai .

Then P ′ = {x: aT
i x ≤ bi , i = 1, . . . ,m,aT x = −M} is a bounded polyhedron whose

vertices correspond to R, where M is an appropriately large constant. Furthermore,
P ′′ = {x: aT

i x ≤ bi , i = 1, . . . ,m, aT x ≥ −M} is a bounded polyhedron whose ver-
tices correspond to V ∪ R.

Assuming the existence of an algorithm A that can enumerate all vertices of a
bounded polyhedron in incremental polynomial time, it follows that for any given
subset W of the vertices of that bounded polyhedron, we can decide if this subset
contains all vertices or, if not, can generate a vertex not belonging to W , in time,
polynomial in the size of the input description of the polyhedron and the set W of
given vertices. This can be accomplished simply by running A until it stops, or it
outputs |W | + 1 vertices, whichever happens earlier.

Thus, by first applying A to P ′ we can generate the set R incrementally efficiently.
Furthermore, since R is a subset of the vertices of P ′′, we can continue by applying
A to P ′′ and extend in this way the set R incrementally efficiently to V ∪ R, as we
described earlier. Hence, we can enumerate the set V ∪ R in the stated order, first R

and then V , incrementally efficiently. �

180 Discrete Comput Geom (2008) 39: 174–190

1.3 Four Geometric Enumeration Problems

We finally recall four strongly related geometric enumeration problems. Let A ⊆ R
n

be a given subset of vectors in R
n, fix a point z ∈ R

n called the center, and consider
the following four definitions:

• A simplex is a minimal subset X ⊆ A containing the center in its convex hull, i.e.,
z ∈ conv(X).

• An anti-simplex is a maximal subset X ⊆ A not containing the center in its convex
hull, i.e., z �∈ conv(X).

• A body is a minimal (full-dimensional) subset X ⊆ A containing the center in the
interior of its convex hull, i.e., z ∈ int(conv(X)).

• An anti-body is a maximal subset X ⊆ A not containing the center in the interior
of its convex hull, i.e., z �∈ int(conv(X)).

Equivalently, a simplex (body) is a minimal collection of the given vectors not con-
tained in an open (closed) half-space through the center, while an anti-simplex (anti-
body) is a maximal collection of vectors contained in an open (closed) half-space
through the center. It can be seen easily that |X| ≤ n + 1 for a simplex, and that
n + 1 ≤ |X| ≤ 2n for a body.

In what follows we assume that the center is at the origin, i.e., z = 0. For a given
point set A ⊆ R

n we denote, respectively, by S and B the hypergraphs on the base
set A, consisting of all simplices, and all bodies of A. The corresponding families
of maximal independent sets of these two hypergraphs are, respectively, all anti-
simplices and anti-bodies of A, denoted respectively by S∗ and B∗, i.e.,

S∗ = {X ⊆ A | X is maximal such that X � S, ∀S ∈ S},
B∗ = {Y ⊆ A | Y is maximal such that Y � B, ∀B ∈ B}.

Simplices, anti-simplices, bodies, and anti-bodies can naturally be related to min-
imal infeasible or maximal feasible subsystems of certain linear systems of inequali-
ties. Namely, we denote by A ∈ R

m×n, where m = |A|, the matrix whose row vectors
are the vectors of A, and we let e ∈ R

m denote the m-dimensional vector of all ones.
It follows from the above definitions that simplices and anti-simplices are in a

one-to-one correspondence, respectively, with the minimal infeasible and maximal
feasible subsystems of the linear system of inequalities:

Ax ≥ e, x ∈ R
n. (2)

Similarly, it follows that bodies and anti-bodies correspond in a one-to-one way,
respectively, to the minimal infeasible and maximal feasible subsystems of the sys-
tem:

Ax ≥ 0, x �= 0. (3)

As for the complexity of these enumeration problems, it is known that the genera-
tion of anti-bodies is a hard problem:

Proposition 2 [7] Given a set of vectors A ⊆ R
n, and a partial list X ⊆ B∗ of

the anti-bodies of A, it is NP-hard to determine if the given list is incomplete, i.e.,

Discrete Comput Geom (2008) 39: 174–190 181

X �= B∗, or not. Equivalently, given an infeasible system (3), and a partial list of its
maximal feasible subsystems, it is NP-hard to determine if the given partial list is
incomplete or not.

Enumeration of bodies turns out to be at least as hard as the well-known hyper-
graph transversal problem [8] whose exact complexity is still an outstanding open
problem [20]. The best currently known algorithm for the hypergraph transversal
problem runs in incremental quasi-polynomial time [22].

Proposition 3 [7] The problem of incrementally enumerating bodies, for a given set
of m + n points A ⊆ R

n, includes as a special case the problem of enumerating all
minimal transversals for a given hypergraph H with n hyperedges on m vertices.
Equivalently, generating minimal infeasible subsystems of (3) is at least as hard as
hypergraph transversal generation.

The problem of generating simplices turns out to be equivalent, in general, to
the problem of enumerating the vertices of bounded polyhedra, or enumerating the
vertices and extreme rays of possibly unbounded polyhedra. To see this, we consider
a vector set A = {a1, . . . , an, b} ⊆ R

d and associate to it a polyhedron P = {x ∈ R
n |

Ax = −b, x ≥ 0}, where A = [a1, . . . , an] is the matrix with columns a1, . . . , an.
Recall that for a vector y ∈ R

n we called the set S(y) = {i | yi �= 0} its support set.

Proposition 4 If y ∈ P is a vertex of P , then the set {ai | i ∈ S(y)} ∪ {b} is a simplex
of A, while if y ∈ P is an extreme ray of P , then the set {ai | i ∈ S(y)} is a simplex
of A. Furthermore, every simplex of A corresponds in this way either to a vertex or
to an extreme ray of P .

Proof It is well known that the vertices of P are the solutions which have minimal
support sets, and the extreme rays are those solutions of the homogenized system (re-
place b by 0) which have minimal support sets (see, e.g., Chap. 8 in [39]). Clearly, the
minimality of support sets in both cases implies the first two claims, by the definition
of a simplex of A.

For the last claim, let S ⊆ A be a simplex, i.e., a minimal subset for which 0 ∈
conv(S). If b ∈ S, then we have for some λa ≥ 0, a ∈ S\{b}, and λb ≥ 0, with λb +∑

a∈S\{b} λa = 1, that

−λbb =
∑

a∈S\{b}
λaa.

Since S is minimal, we must have all these coefficients positive, and thus

−b =
∑

a∈S\{b}

λa

λb

a.

Thus, the vector x ∈ R
n, defined by

xi =
{

λai
/λb if ai ∈ S\{b},

0 otherwise

182 Discrete Comput Geom (2008) 39: 174–190

for i = 1, . . . , n, is a vertex of P , again by the minimality of S. While if b �∈ S, then
we have

0 =
∑

a∈S

λaa

for some positive coefficients λa > 0, a ∈ S, for which
∑

a∈S λa = 1, and thus the
vector x ∈ R

n, defined by

xi =
{

λai
if ai ∈ S,

0 otherwise

for i = 1, . . . , n, is an extreme ray of P , once more by the minimality of S. �

In particular, if P = {x ∈ R
n | Ax = b, x ≥ 0} is a bounded polyhedron, i.e., if

Ax = 0 has no nontrivial nonnegative solutions, then the vertices of P correspond in
a one-to-one way to the simplices of the set A formed by the column vectors of A

and b.
For the special case of vectors A ⊆ R

n in general position, we have B = S , and
consequently the problem of enumerating bodies of A turns into the problem of enu-
merating vertices of the bounded polyhedron {x ∈ R

n | Ax = 0, eT x = 1, x ≥ 0},
each vertex of which is nondegenerate and has exactly n + 1 positive components.
For such kinds of simple bounded polyhedra there exist algorithms that generate all
vertices with polynomial delay (see e.g., [15] and [3]).

We finally mention that, although the status of the problem of enumerating all
maximal feasible subsystems of (2) is not known in general, the situation changes
if we fix a consistent subfamily of inequalities, and ask for enumerating all its ex-
tensions to a maximal feasible subsystem. In fact, such a problem turns out to be
NP-hard, even if we fix only nonnegativity constraints.

Proposition 5 [7] Let A ∈ R
m×n be an m × n matrix, let b ∈ R

m be an m-dimen-
sional vector, and assume that the system

Ax ≥ b, x ∈ R
n, (4)

has no solution x ≥ 0. Let F be the family of all maximal subsystems of (4) which
can be satisfied by a nonnegative solution x. Then, given a partial list X ⊆ F , it is
an NP-complete problem to determine if the list is incomplete, i.e., if X �= F , even if
b is a unit vector, and entries in A are either, −1, 1, or 0.

We conclude with the observation that the problem of finding, for an infeasible
system

A′x ≥ b′, A′′x ≥ b′′, (5)

all maximal feasible subsystems extending the feasible subsystem A′′x ≥ b′′, natu-
rally includes both problems of generating anti-simplices and simplices. Clearly, the
former problem can be written in the form (5) by considering (2) and all maximal
extensions of an empty subsystem. For the latter problem, note that the vertices of a
bounded polyhedron {x ∈ R

n | Ax = b, x ≥ 0}, where b �= 0, are in one-to-one cor-
respondence with the maximal feasible extensions of the subsystem Ax = b, x ≥ 0

Discrete Comput Geom (2008) 39: 174–190 183

in the infeasible system Ax = b, x ≥ 0, x ≤ 0. Although the general problem of gen-
erating maximal feasible extensions is NP-hard as stated above, the special cases of
generating simplices and anti-simplices remain open.

2 Proof of Theorem 1

In this section we prove Theorem 1 by a reduction from satisfiability, a well-known
NP-complete problem (see [17]).

We consider n propositional Boolean variables Xj , j = 1, . . . , n, we denote by
X = 1 − X the negation of X, we call variables and their negations literals, and
elementary disjunctions of literals clauses. We next consider an arbitrary conjunctive
normal form (CNF) φ = C1 ∧C2 ∧· · ·∧Cm, i.e., where Ci , i = 1, . . . ,m, are clauses.
A truth assignment to the variables is called satisfying for the CNF φ, if φ evaluates
to true, i.e., if at least one literal evaluates to true in each of the clauses of φ.

In what follows we associate to φ a weighted directed graph (G,w) and a set X
of negative circuits of G such that (G,w) has a negative circuit not belonging to X
if and only if φ has a satisfying assignment. Because (G,w) and X are constructed
from φ in O(mn) time, and the weight function w uses only two different values
(1 and −1), Theorem 1 follows readily from this construction. This is because the
decision problem “Is there a negative circuit in (G,w) which does not belong to X ?”
is in NP. To complete the proof of Theorem 1, we provide in the following a construc-
tion with these properties, such that every satisfying assignment to φ corresponds to
a negative circuit of (G,w) not belonging to X and, vice versa, every negative circuit
of (G,w) which does not belong to X corresponds to a satisfying assignment of φ

(though the correspondence is not necessarily one-to-one).
To describe our construction, we denote for j = 1, . . . , n, respectively by oj

and ōj , the number of occurrences of literal Xj and its negation Xj ; we denote by
xk
j the kth occurrence of Xj , k = 1, . . . , oj , and by x̄k

j the kth occurrence of Xj ,
k = 1, . . . , ōj , and let L denote the set of all literal occurrences, i.e.,

|L| =
m∑

i=1

|Ci | =
n∑

j=1

(oj + ōj).

Since monotone variables, i.e., ones for which oj = 0 or ōj = 0, can be easily elimi-
nated from a satisfiability problem, we can assume without any loss of generality that
oj > 0 and ōj > 0 hold for all variables j = 1, . . . , n.

For instance, if n = 3 and

φ = (
X1 ∨ X2 ∨ X3

) ∧ (
X1 ∨ X2 ∨ X3

) ∧ (
X1 ∨ X2 ∨ X3

)
, (6)

then we have o1 = 2, ō1 = 1, o2 = 2, ō2 = 1, o3 = 1, ō3 = 2, and

L = {
x1

1 , x1
2 , x̄1

3 , x2
1 , x̄1

2 , x1
3 , x̄1

1 , x2
2 , x̄2

3

}
.

We define the vertex set of the graph G = (V ,E) associated to φ as

V = U ∪ Q ∪
n⋃

j=1

(Yj ∪ Zj),

184 Discrete Comput Geom (2008) 39: 174–190

where U , Q, and Yj and Zj for j = 1, . . . , n are pairwise disjoint, defined as

U = {uk | k = 0,1, . . . ,m + n},
Q = {

a(�), b(�)
∣
∣ � ∈ L

}
,

Yj = {yjk | k = 1, . . . , oj − 1} for j = 1, . . . , n, and

Zj = {zjk | k = 1, . . . , ōj − 1} for j = 1, . . . , n.

The graph itself has a ring structure, the skeleton of which is the set U . For every
variable Xj of φ we have two parallel directed paths from uj−1 to uj . The first
path corresponding to Xj contains vertices Yj (and some other vertices), while the
second path, corresponding to Xj , passes through vertices of Zj (j = 1, . . . , n). For
convenience, we also introduce the notation

yj0 = zj0 = uj−1 and yj,oj
= zj,ōj

= uj (7)

for j = 1, . . . , n. To every clause Ci of φ we associate |Ci | parallel directed paths
from un+i−1 to un+i , one for each of the literals in Ci (i = 1, . . . ,m). Finally vertices
a(�) and b(�) correspond exclusively to literal occurrence � ∈ L.

We consider next the weighted graph H(a,b,p, q, r, s) (see Fig. 1) on six nodes
a, b, p, q , r , and s, having six arcs, the weights of which are as follows:

w(a,b) = w(b,a) = −2 and

w(p,a) = w(b,q) = w(r, b) = w(a, s) = 1.
(8)

To every literal occurrence � ∈ L we associate a disjoint copy of H(a,b,p, q, r, s),
and denote by a(�), b(�), etc., its nodes, and by E� its arc set. Note that each of these
small subgraphs can be decomposed into two directed paths, each consisting of three
arcs, E� = Ev

� ∪ Ec
� , where

Ev
� = {(

p(�), a(�)
)
,
(
a(�), b(�)

)
,
(
b(�), q(�)

)}
, and

Ec
� = {(

r(�), b(�)
)
,
(
b(�), a(�)

)
,
(
a(�), s(�)

)}
.

Finally we set

E = E0 ∪
⋃

�∈L

E�,

where E0 = {(um+n,u0)} with weight w(um+n,u0) = −1.

Fig. 1 The directed graph
H(a,b,p, q, r, s) associated
with literal occurrences

Discrete Comput Geom (2008) 39: 174–190 185

In each of the subgraphs corresponding to the literal occurrences � ∈ L, we have
the nodes a(�) and b(�) already introduced in Q ⊆ V , while the nodes p(�), q(�),
r(�), and s(�) for � ∈ L are corresponding to some other vertices of G, according to
the following definitions:

p(�) = yj,k−1 and q(�) = yjk if � = xk
j ,

p(�) = zj,k−1 and q(�) = zjk if � = x̄k
j , and

r(�) = un+i−1 and s(�) = un+i if � ∈ Ci.

In other words, for every literal occurrence � of clause Ci the set Ec
� forms a three-arc

directed path from un+i−1 to un+i . Furthermore, by (7) and by the above definitions,
the sets Ev

� for � = x1
j , x2

j , . . . , x
oj

j form a directed path from uj−1 to uj through the
vertices of Yj , consisting of 3oj arcs, for every variable Xj . Similarly, the sets Ev

� for

� = x̄1
j , x̄2

j , . . . , x̄
ōj

j form another directed path from uj−1 to uj through the vertices
of Zj , consisting of 3ōj arcs.

In summary, G = (V ,E) consists of |V | = 3|L| + m − n + 1 vertices and |E| =
6|L| + 1 arcs, and the weight function w takes only values in {−2,−1,1}. Note that
we can split arcs of weight −2 to obtain a graph whose arcs all have weight ±1.

Returning to the example CNF φ given in (6), the corresponding graph G = (V ,E)

is shown in Fig. 2. To make the drawing of such a graph visually more clear, for every
literal occurrence � nodes a(�) and b(�) of G are represented by two separate points
of the picture each, labeled as a(�) and a′(�), and as b(�) and b′(�), respectively.
Similarly, node un is represented by two points in the figure, labeled un and u′

n. Arcs

Fig. 2 G is obtained by identifying vertices a(l), a′(l), and b(l), b′(l), for each literal occurrence l, and
u3, u′

3 in the graph above. The lower part of the graph corresponds to the literals and the upper part
corresponds to the clauses

186 Discrete Comput Geom (2008) 39: 174–190

in the sets Ec
� for � ∈ L are drawn as dashed lines, while those belonging to Ev

� for
� ∈ L are drawn as solid lines.

Observe first that the arcs (a(�), b(�)) and (b(�), a(�)) form a circuit of total
weight −4 for every literal occurrence � ∈ L. We denote by X the set of these circuits,
i.e., |X | = |L|, and we denote by F the set of all directed negative circuits of G.

We claim that from every satisfying assignment X of φ we can construct a directed
negative circuit DX ∈F\X and, conversely, from every directed negative circuit D ∈
F\X we can construct a satisfying assignment XD of φ. As we noted at the beginning
of this section, this claim implies Theorem 1.

To see this claim, we first consider a satisfying assignment X = (X1, . . . , Xn) ∈
{0,1}n of φ. Since X satisfies φ, we have a literal occurrence �i in every clause Ci ,
i = 1, . . . ,m, such that �i evaluates to true at X (i.e., �i(X) = 1). We also denote by
W the set of all those literal occurrences which evaluate to false at X, i.e., W = {� ∈
L | �(X) = 0}. Clearly, �i �∈ W for i = 1, . . . ,m by the above definitions. Then the set
of arcs

DX =
(m⋃

i=1

Ec
�i

)

∪
(⋃

�∈W

Ev
�

)

∪ {
(um+n,u0)

}

forms a circuit in G not belonging to X . Since we have w(Ec
�) = w(Ev

�) = 0 for
all literal occurrences � ∈ L, it follows by the above definitions that w(DX) =
w(um+n,u0) = −1, i.e., DX ∈F\X as claimed.

We again return to the CNF φ given in (6). We consider the satisfying assignment
X = (1,0,0) of φ. We choose literal occurrences x̄1

3 ∈ C1, x̄2
1 ∈ C2, and x̄2

3 ∈ C3 that
evaluate to true at X. Figure 3 depicts the negative circuit DX = Ec

x̄1
3
∪ Ec

x̄1
2
∪ Ec

x̄2
3
∪

Ev

x̄1
1
∪ Ev

x̄1
2
∪ Ev

x̄2
2
∪ Ev

x̄1
3
∪ (u6, u0).

Before proving the reverse direction of our main claim, we first observe some
simple properties of our construction. To simplify notation, recall that E� = Ec

� ∪ Ev
�

for � ∈ L, and that the six-vertex subgraphs induced by the arc set E� have the same
structure and weights, as in Fig. 1, for all � ∈ L. The following property of these
subgraphs are instrumental in our proof.

Lemma 1 Given a circuit D ⊆ E of G, not belonging to X , and given a literal
occurrence � ∈ L, we have

w(D ∩ E�) ∈ {0,2,4}.

Moreover, w(D ∩ E�) = 0 only if the set D ∩ E� is one of the following three subsets
of E�: Ec

� , Ev
� , or ∅.

Proof Since D is a circuit not belonging to X , D cannot contain both arcs
(a(�), b(�)) and (b(�), a(�)). Thus, denoting A� = {(p(�), a(�)), (a(�), s(�))} and
B� = {(r(�), b(�)), (b(�), q(�))} we have that D ∩ E� is one of the following six
sets: ∅, A�, B�, A� ∪ B�, Ec

� , and Ev
� . Since we have w(∅) = w(Ec

�) = w(Ev
�) = 0,

w(A�) = w(B�) = 2, and hence w(A� ∪ B�) = 4, the statement follows. �

Discrete Comput Geom (2008) 39: 174–190 187

Fig. 3 Thick lines are edges of the negative circuit DX corresponding to the satisfying assignment
X = (1,0,0). The vertices u3, u′

3 are identified. Since DX contains arcs (b′(x̄1
3)a′(x̄1

3)), (b′(x̄1
2)a′(x̄1

2)),

and (b′(x̄2
3)a′(x̄2

3)) but it does not contain arcs (a(x̄1
3)b(x̄1

3)), (a(x̄1
2)b(x̄1

2)), and (a(x̄2
3)b(x̄2

3)), no circuit

of X is contained in DX

Returning to the reverse direction of our main claim, we consider a negative circuit
D ∈F\X of G. Since

w(D) =
∑

�∈L

w(D ∩ E�) + w
(
D ∩ {

(um+n,u0)
})

we must have by Lemma 1 that (um+n,u0) ∈ D and

w(D ∩ E�) = 0 for all � ∈ L. (9)

We show first that D passes through all vertices in U , includes exactly one of
the two parallel paths between uj−1 and uj for j = 1, . . . , n, and exactly one of the
parallel paths between un+i−1 and un+i for all i = 1, . . . ,m.

As we observed above, we have u0 as a vertex of D. Thus D must contain an
arc leaving u0, say it contains (u0, ax1

1
). Then, by (9) and by Lemma 1, we must have

Ev

x1
1
⊆ D, i.e., D must pass through vertex y11. Since only (y11, a(x2

1)) is leaving y11,

by repeating the above argument we can conclude that we must also have Ev

x2
1

⊆ D,

etc., finally arriving at Ev

x
o1
1

⊆ D, i.e., that D includes u1 as a vertex. Repeating

the same argument, we can prove by induction that for all indices j = 1, . . . , n, if
Ev

x1
j

⊆ D, then we must have Ev

xk
j

⊆ D for all k = 1, . . . , oj , and that if Ev

x̄1
j

⊆ D, then

we must also have Ev

x̄k
j

⊆ D for all k = 1, . . . , ōj . We then define a truth assignment

188 Discrete Comput Geom (2008) 39: 174–190

XD by

XD
j =

⎧
⎨

⎩

1 if Ev

x̄1
j

⊆ D,

0 if Ev

x1
j

⊆ D.

Furthermore, repeating a similar argument for vertices un, un+1, . . . , un+m−1, un+m

we can also conclude that D must contain the set Ec
�i

for exactly one of the literals
�i ∈ Ci , for each clause Ci of φ. Since D is a circuit in which no vertex a(�) or b(�)

is repeated, we must have that �i(X
D) = 1 for all i = 1, . . . ,m, i.e., that XD is indeed

a satisfying assignment of φ.
These observations prove the reverse direction of our main claim, and hence con-

clude the proof of Theorem 1. �

3 Proof of Theorem 2

We can repeat essentially the same proof as for the directed case, with the excep-
tion that we associate with every literal occurrence � ∈ L a different subgraph de-
noted by E�: We now associate with � ∈ L six nodes, a = a(�), b = b(�), c = c(�),

d = d(�), e = e(�), and f = f (�), and the following ten edges:

E� = {
(a, b), (b, c), (c, d), (d, e), (e, f), (a, f), (a,p), (b, q), (d, r), (e, s)

}
,

where nodes p = p(�), q = q(�), r = r(�), and s = s(�) are identified with the other
nodes of G, in the same way as in the previous proof. To simplify notation, we omit
the reference to � whenever it is clear from the context which literal occurrence we
are talking about. The weights of the edges of E� are defined as

w(a,p) = w(b,q) = w(d, r) = w(e, s) = 5

2
, and

w(a,b) = w(b, c) = w(c, d) = w(d, e) = w(e,f) = w(a,f) = −1.

Note that in each of these subgraphs there is a negative circuit (see Fig. 4), formed
by the six edges D� = {(a, b), (b, c), (c, d), (d, e), (e, f), (a, f)}. We denote by X =
{D� | � ∈ L} the collection of these negative circuits, and let F denote the family of
all negative circuits in G.

Fig. 4 The undirected graph
associated with literal
occurrences

Discrete Comput Geom (2008) 39: 174–190 189

By an analogous proof as in the previous section, we can show that there exists a
negative circuit belonging to F\X if and only if φ has a satisfying assignment. The
key observation in this case, the analogue of Lemma 1, is the following claim, which
can easily be verified, e.g., by looking at Fig. 4.

Lemma 2 For a circuit D of G not belonging to X and literal occurrence � ∈ L we
have

w(D ∩ E�) ∈ {0,1,2,3,4}
and it is equal to 0 only if D ∩ E� is one of the following three sets: ∅,

Ev
� = {

(b, c), (c, d), (d, e), (e, f), (a, f), (a,p), (b, q)
}
, or

Ec
� = {

(a, b), (b, c), (c, d), (e, f), (a, f), (d, r), (e, s)
}
.

Remark The construction in Theorem 1 can be slightly modified to show that
the NP-hardness result of Corollary 2 applies to polyhedra with 0/1-vertices (see
arXiv:0801.3790v1 for more details).

Acknowledgements We thank the anonymous referees for their helpful remarks.

References

1. Abdullahi, S.D.: Vertex enumeration and counting for certain classes of polyhedra. Ph.D. thesis, Com-
puting (Computer Algorithms), Leeds University (2003)

2. Avis, D., Bremner, B., Seidel, R.: How good are convex hull algorithms. Comput. Geom. Theory
Appl. 7, 265–302 (1997)

3. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)

4. Avis, D., Fukudam, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)
5. Amaldi, E., Pfetsch, M.E., Trotter, L.E.: On the maximum feasible subsystem problem, IISs and IIS-

hypergraphs. Math. Program. 95, 533–554 (2003)
6. Balinski, M.L.: An algorithm for finding all vertices of convex polyhedral sets. SIAM J. Appl. Math.

9, 72–81 (1961)
7. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Enumerating minimal dicuts and strongly con-

nected subgraphs and related geometric problems. In: Bienstock, D., Nemhauser, G. (eds.) Integer
Programming and Combinatorial Optimization, 10th International IPCO Conference. Lecture Notes
in Computer Science, vol. 3064, pp. 152–162. Springer, Berlin (2004). (An extended version is to
appear in Algorithmica)

8. Berge, C.: Hypergraphs. Elsevier-North Holland, Amsterdam (1989)
9. Bremner, D., Fukuda, K., Marzetta, A.: Primal–dual methods for vertex and facet enumeration. Dis-

crete Comput. Geom. 20, 333–357 (1998)
10. Bussieck, M.R., Lübbecke, M.E.: The vertex set of a 0/1 polytope is strongly P-enumerable. Comput.

Geom. Theory Appl. 11(2), 103–109 (1998)
11. Bremner, D.: Incremental convex hull algorothms are not output sensitive. Discrete Comput. Geom.

21, 57–68 (1999)
12. Charnes, A., Cooper, W.W., Henderson, A.: An Introduction to Linear Programming. Wiley, New York

(1953)
13. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10,

377–409 (1993)
14. Chakravarti, N.: Some results concerning post-infeasibility analysis. Eur. J. Oper. Res. 73, 139–143

(1994)
15. Chvátal, V.: Linear Programming. Freeman, San Francisco (1983)

190 Discrete Comput Geom (2008) 39: 174–190

16. Chand, D.R., Kapur, S.S.: An algorithm for convex polytopes. J. Assoc. Comput. Mach. 17(1), 78–86
(1970)

17. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the Third Annual
ACM Symposium on Theory of Computing, pp. 151–158 (1971)

18. Dyer, M.E.: The complexity of vertex enumeration methods. Math. Oper. Res. 8, 381–402 (1983)
19. Dyer, M.E., Proll, L.G.: An algorithm for determining all extreme points of a convex polytope. Math.

Program. 12, 81–96 (1977)
20. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems.

SIAM J. Comput. 24, 1278–1304 (1995)
21. Farkas, J.: Theorie der einfachen ungleichungen. J. Rein. Angew. Math. 124, 1–27 (1901)
22. Fredman, M., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms.

J. Algorithms 21, 618–628 (1996)
23. Floyd, R.W.: Algorithm 97: Shortest path. Commun. Assoc. Comput. Mach. 5, 345 (1962)
24. Fukuda, K., Liebling, Th.M., Margot, F.: Analysis of backtrack algorithms for listing all vertices and

all faces of a convex polyhedron. CGTA 8, 1–12 (1997)
25. Gallai, T.: Maximum-minimum Sätze über Graphen. Acta Math. Acad. Sci. Hung. 9, 395–434 (1958)
26. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities. ORSA J. Comput.

2(1), 61–63 (1990)
27. Johnson, D.S., Preparata, F.P.: The densest hemisphere problem. Theor. Comput. Sci. 6, 93–107

(1978)
28. Johnson, D.S., Papadimitriou, Ch.H.: On generating all maximal independent sets. Inf. Process. Lett.

27, 119–123 (1988)
29. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a

uniform distribution. Theor. Comput. Sci. 44, 169–188 (1986)
30. Khachiyan, L.: A polynomial algorithm in linear programming. Sov. Math. Dokl. 20, 191–194 (1979)
31. Lovász, L.: Combinatorial optimization: some problems and trends. DIMACS Technical Report

92-53, Rutgers University (1992)
32. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets:

NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)
33. Mattheiss, T.H.: An algorithm for determining irrelevant constraints and all vertices in systems of

linear inequalities. Oper. Res. 21, 247–260 (1973)
34. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. In:

H.W. Kuhn and A.W. Tucker (eds.) Contributions to the Theory of Games, vol. II, pp. 51–73 (1953)
35. Pfetsch, M.E.: The maximum feasible subsystem problem and vertex-facet incidences of polyhedra.

Dissertation, TU Berlin (2002)
36. Provan, J.S.: Efficient enumeration of the vertices of polyhedra associated with network lp’s. Math.

Program. 63(1), 47–64 (1994)
37. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees.

Networks 5, 237–252 (1975)
38. Ryan, J.: IIS-hypergraphs. SIAM J. Discrete Math. 9(4), 643–653 (1996)
39. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
40. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. A. Springer, Berlin (2003)
41. Seidel, R.: Output-size sensitive algorithms for constructive problems in computational geometry.

Computer Science. Cornell University, Ithaka (1986)
42. Swart, G.: Finding the convex hull facet by facet. J. Algorithms 6, 17–48 (1985)
43. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 410–421

(1979)
44. Warshall, S.: A theorem on boolean matrices. J. Assoc. Comput. Mach. 9, 11–12 (1962)

	Generating All Vertices of a Polyhedron Is Hard
	Abstract
	Introduction and Main Results
	Negative Circuits and Minimal Infeasible Subsystems
	Minimal Infeasible Subsystems and Vertex Enumeration
	Four Geometric Enumeration Problems

	Proof of Theorem 1
	Proof of Theorem 2
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

