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Abstract An edge-unfolding of a polyhedron is produced by cutting along edges and
flattening the faces to a net, a connected planar piece with no overlaps. A grid un-
folding allows additional cuts along grid edges induced by coordinate planes passing
through every vertex. A vertex-unfolding allows faces in the net to be connected at
single vertices, not necessarily along edges. We show that any orthogonal polyhedra
of genus zero has a grid vertex-unfolding. (There are orthogonal polyhedra that can-
not be vertex-unfolded, so some type of “gridding” of the faces is necessary.) For
any orthogonal polyhedron P with n vertices, we describe an algorithm that vertex-
unfolds P in O(n?) time. Enroute to explaining this algorithm, we present a sim-
pler vertex-unfolding algorithm that requires a 3 x 1 x 1 refinement of the vertex
grid.
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1 Introduction

Two unfolding problems have remained unsolved for many years [3, 5]: (1) Can every
convex polyhedron be edge-unfolded? (2) Can every polyhedron be unfolded? An
unfolding of a 3D object is an isometric mapping of its surface to a single, connected
planar piece, the “net” for the object, that avoids overlap. An edge-unfolding achieves
the unfolding by cutting edges of a polyhedron, whereas a general-unfolding places
no restriction on the cuts. A net representation of a polyhedron finds use in a variety
of applications [8]—from flattening monkey brains [10] to manufacturing, from sheet
metal [12] to low-distortion texture mapping [11].

It is known that some nonconvex polyhedra cannot be unfolded without overlap
with cuts along edges. However, no example is known of a nonconvex polyhedron
that cannot be unfolded with unrestricted cuts. Advances on these difficult problems
have been made by specializing the class of polyhedra, or easing the stringency of the
unfolding criteria. On one hand, it was established in [1] that certain subclasses of or-
thogonal polyhedra—those whose faces meet at right angles and whose edges are par-
allel to coordinate axes—that are multiples of 90°—have an unfolding. In particular,
the class of orthostacks, stacks of extruded orthogonal polygons, was proven to have
an unfolding (but not an edge-unfolding). On the other hand, loosening the criteria
of what constitutes a net to permit connection through points/vertices, the so-called
vertex-unfoldings, led to an algorithm to vertex-unfold any triangulated manifold [6]
(and indeed, any simplicial manifold in higher dimensions). A vertex unfolding maps
the surface to a single, connected piece K in the plane, but K may have “cut vertices”
whose removal disconnects K.

A second loosening of the criteria is the notion of grid unfoldings, which are es-
pecially natural for orthogonal polyhedra. A grid unfolding adds edges to the surface
by intersecting the polyhedron with planes parallel to Cartesian coordinate planes
through every vertex. The two approaches were recently married in [7], which estab-
lished that any orthostack may be grid vertex-unfolded. For orthogonal polyhedra, a
grid unfolding is a natural median between edge-unfoldings and unrestricted unfold-
ings.

Our main result is that any orthogonal polyhedron, without shape restriction ex-
cept that its surface be homeomorphic to a sphere, has a grid vertex-unfolding. We
present an algorithm that grid vertex-unfolds any orthogonal polyhedron with n ver-
tices in O (n?) time. We also present, along the way, a simpler algorithm for 3 x 1 x 1
refinement unfolding, a weakening of grid unfolding that we define in the following.
We believe that the techniques in our algorithms may help show that all orthogonal
polyhedra can be grid edge-unfolded.

2 Definitions

We distinguish between a strict net, in which the net boundary does not self-touch,
and a net for which the boundary may touch but no interior points overlap. The latter
corresponds to the physical model of cutting out the net from a sheet of paper, with
perhaps some cuts representing edge overlap, and this is the model we use in this
paper. We also insist as part of the definition of a vertex-unfolding, again keeping
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Fig. 1 Definitions. a Shaded connected pieces are bands; A, B and D are protrusions; C is a dent. b An
unfolding tree captures band adjacency structure and determines the algorithm’s recursive calls

in spirit with the physical model, that the unfolding “path” never self-crosses on the
surface in the following sense. If (A, B, C, D) are four gridfaces incident in that
cyclic order to a common vertex v, then the net does not include both the connections
AvC and BvD.!

We use the following notation to describe the six type of faces of an orthogonal
polyhedron, depending on the direction in which the outward normal points: front:
—y; back: +y; left: —x; right: 4+x; bottom: —z; top: +z. We take the z-axis to define
the vertical direction; vertical faces are parallel to the xz-plane or the yz plane. Di-
rections clockwise and counterclockwise are defined from the perspective of a viewer
positioned at y = —oo. We distinguish between an original vertex of the polyhedron,
which we call a corner vertex or just a vertex, and a gridpoint, a vertex of the grid
(which might be an original vertex). A gridedge (gridface) is an edge (face) of the
grid that lies on the surface of the polyhedron.

A k1 X ky X k3 refinement of a surface [4] starts with a grid unfolding and fur-
ther partitions each gridface into a grid of edges. Positive integers ki, k2, and k3
are associated with the amount of refinement in the x, y, and z dimensions, respec-
tively; e.g., z-perpendicular gridfaces are refined into a k; X k» grid, and similarly
x-perpendicular (y-perpendicular) gridfaces are refined into a k> x k3 (k1 x k3) grid.
We will consider refinements of grid unfoldings, with the convention thata 1 x 1 x 1
refinement is an unrefined grid unfolding.

Let O be a solid orthogonal polyhedron with the surface homeomorphic to a
sphere (i.e., genus zero). Let Y; be the plane y = y; orthogonal to the y-axis. Let
Yo, Y1, ..., Y, ... be the finite sequence of parallel planes passing through every ver-
tex of O, with yp < y; <--- <y; <---. We define layer i to be the portion of O
between planes Y; and Y; . Observe that a layer may include a collection of disjoint
connected components; we call each such component a slab. The band of a slab is
the connected surface piece composed of gridfaces parallel to the y axis that sur-
round the slab. Referring to Fig. 1a, layer O, 1, and 2 each contain one slab (with
outer bands A, B, and D, respectively). Note that each slab is bounded by an outer
(surface) band, but it may also contain inner bands, bounding holes. Outer bands are

I This was not part of the original definition in [6] but was achieved by those unfoldings.
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called protrusions and inner bands are called dents (C in Fig. 1a). In other words,
band A is a protrusion if a traversal of the rim of A in Y;, counterclockwise from
the viewpoint of y = —o0, has the interior of O to the left of A, and a dent if this
traversal has the interior of O to the right.

For each i, define P; = 0O N Y; as the portion of the surface of O lying in plane
Y;. Pl.+ is the portion of P; with normal in direction 4y (composed of back faces),
and P; the portion with normal in direction —y (composed of front faces). By con-
vention, band points in P; that are not incident to either front or back faces (e.g., when
one band aligns with another), belong to both PI.Jr and P/ . Thus P; = Pf UP™.

3 Dents vs. Protrusions

We observe that dents may be treated exactly the same as protrusions with respect
to unfolding, because an unfolding of a 2-manifold to another surface (in our case,
a plane) depends only on the intrinsic geometry of the surface, and not on how it is
embedded in R3. Note that we are concerned only with the final unfolded “flat state”
[3, 5], and not with possible intersections during a continuous sequence of partially
unfolded intermediate states. Our unfolding algorithm relies solely on the amount of
surface material surrounding each point: the cyclic ordering of the gridfaces incident
to a vertex, and the pair of gridfaces sharing a gridedge. All these local relationships
remain unchanged if we conceptually “pop-out” dents to become protrusions, i.e.,
a “Flatland” creature living in the surface could not tell the difference; nor can our
algorithm. We note that the popping-out is conceptual only, for it could produce self-
intersecting objects. Also dents are gridded independently of the rest of the object so
as to avoid unnecessary surface cuts that would correspond to y-planes containing
dent vertices only. From the point of view of unfolding, it does not matter whether
dents are popped out or not.

Although the dent/protrusion distinction is irrelevant to the unfolding, the interre-
lationships between dents and protrusions touching a particular ¥; do depend on this
distinction. To cite just the simplest example, there cannot be two nested protrusions
to the same side of Y;, but a protrusion could have a dent in it to the same side of ¥;
(e.g., protrusion B encloses dent C to the same side of Y7 in Fig. 1a). These relation-
ships are crucial to the connectivity of the band graph Gy, discussed in Appendix.

4 Overview

The two algorithms we present share a common central structure, with the second
achieving a stronger result; both are vertex-unfoldings that use orthogonal cuts only.
We note that it is the restriction to orthogonal cuts that makes the vertex-unfolding
problem difficult: if arbitrary cuts are allowed, then a general vertex-unfolding can be
obtained by simply triangulating each face and applying the algorithm from [6].

The (3 x 1 x 1)-algorithm unfolds any genus-0 orthogonal polyhedron that has
been refined in one direction 3-fold. The bands themselves are never split (unlike
in [1]). The algorithm is simple. The (1 x 1 x 1)-algorithm also unfolds any genus-0
orthogonal polyhedron, but this time achieving a grid vertex-unfolding, i.e., without
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refinement. This algorithm is more delicate, with several cases not present in the
(3 x 1 x 1)-algorithm that need careful detailing. Clearly this latter algorithm is
stronger, and we vary the detail of presentation to favor it. The overall structure of
the two algorithms is the same:

1. A band “unfolding tree” T, is constructed by shooting rays vertically from the top
of bands. The root of T}, is a frontmost band (of smallest y-coordinate), with ties
broken arbitrarily.

2. A forward and return connecting path of vertical front/back gridfaces is identified,
each of which connects a parent band to a child band in 7.

3. Each band is unfolded horizontally as a unit, but interrupted when a connecting
path to a child is encountered. The parent band unfolding is suspended at that
point, and the child band is unfolded recursively.

4. The vertical front and back faces of each slab are partitioned according to an
illumination model, with variations for the more complex (1 x 1 x 1)-algorithm.
Front/back gridfaces are attached below and above appropriate horizontal sections
of the band unfolding.

The final unfolding lays out all bands horizontally, with the front and back gridfaces
hanging below and above the bands. Nonoverlap is guaranteed by this strict two-
direction structure.

Although our result is a broadening of that in [7] from orthostacks to all orthogonal
polyhedra, we found it necessary to employ techniques different from those used
in that work. The main reason is that, in an orthostack, the adjacency structure of
bands yields a path, which allows the unfolding to proceed from one band to the next
along this path, never needing to return. In an orthogonal polyhedron, the adjacency
structure of bands is generally not linear. Thus in our algorithm, unfolding band-by-
band leads to a tree traversal (e.g., Fig. 1b), which requires traversing each arc in both
directions. It is this aspect which we consider our main novelty, and which leads us
to hope for an extension to edge-unfoldings as well.

5 (3 x 1 x 1)-Algorithm
5.1 Computing the Unfolding Tree T},

Define a z-beam to be a front or back rectangle on the surface of O whose top and
bottom edges are gridedges on two bands. In the degenerate case, a z-beam has height
zero and connects two rims along a section where they coincide. We say that two
bands, b; and b, are z-visible if there is a z-beam connecting a gridedge of b; to a
gridedge of b;. There can be many z-beams connecting two bands, so for each pair
of bands we select a representative z-beam of minimal (vertical) height. Let G be the
graph that contains a node for each band of O and an arc for each pair (b;,b;) of
z-visible bands such that i # j.

Lemma 1 G is connected.

Proof First observe that every gridface of O is either part of a band or part of a
z-beam (possibly a z-beam connecting a band to itself). Now consider making vertical
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Fig. 2 a Orthogonal polyhedron. b Unfolding tree 7;,. ¢ Unfolding of bands and front (hachured) grid-
face pieces connecting to A. Vertex connection through the pivots points pg, pg/, pc, pp is shown
exaggerated for clarity

cuts on the surface of O along the extent of the left and right sides of each z-beam.
Since O is connected and only vertical cuts are made, the resulting structure remains
connected and can be viewed as a multigraph, where bands are nodes and z-beams
are edges. Since G is the subset of this multigraph obtained by removing self-loops
and duplicate edges, G is also connected. U

Let the unfolding tree T, be any spanning tree of G, with the root selected arbitrar-
ily from among all bands adjacent to Y. We apply the 3 x 1 x 1 refinement procedure
to partition each front, back, top, and bottom gridface of O into three congruent sub-
faces, by adding two new gridedges orthogonal to the x-axis. This partitions the top
and bottom edges of each z-beam into three refined gridedges and divides the beam
itself into three vertical columns of refined gridfaces. See Fig. 2a. Let A be an arbi-
trary band, let B be one of its children in 7, and let e be the gridedge on B’s rim
where the z-beam from A attaches. We define the pivor point pp for band B to be
the %-point of e (or, in circumstances to be explained later, the %-point), and so it
coincides with a point of the 3 x 1 x I-refined grid. The unfolding of O will follow
the connecting vertical ray that extends from pp on B to A. Note that if e belongs
to both A and B, then the ray connecting A and B degenerates to a point. To either
side of a connecting ray we have two connecting paths of gridfaces, the forward and
return path. In Fig. 2a, these connecting paths are the shaded strips on the front face
of A.

5.2 Unfolding Bands into a Net

Starting at a frontmost root band, each band is unfolded as a conceptual unit, but
interrupted by the connecting rays incident to it from its front and back faces. In
Fig. 2, band A is unfolded as a rectangle, but interrupted at the rays connecting to
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(front children) B, C and (back child) B’. At each such ray the parent band unfolding
is suspended, the unfolding follows the forward connecting path to the child, the child
band is recursively unfolded, then the unfolding returns along the return connecting
path back to the parent, resuming the parent band unfolding from the point it left off.

Figure 2 illustrates this unfolding algorithm. The clockwise unfolding of A, laid
out horizontal to the right, is interrupted to traverse the forward path down to B,
and B is then unfolded as a rectangle (composed of its contiguous gridfaces). The
base pp of the connecting ray is called a pivot point because the counterclockwise
unfolding of B is rotated 180° counterclockwise about pp so that the unfolding of
B is also to the right. It is only here that we use point-connections that render the
unfolding a vertex-unfolding. The unfolding of B proceeds counterclockwise back to
pB, crosses over A to unfold B, then a clockwise rotation by 180° around the second
image of pivot pp/ orients the return path to A so that the unfolding of A continues
to the right. Note that the unfolding of C is itself interrupted to unfold child D. Also
note that there is edge overlap in the unfolding at each of the pivot points, and this
overlap could not be eliminated without violating the condition that all surface pieces
face the same way (up, in our case).

The reason for the 3 x 1 x 1 refinement is that the upper edge ¢’ of the back child
band B’ has the same (x, z)-coordinates as the upper edge ¢ of B on the front face.
In this case, the gridfaces of band A induced by the connecting paths to B would be
“overutilized” if there were only two. Let aj, a>, a3 be the three faces of A induced by
the 3 x 1 x 1 refinement of the connecting path to B, as in Fig. 2. Then the unfolding
path winds around A to aj, follows the forward connecting path to B, returns along
the return connecting path to ay, crosses over A and unfolds B’ on the back face, with
the return path now joining to a3, at which point the unfolding of A resumes. In this
case, the pivot point pp for B’ is the %-point of ¢’. Other such conflicts are resolved
similarly. It is now easy to see that the resulting net has the general form illustrated
in Fig. 2c:

1. The faces of each band fall within a horizontal rectangle whose height is the band
width.

2. These band rectangles are joined by front/back connecting paths on either side,
connecting through pivot points.

3. The strip of the plane above and below each band face that is not incident to a
connecting path, is empty.

4. The net is therefore an orthogonal polygon monotone with respect to the horizon-
tal.

5.3 Attaching Front and Back Faces to the Net

Finally, we “hang” front and back faces from the bands as follows. The front face of
each band A is partitioned by imagining A to illuminate downward lightrays from
the rim in the front face. The pieces that are illuminated are then hung vertically
downward from the horizontal unfolding of the A band. The portions unilluminated
will be attached to the obscuring bands.

In the example in Fig. 2, this illumination model partitions the front face of A into
three pieces (the striped pieces in Fig. 2¢). These three pieces are attached under A;
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the portions of the front face obscured by B but illuminated downward by B are hung
beneath the unfolding of B (not shown in the figure), and so on. Because the vertical
illumination model produces vertical strips, and because the strips above and below
the band unfoldings are empty, there is always room to hang the partitioned front face.
Thus, any orthogonal polygon may be vertex-unfolded with a 3 x 1 x 1 refinement
of the vertex grid.

Although we believe this algorithm can be improved to 2 x 1 x 1 refinement, the
complications needed to achieve this are similar to what is needed to avoid refinement
entirely, so we instead turn directly to 1 x 1 x 1 refinement.

6 (1 x1 x 1)-Algorithm

Although the (1 x 1 x 1)-algorithm follows the same general outline as the
(3 x 1 x 1)-algorithm, there are significant complications, which we outline before
going into detail. First, without the refinement of z-beams into three strips to allow
avoidance of conflicts on opposite sides of a slab (e.g., B and B’ in Fig. 2a), we
found it necessary to replace the z-beams by a pair of z-rays that are in some sense
the boundary edges of a z-beam. Selecting two rays per band permits a 2-coloring
algorithm (Theorem 4) to identify rays that avoid conflicts. Generating the ray-pairs
(Sect. 6.1.1) requires care to ensure that the band graph G, is connected (Appendix).
This graph, and the 2-coloring, lead to an unfolding tree 7, (Sect. 6.2). From here on,
there are fewer significant differences compared to the (3 x 1 x 1)-algorithm. With-
out the luxury of refinement, there is more need to share vertical paths on the front or
back face of a slab (Fig. 11). Finally, the connecting paths obscure the illumination
of some grid faces, which must be attached to the connecting paths. We now present
the details, in this order:

1. Determine Conflict-Free Pivot Points (Sect. 6.1) via
a. Ray-Pair Generation (Sect. 6.1.1)
b. Ray Graph (Sect. 6.1.2)
2. Construct T, (Sect. 6.2)
3. Select Connecting Paths (Sect. 6.2.1)
4. Determine Unfolding Directions (Sect. 6.2.2)
5. Recurse:
a. Unfold Bands into a Net (Sect. 6.3)
b. Attach Front and Back Faces to the Net (Sect. 6.4)

6.1 Determining Conflict-Free Pivot Points

The pivot p4 for a band A is the gridpoint of A where the unfolding of A starts and
ends. The y-edge of A incident to p4 is the first edge of A that is cut to unfold A.

Let A be an arbitrary band delimited by planes Y; and Y; 1. Say that two gridpoints
u €Y; and v € Y;4 are in conflict if the upward rays emerging from u and v hit first
the endpoints of the same y-edge of A; otherwise, u and v are conflict-free. If u lies
either on a vertical edge, or on a vertically extreme horizontal edge, then the ray at u
degenerates to u itself.
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Our goal is to select conflict-free pivots for all bands in 7, which will help us
later avoid competition over the use of certain gridfaces in the unfolding, an issue
that will become clear in Sect. 6.3. Selecting these pivots is the most delicate aspect
of the (1 x 1 x I)-algorithm. Ultimately, we represent pivoting conflicts in the form
of a graph G, (Sect. 6.1.2), from which 7;, will be derived.

6.1.1 Ray-Pair Generation

In order to avoid pivoting conflicts, for each band we will need two choices for its
connecting ray. Thus the algorithm generates the rays in pairs. Because there is no
refinement, the two rays originate at grid points on the same band, but they may
terminate on different bands. A simple example is shown in Fig. 3a, where the ray pair
originating on band D hits two different bands, B and C. This example also suggests
that one cannot consider ray pairs connecting pairs of bands, as in the (3 x 1 x 1)-
algorithm (which would connect D to A in this example), but instead we focus on
shooting pairs of rays upward from strategic locations on the boundary of each band,
and then selecting a subset of these rays so that the conflicts can be resolved and T,
is connected. To ensure connectedness of all bands, several ray-pairs must be issued
upward from each band. Figure 3b shows an example: no pair of rays can emanate
upward from the top of BN P;~ or C N P, ; one pair of rays shoots upward from the
top of each component of AN P,;": (r1, rz) connects A to B and (r3, r4) connects A
to C; finally, one pair of rays (rs, rg) issues from the top of AN Pi+, which connects
A to D. So, overall, three pairs of rays are generated for band A. We now turn to
describing in detail the method for generating ray-pairs.

Let band A intersect plane Y;. The algorithm is a for-loop over all A. We identify
chunks, Ay, Az, ..., Ay, of the rim A NY;, where each chunk Aj; is a connected
component of either AN P, or AN PiJr that contains at least one horizontal gridedge.
(Note that these chunks do not necessarily cover A N Y;.) We define S(A ) as the set
of all vertical segments s = (a, b), with a € A}, such that

/@j&
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(a) (b)

Fig. 3 a The ray pair (rq, r) connects band D to two different bands B and C. b To ensure connectivity,
three pairs of rays must be issued for A: (r1,r2), (r3,r4), and (r5, rg)
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(b) (c)

Fig. 4 Generating ray-pairs: a (rq, rp) for A; S(B) =@.b (r{,rp) for A (note that r, runs along source
band A); degenerate ray-pair (1, ) for B. ¢ S(A) =@; (r1,r2) for B

1. s is either a point, with b = a, or a front/back segment, with a below b.

2. b € B for some band B # A.

3. The open segment s \ {a, b} may contain points of A (see rp in Fig. 4b), but no
points of other bands.

For each band A, for each chunk A; C A, if §(A ) contains at least two rays connect-
ing A to the same band B, we select one ray pair (71, rp) that satisfies two restrictions:
(i) among the segments in S(A ;) incident to a highest x-gridedge in A}, ry is the left-
most one, and (ii) r, is the segment one x-gridedge to the right of ;. Figure 4 shows
a few examples. As mentioned earlier, several ray pairs could be generated for any
one band, and indeed several pairs could connect two bands (e.g., see Fig. 4b where
bands A and B are connected by two ray pairs).

Let G, be the band graph whose nodes are bands. Two bands are connected by
an arc in Gy if the ray-pair algorithm generates a ray connecting them. We call a
collection of bands in G, ray-connected if they are in the same connected component
of Gp. We establish that Gy, is a connected graph, i.e., all bands are ray-connected to
one another, even if only one ray per pair is employed:

Lemma?2 Gy is connected. Furthermore, the subgraph of Gy, induced by exactly one
ray per ray-pair (arbitrarily selected) is connected.

Whereas the connectedness of bands by z-beams in the (3 x 1 x 1)-algorithm is
straightforward, the complex possible relationships between bands makes connected-
ness via rays more subtle. We relegate the proof to the Appendix (Appendix) in order
to not interrupt the main flow of the algorithm.

The over-generation of ray-pairs noted above is designed to ensure connectedness.
Eventually many rays will be discarded by the time T, is constructed in Sect. 6.2.

6.1.2 Ray Graph G,

One pair of rays per pair of bands suffices to ensure that all bands are ray-connected.
If multiple pairs of rays exist for a pair of bands, pick one pair arbitrarily and discard
the rest. Then define a ray graph G, as follows. The nodes of G, are vertical rays,
perhaps degenerating to points, connecting gridpoints between two bands that both
intersect a common Y; plane. The arcs of G, record two types of potential pivoting
conflicts:
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Fig. 5 Building G,. a G, is a 4-cycle; {r{, rp} and {r3, r4} are x-arcs and the others are y-arcs. b G, is
a path; {r, r5} and {r3, rq} are y-arcs and the others are x-arcs

(i) The nodes for each pair of rays issuing from the top of a band B are adjacent
in G,. Call such arcs x-arcs; geometrically they can be viewed as parallel to the
X-axis.

(i) The nodes for two rays incident to opposite sides of the rim of a band A, con-
nected by a y-segment on the band, are adjacent in G,. Call such arcs y-arcs;
geometrically they can be viewed as parallel to the y-axis.

Figure 5 shows two simple examples of G, involving nodes on opposite sides of
one band A. Before proceeding, we list the consequences of the two types of arcs
in G,. Assuming that we can 2-color G, {red, blue}, and we select the base of (say)
the red rays as pivots, then: (i) exactly one pivot is selected for each band, and (ii) no
two pivot rays are in conflict across a band. So our goal now is to show that G, is
2-colorable. Because a graph is 2-colorable if and only if it is bipartite, and a graph is
bipartite if and only if every cycle is of even length, we aim to prove that every cycle
in G, is of even length. We start by listing a few relevant properties of G;:

1. Every node r € G, has exactly one incident x-arc. The rays are generated in pairs,
and the pairs are connected by an x-arc. As no such ray is shared between two
bands, at most one x-arc is incident to any r.

2. Nodes have at most degree 3, with the following structure: degree-1 nodes have an
incident x-arc; degree-2 nodes have both an incident x- and y-arc; and degree-3
nodes have an incident x-arc and two incident y-arcs.

3. Each x-arc spans exactly one pair of adjacent y-gridlines, and each y-arc spans
exactly one band rim-to-rim. The former is by the definition of ray pairs, which
issue from adjacent gridpoints, and the latter follows from the grid partitioning of
the object into bands.

Our next step requires embedding G, in an xy-plane IT. Toward that end, we coor-
dinatize the nodes and arcs of G, as follows. A node r € G, is a z-ray, and is assigned
the (x, y) coordinates of the ray. Note that this means collinear rays get mapped to
the same point; however, we treat them as distinct. The x-arcs are then parallel to the
x-axis, and the y-arcs are parallel to the y-axis. In essence, this coordinatization is a
view from z = +o0.

Figure 6 shows a more complex example illustrating this viewpoint. The object
is composed of 7 bands B;, one of which (B3) is a dent. There are 12 ray nodes,
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Fig. 6 a, b Two side views of an object; z-rays and y-arcs are marked with thick lines. ¢ G, coordinatized
into xy-plane I1; (rs, rg, r10, r9) is a 4-cycle; (r1,r3,7r4,78,77,711, 12,79, 15, 12) is a 10-cycle

two pairs of which lie on the same z-vertical line, namely (74, 75) and (rg, r9). Note
that there are y-arcs crossing both the top of and the bottom? of B4. The graph G,
has a 4-cycle and a 10-cycle, both detailed in the caption (as well as a 12-cycle not
detailed).

Lemma 3 Every cycle in G, is of even length.

Proof Let C be a cycle in G,. The coordinatization described above maps C to a
(perhaps self-crossing) closed path in the xy-plane I, a path which may visit the
same (x, y) point more than once, and/or traverse the same edge in IT more than once.
Any such closed path on a grid must have even length, for the following reason.
First, by Property (3) above, each edge of the path in IT connects adjacent grid
lines: an edge never “jumps over” one or more grid lines. Second, any such closed
lattice path changes parity with each step, in the following sense. Number the x-
and y-gridlines with integers 0, 1,2, ... left to right and bottom to top, respectively.
Define the parity of a gridpoint of IT to be the sum of its x- and y-gridline coordinates,
mod 2. Then each step of the path, necessarily in one of the four compass directions,
changes parity, as it changes only one of x or y. Returning to the start point to close
the path must return to the starting coordinates, and so to the same parity. Thus, there
must be an even number of parity changes along any closed path. Therefore, C has
an even number of edges. O

We have now established this:

Theorem 4 G, is 2-colorable.

2 A dent is included in this example precisely to introduce such a bottom y-arc into G.
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Note that nowhere in the above proof do we assume genus zero, so this theorem holds
for polyhedra of arbitrary genus.

Band Pivoting We are finally ready to specify the pivot points. By Theorem 4, we
can 2-color the nodes of G, {red, blue}. We choose all red ray-nodes of G, to be
pivoting rays, in that their base points become pivot points. As remarked before, this
selection guarantees that each band is pivoted, and no two pivots are in conflict. For
the root band we choose a pivot point—the point at which the unfolding starts and
ends—to be a grid point on the front rim connected by a y-segment to a blue ray.
Because the rays are generated in pairs, there must be a blue ray incident to the
root band. This choice guarantees that the root pivot is not in conflict with any other
(necessarily red) pivot.

6.2 Unfolding Tree T,

The next task is to define a band spanning tree T,, based on the band graph Gy.
Define G, to retain just the arcs of G, corresponding to the red ray nodes (in the
above 2-coloring) in G,. This maintains the connectivity by Lemma 2. Then take 7,
to be any spanning tree of G} rooted at a frontmost band. The arcs in T, and their
associated rays thus determine a pivot point for each band.

With 7, finally in hand, the remainder of the (1 x 1 x 1)-algorithm follows the
overall structure of the 3 x 1 x 1 algorithm, with variations as mentioned before, as
detailed below.

6.2.1 Selecting Connecting Paths

Having established a pivot point for each band, we are now ready to define the for-
ward and return connecting paths for a child band in T,,. A “path” here refers to a
connected sequence of gridfaces that the unfolding follows to get from one band to
another. Let B be an arbitrary child of band A. If the pivot point pp of B is at the
intersection of B and A, then both forward and return connection paths for B re-
duce to point pp (see Fig. 7). If B does not intersect A, then a ray r connects pp
to A (Figs. 8a and 10a). The connecting paths are the two vertical paths separated
by r composed of the gridfaces sharing an edge with r (paths k; and k; in Figs. 8a
and 10a). The path first encountered in the unfolding of A is used as a forward con-
necting path; the other path is used as a return connecting path.

a by by a

Fig. 7 Unfolding B when the ray connecting B to A degenerates to pp
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do

Fig. 8 Unfolding B: u; is not a corner vertex of A a pp incident to a left gridface of B b pp incident to
a top gridface of b

6.2.2 Determining Unfolding Directions

A top-down traversal of T,, assigns an unfolding direction to each band in 7}, as fol-
lows. The root band in 7;, may unfold either clockwise or counterclockwise, but for
definiteness we set the unfolding direction to clockwise. Let B be the band in 7;, cur-
rently visited and let A be the parent of B. If the upward ray r incident to pp connects
B to a bottom gridpoint of A, then B unfolds in the same clockwise/counterclockwise
direction as A. Otherwise, r connects B to a top or a side (for degenerate rays) grid-
point of Aj; in this case, B unfolds in the direction opposite to that of A. In other
words, A and B unfold in the same direction if B “hangs below” A, and in opposite
direction otherwise.

6.3 Unfolding Bands into a Net

Let A be a band to unfold, initially the root band. The unfolding of A starts at its
pivot point p4 and proceeds in the unfolding direction (clockwise or counterclock-
wise) of A. Henceforth we assume without loss of generality that the unfolding of A
proceeds clockwise (with respect to a viewpoint at y = —o0); the counterclockwise
unfolding of A is a vertical reflection of the clockwise unfolding of A. In the follow-
ing we describe our method to unfold every child B of A recursively. As mentioned
earlier, each band unfolds horizontally, from left to right, with recursive interruptions
to unfold its children.

Without loss of generality, we assume that A and B are both protrusions (cf.
Sect. 3). The possible unfoldings for a child B fall naturally into three cases. Case 1
handles the situation when B’s pivot is at the intersection of A and B. Cases 2 and 3
handle situations when B’s pivot is connected by a ray to A; Case 2 deals with situ-
ations in which B’s connecting paths do not overlap any other connecting paths, and
Case 3 addresses overlapping paths.

Case 1: Pivot pgp € AN B. Then, whenever the unfolding of A reaches pp, we
unfold B as in Fig. 7. The unfolding uses the two band gridfaces of A incident to pp
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(ap and a; in Fig. 7). Let by be the first gridface of B in counterclockwise order about
p. In the unfolding, we rotate by around pp so that the counterclockwise unfolding
of B extends horizontally to the right. The unfolding of B proceeds counterclockwise
back to pp, then the band gridface a; incident to pp is oriented about pp so that the
unfolding of A continues to the right.

Note that, because the pivots of any two children of A are conflict-free, there is
no competition over the use of ap and a; in the unfolding. Note also that the un-
folding path does not self-cross. For example, the cyclic order of the gridfaces inci-
dent to pp in Fig. 7ais (ag, Afronts b0, b1, Aback, a1), and the unfolding path follows
(ag, bo, ...,b1,ay).

Case 2: Pivot pp ¢ AN B and the (forward, return) connecting paths for B do not
overlap other connecting paths (except at their boundaries); we will later see that
connecting paths may overlap. Let us settle some notation first (cf. Fig. 8a): r is the
ray connecting B to A; k1 and k; are forward and return connecting paths for B (one
to either side of r); u is the endpoint of r that lies on A; and u; is the other endpoint
of the y-edge of A incident to u. We discuss three situations:

Case 2a: u is neither a reflex corner nor a bottom corner of A. In this case, when-
ever the unfolding of A reaches ki, the unfolding of B proceeds according to one of
three subcases, depending on the position of pp. If pp touches a left gridface of B,
the unfolding proceeds as in Fig. 8a, and if it touches a right gridface, the unfolding
proceeds as in Fig. 8b. In both cases, by, the first gridface of B in counterclockwise
order around pp, is rotated so that the unfolding of B extends to the right, B is recur-
sively unfolded, and the return path k; is rotated about pp so that the unfolding of A
continues to the right. The final subcase occurs when pp touches only top gridfaces
of B. Then the unfolding is identical to that in Fig. 8b but with b, a top gridface.

Case 2b: u is a reflex corner of A. In this case, the unfolding of B proceeds as in
Fig. 9a,b. It is the existence of the vertical strip incident to | (marked ¢ in Fig. 9) that

Fig. 9 Unfolding B: u is a corner vertex of A. a t is a left strip b 7 is a right strip
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Py

R

(a) (b)

Fig. 10 Unfolding B: u is a bottom corner of A a rightmost, and b leftmost gridface of A vertically
aligned with leftmost gridface of B

makes handling this case different from Case 2a. Note, however, that the existence
of ¢ implies the existence of at least two gridfaces on either the return path or the
forward path for B, depending on whether ¢ is a left (Fig. 9a) or a right (Fig. 9b) strip
of gridfaces. In the former case the unfolding starts as in Case 2a (Fig. 9a), and once
the unfolding of B returns to pp, it continues along the return path k> up to u1, then
unfolds ¢ and orients it about #1 so that the unfolding of A continues to the right.
The gridface(s) that cover the gap above k» (marked k3 in Fig. 9a) will be attached
below the adjacent top gridface of A (a; in Fig. 9a) in the last phase of the unfolding
algorithm (Sect. 6.4).

If ¢ is a strip of right gridfaces, then we unfold ¢ before descending along the
forward path down to B, as in Fig. 9b (note the vertical symmetry with the unfolding
in Fig. 9a); the unfolding of B then proceeds as in Case 2a (Fig. 8b).

Case 2c¢:  uj is a bottom corner of A. In this case, the unfolding proceeds as in
Fig. 10a or 10b, depending on whether u; is a right or a left bottom corner of A.
The unfolding illustrated in Fig. 10a follows the familiar unfolding pattern: orient the
first gridface of B in counterclockwise order around pp so that the unfolding of B
extends to the right; once the unfolding of B returns to pp, follow the return path
back to A and unfold the gridface of A clockwise to the right of #; (a; in Fig. 10a)
so that the unfolding of A continues to the right. A similar pattern applies to the case
illustrated in Fig. 10b, with one subtle difference meant to aid in unfolding front and
back faces (discussed in Sect. 6.4): in unfolding bands, we aim at maintaining the
vertical position of the (forward, return) connecting paths in the unfolding, so that
vertical strips hanging below these connecting paths in 3D could also hang vertically
in the 2D unfolding. More on this in Sect. 6.4. Observe that the z-vertical edges of ki
and k from Fig. 10a hang remain vertical in the unfolding. However, the z-vertical
edges of kp from Fig. 10b must unfold as horizontal edges, otherwise it would not
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Fig. 11 a Return path for C includes ky4, k3, k1; forward path for B is kj. b Unfolding for (a). ¢ Return
path for B includes ks, kyq, ky; forward path for C is ky. d Return path for B is kp; forward path for C
includes k7, k3. e Forward (return) paths are identical for B and C

be possible to orient a; around u; so as to continue unfolding A to the right of k3.
This is the reason for employing the gridface strip marked ¢ in the unfolding, so that
z-vertical sides of ¢ remain vertical in the unfolding, and any gridface strip hanging
below ¢ could be attached to ¢ vertically in the unfolding.

We note that Fig. 10 illustrates only the situation in which pp is incident to a left
gridface of B, but it should not be difficult to observe that the same idea applies to
any top pivot of B; the pivot position only affects the start and end unfolding position
of B, and everything else remains the same.

Case 3: Pivot pp ¢ AN B and a connecting path for B overlaps a connecting path
for another descendant C of A. This case is slightly more complex, because it in-
volves conflicts over the use of the connecting paths for B. The following three situ-
ations are possible.

Case 3a: The forward path k| for B overlaps the return path for another descendant
C of A. This situation is illustrated in Fig. 11a. In this case, the unfolding of B starts
as soon as the unfolding along the return path from C to A meets a gridface of B
incident to pp (gridface bg in Fig. 11a). At this point we recursively unfold B as
before (see Fig. 11b), then the unfolding continues along the return path for C back
to A. Figure 11b shows gridface k; in two positions: we let k; hang down only if the
next gridface to unfold is a right gridface of a child of A (see also the transition from
k7 to c¢5 in Fig. 12); otherwise, use k1 in the upward position, a freedom permitted to
us by rotating about vertex u.
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c
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Fig. 12 a An example. b The vertex-unfolding

Case 3b: The return path for B overlaps the forward path for another descendant C
of A. This situation is illustrated in Figs. 1 1c and 11d. The case depicted in Fig. 11cis
similar to the one in Fig. 11a and is handled in the same manner. For the case depicted
in Fig. 11d, notice that k3 is on both the forward path for C and the return path for B.
However, no conflict occurs here: from k> the unfolding continues downward along
the forward path to C and unfolds C next.

Case 3c: The forward path k; for B overlaps the forward path for another descen-
dant C of A. This situation occurs when either B or another band C incident to B
is a dent, as illustrated in Fig. 11e. Again, no conflict occurs here: the recursive un-
folding of C, which returns to pc = pp, is followed by the recursive unfolding of
B, which returns to pp, then the unfolding continues along the return path for B (C)
back to A. We note that the forward paths for B and C overlap if and only if their re-
verse paths overlap, so this case also handles the situation in which the reverse paths
overlap.

Figure 12 shows a more complex example that emphasizes these subtle unfolding
issues. Note that the return path k1, kg, k9 for B overlaps the forward path k9 for C;
and the return path ks, kg and k7 for G overlaps the forward path for H, which in-
cludes k7. The unfolding produced by the method described in this section is depicted
in Fig. 12b.

6.4 Attaching Front and Back Faces to the Net

Front and back faces of a slab are “hung” from bands following the basic idea of
the illumination model discussed in Sect. 5.3. There are three differences, however,
caused by the employment of some front and back gridfaces for the connecting paths,
which can block illumination from the bands.

1. We illuminate both upward and downward from each band: each x-edge illumi-
nates the vertical front/back face it attaches to. This alone already suffices to han-
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dle the example in Fig. 12: all front and back faces are illuminated downward from
the top of A, upward from the bottom of A, and upward from the top of B.

2. Some gridfaces still might not be illuminated by any bands, because they are ob-
scured both above and below by paths in connecting gridfaces. Therefore we in-
corporate the connecting gridfaces into the band for the purposes of illumination.
For example, in Fig. 10a, k; illuminates downward and k illuminates upward.
The reason this strategy works is that, with one exception, each vertical connect-
ing strip remains vertical in the unfolding, and so illuminated strips can be hung
safely without overlap. Note that although &, illuminates downward, it is rotated
about pp so that what was down in 3D becomes up in the unfolding. So the faces
illuminated downward from k; get “hung upward.”

3. The one exception is the return connecting path k> in Fig. 10b. This paths unfolds
“on its side,” i.e., what is vertical in 3D becomes horizontal in 2D. Note, how-
ever, that the gridface ¢ below such a path (a gridface always present), is oriented
vertically. We thus consider ¢ to be part of the connecting path for illumination
purposes, permitting the strip below to be hung under ¢.

Because our cases are exhaustive, all gridfaces of (say) the front face of A are either
illuminated by A, or by some descendant of A on the front face, augmented by the
connecting paths as just described. (In fact every gridface is illuminated twice, from
above and below.) Hanging the strips then completes the unfolding.

6.5 Algorithm Complexity

Because there are so few unfolding algorithms, that there is some algorithm for a class
of objects is more important than the speed of the algorithm. Nevertheless, we offer
an analysis of the complexity of our algorithm. Let n be the number of corner vertices
of the polyhedron, and N = O (n?) be the number of gridpoints. The vertex grid can
be easily constructed in O (N) time, leaving a planar surface map consisting of O (N)
gridpoints, gridedges, and gridfaces. The computation of connecting rays (Sect. 6.2)
requires determining the components of A N PiJr and AN P, for each band A and
incident plane Y;. These can be easily read from the planar map by running through
the n vertices of each of the O (n) bands and determining, for each vertex, whether it
belongs to PiJr or P~ Each of the O(n) band components shoots a vertical ray from
one corner vertex, in a 2D environment (the plane Y;) of n noncrossing orthogonal
segments. Determining which band a ray hits involves a ray-shooting query. Although
an implementation would employ an efficient data structure, perhaps BSP trees [9],
for complexity purposes the naive O(n) query cost suffices to lead to O (n?) time
to construct G,. Selecting pivots (Sect. 6.1) involves 2-coloring G, in O (n) time,
and computing the unfolding tree 7, in a breadth-first traversal of G,, which takes
O (n) time. Unfolding bands (Sect. 6.3) involves a depth-first traversal of 7,, in O (n)
time, and laying out the O (N) gridfaces in O(N) time. Thus, the algorithm can be
implemented to run in O(N) = O (n?) time.

7 Further Work

Extending these algorithms to arbitrary genus orthogonal polyhedra remains an in-
teresting open problem. Holes that extend only in the x and z directions within a slab
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seem unproblematic, as they simply disconnect the slab into several components.
Holes that penetrate several slabs (i.e., extend in the y direction) present new chal-
lenges, as they may obstruct vertical band visibility necessary to establish that the
band graph is connected. One idea to handle such holes is to place a virtual xz-face
midway through the hole, and treat each half-hole as a dent (protrusion).

Acknowledgements We thank the anonymous referees for their careful reading and insightful com-
ments.

Appendix: Proof of Lemma 2 (Connectedness of Gp)

For a band A, let r;(A) be the closed region of ¥; whose boundary is the rim of A,
i.e., ANY;. Two subsets of P, =00 NY; C Y; are path-connected, or just connected,
if there are points in each that are connected by a path that lies in P;. We first develop
notation to describe the relevant portions of r; (A) that are connected to each band A.
Recall from Sect. 2 that Pi+ is composed of back faces and P, of front faces.

We decompose the set of points in P; into sets ¢; (A) for all bands A that meet P.
The sets c¢; (A) will have disjoint interiors, overlapping only on their boundaries. Ini-
tially assign ¢; (A) = A N P;; we now augment these sets. Let p be an arbitrary point
in P;. We consider four cases, which ultimately reduce to a single case. First let p
be on a front face, i.e., on P;". Then p is either on a protrusion that lies behind Y;
(Fig. 13a), or on a dent in front of ¥; (Fig. 13b). Symmetric cases occur when p is on
a back face (on Pl.+), either on a protrusion in front of ¥; (Fig. 13c), or a dent behind
Y; (Fig. 13d). Let p be on a front face of a band A (encompassing the first two cases).
If p is path-connected to A, we add p to ¢;(A). Otherwise, p must be in r;(B) of
a unique dent band B, which is itself in a protrusion B’, both in front of Y;. In this
case, we add p to c;(B). For example, in Fig. 17a, p lies on the front face of A and is
path-connected to A, and therefore p € c¢;(A) (even though it is also path-connected
to the surrounding dent B). In Fig. 18a, however, p lies on the front face of A’ but is
not path-connected to A’, and therefore p is instead in the set ¢; (B) for the surround-
ing dent B. Figure 16b illustrates the symmetric case where p is on the back face of
protrusion B’, and because p is path-connected to B’, p € ¢;(B’) (even though p is
also path-connected to B).

The above definition of ¢; (A) ensures that Uc;(A) = P;, where the union is over
all A that meet P;. Moreover the ¢; sets have disjoint interiors. We now concentrate

z
y\b

Fig. 13 Four cases: p is located on: a front face of protrusion behind Y;, b front face of dent in front
of Y;, ¢ back face of protrusion in front of ¥;, d back face of dent behind Y;

@ (b)
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on the boundaries of the c¢; sets, and raise the observation we need to a lemma for
later reference:

Lemma 5 For protrusion A and dent B on opposite sides of Y; such that c;(A) N
¢i (B) is nonempty, it must be that A N B is nonempty, i.e., the band rims share one
or more points.

Proof Suppose to the contrary that A N B is empty. Then either r; (A) and r; (B) are
disjoint, in which case ¢;(A) N ¢;(B) is empty, a contradiction, or r; (A) D r;(B), in
which case B is a cavity in object O, violating our genus-zero assumption. O

This lemma justifies the following definition:

ANB, if AN B # ), and at least one of A and B is a dent,

ci(A,B) = .
ci(A)Nc;(B) otherwise.

This definition is intended to identify gridpoints on either A or B from which
rays are issued by the ray-pair generation algorithm (Sect. 6.1.1). The reason for
treating intersecting dents and protrusions differently is a subtle one, and is captured
by Fig. 16b: B is a dent behind ¥; and B’ is a protrusion in front of ¥;; ¢; (B’) is the
piece of the back face of B’ enclosed by B; u is a highest gridpoint in B N B’, while
w is a highest gridpoint in ¢;(B) N ¢;(B’); u is a potential ray basepoint, while w is
not. The above definition eliminates points such as w from the set ¢; (A, B).

Our connectivity proof for G, proceeds as follows. Let Pl.l, Piz, ... denote the
connected components of P;, with P; = Pl.1 U Pl.2 U ---. The bands incident to each
of these are connected by rays (as discussed in Sect. 6.1.2) that lie in planes other
than ¥; (see Fig. 14 for an example). We first argue that, to prove that Gy, is ray-
connected, it suffices to prove that each P/ is ray-connected. Remove from O all
the slabs Sy, S», ... incident to Y. Establish that the bands in the resulting object O’
are ray-connected, via induction. The inductive hypothesis implies that the bands in
each connected component of O’ are ray-connected. Now put back the slabs. Each
Sm corresponds to a component P/". We will prove that all bands incident to P/
are ray-connected to one another. This along with the fact that O itself is connected
implies that all bands are ray-connected. Henceforth we concentrate on one such
connected component P/, call it Q C ¥; for succinctness. Let x be the collection
of all bands that intersect Q. Then | J 4 ey Ci (A) = Q. The idea of the connectedness

Fig. 14 P contains two
connected components, one
incident to A, B, D, and one
incident to C, E; pairs of bands
incident to different components
are connected by rays that lie

in Y. 2
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proof is that the bands get connected in upward chains, and ultimately to each other
through “common ancestor” higher bands. We choose to prove it by contradiction,
arguing that a highest disconnected component cannot exist.

Lemma 6 All bands in x are ray-connected. Furthermore, if one arbitrary ray in
each ray-pair is discarded, y remains ray-connected.

Proof For the purpose of contradiction, assume that not all bands in x are ray-
connected. Let i, x2, ... be the maximal subsets of x that are ray-connected. Let
Q= UAGX]_ ci(A). Then Q = Uj Q. Since Q is connected, the subsets Q ; are not
disjoint, in that for every Q; there is an Qy such that Q; N Qy is nonempty. This
along with Lemma 5 implies that

o= U a@,B

Aeyj Bexi

is also nonempty. Let j and k be such that Q j; contains a highest x-gridedge (grid-
point, if Q jr contains only isolated points) among all Q jx. Let u be the leftmost
highest gridpointin Q ji. Let A € x; and B € x; be such that u € ¢; (A, B).

We have thus identified two bands A and B, ray-disconnected because they lie in
different components of Q, which contribute this highest gridpoint « in the “highest”
intersection Q jx. We now examine in turn the four protrusion/dent possibilities for
these two bands.

Case 1. A and B are both protrusions on opposite sides of ¥;. Assume without loss
of generality that A is behind Y;, B is in front of ¥;, and u is on B (as depicted in
Fig. 15). We discuss two subcases:

a. u is on a top edge of A or B; choose B without loss of generality (Figs. 15a, b).
Then our ray-pair algorithm generates a ray-pair (r, r’), with r incident to u and r’
incident to the gridpoint u’ clockwise from u. Consider r (the analysis is similar
for r’). If r hits A, then in fact A and B are ray-connected, contradicting the fact
that A and B belong to different ray-connected components of x. So let us assume

m‘k
“s‘“

(b)

Fig. 15 Case 1: A and B are both protrusions on opposite sides of ¥; a D is a protrusion b D is a dent
with a vertical side incident to u ¢ D is a dent with a bottom edge incident to u
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that  hits another band D € y,. Figure 15a, b illustrates the situation when D is a
protrusion (dent). If £ = j, then D and A are ray-connected in x;, and since B and
D are ray-connected, it follows that B and A are ray-connected, a contradiction.
On the other hand, if £ # j, then ¢; (A, D) (and implicitly Q) has a gridpoint
higher than u, contradicting our choice of j, k and u.

b. u is not on a top edge of A or B, and so must be on a vertical (left, right) edge
of A or Bj; again we choose B without loss of generality (Fig. 15¢). Then u must
be at the intersection between a dent D in protrusion A, and B. Because A N D is
empty, we fall into the second case of the definition of ¢; (A, D), which is therefore
¢i(A) N¢i(D). In this case, the same arguments as in Case a show that D and A
are ray-connected, meaning that D € x;. Let u; be the leftmost among the highest
gridpoints of D N ¢;(B). Then our ray-pair algorithm generates a ray-pair (r, r’)
from u; and its right neighbor . Consider r (the analysis is similar for r'). If
hits B, then B is ray-connected to D, which is ray-connected to A, a contradiction.
If  hits a band E other than D, then it must be that E € xj, the same component
containing B. Otherwise B and E would yield an intersection point higher than
u, contradicting our choice of A and B. This means that B is ray-connected to E,
which is ray-connected to D, which is ray-connected to A, a contradiction.

Case 2. A is a protrusion and B is a dent, both on a same side of ¥;. The case when
A and B are both in front of ¥; (illustrated in Fig. 16a) is identical to Case 1 above,
once one conceptually pops out B into a protrusion. We now discuss the case when
A and B are both behind Y;.

Assume first that ¢; (A, B) contains no top edges of B, as depicted in Fig. 16b. Let
B’ be a protrusion in front of ¥; covering the top of B. Then ¢; (A, B’) and ¢;(B’, B)
each contains a gridpoint higher than u (see point w’ € ¢;(A, B") and w € ¢;(B, B')
in Fig. 16). The following two contradictory observations settle this case:

a. It must be that B’ & xi; otherwise Q jx would contain a gridpoint in ¢;(A, B)
higher than u.

b. If B’ € xy, then it must be that £ = k; otherwise Qg would contain a gridpoint in
¢i(B’, B) higher than u.

yix I
\l/ Y;

Fig. 16 Case 2: A is a protrusion and B is a dent a in front of ¥; b behind Y;

@ Springer



236 Discrete Comput Geom (2008) 39: 213-238

W

Fig. 17 Case 3: A is a protrusion behind Y;; B is a dent in B’, both in front of ¥;

If ¢;(A, B) contains at least one top gridedge of B, then arguments similar to the
ones used for the case illustrated in Fig. 15a (conceptually popping B to become a
protrusion) settle this case as well.

Case 3. A is a protrusion and B is a dent on opposite sides of ¥; (see Fig. 17). Let B/
be the protrusion in front of Y; enclosing B. We discuss three subcases:

a. ¢;(A) contains a top edge of B (see Fig. 17a). This means that ¢;(A) Nr;(B) is
nonempty, and the ray-pair algorithm shoots a ray-pair (r,7") upward from the
endpoints of a highest gridedge {u1, u}} of ANr;(B). Consider ray r (the analysis
is similar for r’). If r hits B, then A and B are in fact ray-connected, a contradic-
tion. If » hits a band D other than B, then arguments similar to the ones for the
case illustrated in Fig. 15a (Case 1) lead to a contradiction.

b. ¢;(A) contains a bottom edge of B. This case is symmetrical to the one above in
that a ray upward from a gridpoint of B N r;(A) hits A, thus ray-connecting A
and B.

c. ¢i(A) contains neither a top nor a bottom edge of B (see Fig. 17b). Arguments
similar to the ones used in Case 1 (protrusions on opposite sides of ¥;) show that
A and B’ are ray-connected. That B and B’ are ray-connected follows immediately
from the fact that ¢; (B, B’) has a gridpoint higher than u (w in Fig. 17b). These
together imply that A and B are ray-connected, a contradiction.

Case 4. A and B are both dents: A is a dent behind Y; enclosed within protrusion
A’, and B is a dent in front of ¥; enclosed within protrusion B’ (see Fig. 18). The
genus-zero assumption implies that r; (A) N r;(B) is a polygonal region of positive
area. Since u € ¢;(A) N¢;(B), we have that u € r; (A) Nr;(B). Let B be the boundary
segment of 7;(A) Nr;(B) incident to u. We discuss two subcases:

a. B C P/, meaning that 8 C A (see Fig. 18a). An analysis similar to the one for
the case illustrated in Fig. 17a (Case 3) shows that A and B are ray-connected, a
contradiction.
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A

B’

L.

Fig. 18 Case 4: A is a dent behind Y;, enclosed within protrusion A’. B is a dent in front of ¥;, enclosed
within protrusion B’

b. B C Pi+, meaning that 8 C B (see Fig. 18b). We show that A and A’ are ray-
connected, B and B’ are ray-connected, and A’ and B’ are ray-connected. This
implies that A and B are ray-connected, a contradiction. First note that the ray-
pair algorithm shoots a ray-pair (r, 7") upward from a highest gridedge on 8. An
analysis similar to the one for the case illustrated in Fig. 15a (conceptually popping
B to become a protrusion) shows that » and r’ must hit B’, thus ray-connecting B
and B’. That A and A’ are ray-connected follows immediately from the fact that
¢i(A, A') has a gridpoint higher than u, and similarly for A’ and B’'.

Having exhausted all possible cases, the connectivity claim of the lemma is estab-
lished. Because the proof for each of these cases goes through by considering either
the first or second ray of a ray-pair, retaining either ray suffices to preserve connec-
tivity. Thus the second claim of the lemma is established as well. U
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